Search Results

Search found 9926 results on 398 pages for 'lookup tables'.

Page 59/398 | < Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Using a secondary DNS when lookup fails in primary? [migrated]

    - by Huckle
    I use a VPN to connect my development machine to my school's CS dept. The development machine is Ubuntu as we do C programming in Unix. I used vpnc to do that. The school uses some DNS entries that only resolve on their DNS servers, i.e., internalserver.csdept.school.edu I am normally attached to the VPN whenever booted for convenience. However I noticed the other day that when I disconnect the VPN all my DNS queries fail. This obviously means that vpnc set up the school's DNS to be used. However I'd rather not use their DNS all the time (tracking and privacy and whatnot). Is there a way I can restore my ISP's DNS and then if the lookup fails, have it use my school's DNS?

    Read the article

  • How to lookup an IP address in an Excel spreadsheet?

    - by Kevin Williams
    I am working with a decent sized spreadsheet of domains and server names. Another user of the spreadsheet needs the IP address for each of the DNS entries on the worksheet. Instead of manually adding and then having to maintain this list I was hoping there was an easy way to do an IPAddress lookup to display the IP address in a cell. I've seen some VBScripts that call gethostbyname, e.g.: Declare Function GetHostByName Lib "wsock32.dll" Alias "gethostbyname" (ByVal Host As String) As Long But I'm not a VB expert so I'm not sure if this is the right way to go. Any advice/links would be appreciated! also if this is a question better suited for Stack Overflow - let me know, I'm new here.

    Read the article

  • What is the simplest way to interpolate and lookup in an x,y table in excel?

    - by dassouki
    I would like to do a lookup and interpolation based on x, y data for the following table. I'd like the equation to be as simple as possible to reduce the amount of possible errors. The full table is about 50 rows x 30 columns. I have about 20 of those tables. Here is an extract from one: A B C D 1 0.1 0.2 0.3 2 2.4 450 300 50 3 2.3 500 375 52 4 2.1 550 475 55 5 1.8 600 600 60 For example, the equation should find the value for x = 2.27 and y = 0.15

    Read the article

  • Asterisk doesn't start properly at system startup. DNS lookup fails.

    - by leiflundgren
    When I start my Ubuntu system it attempts two DNS lookups. One to find out what my internet-routers external ip is. And one to find the IP of my PSTN-SIP-provider. Both fails. [Apr 7 22:14:54] WARNING[1675] chan_sip.c: Invalid address for externhost keyword: sip.mydomain.com ... [Apr 7 22:14:54] WARNING[1675] acl.c: Unable to lookup 'sip.myprovider.com' And since the DNS fails it cannot register properly a cannot make outgoing or incoming calls. If I later, after bootup, restart asterisk everything works excelent. Any idea how I should setup things so that either: Delay Asterisk startup so that DNS is up and healthy first. Somehow get Asterisk to re-try the DNS thing later. Regards Leif

    Read the article

  • Asterisk doesn't start properly at system startup. DNS lookup fails.

    - by leiflundgren
    When I start my Ubuntu system it attempts two DNS lookups. One to find out what my internet-routers external ip is. And one to find the IP of my PSTN-SIP-provider. Both fails. [Apr 7 22:14:54] WARNING[1675] chan_sip.c: Invalid address for externhost keyword: sip.mydomain.com ... [Apr 7 22:14:54] WARNING[1675] acl.c: Unable to lookup 'sip.myprovider.com' And since the DNS fails it cannot register properly a cannot make outgoing or incoming calls. If I later, after bootup, restart asterisk everything works excelent. Any idea how I should setup things so that either: Delay Asterisk startup so that DNS is up and healthy first. Somehow get Asterisk to re-try the DNS thing later. Regards Leif

    Read the article

  • how many tables can an MS SQL database hold?

    - by Peter Turner
    I've ran into this cryptic statement for SQL Server: Files Per Database 32,767. What does that mean exactly? Is there a maximum number of tables for a given version of SQL Server. We try to support SQL Server post 2005 32-bit and 64-bit. So if anyone has a handy dandy table they use to figure out how many tables they can have per DB for Microsoft SQL Servers I'd heartily appreciate seeing it.

    Read the article

  • Excel Macro To Lookup a User Entered String, and return data from the field next to it

    - by CJG
    On worksheet A, a user is prompted to enter a product number, such as BCI610. On worksheet B somewhere, that value exists. I want excel to lookup/find that value, and then return the data in the cell that is right next to it one column to the right, by copying that data, and pasting it somewhere in worksheet A. If I enter BCI610, it should return the value M332651, because that is the number in the cell immediately to the right of BCI610. I tried VLookup and HLookup, but to no avail... Any suggestions?

    Read the article

  • Using SQL tables for storing user created level stats. Is there a better way?

    - by Ivan
    I am developing a racing game in which players can create their own tracks and upload them to a server. Players will be able to compare their best track times to their friends and see world records. I was going to generate a table for each track submitted to store the best times of each player who plays the track. However, I can't predict how many will be uploaded and I imagine too many tables might cause problems, or is this a valid method? I considered saving each player's best times in a string in a single table field like so: level1:00.45;level2:00.43;level3:00.12 If I did this I wouldn't need a separate table for each level (each level could just have a row in a 'WorldRecords' table). However, this just causes another problem because the text would eventually reach the limit for varchar length. I also considered storing the times data in XML files. This would avoid database issues and server disk space can be increased if needed. But I imagine this would be very slow. To update one players best time on one level, I would have to check every node in the file to find their time record to update. Apologies for the wall of text. Any suggestions would be appreciated.

    Read the article

  • Routing tables don't show ppp0 after 12.04 kernel upgrade to 3.5.0: Haier CE682 modem configuration

    - by ubunsteve
    I'm trying to get my Haier CE682 EVDO modem, model number 201e:1022 to work in ubuntu 12.04 kernel 3.5.0-030500-generic #201207211835 . I had it working in a previous 12.04 kernel, using compat-wireless and these instructions http://zulkhamsyahmh.blogspot.com/2012/05/install-smartfren-haier-ce682-on-ubuntu.html, and to get it working had to edit the routing tables so that there was a ppp0 showing up, as suggested at http://www.linuxquestions.org/questions/slackware-14/wvdial-is-connecting-but-im-unable-to-do-anything-714861/ Network manager doesn't work with this modem, so I use either wvdial or gpppon to connect to it, both which work (after I run the command sudo modprobe usbserial vendor=0x201e product=0x1022 ) This is the output of when I connect with gpppon to the modem: Using interface ppp0 Connect: ppp0 <-- /dev/ttyUSB0 sent [LCP ConfReq id=0x1 ] rcvd [LCP ConfAck id=0x1 ] rcvd [LCP ConfReq id=0x2 ] sent [LCP ConfAck id=0x2 ] sent [LCP EchoReq id=0x0 magic=0x819c86db] rcvd [CHAP Challenge id=0x1 <1ac8f12799e953967a3cc222c9254690, name = ""] sent [CHAP Response id=0x1 <6f12a903dc40915ca2761c17b87f8fbd, name = "smart"] rcvd [LCP EchoRep id=0x0 magic=0x0] rcvd [CHAP Success id=0x1 ""] CHAP authentication succeeded CHAP authentication succeeded sent [CCP ConfReq id=0x1 ] sent [IPCP ConfReq id=0x1 ] rcvd [IPCP ConfReq id=0x1 ] sent [IPCP ConfAck id=0x1 ] rcvd [CCP ConfReq id=0x1] sent [CCP ConfAck id=0x1] rcvd [CCP ConfRej id=0x1 ] sent [CCP ConfReq id=0x2] rcvd [IPCP ConfRej id=0x1 ] sent [IPCP ConfReq id=0x2 ] rcvd [CCP ConfAck id=0x2] rcvd [IPCP ConfNak id=0x2 ] sent [IPCP ConfReq id=0x3 ] rcvd [IPCP ConfAck id=0x3 ] not replacing existing default route via 192.168.3.1 local IP address 10.191.248.154 remote IP address 10.17.95.25 primary DNS address 10.17.3.244 secondary DNS address 10.17.3.245 as you can see there is a problem with "not replacing existing default route via 192.168.3.1" This it the out put of route Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface default 192.168.3.1 0.0.0.0 UG 0 0 0 wlan0 link-local * 255.255.0.0 U 1000 0 0 wlan0 192.168.3.0 * 255.255.255.0 U 2 0 0 wlan0 I had tried these commands, which had previously worked in the earlier kernel: route del default route add default ppp0 but that broke my wireless internet connection. I then added the default routing as shown above with sudo route add default gw 192.168.3.1 wlan0 So it seems I need to add or change the routing to show a ppp0 connection, but I don't know how to do that.

    Read the article

  • phpMyAdmin: The additional features for working with linked tables have been deactivated.

    - by The Disintegrator
    I'm getting this error in the main page of phpMyAdmin verson: 3.2.1deb1 The additional features for working with linked tables have been deactivated. To find out why click here. When I click the link I get this report. $cfg['Servers'][$i]['pmadb'] ... OK $cfg['Servers'][$i]['relation'] ... not OK [ Documentation ] General relation features: Disabled $cfg['Servers'][$i]['table_info'] ... not OK [ Documentation ] Display Features: Disabled $cfg['Servers'][$i]['table_coords'] ... not OK [ Documentation ] $cfg['Servers'][$i]['pdf_pages'] ... not OK [ Documentation ] Creation of PDFs: Disabled $cfg['Servers'][$i]['column_info'] ... not OK [ Documentation ] Displaying Column Comments: Disabled Bookmarked SQL query: Disabled Browser transformation: Disabled $cfg['Servers'][$i]['history'] ... not OK [ Documentation ] SQL history: Disabled $cfg['Servers'][$i]['designer_coords'] ... not OK [ Documentation ] Designer: Disabled I already used the script to create the tables. I assigned the permissions to the pma user. And everything is set in /etc/phpmyadmin/conf.inc.php But it's still not working... The tables are empty. I assume that they should have something. I'm interested in the relations an history features. Obviously I have read the documentation. Maybe something else is unsetting those values? Any toughs?

    Read the article

  • T-SQL in SQL Azure

    - by kaleidoscope
    The following table summarizes the Transact-SQL support provided by SQL Azure Database at PDC 2009: Transact-SQL Features Supported Transact-SQL Features Unsupported Constants Constraints Cursors Index management and rebuilding indexes Local temporary tables Reserved keywords Stored procedures Statistics management Transactions Triggers Tables, joins, and table variables Transact-SQL language elements such as Create/drop databases Create/alter/drop tables Create/alter/drop users and logins User-defined functions Views, including sys.synonyms view Common Language Runtime (CLR) Database file placement Database mirroring Distributed queries Distributed transactions Filegroup management Global temporary tables Spatial data and indexes SQL Server configuration options SQL Server Service Broker System tables Trace Flags   Amit, S

    Read the article

  • How can I use rows in a lookup table as columns in a MySQL query?

    - by TomH
    I'm trying to build a MySQL query that uses the rows in a lookup table as the columns in my result set. LookupTable id | AnalysisString 1 | color 2 | size 3 | weight 4 | speed ScoreTable id | lookupID | score | customerID 1 | 1 | A | 1 2 | 2 | C | 1 3 | 4 | B | 1 4 | 2 | A | 2 5 | 3 | A | 2 6 | 1 | A | 3 7 | 2 | F | 3 I'd like a query that would use the relevant lookupTable rows as columns in a query so that I can get a result like this: customerID | color | size | weight | speed 1 A C D 2 A A 3 A F The kicker of the problem is that there may be additional rows added to the LookupTable and the query should be dynamic and not have the Lookup IDs hardcoded. That is, this will work: SELECT st.customerID, (SELECT st1.score FROM ScoreTable st1 WHERE lookupID=1 AND st.customerID = st1.customerID) AS color, (SELECT st1.score FROM ScoreTable st1 WHERE lookupID=2 AND st.customerID = st1.customerID) AS size, (SELECT st1.score FROM ScoreTable st1 WHERE lookupID=3 AND st.customerID = st1.customerID) AS weight, (SELECT st1.score FROM ScoreTable st1 WHERE lookupID=4 AND st.customerID = st1.customerID) AS speed FROM ScoreTable st GROUP BY st.customerID Until there is a fifth row added to the LookupTable . . . Perhaps I'm breaking the whole relational model and will have to resolve this in the backend PHP code? Thanks for pointers/guidance. tom

    Read the article

  • [CODE GENERATION] How to generate DELETE statements in PL/SQL, based on the tables FK relations?

    - by The chicken in the kitchen
    Is it possible via script/tool to generate authomatically many delete statements based on the tables fk relations, using Oracle PL/SQL? In example: I have the table: CHICKEN (CHICKEN_CODE NUMBER) and there are 30 tables with fk references to its CHICKEN_CODE that I need to delete; there are also other 150 tables foreign-key-linked to that 30 tables that I need to delete first. Is there some tool/script PL/SQL that I can run in order to generate all the necessary delete statements based on the FK relations for me? (by the way, I know about cascade delete on the relations, but please pay attention: I CAN'T USE IT IN MY PRODUCTION DATABASE, because it's dangerous!) I'm using Oracle DataBase 10G R2. This is the result I've written, but it is not recursive: This is a view I have previously written, but of course it is not recursive! CREATE OR REPLACE FORCE VIEW RUN ( OWNER_1, CONSTRAINT_NAME_1, TABLE_NAME_1, TABLE_NAME, VINCOLO ) AS SELECT OWNER_1, CONSTRAINT_NAME_1, TABLE_NAME_1, TABLE_NAME, '(' || LTRIM ( EXTRACT (XMLAGG (XMLELEMENT ("x", ',' || COLUMN_NAME)), '/x/text()'), ',') || ')' VINCOLO FROM ( SELECT CON1.OWNER OWNER_1, CON1.TABLE_NAME TABLE_NAME_1, CON1.CONSTRAINT_NAME CONSTRAINT_NAME_1, CON1.DELETE_RULE, CON1.STATUS, CON.TABLE_NAME, CON.CONSTRAINT_NAME, COL.POSITION, COL.COLUMN_NAME FROM DBA_CONSTRAINTS CON, DBA_CONS_COLUMNS COL, DBA_CONSTRAINTS CON1 WHERE CON.OWNER = 'TABLE_OWNER' AND CON.TABLE_NAME = 'TABLE_OWNED' AND ( (CON.CONSTRAINT_TYPE = 'P') OR (CON.CONSTRAINT_TYPE = 'U')) AND COL.TABLE_NAME = CON1.TABLE_NAME AND COL.CONSTRAINT_NAME = CON1.CONSTRAINT_NAME --AND CON1.OWNER = CON.OWNER AND CON1.R_CONSTRAINT_NAME = CON.CONSTRAINT_NAME AND CON1.CONSTRAINT_TYPE = 'R' GROUP BY CON1.OWNER, CON1.TABLE_NAME, CON1.CONSTRAINT_NAME, CON1.DELETE_RULE, CON1.STATUS, CON.TABLE_NAME, CON.CONSTRAINT_NAME, COL.POSITION, COL.COLUMN_NAME) GROUP BY OWNER_1, CONSTRAINT_NAME_1, TABLE_NAME_1, TABLE_NAME; ... and it contains the error of using DBA_CONSTRAINTS instead of ALL_CONSTRAINTS...

    Read the article

  • How can I exclude LEFT JOINed tables from TOP in SQL Server?

    - by Kalessin
    Let's say I have two tables of books and two tables of their corresponding editions. I have a query as follows: SELECT TOP 10 * FROM (SELECT hbID, hbTitle, hbPublisherID, hbPublishDate, hbedID, hbedDate FROM hardback LEFT JOIN hardbackEdition on hbID = hbedID UNION SELECT pbID, pbTitle, pbPublisher, pbPublishDate, pbedID, pbedDate FROM paperback Left JOIN paperbackEdition on pbID = pbedID ) books WHERE hbPublisherID = 7 ORDER BY hbPublishDate DESC If there are 5 editions of the first two hardback and/or paperback books, this query only returns two books. However, I want the TOP 10 to apply only to the number of actual book records returned. Is there a way I can select 10 actual books, and still get all of their associated edition records? In case it's relevant, I do not have database permissions to CREATE and DROP temporary tables. Thanks for reading! Update To clarify: The paperback table has an associated table of paperback editions. The hardback table has an associated table of hardback editions. The hardback and paperback tables are not related to each other except to the user who will (hopefully!) see them displayed together.

    Read the article

  • How can I join 3 tables with mysql & php?

    - by steven
    check out the page [url]http://www.mujak.com/test/test3.php[/url] It pulls the users Post,username,xbc/xlk tags etc which is perfect... BUT since I am pulling information from a MyBB bulletin board system, its quite different. When replying, people are are allowed to change the "Thread Subject" by simplying replying and changing it. I dont want it to SHOW the changed subject title, just the original title of all posts in that thread. By default it repies with "RE:thread title". They can easily edit this and it will show up in the "Subject" cell & people wont know which thread it was posted in because they changed their thread to when replying to the post. So I just want to keep the orginial thread title when they are replying. Make sense~?? Tables:mybb_users Fields:uid,username Tables:mybb_userfields Fields:ufid Tables:mybb_posts Fields:pid,tid,replyto,subject,ufid,username,uid,message Tables:mybb_threads Fields:tid,fid,subject,uid,username,lastpost,lastposter,lastposteruid I haev tried multiple queries with no success: $result = mysql_query(" SELECT * FROM mybb_users LEFT JOIN (mybb_posts, mybb_userfields, mybb_threads) ON ( mybb_userfields.ufid=mybb_posts.uid AND mybb_threads.tid=mybb_posts.tid AND mybb_users.uid=mybb_userfields.ufid ) WHERE mybb_posts.fid=42"); $result = mysql_query(" SELECT * FROM mybb_users LEFT JOIN (mybb_posts, mybb_userfields, mybb_threads) ON ( mybb_userfields.ufid=mybb_posts.uid AND mybb_threads.tid=mybb_posts.tid AND mybb_users.uid=mybb_posts.uid ) WHERE mybb_threads.fid=42"); $result = mysql_query(" SELECT * FROM mybb_posts LEFT JOIN (mybb_userfields, mybb_threads) ON ( mybb_userfields.ufid=mybb_posts.uid AND mybb_threads.tid=mybb_posts.tid ) WHERE mybb_posts.fid=42");

    Read the article

  • Mysql ndb cluster - node restart.

    - by Arafat
    Hi guys! I just setup a mysql cluster on a fairly decent baby (IBM x3650 M3) with 24GB memory, xeon 6core, SAS 6Gbps HDD. Running Debian Lenny 5. 64bits. Ndb version is 7.1.9a. Our database size on MyISAM is around 3.2 GB. Ndb_size estimation is 58GB for ndbengine. A little info about my database is as follows. 150 common tables for global purpose. 130 tables for each clients. So it goes like this, 130 x 115(clients) = 14950 tables. Is it normal or usual to have 14000 tables on one database? The reasons why we did this was, Easy maintenance and per client based customization. Now, the problem is, ndb cluster can only support, 20320 tables. But it can support 5,000,000,000 rows in one table if I'm not wrong. My real head ache is my cluster data node takes less than two minutes to startup with out any data. But as soon as convert my tables into ndb, that too only 2000 tables, data node takes at least 30 to 40 mins to start up. Is it normal? If I convertt all my tables into ndb, will it take even longer? Or let's say if consolidate my 14000 table's data into one, which is 130 tables, will it help? Or is there anything idiotically wrong which I'm doing? I'll attach my config.ini file soon. here's the simple overview of my config Datamemory = 14G Indexmemory = 3GB Maxnooftable = 14000 Maxnoofattributes = 78000 I'm just testing these values with 2000 tables first. Please advise, how to increase the start up speed. Please point out where I'm going wrong. Thanks in advance guys!

    Read the article

  • MySQL query, 2 similar servers, 2 minute difference in execution times

    - by mr12086
    I had a similar question on stack overflow, but it seems to be more server/mysql setup related than coding. The queries below all execute instantly on our development server where as they can take upto 2 minutes 20 seconds. The query execution time seems to be affected by home ambiguous the LIKE string's are. If they closely match a country that has few matches it will take less time, and if you use something like 'ge' for germany - it will take longer to execute. But this doesn't always work out like that, at times its quite erratic. Sending data appears to be the culprit but why and what does that mean. Also memory on production looks to be quite low (free memory)? Production: Intel Quad Xeon E3-1220 3.1GHz 4GB DDR3 2x 1TB SATA in RAID1 Network speed 100Mb Ubuntu Development Intel Core i3-2100, 2C/4T, 3.10GHz 500 GB SATA - No RAID 4GB DDR3 UPDATE 2 : mysqltuner output: [prod] -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.1.61-0ubuntu0.10.04.1 [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: +Archive -BDB -Federated +InnoDB -ISAM -NDBCluster [--] Data in MyISAM tables: 103M (Tables: 180) [--] Data in InnoDB tables: 491M (Tables: 19) [!!] Total fragmented tables: 38 -------- Security Recommendations ------------------------------------------- [OK] All database users have passwords assigned -------- Performance Metrics ------------------------------------------------- [--] Up for: 77d 4h 6m 1s (53M q [7.968 qps], 14M conn, TX: 87B, RX: 12B) [--] Reads / Writes: 98% / 2% [--] Total buffers: 58.0M global + 2.7M per thread (151 max threads) [OK] Maximum possible memory usage: 463.8M (11% of installed RAM) [OK] Slow queries: 0% (12K/53M) [OK] Highest usage of available connections: 22% (34/151) [OK] Key buffer size / total MyISAM indexes: 16.0M/10.6M [OK] Key buffer hit rate: 98.7% (162M cached / 2M reads) [OK] Query cache efficiency: 20.7% (7M cached / 36M selects) [!!] Query cache prunes per day: 3934 [OK] Sorts requiring temporary tables: 1% (3K temp sorts / 230K sorts) [!!] Joins performed without indexes: 71068 [OK] Temporary tables created on disk: 24% (3M on disk / 13M total) [OK] Thread cache hit rate: 99% (690 created / 14M connections) [!!] Table cache hit rate: 0% (64 open / 85M opened) [OK] Open file limit used: 12% (128/1K) [OK] Table locks acquired immediately: 99% (16M immediate / 16M locks) [!!] InnoDB data size / buffer pool: 491.9M/8.0M -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance Enable the slow query log to troubleshoot bad queries Adjust your join queries to always utilize indexes Increase table_cache gradually to avoid file descriptor limits Variables to adjust: query_cache_size (> 16M) join_buffer_size (> 128.0K, or always use indexes with joins) table_cache (> 64) innodb_buffer_pool_size (>= 491M) [dev] -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.1.62-0ubuntu0.11.10.1 [!!] Switch to 64-bit OS - MySQL cannot currently use all of your RAM -------- Storage Engine Statistics ------------------------------------------- [--] Status: +Archive -BDB -Federated +InnoDB -ISAM -NDBCluster [--] Data in MyISAM tables: 185M (Tables: 632) [--] Data in InnoDB tables: 967M (Tables: 38) [!!] Total fragmented tables: 73 -------- Security Recommendations ------------------------------------------- [OK] All database users have passwords assigned -------- Performance Metrics ------------------------------------------------- [--] Up for: 1d 2h 26m 9s (5K q [0.058 qps], 1K conn, TX: 4M, RX: 1M) [--] Reads / Writes: 99% / 1% [--] Total buffers: 58.0M global + 2.7M per thread (151 max threads) [OK] Maximum possible memory usage: 463.8M (11% of installed RAM) [OK] Slow queries: 0% (0/5K) [OK] Highest usage of available connections: 1% (2/151) [OK] Key buffer size / total MyISAM indexes: 16.0M/18.6M [OK] Key buffer hit rate: 99.9% (60K cached / 36 reads) [OK] Query cache efficiency: 44.5% (1K cached / 2K selects) [OK] Query cache prunes per day: 0 [OK] Sorts requiring temporary tables: 0% (0 temp sorts / 44 sorts) [OK] Temporary tables created on disk: 24% (162 on disk / 666 total) [OK] Thread cache hit rate: 99% (2 created / 1K connections) [!!] Table cache hit rate: 1% (64 open / 4K opened) [OK] Open file limit used: 8% (88/1K) [OK] Table locks acquired immediately: 100% (1K immediate / 1K locks) [!!] InnoDB data size / buffer pool: 967.7M/8.0M -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance Enable the slow query log to troubleshoot bad queries Increase table_cache gradually to avoid file descriptor limits Variables to adjust: table_cache (> 64) innodb_buffer_pool_size (>= 967M) UPDATE 1: When testing the queries listed here there is usually no more than one other query taking place, and usually none. Because production is actually handling apache requests that development gets very few of as it's only myself and 1 other who accesses it - could the 4GB of RAM be getting exhausted by using the single machine for both apache and mysql server? Production: sudo hdparm -tT /dev/sda /dev/sda: Timing cached reads: 24872 MB in 2.00 seconds = 12450.72 MB/sec Timing buffered disk reads: 368 MB in 3.00 seconds = 122.49 MB/sec sudo hdparm -tT /dev/sdb /dev/sdb: Timing cached reads: 24786 MB in 2.00 seconds = 12407.22 MB/sec Timing buffered disk reads: 350 MB in 3.00 seconds = 116.53 MB/sec Server version(mysql + ubuntu versions): 5.1.61-0ubuntu0.10.04.1 Development: sudo hdparm -tT /dev/sda /dev/sda: Timing cached reads: 10632 MB in 2.00 seconds = 5319.40 MB/sec Timing buffered disk reads: 400 MB in 3.01 seconds = 132.85 MB/sec Server version(mysql + ubuntu versions): 5.1.62-0ubuntu0.11.10.1 ORIGINAL DATA : This query is NOT the query in question but is related so ill post it. SELECT f.form_question_has_answer_id FROM form_question_has_answer f INNER JOIN project_company_has_user p ON f.form_question_has_answer_user_id = p.project_company_has_user_user_id INNER JOIN company c ON p.project_company_has_user_company_id = c.company_id INNER JOIN project p2 ON p.project_company_has_user_project_id = p2.project_id INNER JOIN user u ON p.project_company_has_user_user_id = u.user_id INNER JOIN form f2 ON p.project_company_has_user_project_id = f2.form_project_id WHERE (f2.form_template_name = 'custom' AND p.project_company_has_user_garbage_collection = 0 AND p.project_company_has_user_project_id = '29') AND (LCASE(c.company_country) LIKE '%ge%' OR LCASE(c.company_country) LIKE '%abcde%') AND f.form_question_has_answer_form_id = '174' And the explain plan for the above query is, run on both dev and production produce the same plan. +----+-------------+-------+--------+----------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+---------+----------------------------------------------------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+----------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+---------+----------------------------------------------------+------+-------------+ | 1 | SIMPLE | p2 | const | PRIMARY | PRIMARY | 4 | const | 1 | Using index | | 1 | SIMPLE | f | ref | form_question_has_answer_form_id,form_question_has_answer_user_id | form_question_has_answer_form_id | 4 | const | 796 | Using where | | 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | new_klarents.f.form_question_has_answer_user_id | 1 | Using index | | 1 | SIMPLE | p | ref | project_company_has_user_unique_key,project_company_has_user_user_id,project_company_has_user_company_id,project_company_has_user_project_id | project_company_has_user_user_id | 4 | new_klarents.f.form_question_has_answer_user_id | 1 | Using where | | 1 | SIMPLE | f2 | ref | form_project_id | form_project_id | 4 | const | 15 | Using where | | 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 4 | new_klarents.p.project_company_has_user_company_id | 1 | Using where | +----+-------------+-------+--------+----------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+---------+----------------------------------------------------+------+-------------+ This query takes 2 minutes ~20 seconds to execute. The query that is ACTUALLY being run on the server is this one: SELECT COUNT(*) AS num_results FROM (SELECT f.form_question_has_answer_id FROM form_question_has_answer f INNER JOIN project_company_has_user p ON f.form_question_has_answer_user_id = p.project_company_has_user_user_id INNER JOIN company c ON p.project_company_has_user_company_id = c.company_id INNER JOIN project p2 ON p.project_company_has_user_project_id = p2.project_id INNER JOIN user u ON p.project_company_has_user_user_id = u.user_id INNER JOIN form f2 ON p.project_company_has_user_project_id = f2.form_project_id WHERE (f2.form_template_name = 'custom' AND p.project_company_has_user_garbage_collection = 0 AND p.project_company_has_user_project_id = '29') AND (LCASE(c.company_country) LIKE '%ge%' OR LCASE(c.company_country) LIKE '%abcde%') AND f.form_question_has_answer_form_id = '174' GROUP BY f.form_question_has_answer_id;) dctrn_count_query; With explain plans (again same on dev and production): +----+-------------+-------+--------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+---------+----------------------------------------------------+------+------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+---------+----------------------------------------------------+------+------------------------------+ | 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | Select tables optimized away | | 2 | DERIVED | p2 | const | PRIMARY | PRIMARY | 4 | | 1 | Using index | | 2 | DERIVED | f | ref | form_question_has_answer_form_id,form_question_has_answer_user_id | form_question_has_answer_form_id | 4 | | 797 | Using where | | 2 | DERIVED | p | ref | project_company_has_user_unique_key,project_company_has_user_user_id,project_company_has_user_company_id,project_company_has_user_project_id,project_company_has_user_garbage_collection | project_company_has_user_user_id | 4 | new_klarents.f.form_question_has_answer_user_id | 1 | Using where | | 2 | DERIVED | f2 | ref | form_project_id | form_project_id | 4 | | 15 | Using where | | 2 | DERIVED | c | eq_ref | PRIMARY | PRIMARY | 4 | new_klarents.p.project_company_has_user_company_id | 1 | Using where | | 2 | DERIVED | u | eq_ref | PRIMARY | PRIMARY | 4 | new_klarents.p.project_company_has_user_user_id | 1 | Using where; Using index | +----+-------------+-------+--------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+----------------------------------+---------+----------------------------------------------------+------+------------------------------+ On the production server the information I have is as follows. Upon execution: +-------------+ | num_results | +-------------+ | 3 | +-------------+ 1 row in set (2 min 14.28 sec) Show profile: +--------------------------------+------------+ | Status | Duration | +--------------------------------+------------+ | starting | 0.000016 | | checking query cache for query | 0.000057 | | Opening tables | 0.004388 | | System lock | 0.000003 | | Table lock | 0.000036 | | init | 0.000030 | | optimizing | 0.000016 | | statistics | 0.000111 | | preparing | 0.000022 | | executing | 0.000004 | | Sorting result | 0.000002 | | Sending data | 136.213836 | | end | 0.000007 | | query end | 0.000002 | | freeing items | 0.004273 | | storing result in query cache | 0.000010 | | logging slow query | 0.000001 | | logging slow query | 0.000002 | | cleaning up | 0.000002 | +--------------------------------+------------+ On development the results are as follows. +-------------+ | num_results | +-------------+ | 3 | +-------------+ 1 row in set (0.08 sec) Again the profile for this query: +--------------------------------+----------+ | Status | Duration | +--------------------------------+----------+ | starting | 0.000022 | | checking query cache for query | 0.000148 | | Opening tables | 0.000025 | | System lock | 0.000008 | | Table lock | 0.000101 | | optimizing | 0.000035 | | statistics | 0.001019 | | preparing | 0.000047 | | executing | 0.000008 | | Sorting result | 0.000005 | | Sending data | 0.086565 | | init | 0.000015 | | optimizing | 0.000006 | | executing | 0.000020 | | end | 0.000004 | | query end | 0.000004 | | freeing items | 0.000028 | | storing result in query cache | 0.000005 | | removing tmp table | 0.000008 | | closing tables | 0.000008 | | logging slow query | 0.000002 | | cleaning up | 0.000005 | +--------------------------------+----------+ If i remove user and/or project innerjoins the query is reduced to 30s. Last bit of information I have: Mysqlserver and Apache are on the same box, there is only one box for production. Production output from top: before & after. top - 15:43:25 up 78 days, 12:11, 4 users, load average: 1.42, 0.99, 0.78 Tasks: 162 total, 2 running, 160 sleeping, 0 stopped, 0 zombie Cpu(s): 0.1%us, 50.4%sy, 0.0%ni, 49.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 4037868k total, 3772580k used, 265288k free, 243704k buffers Swap: 3905528k total, 265384k used, 3640144k free, 1207944k cached top - 15:44:31 up 78 days, 12:13, 4 users, load average: 1.94, 1.23, 0.87 Tasks: 160 total, 2 running, 157 sleeping, 0 stopped, 1 zombie Cpu(s): 0.2%us, 50.6%sy, 0.0%ni, 49.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 4037868k total, 3834300k used, 203568k free, 243736k buffers Swap: 3905528k total, 265384k used, 3640144k free, 1207804k cached But this isn't a good representation of production's normal status so here is a grab of it from today outside of executing the queries. top - 11:04:58 up 79 days, 7:33, 4 users, load average: 0.39, 0.58, 0.76 Tasks: 156 total, 1 running, 155 sleeping, 0 stopped, 0 zombie Cpu(s): 3.3%us, 2.8%sy, 0.0%ni, 93.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 4037868k total, 3676136k used, 361732k free, 271480k buffers Swap: 3905528k total, 268736k used, 3636792k free, 1063432k cached Development: This one doesn't change during or after. top - 15:47:07 up 110 days, 22:11, 7 users, load average: 0.17, 0.07, 0.06 Tasks: 210 total, 2 running, 208 sleeping, 0 stopped, 0 zombie Cpu(s): 0.1%us, 0.2%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 4111972k total, 1821100k used, 2290872k free, 238860k buffers Swap: 4183036k total, 66472k used, 4116564k free, 921072k cached

    Read the article

  • Why my dns server ip got blacklisted instead of my email server ip?

    - by Khurram Masood
    We are hosting our own dns server our scenario is as under; dns ip: a.b.c.1 fqdn:ns1.example.com ------ reverse lookup to a.b.c.1 mail server ip a.b.c.2 mail.example.com ------ reverse lookup to a.b.c.2 smtp.example.com ------ no reverse lookup pop.example.com ------ no reverse lookup web server ip a.b.c.3 example.com ------ reverse lookup to a.b.c.3 www.example.com ------ no reverse lookup a few days back our dns server ip got blacklisted and all our services were down from outside. We had also added a new dns server on a separate network that caused our domain and machines with same names as above to resolve on different ips, can this b a cause of being blacklisted? But all blacklists points towards spamming. Can anyone please explain why my dns ip got blacklisted instead of my email or web server ip?

    Read the article

  • Sentence Tree v/s Words List

    - by Rohit Jose
    I was recently tasked with building a Name Entity Recognizer as part of a project. The objective was to parse a given sentence and come up with all the possible combinations of the entities. One approach that was suggested was to keep a lookup table for all the know connector words like articles and conjunctions, remove them from the words list after splitting the sentence on the basis of the spaces. This would leave out the Name Entities in the sentence. A lookup is then done for these identified entities on another lookup table that associates them to the entity type, for example if the sentence was: Remember the Titans was a movie directed by Boaz Yakin, the possible outputs would be: {Remember the Titans,Movie} was {a movie,Movie} directed by {Boaz Yakin,director} {Remember the Titans,Movie} was a movie directed by Boaz Yakin {Remember the Titans,Movie} was {a movie,Movie} directed by Boaz Yakin {Remember the Titans,Movie} was a movie directed by {Boaz Yakin,director} Remember the Titans was {a movie,Movie} directed by Boaz Yakin Remember the Titans was {a movie,Movie} directed by {Boaz Yakin,director} Remember the Titans was a movie directed by {Boaz Yakin,director} Remember the {the titans,Movie,Sports Team} was {a movie,Movie} directed by {Boaz Yakin,director} Remember the {the titans,Movie,Sports Team} was a movie directed by Boaz Yakin Remember the {the titans,Movie,Sports Team} was {a movie,Movie} directed by Boaz Yakin Remember the {the titans,Movie,Sports Team} was a movie directed by {Boaz Yakin,director} The entity lookup table here would contain the following data: Remember the Titans=Movie a movie=Movie Boaz Yakin=director the Titans=Movie the Titans=Sports Team Another alternative logic that was put forward was to build a crude sentence tree that would contain the connector words in the lookup table as parent nodes and do a lookup in the entity table for the leaf node that might contain the entities. The tree that was built for the sentence above would be: The question I am faced with is the benefits of the two approaches, should I be going for the tree approach to represent the sentence parsing, since it provides a more semantic structure? Is there a better approach I should be going for solving it?

    Read the article

  • One of my most frequently used commands

    - by Kevin Smith
    On a Linux or UNIX server this is one of my most frequently used commands. find . -name "*.htm" -exec grep -iH "alter session" {} \; It is an easy way to find a string you know is in a group of files, but don't know or can't remember which file it is in. For the example above, I knew that WebCenter Content sends a bunch of alter session commands to the database when it opens a new database connection. I wanted to find where these were defined and what all the alter session commands were. So, I ran these commands: cd /opt/oracle/middleware/Oracle_ECM1/ucm/idc/resources/core find . -name "*.htm" -exec grep -iH "alter session" {} \; And the results were: ./tables/query.htm: ALTER SESSION SET optimizer_mode = ?./tables/query.htm: ALTER SESSION SET NLS_LENGTH_SEMANTICS = ?./tables/query.htm: ALTER SESSION SET NLS_SORT = ?./tables/query.htm: ALTER SESSION SET NLS_COMP = ?./tables/query.htm: ALTER SESSION SET CURSOR_SHARING = ?./tables/query.htm: ALTER SESSION SET EVENTS '30579 trace name context forever, level 2'./tables/query.htm: ALTER SESSION SET NLS_DATE_FORMAT = ?./tables/query.htm: alter session set events '30579 trace name context forever, level 2' I could then go edit the query.htm file and find the include that contained all the ALTER SESSION commands.

    Read the article

  • What the Hekaton?

    - by Tony Davis
    Hekaton, the power behind SQL Server 2014′s In-Memory OLTP technology, is intended to make data operations run orders of magnitude faster on SQL Server. This works its magic partly by serving database workloads entirely from main memory, using memory-optimized table structures. It replaces the relational engine’s standard locking model with an optimistic concurrency model based on time-stamped row versions. Deeper down the Hekaton engine uses new, ‘latch free’ data structures. So far, so good, but performance improvements on this scale require a compromise, and the compromise is that these aren’t tables as we understand them. For the database developer, these differences are painful because they involve sacrificing some very important bits of the relational model. Most importantly, Hekaton tables don’t currently support FOREIGN KEY constraints or CHECK constraints, and you can’t put the checks in triggers because there aren’t any DML triggers either. Constraints allow a relational designer to enforce relational integrity and data integrity. Without them, of course, ‘bad data’ can get into our Hekaton tables. There is no easy way of preventing it. For several classes of database and data, this is a show-stopper. One may regard all these restrictions regretfully, seeing limited opportunity to try out Hekaton with current databases, but perhaps there is also a sudden glow of recognition. Isn’t this how we all originally imagined table variables were going to be, back in SQL 2005? And they have much the same restrictions. Maybe, instead of pretending that a currently-designed database can be ‘Hekatonized’ with a few mouse clicks, we should redesign databases for SQL 2014 to replace table variables with Hekaton tables, exploiting this technology for fast intermediate processing, and for the most part forget, for now, the idea of trying to convert our base relational tables into Hekaton tables. Few database developers would be averse to having their working tables running an order of magnitude faster, as long as it didn’t compromise the integrity of the data in the base tables.

    Read the article

  • Layout Columns - Equal Height

    - by Kyle
    I remember first starting out using tables for layouts and learned that I should not be doing that. I am working on a new site and can not seem to do equal height columns without using tables. Here is an example of the attempt with div tags. <div class="row"> <div class="column">column1</div> <div class="column">column2</div> <div class="column">column3</div> <div style="clear:both"></div> </div> Now what I tried with that was doing making columns float left and setting their widths to 33% which works fine, I use the clear:both div so that the row would be the size of the biggest column, but the columns will be different sizes based on how much content they have. I have found many fixes which mostly involve css hacks and just making it look like its right but that's not what I want. I thought of just doing it in javascript but then it would look different for those who choose to disable their javascript. The only true way of doing it that I can think of is using tables since the cells all have equal heights in the same row. But I know its bad to use tables. After searching forever I than came across this: http://intangiblestyle.com/lab/equal-height-columns-with-css/ What it seems to do is exactly the same as tables since its just setting its display exactly like tables. Would using that be just as bad as using tables? I honestly can't find anything else that I could do. edit @Su' I have looked into "faux columns" and do not think that is what I want. I think I would be able to implement better designs for my site using the display:table method. I posted this question because I just wasn't sure if I should since I have always heard its bad using tables in website layouts.

    Read the article

< Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >