Search Results

Search found 8041 results on 322 pages for 'generic callback'.

Page 59/322 | < Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >

  • How can I build a generic dataset-handling Perl library?

    - by Pep.
    Hello, I want to build a generic Perl module for handling and analysing biomedical character separated datasets and which can, most certain, be used on any kind of datasets that contain a mixture of categorical (A,B,C,..) and continuous (1.2,3,881..) and identifier (XXX1,XXX2...). The plan is to have people initialize the module and then use some arguments to point to the data file(s), the place were the analysis reports should be placed and the structure of the data. By structure of data I mean which variable is in which place and its name/type. And this is where I need some enlightenment. I am baffled how to do this in a clean way. Obviously, having people create a simple schema file, be it XML or some other format would be the cleanest but maybe not all people enjoy doing something like this. The solutions I can think of are: Create a configuration file in XML or similar and with a prespecified format. Pass the information during initialization of the module. Use the first row of the data as headers and try to guess types (ouch) Surely there must be a "canonical" way of doing this that is also usable and efficient. Thanks p.

    Read the article

  • VB.NET Two different approaches to generic cross-threaded operations; which is better?

    - by BASnappl
    VB.NET 2010, .NET 4 Hello, I recently read about using SynchronizationContext objects to control the execution thread for some code. I have been using a generic subroutine to handle (possibly) cross-thread calls for things like updating UI controls that utilizes Invoke. I'm an amateur and have a hard time understanding the pros and cons of any particular approach. I am looking for some insight on which approach might be preferable and why. Update: This question is motivated, in part, by statements such as the following from the MSDN page on Control.InvokeRequired. An even better solution is to use the SynchronizationContext returned by SynchronizationContext rather than a control for cross-thread marshaling. Method 1: Public Sub InvokeControl(Of T As Control)(ByVal Control As T, ByVal Action As Action(Of T)) If Control.InvokeRequired Then Control.Invoke(New Action(Of T, Action(Of T))(AddressOf InvokeControl), New Object() {Control, Action}) Else Action(Control) End If End Sub Method 2: Public Sub UIAction(Of T As Control)(ByVal Control As T, ByVal Action As Action(Of Control)) SyncContext.Send(New Threading.SendOrPostCallback(Sub() Action(Control)), Nothing) End Sub Where SyncContext is a Threading.SynchronizationContext object defined in the constructor of my UI form: Public Sub New() InitializeComponent() SyncContext = WindowsFormsSynchronizationContext.Current End Sub Then, if I wanted to update a control (e.g., Label1) on the UI form, I would do: InvokeControl(Label1, Sub(x) x.Text = "hello") or UIAction(Label1, Sub(x) x.Text = "hello") So, what do y'all think? Is one way preferred or does it depend on the context? If you have the time, verbosity would be appreciated! Thanks in advance, Brian

    Read the article

  • Generic that takes only numeric types (int double etc)?

    - by brandon
    In a program I'm working on, I need to write a function to take any numeric type (int, short, long etc) and shove it in to a byte array at a specific offset. There exists a Bitconverter.GetBytes() method that takes the numeric type and returns it as a byte array, and this method only takes numeric types. So far I have: private void AddToByteArray<T>(byte[] destination, int offset, T toAdd) where T : struct { Buffer.BlockCopy(BitConverter.GetBytes(toAdd), 0, destination, offset, sizeof(toAdd)); } So basically my goal is that, for example, a call to AddToByteArray(array, 3, (short)10) would take 10 and store it in the 4th slot of array. The explicit cast exists because I know exactly how many bytes I want it to take up. There are cases where I would want a number that is small enough to be a short to really take up 4 bytes. On the flip side, there are times when I want an int to be crunched down to just a single byte. I'm doing this to create a custom network packet, if that makes any ideas pop in to your heads. If the where clause of a generic supported something like "where T : int || long || etc" I would be ok. (And no need to explain why they don't support that, the reason is fairly obvious) Any help would be greatly appreciated! Edit: I realize that I could just do a bunch of overloads, one for each type I want to support... but I'm asking this question because I want to avoid precisely that :)

    Read the article

  • WCF: get generic type object (e.g. MyObject<T>) from remote machine

    - by Aaron
    I have two applications that are communicating through WCF. On the server the following object exists: public class MyObject<T> { ... public Entry<T> GetValue() } Where Entry<T> is another object with T Data as a public property. T could be any number of types (string, double, etc) On the client I have ClientObject<T> that needs to get the value of Data from the server (same type). Since I'm using WCF, I have to define my ServiceContract as an interface, and I can't have ClientObject<T> call Entry<T> GetMyObjectValue (string Name) which calls GetValue on the correct MyObject<T> because my interface isn't aware of the type information. I've tried implementing separate GetValue functions (GetMyObjectValueDouble, GetMyObjectValueString) in the interface and then have ClientObject determine the correct one to call. However, Entry<T> val = (Entry<T>)GetMyObjectValueDouble(...); doesn't work because it's not sure about the type information. How can I go about getting a generic object over WCF with the correct type information? Let me know if there are other details I can provide. Thanks!

    Read the article

  • My method is too specific. How can I make it more generic?

    - by EricBoersma
    I have a class, the outline of which is basically listed below. import org.apache.commons.math.stat.Frequency; public class WebUsageLog { private Collection<LogLine> logLines; private Collection<Date> dates; WebUsageLog() { this.logLines = new ArrayList<LogLine>(); this.dates = new ArrayList<Date>(); } SortedMap<Double, String> getFrequencyOfVisitedSites() { SortedMap<Double, String> frequencyMap = new TreeMap<Double, String>(Collections.reverseOrder()); //we reverse order to sort from the highest percentage to the lowest. Collection<String> domains = new HashSet<String>(); Frequency freq = new Frequency(); for (LogLine line : this.logLines) { freq.addValue(line.getVisitedDomain()); domains.add(line.getVisitedDomain()); } for (String domain : domains) { frequencyMap.put(freq.getPct(domain), domain); } return frequencyMap; } } The intention of this application is to allow our Human Resources folks to be able to view Web Usage Logs we send to them. However, I'm sure that over time, I'd like to be able to offer the option to view not only the frequency of visited sites, but also other members of LogLine (things like the frequency of assigned categories, accessed types [text/html, img/jpeg, etc...] filter verdicts, and so on). Ideally, I'd like to avoid writing individual methods for compilation of data for each of those types, and they could each end up looking nearly identical to the getFrequencyOfVisitedSites() method. So, my question is twofold: first, can you see anywhere where this method should be improved, from a mechanical standpoint? And secondly, how would you make this method more generic, so that it might be able to handle an arbitrary set of data?

    Read the article

  • rails + paperclip: Is a generic "Attachment" model a good idea?

    - by egarcia
    On my application I've several things with attachments on them, using paperclip. Clients have one logo. Stores can have one or more pictures. These pictures, in addition, can have other information such as the date in which they were taken. Products can have one or more pictures of them, categorized (from the font, from the back, etc). For now, each one of my Models has its own "paperclip-fields" (Client has_attached_file) or has_many models that have attached files (Store has_many StorePictures, Product has_many ProductPictures) My client has also told me that in the future we might be adding more attachments to the system (i.e. pdf documents for the clients to download). My application has a rather complex authorization system implemented with declarative_authorization. One can not, for example, download pictures from a product he's not allowed to 'see'. I'm considering re-factoring my code so I can have a generic "Attachment" model. So any model can has_many :attachments. With this context, does it sound like a good idea? Or should I continue making Foos and FooPictures?

    Read the article

  • Saving image to the existing file throws "A generic error occurred in GDI+" error.

    - by ryan
    i am trying to create a overlapped image using different images,then saving to a particular location. so that i can use generated image(overlapped img) in my telerik reporting. it is important to me to save the overlapped image to the same location with same name. but generating this overlapped image second time throws throws "A generic error occurred in GDI+" error. Please help me with this. It seems i can not override the existing image file. i tried deleting the existing image every time i generate the new one. but its not allowing me deleting the file ,may be it is used by telerik reporting. Here is the image create method which takes the baseimage path, sectionimage path and the reportimage path (this is the target locationenter code here) public static void Creat(List<string> sectionNames, string reportImagePath, string baseImagePath) { var file = Image.FromFile(baseImagePath); Graphics g = Graphics.FromImage(file); foreach (var sectionName in sectionNames) { var image = Image.FromFile(sectionName); g.DrawImage(image, new PointF(0.0F, 0.0F)); } file.Save(reportImagePath, ImageFormat.Png); file.Dispose(); }

    Read the article

  • How do I cast from int to generic type Integer?

    - by Rob Kent
    I'm relatively new to Java and am used to generics in C# so have struggled a bit with this code. Basically I want a generic method for getting a stored Android preference by key and this code, albeit ugly, works for a Boolean but not an Integer, when it blows up with a ClassCastException. Can anyone tell me why this is wrong and maybe help me improve the whole routine (using wildcards?)? public static <T> T getPreference(Class<T> argType, String prefKey, T defaultValue, SharedPreferences sharedPreferences) { ... try { if (argType == Boolean.class) { Boolean def = (Boolean) defaultValue; return argType.cast(sharedPreferences.getBoolean(prefKey, def)); } else if (argType == Integer.class) { Integer def = (Integer) defaultValue; return argType.cast(sharedPreferences.getInt(prefKey, def)); } else { AppGlobal.logWarning("getPreference: Unknown type '%s' for preference '%s'. Returning default value.", argType.getName(), prefKey); return defaultValue; } } catch (ClassCastException e) { AppGlobal.logError("Cast exception when reading pref %s. Using default value.", prefKey); return defaultValue; } } I've tried various ways - using the native int, casting to an Integer, but nothing works.

    Read the article

  • How to write a generic USB Host Driver for Printers from various vendors?

    - by Ullas
    I want to develop a USB host on an embedded device that will talk to printers from various vendors. Drivers for the vendor specific printers would be available on PC which is ultimately communicating with printer but my device is facilitating this communication and needs to perform the basic handshaking/setup of the printer (i.e, it needs to know when the printer is connected, what are the socket IDs that needs to be opened for CTRL and DATA transmissions etc). All of these printers are supposed to comply with IEEE 1284.4 standards but I see that many of them vary quiet a bit. One approach I have is to take the USB traces of handshaking from each of these printers and write various sections of code respectively (I know, that sounds ridiculous!). Is there a generic way to do this? Is there any available forum where these standard informations are mentioned? For eg: EPSON uses 'EPSON-CTRL' and 'EPSON-DATA' for its control and data services which needs to be provided to get the socket ID for these services. I am pretty sure HPs, Canon's etc would have their own service names as well. As per the standards, this was supposed to be captured in IANA but I dont see anything there. Any help on this would be greatly appreciated. Thanks and regards, Ullas

    Read the article

  • Is there a nice way of having static generic parameters is Java?

    - by Chris
    Hello, recently I'm writing some functions that I take from Haskell and translate into Java. One of the main problems I have is I cannot easily create a static property with a generic type. Let me explain by a little example... // An interface to implement functions public interface Func<P, R> { public R apply(P p); } // What I want to do... (incorrect in Java) public class ... { public static <T> Func<T, T> identity = new Func<T, T>() { public T apply(T p) { return p; } } } // What I do right now public class ... { private static Func<Object, Object> identity = new Func<Object, Object>() { public Object apply(Object p) { return p; } } @SuppressWarnings("unchecked") public static <T> Func<T, T> getIdentity() { return (Func<T, T>)identity; } } Are there any easier ways to do something like that? What kind of problems might arise if the syntax I used would be valid?

    Read the article

  • More Animation - Self Dismissing Dialogs

    - by Duncan Mills
    In my earlier articles on animation, I discussed various slide, grow and  flip transitions for items and containers.  In this article I want to discuss a fade animation and specifically the use of fades and auto-dismissal for informational dialogs.  If you use a Mac, you may be familiar with Growl as a notification system, and the nice way that messages that are informational just fade out after a few seconds. So in this blog entry I wanted to discuss how we could make an ADF popup behave in the same way. This can be an effective way of communicating information to the user without "getting in the way" with modal alerts. This of course, has been done before, but everything I've seen previously requires something like JQuery to be in the mix when we don't really need it to be.  The solution I've put together is nice and generic and will work with either <af:panelWindow> or <af:dialog> as a the child of the popup. In terms of usage it's pretty simple to use we  just need to ensure that the popup itself has clientComponent is set to true and includes the animation JavaScript (animateFadingPopup) on a popupOpened event: <af:popup id="pop1" clientComponent="true">   <af:panelWindow title="A Fading Message...">    ...  </af:panelWindow>   <af:clientListener method="animateFadingPopup" type="popupOpened"/> </af:popup>   The popup can be invoked in the normal way using showPopupBehavior or JavaScript, no special code is required there. As a further twist you can include an additional clientAttribute called preFadeDelay to define a delay before the fade itself starts (the default is 5 seconds) . To set the delay to just 2 seconds for example: <af:popup ...>   ...   <af:clientAttribute name="preFadeDelay" value="2"/>   <af:clientListener method="animateFadingPopup" type="popupOpened"/>  </af:popup> The Animation Styles  As before, we have a couple of CSS Styles which define the animation, I've put these into the skin in my case, and, as in the other articles, I've only defined the transitions for WebKit browsers (Chrome, Safari) at the moment. In this case, the fade is timed at 5 seconds in duration. .popupFadeReset {   opacity: 1; } .popupFadeAnimate {   opacity: 0;   -webkit-transition: opacity 5s ease-in-out; } As you can see here, we are achieving the fade by simply setting the CSS opacity property. The JavaScript The final part of the puzzle is, of course, the JavaScript, there are four functions, these are generic (apart from the Style names which, if you've changed above, you'll need to reflect here): The initial function invoked from the popupOpened event,  animateFadingPopup which starts a timer and provides the initial delay before we start to fade the popup. The function that applies the fade animation to the popup - initiatePopupFade. The callback function - closeFadedPopup used to reset the style class and correctly hide the popup so that it can be invoked again and again.   A utility function - findFadeContainer, which is responsible for locating the correct child component of the popup to actually apply the style to. Function - animateFadingPopup This function, as stated is the one hooked up to the popupOpened event via a clientListener. Because of when the code is called it does not actually matter how you launch the popup, or if the popup is re-used from multiple places. All usages will get the fade behavior. /**  * Client listener which will kick off the animation to fade the dialog and register  * a callback to correctly reset the popup once the animation is complete  * @param event  */ function animateFadingPopup(event) { var fadePopup = event.getSource();   var fadeCandidate = false;   //Ensure that the popup is initially Opaque   //This handles the situation where the user has dismissed   //the popup whilst it was in the process of fading   var fadeContainer = findFadeContainer(fadePopup);   if (fadeContainer != null) {     fadeCandidate = true;     fadeContainer.setStyleClass("popupFadeReset");   }   //Only continue if we can actually fade this popup   if (fadeCandidate) {   //See if a delay has been specified     var waitTimeSeconds = event.getSource().getProperty('preFadeDelay');     //Default to 5 seconds if not supplied     if (waitTimeSeconds == undefined) {     waitTimeSeconds = 5;     }     // Now call the fade after the specified time     var fadeFunction = function () {     initiatePopupFade(fadePopup);     };     var fadeDelayTimer = setTimeout(fadeFunction, (waitTimeSeconds * 1000));   } } The things to note about this function is the initial check that we have to do to ensure that the container is currently visible and reset it's style to ensure that it is.  This is to handle the situation where the popup has begun the fade, and yet the user has still explicitly dismissed the popup before it's complete and in doing so has prevented the callback function (described later) from executing. In this particular situation the initial display of the dialog will be (apparently) missing it's normal animation but at least it becomes visible to the user (and most users will probably not notice this difference in any case). You'll notice that the style that we apply to reset the  opacity - popupFadeReset, is not applied to the popup component itself but rather the dialog or panelWindow within it. More about that in the description of the next function findFadeContainer(). Finally, assuming that we have a suitable candidate for fading, a JavaScript  timer is started using the specified preFadeDelay wait time (or 5 seconds if that was not supplied). When this timer expires then the main animation styleclass will be applied using the initiatePopupFade() function Function - findFadeContainer As a component, the <af:popup> does not support styleClass attribute, so we can't apply the animation style directly.  Instead we have to look for the container within the popup which defines the window object that can have a style attached.  This is achieved by the following code: /**  * The thing we actually fade will be the only child  * of the popup assuming that this is a dialog or window  * @param popup  * @return the component, or null if this is not valid for fading  */ function findFadeContainer(popup) { var children = popup.getDescendantComponents();   var fadeContainer = children[0];   if (fadeContainer != undefined) {   var compType = fadeContainer.getComponentType();     if (compType == "oracle.adf.RichPanelWindow" || compType == "oracle.adf.RichDialog") {     return fadeContainer;     }   }   return null; }  So what we do here is to grab the first child component of the popup and check its type. Here I decided to limit the fade behaviour to only <af:dialog> and <af:panelWindow>. This was deliberate.  If  we apply the fade to say an <af:noteWindow> you would see the text inside the balloon fade, but the balloon itself would hang around until the fade animation was over and then hide.  It would of course be possible to make the code smarter to walk up the DOM tree to find the correct <div> to apply the style to in order to hide the whole balloon, however, that means that this JavaScript would then need to have knowledge of the generated DOM structure, something which may change from release to release, and certainly something to avoid. So, all in all, I think that this is an OK restriction and frankly it's windows and dialogs that I wanted to fade anyway, not balloons and menus. You could of course extend this technique and handle the other types should you really want to. One thing to note here is the selection of the first (children[0]) child of the popup. It does not matter if there are non-visible children such as clientListener before the <af:dialog> or <af:panelWindow> within the popup, they are not included in this array, so picking the first element in this way seems to be fine, no matter what the underlying ordering is within the JSF source.  If you wanted a super-robust version of the code you might want to iterate through the children array of the popup to check for the right type, again it's up to you.  Function -  initiatePopupFade  On to the actual fading. This is actually very simple and at it's heart, just the application of the popupFadeAnimate style to the correct component and then registering a callback to execute once the fade is done. /**  * Function which will kick off the animation to fade the dialog and register  * a callback to correctly reset the popup once the animation is complete  * @param popup the popup we are animating  */ function initiatePopupFade(popup) { //Only continue if the popup has not already been dismissed    if (popup.isPopupVisible()) {   //The skin styles that define the animation      var fadeoutAnimationStyle = "popupFadeAnimate";     var fadeAnimationResetStyle = "popupFadeReset";     var fadeContainer = findFadeContainer(popup);     if (fadeContainer != null) {     var fadeContainerReal = AdfAgent.AGENT.getElementById(fadeContainer.getClientId());       //Define the callback this will correctly reset the popup once it's disappeared       var fadeCallbackFunction = function (event) {       closeFadedPopup(popup, fadeContainer, fadeAnimationResetStyle);         event.target.removeEventListener("webkitTransitionEnd", fadeCallbackFunction);       };       //Initiate the fade       fadeContainer.setStyleClass(fadeoutAnimationStyle);       //Register the callback to execute once fade is done       fadeContainerReal.addEventListener("webkitTransitionEnd", fadeCallbackFunction, false);     }   } } I've added some extra checks here though. First of all we only start the whole process if the popup is still visible. It may be that the user has closed the popup before the delay timer has finished so there is no need to start animating in that case. Again we use the findFadeContainer() function to locate the correct component to apply the style to, and additionally we grab the DOM id that represents that container.  This physical ID is required for the registration of the callback function. The closeFadedPopup() call is then registered on the callback so as to correctly close the now transparent (but still there) popup. Function -  closeFadedPopup The final function just cleans things up: /**  * Callback function to correctly cancel and reset the style in the popup  * @param popup id of the popup so we can close it properly  * @param contatiner the window / dialog within the popup to actually style  * @param resetStyle the syle that sets the opacity back to solid  */ function closeFadedPopup(popup, container, resetStyle) { container.setStyleClass(resetStyle);   popup.cancel(); }  First of all we reset the style to make the popup contents opaque again and then we cancel the popup.  This will ensure that any of your user code that is waiting for a popup cancelled event will actually get the event, additionally if you have done this as a modal window / dialog it will ensure that the glasspane is dismissed and you can interact with the UI again.  What's Next? There are several ways in which this technique could be used, I've been working on a popup here, but you could apply the same approach to in-line messages. As this code (in the popup case) is generic it will make s pretty nice declarative component and maybe, if I get time, I'll look at constructing a formal Growl component using a combination of this technique, and active data push. Also, I'm sure the above code can be improved a little too.  Specifically things like registering a popup cancelled listener to handle the style reset so that we don't loose the subtle animation that takes place when the popup is opened in that situation where the user has closed the in-fade dialog.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Are there any generic KVM over IP cards/chips for motherboards without any such capability?

    - by eek142
    I have a remote server that doesn't have any IP KVM capabilities, meaning I can't remotely power cycle it or access the BIOS. I saw that ASUS offers something for their motherboards here: http://www.asus.com/Server_Workstation/Accessories/ASMB5iKVM/ But is there anything like this available for other motherboards? Even something that I could stash away somewhere in a hard drive bay that simply plugs into the board would be great.

    Read the article

  • Nagios notifications definitions

    - by Colin
    I am trying to monitor a web server in such a way that I want to search for a particular string on a page via http. The command is defined in command.cfg as follows # 'check_http-mysite command definition' define command { command_name check_http-mysite command_line /usr/lib/nagios/plugins/check_http -H mysite.example.com -s "Some text" } # 'notify-host-by-sms' command definition define command { command_name notify-host-by-sms command_line /usr/bin/send_sms $CONTACTPAGER$ "Nagios - $NOTIFICATIONTYPE$ :Host$HOSTALIAS$ is $HOSTSTATE$ ($OUTPUT$)" } # 'notify-service-by-sms' command definition define command { command_name notify-service-by-sms command_line /usr/bin/send_sms $CONTACTPAGER$ "Nagios - $NOTIFICATIONTYPE$: $HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ ($OUTPUT$)" } Now if nagios doesn't find "Some text" on the home page mysite.example.com, nagios should notify a contact via sms through the Clickatell http API which I have a script for that that I have tested and found that it works fine. Whenever I change the command definition to search for a string which is not on the page, and restart nagios, I can see on the web interface that the string was not found. What I don't understand is why isn't the notification sent though I have defined the host, hostgroup, contact, contactgroup and service and so forth. What I'm I missing, these are my definitions, In my web access through the cgi I can see that I have notifications have been defined and enabled though I don't get both email and sms notifications during hard status changes. host.cfg define host { use generic-host host_name HAL alias IBM-1 address xxx.xxx.xxx.xxx check_command check_http-mysite } *hostgroups_nagios2.cfg* # my website define hostgroup{ hostgroup_name my-servers alias All My Servers members HAL } *contacts_nagios2.cfg* define contact { contact_name colin alias Colin Y service_notification_period 24x7 host_notification_period 24x7 service_notification_options w,u,c,r,f,s host_notification_options d,u,r,f,s service_notification_commands notify-service-by-email,notify-service-by-sms host_notification_commands notify-host-by-email,notify-host-by-sms email [email protected] pager +254xxxxxxxxx } define contactgroup{ contactgroup_name site_admin alias Site Administrator members colin } *services_nagios2.cfg* # check for particular string in page via http define service { hostgroup_name my-servers service_description STRING CHECK check_command check_http-mysite use generic-service notification_interval 0 ; set > 0 if you want to be renotified contacts colin contact_groups site_admin } Could someone please tell me where I'm going wrong. Here are the generic-host and generic-service definitions *generic-service_nagios2.cfg* # generic service template definition define service{ name generic-service ; The 'name' of this service template active_checks_enabled 1 ; Active service checks are enabled passive_checks_enabled 1 ; Passive service checks are enabled/accepted parallelize_check 1 ; Active service checks should be parallelized (disabling this can lead to major performance problems) obsess_over_service 1 ; We should obsess over this service (if necessary) check_freshness 0 ; Default is to NOT check service 'freshness' notifications_enabled 1 ; Service notifications are enabled event_handler_enabled 1 ; Service event handler is enabled flap_detection_enabled 1 ; Flap detection is enabled failure_prediction_enabled 1 ; Failure prediction is enabled process_perf_data 1 ; Process performance data retain_status_information 1 ; Retain status information across program restarts retain_nonstatus_information 1 ; Retain non-status information across program restarts notification_interval 0 ; Only send notifications on status change by default. is_volatile 0 check_period 24x7 normal_check_interval 5 retry_check_interval 1 max_check_attempts 4 notification_period 24x7 notification_options w,u,c,r contact_groups site_admin register 0 ; DONT REGISTER THIS DEFINITION - ITS NOT A REAL SERVICE, JUST A TEMPLATE! } *generic-host_nagios2.cfg* define host{ name generic-host ; The name of this host template notifications_enabled 1 ; Host notifications are enabled event_handler_enabled 1 ; Host event handler is enabled flap_detection_enabled 1 ; Flap detection is enabled failure_prediction_enabled 1 ; Failure prediction is enabled process_perf_data 1 ; Process performance data retain_status_information 1 ; Retain status information across program restarts retain_nonstatus_information 1 ; Retain non-status information across program restarts max_check_attempts 10 notification_interval 0 notification_period 24x7 notification_options d,u,r contact_groups site_admin register 1 ; DONT REGISTER THIS DEFINITION - ITS NOT A REAL HOST, JUST A TEMPLATE! }

    Read the article

  • Solution to route/proxy SNMP Traps (or Netflow, generic UDP, etc) for network monitoring?

    - by Christopher Cashell
    I'm implementing a network monitoring solution for a very large network (approximately 5000 network devices). We'd like to have all devices on our network send SNMP traps to a single box (technically this will probably be an HA pair of boxes) and then have that box pass the SNMP traps on to the real processing boxes. This will allow us to have multiple back-end boxes handling traps, and to distribute load among those back end boxes. One key feature that we need is the ability to forward the traps to a specific box depending on the source address of the trap. Any suggestions for the best way to handle this? Among the things we've considered are: Using snmptrapd to accept the traps, and have it pass them off to a custom written perl handler script to rewrite the trap and send it to the proper processing box Using some sort of load balancing software running on a Linux box to handle this (having some difficulty finding many load balancing programs that will handle UDP) Using a Load Balancing Appliance (F5, etc) Using IPTables on a Linux box to route the SNMP traps with NATing We've currently implemented and are testing the last solution, with a Linux box with IPTables configured to receive the traps, and then depending on the source address of the trap, rewrite it with a destination nat (DNAT) so the packet gets sent to the proper server. For example: # Range: 10.0.0.0/19 Site: abc01 Destination: foo01 iptables -t nat -A PREROUTING -p udp --dport 162 -s 10.0.0.0/19 -j DNAT --to-destination 10.1.2.3 # Range: 10.0.33.0/21 Site: abc01 Destination: foo01 iptables -t nat -A PREROUTING -p udp --dport 162 -s 10.0.33.0/21 -j DNAT --to-destination 10.1.2.3 # Range: 10.1.0.0/16 Site: xyz01 Destination: bar01 iptables -t nat -A PREROUTING -p udp --dport 162 -s 10.1.0.0/16 -j DNAT --to-destination 10.3.2.1 This should work with excellent efficiency for basic trap routing, but it leaves us completely limited to what we can mach and filter on with IPTables, so we're concerned about flexibility for the future. Another feature that we'd really like, but isn't quite a "must have" is the ability to duplicate or mirror the UDP packets. Being able to take one incoming trap and route it to multiple destinations would be very useful. Has anyone tried any of the possible solutions above for SNMP traps (or Netflow, general UDP, etc) load balancing? Or can anyone think of any other alternatives to solve this?

    Read the article

  • Windows updates behind a physical firewall with only IP based rules and generic outbound connections are turned off

    - by user125245
    I have some boxes that I do not want to allow any in or outbound traffic to the internet Except for windows updates. However the fire wall in place (Cisco ASA) apparently only supports ip based rules. As best I can tell access to Microsoft updates via anything other then the half dozen URL masks the Microsoft lists as needed does not appear possible. I have kicked around building a full WSUS that I would then manually copy the update files to so that no direct Microsoft access is needed but this sounds very top heavy for the very few boxes involved. I have also kicked around manual updates all around but am not certain how to be conveniently and confidently sure that the correct updates are being applied in the correct order. Any ideas from any direction would be appreciated. I want this as simple / cost effective as possible but have very little flexibility on the only absolutely required internet access policy.

    Read the article

  • What are the differences between the "generic" and "server" kernel images provided by Ubuntu?

    - by dcrosta
    In particular, I'm wondering if there are any patches or config adjustments made to the disk cache size in the server edition. I'm running on a small system (256M RAM), and would like to experiment with keeping the disk cache size smaller so that there's more memory available for applications. I've found this page at Ubuntu's website, which neither answers my questions nor is about the 9.04 release.

    Read the article

  • File shares for Mac users

    - by Generic Error
    The main file shares on our network are currently hosted by old Apple XServes. I had planned to replace some of these with Windows shares as I have better hardware available but have been told this is likely to cause issues with some of our Mac users. What sort of issues am I likely to run into and what are the recommended ways of hosting general file storage in a mixed OS (Windows, OSX, occasionally linux) environment?

    Read the article

  • Can I mix drive types in an HP server?

    - by Generic Error
    I currently have the following setup: HP DL380 G4 Server 6 x 73GB, Ultra160, 10k, SCSI 80 Pin Drives Smart Array 6i Controller RAID 5 One of the drives is failing and needs to be replaced. I have on hand drives that are the same size and type, but are Ultra320, 15k instead. I have verified that these drives work in another system with the same type of drive controller. When I plug one of these in the system simply reports the drive as being offline and has nothing further to do with it. From what I have read these drives should be compatable. Should this work at all and if so, what might be preventing it?

    Read the article

  • What&rsquo;s new in MVVM Light V3

    - by Laurent Bugnion
    V3 of the MVVM Light Toolkit was released during MIX10, after quite a long alpha stage. This post lists the new features in MVVM Light V3. Compatibility MVVM Light Toolkit V3 can be installed for the following tools and framework versions: Visual Studio 2008 SP1, Expression Blend 3 Windows Presentation Foundation 3.5 SP1 Silverlight 3 Visual Studio 2010 RC, Expression Blend 4 beta Windows Presentation Foundation 3.5 SP1 Windows Presentation Foundation 4 RC Silverlight 3 Silverlight 4 RC For more information about installing the MVVM Light Toolkit V3, please visit this page. For cleaning up existing installation, see this page. New in V3 RTM The following features have been added after V3 alpha3: Project template for the Windows Phone 7 series (Silverlight) This new template allows you to create a new MVVM Light application in Visual Studio 2010 RC and to run it in the Windows Phone 7 series emulator. This template uses the Silverlight 3 version of the MVVM Light Toolkit V3. At this time, only the essentials features of the GalaSoft.MvvmLight.dll assembly are supported on the phone. New in V3 alpha3 The following features have been added after V3 alpha2: New logo An awesome logo has been designed for MVVM Light by Philippe Schutz. DispatcherHelper class (in GalaSoft.MvvmLight.Extras.dll) This class is useful when you work on multi-threaded WPF or Silverlight applications. Initializing: The DispatcherHelper class must be initialized in the UI thread. For example, you can initialize the class in a Silverlight application’s Application_Startup event handler, or in the WPF application’s static App constructor (in App.xaml). // Initializing in Silverlight (in App.xaml) private void Application_Startup( object sender, StartupEventArgs e) { RootVisual = new MainPage(); DispatcherHelper.Initialize(); } // Initializing in WPF (in App.xaml) static App() { DispatcherHelper.Initialize(); } Verifying if a property exists The ViewModelBase.RaisePropertyChanged method now checks if a given property name exists on the ViewModel class, and throws an exception if that property cannot be found. This is useful to detect typos in a property name, for example during a refactoring. Note that the check is only done in DEBUG mode. Replacing IDisposable with ICleanup The IDisposable implementation in the ViewModelBase class has been marked obsolete. Instead, the ICleanup interface (and its Cleanup method) has been added. Implementing IDisposable in a ViewModel is still possible, but must be done explicitly. IDisposable in ViewModelBase was a bad practice, because it supposes that the ViewModel is garbage collected after Dispose is called. instead, the Cleanup method does not have such expectation. The ViewModelLocator class (created when an MVVM Light project template is used in Visual Studio or Expression Blend) exposes a static Cleanup method, which should in turn call each ViewModel’s Cleanup method. The ViewModel is free to override the Cleanup method if local cleanup must be performed. Passing EventArgs to command with EventToCommand The EventToCommand class is used to bind any event to an ICommand (typically on the ViewModel). In this case, it can be useful to pass the event’s EventArgs parameter to the command in the ViewModel. For example, for the MouseEnter event, you can pass the MouseEventArgs to a RelayCommand<MouseEventArgs> as shown in the next listings. Note: Bringing UI specific classes (such as EventArgs) into the ViewModel reduces the testability of the ViewModel, and thus should be used with care. Setting EventToCommand and PassEventArgsToCommand: <Grid x:Name="LayoutRoot"> <i:Interaction.Triggers> <i:EventTrigger EventName="MouseEnter"> <cmd:EventToCommand Command="{Binding MyCommand}" PassEventArgsToCommand="True" /> </i:EventTrigger> </i:Interaction.Triggers> </Grid> Getting the EventArgs in the command public RelayCommand<MouseEventArgs> MyCommand { get; private set; } public MainViewModel() { MyCommand = new RelayCommand<MouseEventArgs>(e => { // e is of type MouseEventArgs }); } Changes to templates Various changes have been made to project templates and item templates to make them more compatible with Silverlight 4 and to improve their visibility in Visual Studio and Expression Blend. Bug corrections When a message is sent through the Messenger class using the method Messenger.Default.Send<T>(T message, object token), and the token is a simple value (for example int), the message was not sent correctly. This bug is now corrected. New in V3 The following features have been added after V2. Sending messages with callback Certain classes have been added to the GalaSoft.MvvmLight.Messaging namespace, allowing sending a message and getting a callback from the recipient. These classes are: NotificationMessageWithCallback: Base class for messages with callback. NotificationMessageAction: A class with string notification, and a parameterless callback. NotificationMessageAction<T>: A class with string notification, and a callback with a parameter of type T. To send a message with callback, use the following code: var message = new NotificationMessageAction<bool>( "Hello world", callbackMessage => { // This is the callback code if (callbackMessage) { // ... } }); Messenger.Default.Send(message); To register and receive a message with callback, use the following code: Messenger.Default.Register<NotificationMessageAction<bool>>( this, message => { // Do something // Execute the callback message.Execute(true); }); Messenger.Default can be overriden The Messenger.Default property can also be replaced, for example for unit testing purposes, by using the Messenger.OverrideDefault method. All the public methods of the Messenger class have been made virtual, and can be overridden in the test messenger class. Sending messages to interfaces In V2, it was possible to deliver messages targeted to instances of a given class. in V3 it is still possible, but in addition you can deliver a message to instances that implement a certain interface. The message will not be delivered to other recipients. Use the overload Messenger.Default.Send<TMessage, TTarget>(TMessage message) where TTarget is, in fact, an interface (for example IDisposable). Of course the recipient must register to receive the type of message TMessage. Sending messages with a token Messages can now be sent through the Messenger with a token. To send a message with token, use the method overload Send<TMessage>(TMessage message, object token). To receive a message with token, use the methods Register<TMessage>(object recipient, object token, Action<TMessage> action) or Register<TMessage>(object recipient, object token, bool receiveDerivedMessagesToo, Action<TMessage> action) The token can be a simple value (int, string, etc…) or an instance of a class. The message is not delivered to recipients who registered with a different token, or with no token at all. Renaming CommandMessage to NotificationMessage To avoid confusion with ICommand and RelayCommand, the CommandMessage class has been renamed to NotificationMessage. This message class can be used to deliver a notification (of type string) to a recipient. ViewModelBase constructor with IMessenger The ViewModelBase class now accepts an IMessenger parameter. If this constructor is used instead of the default empty constructor, the IMessenger passed as parameter will be used to broadcast a PropertyChangedMessage when the method RaisePropertyChanged<T>(string propertyName, T oldValue, T newValue, bool broadcast) is used. In the default ViewModelBase constructor is used, the Messenger.Default instance will be used instead. EventToCommand behavior The EventToCommand behavior has been added in V3. It can be used to bind any event of any FrameworkElement to any ICommand (for example a RelayCommand located in the ViewModel). More information about the EventToCommand behavior can be found here and here. Updated the project templates to remove the sample application The project template has been updated to remove the sample application that was created every time that a new MVVM Light application was created in Visual Studio or Blend. This makes the creation of a new application easier, because you don’t need to remove code before you can start writing code. Bug corrections Some bugs that were in Version 2 have been corrected: In some occasions, an exception could be thrown when a recipient was registered for a message at the same time as a message was received. New names for DLLs If you upgrade an existing installation, you will need to change the reference to the DLLs in C:\Program Files\Laurent Bugnion (GalaSoft)\Mvvm Light Toolkit\Binaries. The assemblies have been moved, and the versions for Silverlight 4 and for WPF4 have been renamed, to avoid some confusion. It is now easier to make sure that you are using the correct DLL. WPF3.5SP1, Silverlight 3 When using the DLLs, make sure that you use the correct versions. WPF4, Silverlight 4 When using the DLLs, make sure that you use the correct versions.   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • Double Buffering for Game objects, what's a nice clean generic C++ way?

    - by Gary
    This is in C++. So, I'm starting from scratch writing a game engine for fun and learning from the ground up. One of the ideas I want to implement is to have game object state (a struct) be double-buffered. For instance, I can have subsystems updating the new game object data while a render thread is rendering from the old data by guaranteeing there is a consistent state stored within the game object (the data from last time). After rendering of old and updating of new is finished, I can swap buffers and do it again. Question is, what's a good forward-looking and generic OOP way to expose this to my classes while trying to hide implementation details as much as possible? Would like to know your thoughts and considerations. I was thinking operator overloading could be used, but how do I overload assign for a templated class's member within my buffer class? for instance, I think this is an example of what I want: doublebuffer<Vector3> data; data.x=5; //would write to the member x within the new buffer int a=data.x; //would read from the old buffer's x member data.x+=1; //I guess this shouldn't be allowed If this is possible, I could choose to enable or disable double-buffering structs without changing much code. This is what I was considering: template <class T> class doublebuffer{ T T1; T T2; T * current=T1; T * old=T2; public: doublebuffer(); ~doublebuffer(); void swap(); operator=()?... }; and a game object would be like this: struct MyObjectData{ int x; float afloat; } class MyObject: public Node { doublebuffer<MyObjectData> data; functions... } What I have right now is functions that return pointers to the old and new buffer, and I guess any classes that use them have to be aware of this. Is there a better way?

    Read the article

  • How to Work Around Limitations in Generic Type Constraints in C#?

    - by Jose
    Okay I'm looking for some input, I'm pretty sure this is not currently supported in .NET 3.5 but here goes. I want to require a generic type passed into my class to have a constructor like this: new(IDictionary<string,object>) so the class would look like this public MyClass<T> where T : new(IDictionary<string,object>) { T CreateObject(IDictionary<string,object> values) { return new T(values); } } But the compiler doesn't support this, it doesn't really know what I'm asking. Some of you might ask, why do you want to do this? Well I'm working on a pet project of an ORM so I get values from the DB and then create the object and load the values. I thought it would be cleaner to allow the object just create itself with the values I give it. As far as I can tell I have two options: 1) Use reflection(which I'm trying to avoid) to grab the PropertyInfo[] array and then use that to load the values. 2) require T to support an interface like so: public interface ILoadValues { void LoadValues(IDictionary values); } and then do this public MyClass<T> where T:new(),ILoadValues { T CreateObject(IDictionary<string,object> values) { T obj = new T(); obj.LoadValues(values); return obj; } } The problem I have with the interface I guess is philosophical, I don't really want to expose a public method for people to load the values. Using the constructor the idea was that if I had an object like this namespace DataSource.Data { public class User { protected internal User(IDictionary<string,object> values) { //Initialize } } } As long as the MyClass<T> was in the same assembly the constructor would be available. I personally think that the Type constraint in my opinion should ask (Do I have access to this constructor? I do, great!) Anyways any input is welcome.

    Read the article

  • What is a good generic sibling control Javascript communication strategy?

    - by James
    I'm building a webpage that is composed of several controls, and trying to come up with an effective somewhat generic client side sibling control communication model. One of the controls is the menu control. Whenever an item is clicked in here I wanted to expose a custom client side event that other controls can subscribe to, so that I can achieve a loosely coupled sibling control communication model. To that end I've created a simple Javascript event collection class (code below) that acts as like a hub for control event registration and event subscription. This code certainly gets the job done, but my question is is there a better more elegant way to do this in terms of best practices or tools, or is this just a fools errand? /// Event collection object - acts as the hub for control communication. function ClientEventCollection() { this.ClientEvents = {}; this.RegisterEvent = _RegisterEvent; this.AttachToEvent = _AttachToEvent; this.FireEvent = _FireEvent; function _RegisterEvent(eventKey) { if (!this.ClientEvents[eventKey]) this.ClientEvents[eventKey] = []; } function _AttachToEvent(eventKey, handlerFunc) { if (this.ClientEvents[eventKey]) this.ClientEvents[eventKey][this.ClientEvents[eventKey].length] = handlerFunc; } function _FireEvent(eventKey, triggerId, contextData ) { if (this.ClientEvents[eventKey]) { for (var i = 0; i < this.ClientEvents[eventKey].length; i++) { var fn = this.ClientEvents[eventKey][i]; if (fn) fn(triggerId, contextData); } } } } // load new collection instance. var myClientEvents = new bsdClientEventCollection(); // register events specific to the control that owns it, this will be emitted by each respective control. myClientEvents.RegisterEvent("menu-item-clicked"); Here is the part where this code above is consumed by source and subscriber controls. // menu control $(document).ready(function() { $(".menu > a").click( function(event) { //event.preventDefault(); myClientEvents.FireEvent("menu-item-clicked", $(this).attr("id"), null); }); }); <div style="float: left;" class="menu"> <a id="1" href="#">Menu Item1</a><br /> <a id="2" href="#">Menu Item2</a><br /> <a id="3" href="#">Menu Item3</a><br /> <a id="4" href="#">Menu Item4</a><br /> </div> // event subscriber control $(document).ready(function() { myClientEvents.AttachToEvent("menu-item-clicked", menuItemChanged); myClientEvents.AttachToEvent("menu-item-clicked", menuItemChanged2); myClientEvents.AttachToEvent("menu-item-clicked", menuItemChanged3); }); function menuItemChanged(id, contextData) { alert('menuItemChanged ' + id); } function menuItemChanged2(id, contextData) { alert('menuItemChanged2 ' + id); } function menuItemChanged3(id, contextData) { alert('menuItemChanged3 ' + id); }

    Read the article

  • C problem, left of '->' must point to class/struct/union/generic type ??

    - by Patrick
    Hello! Trying to understand why this doesn't work. I keep getting the following errors: left of '-nextNode' must point to class/struct/union/generic type (Also all the lines with a - in the function new_math_struct) Header file #ifndef MSTRUCT_H #define MSTRUCT_H #define PLUS 0 #define MINUS 1 #define DIVIDE 2 #define MULTIPLY 3 #define NUMBER 4 typedef struct math_struct { int type_of_value; int value; int sum; int is_used; struct math_struct* nextNode; } ; typedef struct math_struct* math_struct_ptr; #endif C file int get_input(math_struct_ptr* startNode) { /* character, input by the user */ char input_ch; char* input_ptr; math_struct_ptr* ptr; math_struct_ptr* previousNode; input_ptr = &input_ch; previousNode = startNode; /* as long as input is not ok */ while (1) { input_ch = get_input_character(); if (input_ch == ',') // Carrage return return 1; else if (input_ch == '.') // Illegal character return 0; if (input_ch == '+') ptr = new_math_struct(PLUS, 0); else if (input_ch == '-') ptr = new_math_struct(MINUS, 0); else if (input_ch == '/') ptr = new_math_struct(DIVIDE, 0); else if (input_ch == '*') ptr = new_math_struct(MULTIPLY, 0); else ptr = new_math_struct(NUMBER, atoi(input_ptr)); if (startNode == NULL) { startNode = previousNode = ptr; } else { previousNode->nextNode = ptr; previousNode = ptr; } } return 0; } math_struct_ptr* new_math_struct(int symbol, int value) { math_struct_ptr* ptr; ptr = (math_struct_ptr*)malloc(sizeof(math_struct_ptr)); ptr->type_of_value = symbol; ptr->value = value; ptr->sum = 0; ptr->is_used = 0; return ptr; } char get_input_character() { /* character, input by the user */ char input_ch; /* get the character */ scanf("%c", &input_ch); if (input_ch == '+' || input_ch == '-' || input_ch == '*' || input_ch == '/' || input_ch == ')') return input_ch; // A special character else if (input_ch == '\n') return ','; // A carrage return else if (input_ch < '0' || input_ch > '9') return '.'; // Not a number else return input_ch; // Number } The header for the C file just contains a reference to the struct header and the definitions of the functions. Language C.

    Read the article

< Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >