Search Results

Search found 4296 results on 172 pages for 'serial ports'.

Page 59/172 | < Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >

  • Prepopulate drop-box according to another drop-box choice in Django Admin

    - by onorua
    I have models like this: class User(models.Model): Switch = models.ForeignKey(Switch, related_name='SwitchUsers') Port = models.ForeignKey(Port) class Switch(models.Model): Name = models.CharField(max_length=50) class Port(models.Model): PortNum = models.PositiveIntegerField() Switch = models.ForeignKey(Switch, related_name = "Ports") When I'm in Admin interface and choose Switch from Switches available, I would like to have Port prepopulated accordingly with Ports from the related Switch. As far as I understand I need to create some JS script to prepopulate it. Unfortunately I don't have this experience, and I would like to keep things simple as it possible and don't rewrite all Django admin interface. Just add this functionality for one Field. Could you please help me with my problem? Thank you.

    Read the article

  • Connecting Java se Client to Glassfish

    - by Henrik Bierbum Bacher
    We are having some difficulties connecting our Java SE standalone client with the EJB module deployed on a remote GlassFish server. Pointers to how we are supposed to connect our client would be appreciated. The client code we currently has to get the initial context: props.setProperty("org.omg.CORBA.ORBInitialHost", "*remotehost*"); props.setProperty("org.omg.CORBA.ORBInitialPort", "portNumber"); javax.naming.InitialContext ic = new javax.naming.InitialContext(props); *We have tried several different port numbers; 3700, 7676, 8080.. The closest we are getting, got us the error: "Error in GIOP magic". I read that jms are using port 7676 as a broker port for a bunch of dynamically generated ports, but can't figure out how to specify those ports in order to create proper port-forwards.

    Read the article

  • C# Proxy, what is the best way to do this?

    - by Kin
    I'm writing a proxy using .NET and C#. It has a couple of functions that it needs to fulfill. I haven't done much Socket programming, and I am not sure the best way to go about it. Should I use Synchronous Sockets, Asynchronous sockets? Please help! It must... Accept Connections from the client on two different ports, and be able to receive data on both ports at the same time. When a connection is made on a port, it must immediately connect to the server, and start sending data as it receives it from the client to the server. Packets must be forwarded in the order they are received, exactly as they were received. It needs to be as low latency as possible. I don't need the ability for multiple clients to use the proxy, but it would be a nice feature if its easy to implement.

    Read the article

  • Does Mobile phone have Server : Port Scheme ?

    - by MilkBottle
    Hi I hope I can get all the help i can get here. I am new to mobile phone programming. I find networking very interesting and I have this question: Does Mobile phone like WinMo or other phone have Server:Port scheme and what are the ports ? To show what I mean, I use PC to demonstarte, there are many ports ( restricted and established ). The below is the Server : Port scheme Server : port example WebServer 80 So, to use a TCPListener on PC , I can use any port as long as there are not restricted and establsihed) to listen incoming TcpClient . 2) How do I use a TCPListener and Which portNo I need to use to listen incoming TcpClient from the other end in Net Compact Framework? Thanks

    Read the article

  • Efficient multiple services exposed over c# .NET remoting using more channels or end points?

    - by wb
    I am using remoting over TCP for a prototype distributed server application where I want to have varying multiple services exposed from each remoting server process. In some cases I want the services running from the same process but I don't want whatever is using the service to care about that. I am wondering is it more efficient to have multiple services in the same process going over the same remoting channel distinguished by endpoint URI/URL or should I be creating new channels on different ports for each service in the same process? Using up ports isn't so much of a problem as the number of services will be low and the network and machine configuration is completely controlled. Also its not clear to me if remoting sends the URI string for every single message or just at connection time, and whether if the remoting framework is intelligent enough to reduce work if calls are made on the same machine and even the same process? Thanks in advance.

    Read the article

  • How do I detect server status in a port scanner java implementation

    - by akz
    I am writing a port scanner in Java and I want to be able to distinct the following 4 use cases: port is open port is open and server banner was read port is closed server is not live I have the following code: InetAddress address = InetAddress.getByName("google.com"); int[] ports = new int[]{21, 22, 23, 80, 443}; for (int i = 0; i < ports.length; i++) { int port = ports[i]; Socket socket = null; try { socket = new Socket(address, port); socket.setSoTimeout(500); System.out.println("port " + port + " open"); BufferedReader reader = new BufferedReader( new InputStreamReader(socket.getInputStream())); String line = reader.readLine(); if (line != null) { System.out.println(line); } socket.close(); } catch (SocketTimeoutException ex) { // port was open but nothing was read from input stream ex.printStackTrace(); } catch (ConnectException ex) { // port is closed ex.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } finally { if (socket != null && !socket.isClosed()) { try { socket.close(); } catch (Exception e) { e.printStackTrace(); } } } } The problem is that I get a ConnectionException both when the port is closed and the server cannot be reached but with a different exception message: java.net.ConnectException: Connection timed out: connect when the connection was never established and java.net.ConnectException: Connection refused: connect when the port was closed so I cannot make the distinction between the two use cases without digging into the actual exception message. Same thing happens when I try a different approach for the socket creation. If I use: socket = new Socket(); socket.setSoTimeout(500); socket.connect(new InetSocketAddress(address, port), 1000); I have the same problem but with the SocketTimeoutException instead. I get a java.net.SocketTimeoutException: Read timed out if port was open but there was no banner to be read and java.net.SocketTimeoutException: connect timed out if server is not live or port is closed. Any ideas? Thanks in advance!

    Read the article

  • I want to run both MAMP and native local webserver on mac os x 10.6.4

    - by user1065921
    I have set up a local webserver using MAMP on ports 8888 for Apache and 8889 for MySQL - I am using this exclusively for Drupal 6 multisite. I would also like to have a local webserver using the native mac os x capabilities through ports 80 and 3306. Is it possible to run both MAMP local server and native osx webserver concurrently? I have tried to install php on my local server by editing the http.conf file but whenever I open a .php file (any php file) using Firefox I get an infinite loop of blank browser windows opening (FF) or in Safari the actual code of the php file is displayed rather than the php processed page. Have I missed/messed up something? Thanks,

    Read the article

  • OS X 10.9 Mavericks Kernel Panics out of the box

    - by Kevin
    OS X Kernel panics after a fresh install of OS X 10.9 on a 17" Macbook Pro. Anonymous UUID: D002464D-24B7-C2B5-3D83-1C0B02873B29 Wed Oct 30 11:08:17 2013 panic(cpu 1 caller 0xffffff8006edc19e): Kernel trap at 0xffffff7f88e0a96c, type 14=page fault, registers: CR0: 0x000000008001003b, CR2: 0xffffef7f88e309b8, CR3: 0x0000000009c2d000, CR4: 0x0000000000000660 RAX: 0x0fffffd0c7b30000, RBX: 0xffffef7f88e309b0, RCX: 0x0000000000000001, RDX: 0x000002f384d06471 RSP: 0xffffff80eff03d80, RBP: 0xffffff80eff03e70, RSI: 0x0000031384cfb168, RDI: 0xffffff80e8f05148 R8: 0xffffff801b0f8670, R9: 0x0000000000000005, R10: 0x0000000000004a24, R11: 0x0000000000000202 R12: 0xffffff801938b800, R13: 0x0000000000000005, R14: 0xffffff80e8f05148, R15: 0xffffff7f88e2ee20 RFL: 0x0000000000010006, RIP: 0xffffff7f88e0a96c, CS: 0x0000000000000008, SS: 0x0000000000000010 Fault CR2: 0xffffef7f88e309b8, Error code: 0x0000000000000002, Fault CPU: 0x1 Backtrace (CPU 1), Frame : Return Address 0xffffff80eff03a10 : 0xffffff8006e22f69 0xffffff80eff03a90 : 0xffffff8006edc19e 0xffffff80eff03c60 : 0xffffff8006ef3606 0xffffff80eff03c80 : 0xffffff7f88e0a96c 0xffffff80eff03e70 : 0xffffff7f88e09b89 0xffffff80eff03f30 : 0xffffff8006edda5c 0xffffff80eff03f50 : 0xffffff8006e3757a 0xffffff80eff03f90 : 0xffffff8006e378c8 0xffffff80eff03fb0 : 0xffffff8006ed6aa7 Kernel Extensions in backtrace: com.apple.driver.AppleIntelCPUPowerManagement(216.0)[A6EE4D7B-228E-3A3C-95BA-10ED6F331236]@0xffffff7f88e07000->0xffffff7f88e31fff BSD process name corresponding to current thread: kernel_task Mac OS version: 13A603 Kernel version: Darwin Kernel Version 13.0.0: Thu Sep 19 22:22:27 PDT 2013; root:xnu-2422.1.72~6/RELEASE_X86_64 Kernel UUID: 1D9369E3-D0A5-31B6-8D16-BFFBBB390393 Kernel slide: 0x0000000006c00000 Kernel text base: 0xffffff8006e00000 System model name: MacBookPro5,2 (Mac-F2268EC8) System uptime in nanoseconds: 4634353513870 last loaded kext at 39203945245: com.viscosityvpn.Viscosity.tun 1.0 (addr 0xffffff7f89200000, size 32768) last unloaded kext at 147930318702: com.apple.driver.AppleFileSystemDriver 3.0.1 (addr 0xffffff7f89110000, size 8192) loaded kexts: com.viscosityvpn.Viscosity.tun 1.0 com.viscosityvpn.Viscosity.tap 1.0 com.apple.driver.AudioAUUC 1.60 com.apple.driver.AppleHWSensor 1.9.5d0 com.apple.filesystems.autofs 3.0 com.apple.iokit.IOBluetoothSerialManager 4.2.0f6 com.apple.driver.AGPM 100.14.11 com.apple.driver.AppleMikeyHIDDriver 124 com.apple.driver.AppleHDA 2.5.2fc2 com.apple.iokit.BroadcomBluetoothHostControllerUSBTransport 4.2.0f6 com.apple.GeForceTesla 8.1.8 com.apple.driver.AppleMikeyDriver 2.5.2fc2 com.apple.iokit.IOUserEthernet 1.0.0d1 com.apple.driver.AppleUpstreamUserClient 3.5.13 com.apple.driver.AppleMuxControl 3.4.12 com.apple.driver.ACPI_SMC_PlatformPlugin 1.0.0 com.apple.driver.AppleSMCLMU 2.0.4d1 com.apple.Dont_Steal_Mac_OS_X 7.0.0 com.apple.driver.AppleHWAccess 1 com.apple.driver.AppleMCCSControl 1.1.12 com.apple.driver.AppleLPC 1.7.0 com.apple.driver.SMCMotionSensor 3.0.4d1 com.apple.driver.AppleUSBTCButtons 240.2 com.apple.driver.AppleUSBTCKeyboard 240.2 com.apple.driver.AppleIRController 325.7 com.apple.AppleFSCompression.AppleFSCompressionTypeDataless 1.0.0d1 com.apple.AppleFSCompression.AppleFSCompressionTypeZlib 1.0.0d1 com.apple.BootCache 35 com.apple.iokit.SCSITaskUserClient 3.6.0 com.apple.driver.XsanFilter 404 com.apple.iokit.IOAHCIBlockStorage 2.4.0 com.apple.driver.AppleUSBHub 650.4.4 com.apple.driver.AppleUSBEHCI 650.4.1 com.apple.driver.AppleFWOHCI 4.9.9 com.apple.driver.AirPort.Brcm4331 700.20.22 com.apple.driver.AppleAHCIPort 2.9.5 com.apple.nvenet 2.0.21 com.apple.driver.AppleUSBOHCI 650.4.1 com.apple.driver.AppleSmartBatteryManager 161.0.0 com.apple.driver.AppleRTC 2.0 com.apple.driver.AppleHPET 1.8 com.apple.driver.AppleACPIButtons 2.0 com.apple.driver.AppleSMBIOS 2.0 com.apple.driver.AppleACPIEC 2.0 com.apple.driver.AppleAPIC 1.7 com.apple.driver.AppleIntelCPUPowerManagementClient 216.0.0 com.apple.nke.applicationfirewall 153 com.apple.security.quarantine 3 com.apple.driver.AppleIntelCPUPowerManagement 216.0.0 com.apple.kext.triggers 1.0 com.apple.iokit.IOSerialFamily 10.0.7 com.apple.AppleGraphicsDeviceControl 3.4.12 com.apple.driver.DspFuncLib 2.5.2fc2 com.apple.vecLib.kext 1.0.0 com.apple.iokit.IOAudioFamily 1.9.4fc11 com.apple.kext.OSvKernDSPLib 1.14 com.apple.iokit.IOBluetoothHostControllerUSBTransport 4.2.0f6 com.apple.iokit.IOSurface 91 com.apple.iokit.IOBluetoothFamily 4.2.0f6 com.apple.nvidia.classic.NVDANV50HalTesla 8.1.8 com.apple.driver.AppleSMBusPCI 1.0.12d1 com.apple.driver.AppleGraphicsControl 3.4.12 com.apple.driver.IOPlatformPluginLegacy 1.0.0 com.apple.driver.AppleBacklightExpert 1.0.4 com.apple.iokit.IOFireWireIP 2.2.5 com.apple.driver.AppleHDAController 2.5.2fc2 com.apple.iokit.IOHDAFamily 2.5.2fc2 com.apple.driver.AppleSMBusController 1.0.11d1 com.apple.nvidia.classic.NVDAResmanTesla 8.1.8 com.apple.driver.IOPlatformPluginFamily 5.5.1d27 com.apple.iokit.IONDRVSupport 2.3.6 com.apple.iokit.IOGraphicsFamily 2.3.6 com.apple.driver.AppleSMC 3.1.6d1 com.apple.driver.AppleUSBMultitouch 240.6 com.apple.iokit.IOUSBHIDDriver 650.4.4 com.apple.driver.AppleUSBMergeNub 650.4.0 com.apple.driver.AppleUSBComposite 650.4.0 com.apple.driver.CoreStorage 380 com.apple.iokit.IOSCSIMultimediaCommandsDevice 3.6.0 com.apple.iokit.IOBDStorageFamily 1.7 com.apple.iokit.IODVDStorageFamily 1.7.1 com.apple.iokit.IOCDStorageFamily 1.7.1 com.apple.iokit.IOAHCISerialATAPI 2.6.0 com.apple.iokit.IOSCSIArchitectureModelFamily 3.6.0 com.apple.iokit.IOUSBUserClient 650.4.4 com.apple.iokit.IOFireWireFamily 4.5.5 com.apple.iokit.IO80211Family 600.34 com.apple.iokit.IOAHCIFamily 2.6.0 com.apple.iokit.IONetworkingFamily 3.2 com.apple.iokit.IOUSBFamily 650.4.4 com.apple.driver.NVSMU 2.2.9 com.apple.driver.AppleEFINVRAM 2.0 com.apple.driver.AppleEFIRuntime 2.0 com.apple.iokit.IOHIDFamily 2.0.0 com.apple.iokit.IOSMBusFamily 1.1 com.apple.security.sandbox 278.10 com.apple.kext.AppleMatch 1.0.0d1 com.apple.security.TMSafetyNet 7 com.apple.driver.AppleKeyStore 2 com.apple.driver.DiskImages 371.1 com.apple.iokit.IOStorageFamily 1.9 com.apple.iokit.IOReportFamily 21 com.apple.driver.AppleFDEKeyStore 28.30 com.apple.driver.AppleACPIPlatform 2.0 com.apple.iokit.IOPCIFamily 2.8 com.apple.iokit.IOACPIFamily 1.4 com.apple.kec.pthread 1 com.apple.kec.corecrypto 1.0 System Profile: Model: MacBookPro5,2, BootROM MBP52.008E.B05, 2 processors, Intel Core 2 Duo, 2.8 GHz, 8 GB, SMC 1.42f4 Graphics: NVIDIA GeForce 9400M, NVIDIA GeForce 9400M, PCI, 256 MB Graphics: NVIDIA GeForce 9600M GT, NVIDIA GeForce 9600M GT, PCIe, 512 MB Memory Module: BANK 0/DIMM0, 4 GB, DDR3, 1333 MHz, 0x04CD, 0x46332D3130363636434C392D344742535100 Memory Module: BANK 1/DIMM0, 4 GB, DDR3, 1333 MHz, 0x04CD, 0x46332D3130363636434C392D344742535100 AirPort: spairport_wireless_card_type_airport_extreme (0x14E4, 0x8D), Broadcom BCM43xx 1.0 (5.106.98.100.22) Bluetooth: Version 4.2.0f6 12982, 3 services, 15 devices, 1 incoming serial ports Network Service: Wi-Fi, AirPort, en1 Serial ATA Device: Samsung SSD 840 Series, 120.03 GB Serial ATA Device: MATSHITADVD-R UJ-868 USB Device: Built-in iSight USB Device: BRCM2046 Hub USB Device: Bluetooth USB Host Controller USB Device: Apple Internal Keyboard / Trackpad USB Device: IR Receiver Thunderbolt Bus:

    Read the article

  • NIC Bonding/balance-rr with Dell PowerConnect 5324

    - by Branden Martin
    I'm trying to get NIC bonding to work with balance-rr so that three NIC ports are combined, so that instead of getting 1 Gbps we get 3 Gbps. We are doing this on two servers connected to the same switch. However, we're only getting the speed of one physical link. We are using 1 Dell PowerConnect 5324, SW version 2.0.1.3, Boot version 1.0.2.02, HW version 00.00.02. Both servers are CentOS 5.9 (Final) running OnApp Hypervisor (CloudBoot) Server 1 is using ports g5-g7 in port-channel 1. Server 2 is using ports g9-g11 in port-channel 2. Switch show interface status Port Type Duplex Speed Neg ctrl State Pressure Mode -------- ------------ ------ ----- -------- ---- ----------- -------- ------- g1 1G-Copper -- -- -- -- Down -- -- g2 1G-Copper Full 1000 Enabled Off Up Disabled Off g3 1G-Copper -- -- -- -- Down -- -- g4 1G-Copper -- -- -- -- Down -- -- g5 1G-Copper Full 1000 Enabled Off Up Disabled Off g6 1G-Copper Full 1000 Enabled Off Up Disabled Off g7 1G-Copper Full 1000 Enabled Off Up Disabled On g8 1G-Copper Full 1000 Enabled Off Up Disabled Off g9 1G-Copper Full 1000 Enabled Off Up Disabled On g10 1G-Copper Full 1000 Enabled Off Up Disabled On g11 1G-Copper Full 1000 Enabled Off Up Disabled Off g12 1G-Copper Full 1000 Enabled Off Up Disabled On g13 1G-Copper -- -- -- -- Down -- -- g14 1G-Copper -- -- -- -- Down -- -- g15 1G-Copper -- -- -- -- Down -- -- g16 1G-Copper -- -- -- -- Down -- -- g17 1G-Copper -- -- -- -- Down -- -- g18 1G-Copper -- -- -- -- Down -- -- g19 1G-Copper -- -- -- -- Down -- -- g20 1G-Copper -- -- -- -- Down -- -- g21 1G-Combo-C -- -- -- -- Down -- -- g22 1G-Combo-C -- -- -- -- Down -- -- g23 1G-Combo-C -- -- -- -- Down -- -- g24 1G-Combo-C Full 100 Enabled Off Up Disabled On Flow Link Ch Type Duplex Speed Neg control State -------- ------- ------ ----- -------- ------- ----------- ch1 1G Full 1000 Enabled Off Up ch2 1G Full 1000 Enabled Off Up ch3 -- -- -- -- -- Not Present ch4 -- -- -- -- -- Not Present ch5 -- -- -- -- -- Not Present ch6 -- -- -- -- -- Not Present ch7 -- -- -- -- -- Not Present ch8 -- -- -- -- -- Not Present Server 1: cat /etc/sysconfig/network-scripts/ifcfg-eth3 DEVICE=eth3 HWADDR=00:1b:21:ac:d5:55 USERCTL=no BOOTPROTO=none ONBOOT=yes MASTER=onappstorebond SLAVE=yes cat /etc/sysconfig/network-scripts/ifcfg-eth4 DEVICE=eth4 HWADDR=68:05:ca:18:28:ae USERCTL=no BOOTPROTO=none ONBOOT=yes MASTER=onappstorebond SLAVE=yes cat /etc/sysconfig/network-scripts/ifcfg-eth5 DEVICE=eth5 HWADDR=68:05:ca:18:28:af USERCTL=no BOOTPROTO=none ONBOOT=yes MASTER=onappstorebond SLAVE=yes cat /etc/sysconfig/network-scripts/ifcfg-onappstorebond DEVICE=onappstorebond IPADDR=10.200.52.1 NETMASK=255.255.0.0 GATEWAY=10.200.2.254 NETWORK=10.200.0.0 USERCTL=no BOOTPROTO=none ONBOOT=yes cat /proc/net/bonding/onappstorebond Ethernet Channel Bonding Driver: v3.4.0-1 (October 7, 2008) Bonding Mode: load balancing (round-robin) MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 0 Down Delay (ms): 0 Slave Interface: eth3 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 00:1b:21:ac:d5:55 Slave Interface: eth4 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 68:05:ca:18:28:ae Slave Interface: eth5 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 68:05:ca:18:28:af Server 2: cat /etc/sysconfig/network-scripts/ifcfg-eth3 DEVICE=eth3 HWADDR=00:1b:21:ac:d5:a7 USERCTL=no BOOTPROTO=none ONBOOT=yes MASTER=onappstorebond SLAVE=yes cat /etc/sysconfig/network-scripts/ifcfg-eth4 DEVICE=eth4 HWADDR=68:05:ca:18:30:30 USERCTL=no BOOTPROTO=none ONBOOT=yes MASTER=onappstorebond SLAVE=yes cat /etc/sysconfig/network-scripts/ifcfg-eth5 DEVICE=eth5 HWADDR=68:05:ca:18:30:31 USERCTL=no BOOTPROTO=none ONBOOT=yes MASTER=onappstorebond SLAVE=yes cat /etc/sysconfig/network-scripts/ifcfg-onappstorebond DEVICE=onappstorebond IPADDR=10.200.53.1 NETMASK=255.255.0.0 GATEWAY=10.200.3.254 NETWORK=10.200.0.0 USERCTL=no BOOTPROTO=none ONBOOT=yes cat /proc/net/bonding/onappstorebond Ethernet Channel Bonding Driver: v3.4.0-1 (October 7, 2008) Bonding Mode: load balancing (round-robin) MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 0 Down Delay (ms): 0 Slave Interface: eth3 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 00:1b:21:ac:d5:a7 Slave Interface: eth4 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 68:05:ca:18:30:30 Slave Interface: eth5 MII Status: up Speed: 1000 Mbps Duplex: full Link Failure Count: 0 Permanent HW addr: 68:05:ca:18:30:31 Here are the results of iperf. ------------------------------------------------------------ Client connecting to 10.200.52.1, TCP port 5001 TCP window size: 27.7 KByte (default) ------------------------------------------------------------ [ 3] local 10.200.3.254 port 53766 connected with 10.200.52.1 port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0-10.0 sec 950 MBytes 794 Mbits/sec

    Read the article

  • KVM machine does not start ssh, network is started, used to work

    - by lleto
    have been searching an pulling my hear out for the last 6 hours. I have a virtual machine that has been running fine for the last six months. I was happy ssh'ing into it and it was running a database and some small apps. Tonight ssh stopped working, so I decided to reboot the machine. I now have the following situation: virsh list --all states machine as running I can ping the machine and get a reply When I ssh to the machine I see "ssh: connect to host [myserver] port 22: Connection refused" nmap does not show port 22 as open I have tried to: - reboot the machine once more (no luck) - mount the filesystem and check /etc/ssh/sshd.conf (has not changed since working situation) - install virsh console, however this does not seem to work When I mount the fs directly using losetup the strange thing is that file dates seem to be frozen in /var/log/ around the time of the crash. If I look in /var/run/ I can see an sshd.pid, but the time is 6 hours ago (and numerous reboots). My virsh xml looks like this: <domain type='kvm' id='21'> <name>myserver</name> <uuid>09678c8d-a99b-1d18-a7af-88d027cc8f93</uuid> <memory>1048576</memory> <currentMemory>1048576</currentMemory> <vcpu>1</vcpu> <os> <type arch='x86_64' machine='pc-1.0'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> </features> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>destroy</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/dev/disk01/myserver'/> <target dev='hda' bus='ide'/> <alias name='ide0-0-0'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <controller type='ide' index='0'> <alias name='ide0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/> </controller> <interface type='bridge'> <mac address='52:54:00:e3:13:86'/> <source bridge='br0'/> <target dev='vnet0'/> <model type='virtio'/> <alias name='net0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </interface> <serial type='pty'> <source path='/dev/pts/1'/> <target port='0'/> <alias name='serial0'/> </serial> <console type='pty' tty='/dev/pts/1'> <source path='/dev/pts/1'/> <target type='serial' port='0'/> <alias name='serial0'/> </console> <input type='mouse' bus='ps2'/> <graphics type='vnc' port='5900' autoport='yes' listen='127.0.0.1'> <listen type='address' address='127.0.0.1'/> </graphics> <video> <model type='cirrus' vram='9216' heads='1'/> <alias name='video0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/> </video> <memballoon model='virtio'> <alias name='balloon0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/> </memballoon> </devices> <seclabel type='dynamic' model='apparmor' relabel='yes'> <label>libvirt-09678c8d-a99b-1d18-a7af-88d027cc8f93</label> <imagelabel>libvirt-09678c8d-a99b-1d18-a7af-88d027cc8f93</imagelabel> </seclabel> </domain> I'm sort of lost as to where I can look to get the machine up and running again. On the same instance of kvm I have another server running which is working fine. Both are Ubuntu 12.04. All help is welcome....

    Read the article

  • KVM Guest installed from console. But how to get to the guest's console?

    - by badbishop
    I'm trying to install a fully virtualized guest (Fedora 14 x86_64) on KVM (RHEL 6), using command-line only (both hypervisor and guest). It goes without errors, and without a tangible result . I'd like to know how to do a text-only installation. So, here's what I've done: # virt-install \ --name=FE --ram=756 --vcpus=1 \ --file=/var/lib/libvirt/images/FE.img --network bridge:br0 \ --nographics --os-type=linux \ --extra-args='console=tty0' -v \ --cdrom=/media/usb/Fedora-14-x86_64-Live-Desktop.iso Starting install... Creating domain... | 0 B 00:00 Connected to domain FE Escape character is ^] ÿ Now what? As I understand after googling for a couple of days, I should see the guest's output from the text installation, but nothing happens. virt-viewer cannot connect to it, kindly suggesting that I explore all the options by adding --help (which I did). If I reconnect with virsh, I see this: Domain installation still in progress. You can reconnect to the console to complete the installation process. [root@v ~] # virsh console FEConnected to domain FE Escape character is ^] This shows that VM is running # virsh list Id Name State ---------------------------------- 8 FE running Qemu log: LC_ALL=C PATH=/sbin:/usr/sbin:/bin:/usr/bin /usr/libexec/qemu-kvm -S -M rhel6.0.0 -enable-kvm -m 756 -smp 1,sockets=1,cores=1,threads=1 -name FE -uuid 6989d008-7c89-424c-d2d3-f41235c57a18 -nographic -nodefconfig -nodefaults -chardev socket,id=monitor,path=/var/lib/libvirt/qemu/FE.monitor,server,nowait -mon chardev=monitor,mode=control -rtc base=utc -no-reboot -boot d -drive file=/var/lib/libvirt/images/FE.img,if=none,id=drive-ide0-0-0,format=raw,cache=none -device ide-drive,bus=ide.0,unit=0,drive=drive-ide0-0-0,id=ide0-0-0 -drive file=/media/usb/Fedora-14-x86_64-Live-Desktop.iso,if=none,media=cdrom,id=drive-ide0-1-0,readonly=on,format=raw -device ide-drive,bus=ide.1,unit=0,drive=drive-ide0-1-0,id=ide0-1-0 -netdev tap,fd=20,id=hostnet0 -device rtl8139,netdev=hostnet0,id=net0,mac=52:54:00:0a:65:8d,bus=pci.0,addr=0x2 -chardev pty,id=serial0 -device isa-serial,chardev=serial0 -usb -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x3 char device redirected to /dev/pts/1 Output of /etc/libvirt/qemu/FE.xml # cat /etc/libvirt/qemu/FE.xml <domain type='kvm'> <name>FE</name> <uuid>6989d008-7c89-424c-d2d3-f41235c57a18</uuid> <memory>774144</memory> <currentMemory>774144</currentMemory> <vcpu>1</vcpu> <os> <type arch='x86_64' machine='rhel6.0.0'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/libexec/qemu-kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw' cache='none'/> <source file='/var/lib/libvirt/images/FE.img'/> <target dev='hda' bus='ide'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <disk type='block' device='cdrom'> <driver name='qemu' type='raw'/> <target dev='hdc' bus='ide'/> <readonly/> <address type='drive' controller='0' bus='1' unit='0'/> </disk> <controller type='ide' index='0'> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/> </controller> <interface type='bridge'> <mac address='52:54:00:0a:65:8d'/> <source bridge='br0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target port='0'/> </console> <memballoon model='virtio'> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </memballoon> </devices> </domain> I'm obviously missing something that many others don't, but what is it? Thanx in advance!

    Read the article

  • Cheapest way to connect 20-24 Sata II HDDs in a budget storage server?

    - by Joe Hopfgartner
    I need to assemble a high density storage server for as cheap as possible. It's been a while for me and the last systems I integrated didn't even have Sata yet... During my Research I of course stumbled about Nexsan SATA Beast, the BackBlaze storage Pods as well as some ridiculously overpriced HP Proliant or Dell storage solutions. Finally I choose Norco cases as the way to go. My eye is set on the RPC-4020, which is a 4U 19" Rackmount case with 20 Hot Swap 3.5" SATA/SAS Hdd trays (Backplanes included) and room for two 2.5" OS drives as well as a Slim Line CD-Rom. The backplanes connect with a single SATA port for each drive, so there are 20 internal SATA ports to to be connected. They also have redundant power ports which I think is quite nice. The cheapest price I have found is 290$ + 40$ shipping. In europe the cheapest unfortunately is 370€ (500$) + 40 € shipping... A nice alternative would be the RPC-4224 which has SFF-8087 Mini SAS connectors that bundle 4 SATA trays each. But it doesn't seem to be available in Europe (where i am) anywhere. So here comes my problem: What Mainboard/Controller to choose to connect them for as cheap as possible while still having nice data rates? I have to say that the server is intended as a Storage server with 1gps connectivity and the data transfer will be distributed very evenly across all drives. I also don't require any raid functionality. This is all done at application level, I just need JBOD. So for example if I go for the RPC 4020 Model I need to connect 20 Storage + 1 OS + 1 CDROM Sata ports. I searched a bit and stumbled across this very low priced controller: http://www.intel.com/products/server/raid-controllers/SASWT4I/SASWT4I-overview.htm They sell it for 115 € here and the specs say it can control up to 122 hard discs and has 4 Mini SAS connectors. So I would use 4 Mini SAS 36pin - 4 SATA 7pin cables to connect 4 SATA drives to each port and choose a Mainboard taht has 6 SATA on board (for example this one) and hurray, I can connect my 22 SATA devices for as low as about ~ 220 EUR (cpu, ram, psu, case not counted) Question: WOULD THAT WORK? And if not, why? 2nd Question: If I go for the 4220 or 4224 Model, I have internal Mini SAS connectors. Am I right in assuming that the backplane than acts as a "SAS Expander"? And can I just plug these SAS connectors into any SAS port I can find on my controller / mainboard or are there certain requirements? I know that SATA port multipliers only work with controllers that are ready for that. But isn't this expansion already implemented in the SAS standard? I am sorry that this is a very broad question, but I really spent the last week reading up and it seems to be not so clear! Especially all the controlling hardware specifications! 3rd Question: A lot of hardware specs feature "internal channels" and "internal connectors". The connecors are the physical numbers of places where I can plug a cable in. I got that. But are the "internal channels" always the maximum numbers of physical drives that can be used in the end? Or can I enhance this further by Expanders/Fanouts? 4th and last question: What do you think about the setup so far? Do you know any good alternatives? Maby I am completely going the wrong way and some DAS would be way better? Are there any comparable chassis available in europe? Please feel free to say whatever you think is relevant to the subject!

    Read the article

  • Web Interfaces not opening even after Port Forwarding is said to be working!

    - by Ahmad
    I'm encountering this strange problem which has baffled me to the ground, and which I haven't encountered even after years of doing port forwarding .. ! I am hoping somebody here can help me solve this mystery .. :) My network configuration is as follows: I have a DSL modem (custom made and branded by my ISP) which is receiving a DSL stream ... it has an external IP which is visible to the world, say, 11.22.33.44 ... This modem has DHCP enabled, has an internal IP for itself, which is 192.168.1.1 .. it is connected to 2 laptops via and ethernet cable .. Laptop 1 has IP 192.168.1.2, and Laptop 2 has IP 192.168.1.3 ... On Laptop 1, two applications are running, jDownloader and Media Player Classic, which have their web interfaces on ports 8765 and 13579, respectively ... I can access both of these web interfaces from Laptop 2 by opening these addresses: 192.1681.2:8765 and 192.168.1.2:13579 ... both of their web interfaces open up, meaning the web interfaces are working fine .. Moving on, I now want to access these web interfaces from outside my network as well, and so I've configured port forwarding in my PTCL modem to forward all traffic on ports between 8000 and 14000 (both TCP and UDP) to IP 192.168.1.2 ... I have verified that port forwarding is working by testing it using PortForward.com's port checker tool, and this website too: [URL]http://www.yougetsignal.com/tools/open-ports/[/URL] When I use the website, if I'm running the applications on Laptop 2, the website reports that the port is open .. if I then close the application, the website reports the port is closed ... This makes sense as nothing is listening on my machine in the latter case .. Also, if I disable port forwarding in my modem, again, the website reports the port is closed ... so, the website's results seem to be okay ... Same of the above can be said when I'm used PortForward.com's port checker tool ... So again, everything okay so far ... Now, here comes the problem !! ... Despite the above tools reporting that port forwarding is working, I am unable to open the web interfaces from outside my network ... So for example, if I tried to browse 11.22.33.44:8765 or 11.22.33.44:13579, nothing opens in my browser ... But if I accessed these web server's locally from Laptop 3, by typing in 192.168.1.2:8765 or 192.168.1.2:13579, they opened ... So where is the problem here ?? The tools report unanimously that port forwarding is working, and yet I am unable to open the web interfaces from outside the network .. Also note that I have disabled the firewall from my computer, and have also made sure that any option in the above programs (whose web interfaces I am trying to open) that says only local connections are to be accepted, is disabled ... So whats the problem ... ?!! Any ideas ??

    Read the article

  • How to add addtional disks to a Windows 2008 KVM based Guest?

    - by taazaa
    I have a Win 2008 KVM based guest VM running on a Ubuntu 10 host. It is a raw image of 22G. I want to add a "data" drive which would show up as "D:\" drive on the guest. I first created a raw image using: qemu-img create -f raw ~/vmdisk2.img 50G Then, tried attaching it using virsh attach-disk. When that did not work, I tried editing the xml file of the VM directly. Both did not seem to work. I would greatly appreciate any help on how to do this and what the best practice is. I want to keep the base image small, so that I can clone it (hopefully) and then attach necessary storage based on the application at hand. Update: The xml of the vm before adding the second drive: <domain type='kvm'> <name>win08e-vm1</name> <uuid>183a4ba0-1c0b-0b04-ad01-aa7c3a4cb390</uuid> <memory>1048576</memory> <currentMemory>1048576</currentMemory> <vcpu>2</vcpu> <os> <type arch='x86_64' machine='pc-0.12'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='localtime'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/var/lib/libvirt/images/win08e-vm1.img'/> <target dev='hda' bus='ide'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <disk type='file' device='cdrom'> <driver name='qemu' type='raw'/> <source file='/home/taazaa/iso/Win08ER264.iso'/> <target dev='hdc' bus='ide'/> <readonly/> <address type='drive' controller='0' bus='1' unit='0'/> </disk> <controller type='ide' index='0'> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/> </controller> <interface type='bridge'> <mac address='52:54:00:7f:a7:ae'/> <source bridge='br0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target type='serial' port='0'/> </console> <input type='tablet' bus='usb'/> <input type='mouse' bus='ps2'/> <graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/> <video> <model type='vga' vram='9216' heads='1'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/> </video> <memballoon model='virtio'> <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/> </memballoon> </devices> </domain> Thanks!

    Read the article

  • IPv6: Should I have private addresses?

    - by AlReece45
    Right now, we have a rack of servers. Every server right now has at least 2 IP addresses, one for the public interface, another for the private. The servers that have SSL websites on them have more IP addresses. We also have virtual servers, that are configured similarly. Private Network The private range is currently just used for backups and monitoring. Its a gigabit port, the interface usage does not usually get very high. There are other technologies we're considering using that would use this port: iSCSI (implementations usually recommends dedicating an interface to it, which would be yet another IP network), VPN to get access to the private range (something I'd rather avoid) dedicated database servers LDAP centralized configuration (like puppet) centralized logging We don't have any private addresses in our DNS records (only public addresses). For our servers to utilize the correct IP address for the right interface (and not hard code the IP address) probably requires setting up a private DNS server (So now we add 2 different dns entries to 2 different systems). Public Network Our public range has a variety of services include web, email, and ftp. There is a hardware firewall between our network and the "public" network. We have (relatively secure) method to instruct the firewall to open and close administrative access (web interfaces, ssh, etc) for our current IP address. With either solution discussed, the host-based firewalls will be configured as well. The public network currently runs at a dedicated 20Mbps link. There are a couple of legacy servers with fast-ethernet ports, but they are scheduled for decommissioning. All of the other production boxes have at least 2 Gigabit Ethernet ports. The more traffic-heavy servers have 4-6 available (none is using more than the 2 Gigabit ports right now). IPv6 I want to get an IPv6 prefix from our ISP. So at least every "server" has at least one IPv6 interface. We'll still need to keep the IPv4 addressees up and available for legacy clients (web servers and email at the very least). We have two IP networks right now. Adding the public IPv6 address would make it three. Just use IPv6? I'm thinking about just dumping the private IPv4 range and using the IPv6 range as the primary means of all communications. If an interface starts reaching its capacity, utilize the newly free interfaces to create a trunk. It has the advantage that if either the public or private traffic needs to exceed 1Gbps. The traffic for each interface is already analyzed on a regular basis to predict future bandwidth use. In the rare instances where bandwidth unexpected peaks: utilize QoS to ensure traffic (like our limited SSH access) is prioritized correctly so the problem can be corrected (if possible, our WAN is the bottleneck right now). It also has the advantage of not needing to make an entry for every private address. We may have private DNS (or just LDAP), but it'll be much more limited in scope with less entries to duplicate. Summary I'm trying to make this network as "simple" as possible. At the same time, I want to make sure its reliable, upgradeable, scalable, and (eventually) redundant. Having one IPv6 network, and a legacy IPv4 network seems to be the best solution to me. Regarding using assigned IPv6 addresses for both networks, sharing the available bandwidth on one (more trunked if needed): Are there any technical disadvantages (limitations, buffers, scalability)? Are there any other security considerations (asides from firewalls mentioned above) to consider? Are there regulations or other security requirements (like PCI-DSS) that this doesn't meet? Is there typical software for setting up a Linux network that doesn't have IPv6 support yet? (logging, ldap, puppet) Some other thing I didn't consider?

    Read the article

  • What's up with LDoms: Part 1 - Introduction & Basic Concepts

    - by Stefan Hinker
    LDoms - the correct name is Oracle VM Server for SPARC - have been around for quite a while now.  But to my surprise, I get more and more requests to explain how they work or to give advise on how to make good use of them.  This made me think that writing up a few articles discussing the different features would be a good idea.  Now - I don't intend to rewrite the LDoms Admin Guide or to copy and reformat the (hopefully) well known "Beginners Guide to LDoms" by Tony Shoumack from 2007.  Those documents are very recommendable - especially the Beginners Guide, although based on LDoms 1.0, is still a good place to begin with.  However, LDoms have come a long way since then, and I hope to contribute to their adoption by discussing how they work and what features there are today.  In this and the following posts, I will use the term "LDoms" as a common abbreviation for Oracle VM Server for SPARC, just because it's a lot shorter and easier to type (and presumably, read). So, just to get everyone on the same baseline, lets briefly discuss the basic concepts of virtualization with LDoms.  LDoms make use of a hypervisor as a layer of abstraction between real, physical hardware and virtual hardware.  This virtual hardware is then used to create a number of guest systems which each behave very similar to a system running on bare metal:  Each has its own OBP, each will install its own copy of the Solaris OS and each will see a certain amount of CPU, memory, disk and network resources available to it.  Unlike some other type 1 hypervisors running on x86 hardware, the SPARC hypervisor is embedded in the system firmware and makes use both of supporting functions in the sun4v SPARC instruction set as well as the overall CPU architecture to fulfill its function. The CMT architecture of the supporting CPUs (T1 through T4) provide a large number of cores and threads to the OS.  For example, the current T4 CPU has eight cores, each running 8 threads, for a total of 64 threads per socket.  To the OS, this looks like 64 CPUs.  The SPARC hypervisor, when creating guest systems, simply assigns a certain number of these threads exclusively to one guest, thus avoiding the overhead of having to schedule OS threads to CPUs, as do typical x86 hypervisors.  The hypervisor only assigns CPUs and then steps aside.  It is not involved in the actual work being dispatched from the OS to the CPU, all it does is maintain isolation between different guests. Likewise, memory is assigned exclusively to individual guests.  Here,  the hypervisor provides generic mappings between the physical hardware addresses and the guest's views on memory.  Again, the hypervisor is not involved in the actual memory access, it only maintains isolation between guests. During the inital setup of a system with LDoms, you start with one special domain, called the Control Domain.  Initially, this domain owns all the hardware available in the system, including all CPUs, all RAM and all IO resources.  If you'd be running the system un-virtualized, this would be what you'd be working with.  To allow for guests, you first resize this initial domain (also called a primary domain in LDoms speak), assigning it a small amount of CPU and memory.  This frees up most of the available CPU and memory resources for guest domains.  IO is a little more complex, but very straightforward.  When LDoms 1.0 first came out, the only way to provide IO to guest systems was to create virtual disk and network services and attach guests to these services.  In the meantime, several different ways to connect guest domains to IO have been developed, the most recent one being SR-IOV support for network devices released in version 2.2 of Oracle VM Server for SPARC. I will cover these more advanced features in detail later.  For now, lets have a short look at the initial way IO was virtualized in LDoms: For virtualized IO, you create two services, one "Virtual Disk Service" or vds, and one "Virtual Switch" or vswitch.  You can, of course, also create more of these, but that's more advanced than I want to cover in this introduction.  These IO services now connect real, physical IO resources like a disk LUN or a networt port to the virtual devices that are assigned to guest domains.  For disk IO, the normal case would be to connect a physical LUN (or some other storage option that I'll discuss later) to one specific guest.  That guest would be assigned a virtual disk, which would appear to be just like a real LUN to the guest, while the IO is actually routed through the virtual disk service down to the physical device.  For network, the vswitch acts very much like a real, physical ethernet switch - you connect one physical port to it for outside connectivity and define one or more connections per guest, just like you would plug cables between a real switch and a real system. For completeness, there is another service that provides console access to guest domains which mimics the behavior of serial terminal servers. The connections between the virtual devices on the guest's side and the virtual IO services in the primary domain are created by the hypervisor.  It uses so called "Logical Domain Channels" or LDCs to create point-to-point connections between all of these devices and services.  These LDCs work very similar to high speed serial connections and are configured automatically whenever the Control Domain adds or removes virtual IO. To see all this in action, now lets look at a first example.  I will start with a newly installed machine and configure the control domain so that it's ready to create guest systems. In a first step, after we've installed the software, let's start the virtual console service and downsize the primary domain.  root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- UART 512 261632M 0.3% 2d 13h 58m root@sun # ldm add-vconscon port-range=5000-5100 \ primary-console primary root@sun # svcadm enable vntsd root@sun # svcs vntsd STATE STIME FMRI online 9:53:21 svc:/ldoms/vntsd:default root@sun # ldm set-vcpu 16 primary root@sun # ldm set-mau 1 primary root@sun # ldm start-reconf primary root@sun # ldm set-memory 7680m primary root@sun # ldm add-config initial root@sun # shutdown -y -g0 -i6 So what have I done: I've defined a range of ports (5000-5100) for the virtual network terminal service and then started that service.  The vnts will later provide console connections to guest systems, very much like serial NTS's do in the physical world. Next, I assigned 16 vCPUs (on this platform, a T3-4, that's two cores) to the primary domain, freeing the rest up for future guest systems.  I also assigned one MAU to this domain.  A MAU is a crypto unit in the T3 CPU.  These need to be explicitly assigned to domains, just like CPU or memory.  (This is no longer the case with T4 systems, where crypto is always available everywhere.) Before I reassigned the memory, I started what's called a "delayed reconfiguration" session.  That avoids actually doing the change right away, which would take a considerable amount of time in this case.  Instead, I'll need to reboot once I'm all done.  I've assigned 7680MB of RAM to the primary.  That's 8GB less the 512MB which the hypervisor uses for it's own private purposes.  You can, depending on your needs, work with less.  I'll spend a dedicated article on sizing, discussing the pros and cons in detail. Finally, just before the reboot, I saved my work on the ILOM, to make this configuration available after a powercycle of the box.  (It'll always be available after a simple reboot, but the ILOM needs to know the configuration of the hypervisor after a power-cycle, before the primary domain is booted.) Now, lets create a first disk service and a first virtual switch which is connected to the physical network device igb2. We will later use these to connect virtual disks and virtual network ports of our guest systems to real world storage and network. root@sun # ldm add-vds primary-vds root@sun # ldm add-vswitch net-dev=igb2 switch-primary primary You are free to choose whatever names you like for the virtual disk service and the virtual switch.  I strongly recommend that you choose names that make sense to you and describe the function of each service in the context of your implementation.  For the vswitch, for example, you could choose names like "admin-vswitch" or "production-network" etc. This already concludes the configuration of the control domain.  We've freed up considerable amounts of CPU and RAM for guest systems and created the necessary infrastructure - console, vts and vswitch - so that guests systems can actually interact with the outside world.  The system is now ready to create guests, which I'll describe in the next section. For further reading, here are some recommendable links: The LDoms 2.2 Admin Guide The "Beginners Guide to LDoms" The LDoms Information Center on MOS LDoms on OTN

    Read the article

  • Matrix Multiplication with C++ AMP

    - by Daniel Moth
    As part of our API tour of C++ AMP, we looked recently at parallel_for_each. I ended that post by saying we would revisit parallel_for_each after introducing array and array_view. Now is the time, so this is part 2 of parallel_for_each, and also a post that brings together everything we've seen until now. The code for serial and accelerated Consider a naïve (or brute force) serial implementation of matrix multiplication  0: void MatrixMultiplySerial(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 1: { 2: for (int row = 0; row < M; row++) 3: { 4: for (int col = 0; col < N; col++) 5: { 6: float sum = 0.0f; 7: for(int i = 0; i < W; i++) 8: sum += vA[row * W + i] * vB[i * N + col]; 9: vC[row * N + col] = sum; 10: } 11: } 12: } We notice that each loop iteration is independent from each other and so can be parallelized. If in addition we have really large amounts of data, then this is a good candidate to offload to an accelerator. First, I'll just show you an example of what that code may look like with C++ AMP, and then we'll analyze it. It is assumed that you included at the top of your file #include <amp.h> 13: void MatrixMultiplySimple(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 14: { 15: concurrency::array_view<const float,2> a(M, W, vA); 16: concurrency::array_view<const float,2> b(W, N, vB); 17: concurrency::array_view<concurrency::writeonly<float>,2> c(M, N, vC); 18: concurrency::parallel_for_each(c.grid, 19: [=](concurrency::index<2> idx) restrict(direct3d) { 20: int row = idx[0]; int col = idx[1]; 21: float sum = 0.0f; 22: for(int i = 0; i < W; i++) 23: sum += a(row, i) * b(i, col); 24: c[idx] = sum; 25: }); 26: } First a visual comparison, just for fun: The beginning and end is the same, i.e. lines 0,1,12 are identical to lines 13,14,26. The double nested loop (lines 2,3,4,5 and 10,11) has been transformed into a parallel_for_each call (18,19,20 and 25). The core algorithm (lines 6,7,8,9) is essentially the same (lines 21,22,23,24). We have extra lines in the C++ AMP version (15,16,17). Now let's dig in deeper. Using array_view and extent When we decided to convert this function to run on an accelerator, we knew we couldn't use the std::vector objects in the restrict(direct3d) function. So we had a choice of copying the data to the the concurrency::array<T,N> object, or wrapping the vector container (and hence its data) with a concurrency::array_view<T,N> object from amp.h – here we used the latter (lines 15,16,17). Now we can access the same data through the array_view objects (a and b) instead of the vector objects (vA and vB), and the added benefit is that we can capture the array_view objects in the lambda (lines 19-25) that we pass to the parallel_for_each call (line 18) and the data will get copied on demand for us to the accelerator. Note that line 15 (and ditto for 16 and 17) could have been written as two lines instead of one: extent<2> e(M, W); array_view<const float, 2> a(e, vA); In other words, we could have explicitly created the extent object instead of letting the array_view create it for us under the covers through the constructor overload we chose. The benefit of the extent object in this instance is that we can express that the data is indeed two dimensional, i.e a matrix. When we were using a vector object we could not do that, and instead we had to track via additional unrelated variables the dimensions of the matrix (i.e. with the integers M and W) – aren't you loving C++ AMP already? Note that the const before the float when creating a and b, will result in the underling data only being copied to the accelerator and not be copied back – a nice optimization. A similar thing is happening on line 17 when creating array_view c, where we have indicated that we do not need to copy the data to the accelerator, only copy it back. The kernel dispatch On line 18 we make the call to the C++ AMP entry point (parallel_for_each) to invoke our parallel loop or, as some may say, dispatch our kernel. The first argument we need to pass describes how many threads we want for this computation. For this algorithm we decided that we want exactly the same number of threads as the number of elements in the output matrix, i.e. in array_view c which will eventually update the vector vC. So each thread will compute exactly one result. Since the elements in c are organized in a 2-dimensional manner we can organize our threads in a two-dimensional manner too. We don't have to think too much about how to create the first argument (a grid) since the array_view object helpfully exposes that as a property. Note that instead of c.grid we could have written grid<2>(c.extent) or grid<2>(extent<2>(M, N)) – the result is the same in that we have specified M*N threads to execute our lambda. The second argument is a restrict(direct3d) lambda that accepts an index object. Since we elected to use a two-dimensional extent as the first argument of parallel_for_each, the index will also be two-dimensional and as covered in the previous posts it represents the thread ID, which in our case maps perfectly to the index of each element in the resulting array_view. The kernel itself The lambda body (lines 20-24), or as some may say, the kernel, is the code that will actually execute on the accelerator. It will be called by M*N threads and we can use those threads to index into the two input array_views (a,b) and write results into the output array_view ( c ). The four lines (21-24) are essentially identical to the four lines of the serial algorithm (6-9). The only difference is how we index into a,b,c versus how we index into vA,vB,vC. The code we wrote with C++ AMP is much nicer in its indexing, because the dimensionality is a first class concept, so you don't have to do funny arithmetic calculating the index of where the next row starts, which you have to do when working with vectors directly (since they store all the data in a flat manner). I skipped over describing line 20. Note that we didn't really need to read the two components of the index into temporary local variables. This mostly reflects my personal choice, in some algorithms to break down the index into local variables with names that make sense for the algorithm, i.e. in this case row and col. In other cases it may i,j,k or x,y,z, or M,N or whatever. Also note that we could have written line 24 as: c(idx[0], idx[1])=sum  or  c(row, col)=sum instead of the simpler c[idx]=sum Targeting a specific accelerator Imagine that we had more than one hardware accelerator on a system and we wanted to pick a specific one to execute this parallel loop on. So there would be some code like this anywhere before line 18: vector<accelerator> accs = MyFunctionThatChoosesSuitableAccelerators(); accelerator acc = accs[0]; …and then we would modify line 18 so we would be calling another overload of parallel_for_each that accepts an accelerator_view as the first argument, so it would become: concurrency::parallel_for_each(acc.default_view, c.grid, ...and the rest of your code remains the same… how simple is that? Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • uiscrollview not switching image subviews

    - by nickthedude
    I'm building a comic viewer app, that consists of two view controllers, the root viewcontroller basically displays a view where a user decides what comic they want to read by pressing a button. The second viewController actually displays the comic as a uiscrollview with a toolbar and a title at the top. So the problem I am having is that the comic image panels themselves are not changing from whatever the first comic you go to if you select another comic after viewing the first one. The way I set it up, and I admit it's not exactly mvc, so please don't hate, anyway the way I set it up is each comic uiscrollview consists of x number of jpg images where each comic set's image names have a common prefix and then a number like 'funny1.jpg', 'funny2.jpg', 'funny3.jpg' and 'soda1.jpg', 'soda2.jpg', 'soda3.jpg', etc... so when a user selects a comic to view in the root controller it makes a call to the delegate and sets ivars on instances of the comicviewcontroller that belongs to the delegate (mainDelegate.comicViewController.property) I set the number of panels in that comic, the comic name for the title label, and the image prefix. The number of images changes(or at least the number that you can scroll through), and the title changes but for some reason the images are the same ones as whatever comic you clicked on initially. I'm basing this whole app off of the 'scrolling' code sample from apple. I thought if I added a viewWillAppear:(BOOL) animated call to the comicViewController everytime the user clicked the button that would fix it but it didn't, after all that is where the scrollview is laid out. Anyway here is some code from each of the two controllers: RootController: -(IBAction) launchComic2{ AppDelegate *mainDelegate = [(AppDelegate *) [UIApplication sharedApplication] delegate]; mainDelegate.myViewController.comicPageCount = 3; mainDelegate.myViewController.comicTitle.text = @"\"Death by ETOH\""; mainDelegate.myViewController.comicImagePrefix = @"etoh"; [mainDelegate.myViewController viewWillAppear:YES]; [mainDelegate.window addSubview: mainDelegate.myViewController.view]; comicViewController: -(void) viewWillAppear:(BOOL)animated { self.view.backgroundColor = [UIColor viewFlipsideBackgroundColor]; // 1. setup the scrollview for multiple images and add it to the view controller // // note: the following can be done in Interface Builder, but we show this in code for clarity [scrollView1 setBackgroundColor:[UIColor whiteColor]]; [scrollView1 setCanCancelContentTouches:NO]; scrollView1.indicatorStyle = UIScrollViewIndicatorStyleWhite; scrollView1.clipsToBounds = YES; // default is NO, we want to restrict drawing within our scrollview scrollView1.scrollEnabled = YES; // pagingEnabled property default is NO, if set the scroller will stop or snap at each photo // if you want free-flowing scroll, don't set this property. scrollView1.pagingEnabled = YES; // load all the images from our bundle and add them to the scroll view NSUInteger i; for (i = 1; i <= self.comicPageCount; i++) { NSString *imageName = [NSString stringWithFormat:@"%@%d.jpg", self.comicImagePrefix, i]; NSLog(@"%@%d.jpg", self.comicImagePrefix, i); UIImage *image = [UIImage imageNamed:imageName]; UIImageView *imageView = [[UIImageView alloc] initWithImage:image]; // setup each frame to a default height and width, it will be properly placed when we call "updateScrollList" CGRect rect = imageView.frame; rect.size.height = kScrollObjHeight; rect.size.width = kScrollObjWidth; imageView.frame = rect; imageView.tag = i; // tag our images for later use when we place them in serial fashion [scrollView1 addSubview:imageView]; [imageView release]; } [self layoutScrollImages]; // now place the photos in serial layout within the scrollview } - (void)layoutScrollImages { UIImageView *view = nil; NSArray *subviews = [scrollView1 subviews]; // reposition all image subviews in a horizontal serial fashion CGFloat curXLoc = 0; for (view in subviews) { if ([view isKindOfClass:[UIImageView class]] && view.tag 0) { CGRect frame = view.frame; frame.origin = CGPointMake(curXLoc, 0); view.frame = frame; curXLoc += (kScrollObjWidth); } } // set the content size so it can be scrollable [scrollView1 setContentSize:CGSizeMake((self.comicPageCount * kScrollObjWidth), [scrollView1 bounds].size.height)]; } Any help would be appreciated on this. Nick

    Read the article

  • Why does C# thread die?

    - by JackN
    This is my 1st C# project so I may be doing something obviously improper in the code below. I am using .NET, WinForms (I think), and this is a desktop application until I get the bugs out. UpdateGui() uses Invoke((MethodInvoker)delegate to update various GUI controls based on received serial data and sends a GetStatus() command out the serial port 4 times a second. Thread Read() reads the response from serial port whenever it arrives which should be near immediate. SerialPortFixer is a SerialPort IOException Workaround in C# I found at http://zachsaw.blogspot.com/2010/07/serialport-ioexception-workaround-in-c.html. After one or both threads die I'll see something like The thread 0x1288 has exited with code 0 (0x0). in the debug code output. Why do UpdateGui() and/or Read() eventually die? public partial class UpdateStatus : Form { private readonly byte[] Command = new byte[32]; private readonly byte[] Status = new byte[32]; readonly Thread readThread; private static readonly Mutex commandMutex = new Mutex(); private static readonly Mutex statusMutex = new Mutex(); ... public UpdateStatus() { InitializeComponent(); SerialPortFixer.Execute("COM2"); if (serialPort1.IsOpen) { serialPort1.Close(); } try { serialPort1.Open(); } catch (Exception e) { labelWarning.Text = LOST_COMMUNICATIONS + e; labelStatus.Text = LOST_COMMUNICATIONS + e; labelWarning.Visible = true; } readThread = new Thread(Read); readThread.Start(); new Timer(UpdateGui, null, 0, 250); } static void ProcessStatus(byte[] status) { Status.State = (State) status[4]; Status.Speed = status[6]; // MSB Status.Speed *= 256; Status.Speed += status[5]; var Speed = Status.Speed/GEAR_RATIO; Status.Speed = (int) Speed; ... } public void Read() { while (serialPort1 != null) { try { serialPort1.Read(Status, 0, 1); if (Status[0] != StartCharacter[0]) continue; serialPort1.Read(Status, 1, 1); if (Status[1] != StartCharacter[1]) continue; serialPort1.Read(Status, 2, 1); if (Status[2] != (int)Command.GetStatus) continue; serialPort1.Read(Status, 3, 1); ... statusMutex.WaitOne(); ProcessStatus(Status); Status.update = true; statusMutex.ReleaseMutex(); } catch (Exception e) { Console.WriteLine(@"ERROR! Read() " + e); } } } public void GetStatus() { const int parameterLength = 0; // For GetStatus statusMutex.WaitOne(); Status.update = false; statusMutex.ReleaseMutex(); commandMutex.WaitOne(); if (!SendCommand(Command.GetStatus, parameterLength)) { Console.WriteLine(@"ERROR! SendCommand(GetStatus)"); } commandMutex.ReleaseMutex(); } private void UpdateGui(object x) { try { Invoke((MethodInvoker)delegate { Text = DateTime.Now.ToLongTimeString(); statusMutex.WaitOne(); if (Status.update) { if (Status.Speed > progressBarSpeed.Maximum) { Status.Speed = progressBarSpeed.Maximum; } progressBarSpeed.Value = Status.Speed; labelSpeed.Text = Status.Speed + RPM; ... } else { labelWarning.Text = LOST_COMMUNICATIONS; labelStatus.Text = LOST_COMMUNICATIONS; labelWarning.Visible = true; } statusMutex.ReleaseMutex(); GetStatus(); }); } catch (Exception e) { Console.WriteLine(@"ERROR! UpdateGui() " + e); } } }

    Read the article

  • Multi-threaded .NET application blocks during file I/O when protected by Themida

    - by Erik Jensen
    As the title says I have a .NET application that is the GUI which uses multiple threads to perform separate file I/O and notice that the threads occasionally block when the application is protected by Themida. One thread is devoted to reading from serial COM port and another thread is devoted to copying files. What I experience is occasionally when the file copy thread encounters a network delay, it will block the other thread that is reading from the serial port. In addition to slow network (which can be transient), I can cause the problem to happen more frequently by making a PathFileExists call to a bad path e.g. PathFileExists("\\\\BadPath\\file.txt"); The COM port reading function will block during the call to ReadFile. This only happens when the application is protected by Themida. I have tried under WinXP, Win7, and Server 2012. In a streamlined test project, if I replace the .NET application with a MFC unmanaged application and still utilize the same threads I see no issue even when protected with Themida. I have contacted Oreans support and here is their response: The way that a .NET application is protected is very different from a native application. To protect a .NET application, we need to hook most of the file access APIs in order to "cheat" the .NET Framework that the application is protected. I guess that those special hooks (on CreateFile, ReadFile...) are delaying a bit the execution in your application and the problem appears. We did a test making those hooks as light as possible (with minimum code on them) but the problem still appeared in your application. The rest of software protectors that we tried (like Enigma, Molebox...) also use a similar hooking approach as it's the only way to make the .NET packed file to work. If those hooks are not present, the .NET Framework will abort execution as it will see that the original file was tampered (due to all Microsoft checks on .NET files) Those hooks are not present in a native application, that's why it should be working fine on your native application. Oreans support tried other software protectors such as Enigma Protector, Engima VirtualBox, and Molebox and all exhibit the exact same problem. What I have found as a work around is to separate out the file copy logic (where the file exists call is being made) to be performed in a completely separate process. I have experimented with converting the thread functions from unmanaged C++ to VB.NET equivalents (PathFileExists - System.IO.File.Exists and CreateFile/ReadFile - System.IO.Ports.SerialPort.Open/Read) and still see the same serial port read blocked when the file check or copy call is delayed. I have also tried setting the ReadFile to work asynchronously but that had no effect. I believe I am dealing with some low-level windows layer that no matter the language it exhibits a block on a shared resource -- and only when the application is executing under a single .NET process protected by Themida which evidently installs some hooks to allow .NET execution. At this time converting the entire application away from .NET is not an option. Nor is separating out the file copy logic to a separate task. I am wondering if anyone else has more knowledge of how a file operation can block another thread reading from a system port. I have included here example applications that show the problem: https://db.tt/cNMYfEIg - VB.NET https://db.tt/Y2lnTqw7 - MFC They are Visual Studio 2010 solutions. When running the themida protected exe, you can see when the FileThread counter pauses (executing the File.Exists call) while the ReadThread counter also pauses. When running non-protected visual studio output exe, the ReadThread counter does not pause which is how we expect it to function. Thanks!

    Read the article

  • Garbled text in Screen [closed]

    - by Prabin Dahal
    The graphical Interface in my system is garbled with some text. At the beginning I thought it was due to java and tomcat that I installed. But after removing java and tomcat, it is still the same. I am using ubuntu server and i have installed xfce desktop environment with oboard softkey I have added my dmesg output to this message. What is the problem here. I am not able to figure it out. Thank you for your help. Prabin [ 0.390936] usbcore: registered new interface driver usbfs [ 0.391006] usbcore: registered new interface driver hub [ 0.391147] usbcore: registered new device driver usb [ 0.391580] PCI: Using ACPI for IRQ routing [ 0.400509] PCI: pci_cache_line_size set to 64 bytes [ 0.400669] reserve RAM buffer: 000000000009ec00 - 000000000009ffff [ 0.400681] reserve RAM buffer: 000000007f597000 - 000000007fffffff [ 0.400699] reserve RAM buffer: 000000007f6f0000 - 000000007fffffff [ 0.401135] NetLabel: Initializing [ 0.401155] NetLabel: domain hash size = 128 [ 0.401168] NetLabel: protocols = UNLABELED CIPSOv4 [ 0.401212] NetLabel: unlabeled traffic allowed by default [ 0.401466] HPET: 3 timers in total, 0 timers will be used for per-cpu timer [ 0.401494] hpet0: at MMIO 0xfed00000, IRQs 2, 8, 0 [ 0.401520] hpet0: 3 comparators, 64-bit 14.318180 MHz counter [ 0.408228] Switching to clocksource hpet [ 0.434341] AppArmor: AppArmor Filesystem Enabled [ 0.434447] pnp: PnP ACPI init [ 0.434531] ACPI: bus type pnp registered [ 0.434784] pnp 00:00: [bus 00-ff] [ 0.434794] pnp 00:00: [io 0x0cf8-0x0cff] [ 0.434804] pnp 00:00: [io 0x0000-0x0cf7 window] [ 0.434813] pnp 00:00: [io 0x0d00-0xffff window] [ 0.434822] pnp 00:00: [mem 0x000a0000-0x000bffff window] [ 0.434831] pnp 00:00: [mem 0x00000000 window] [ 0.434840] pnp 00:00: [mem 0x80000000-0xffffffff window] [ 0.435018] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) [ 0.435526] pnp 00:01: [mem 0xe0000000-0xefffffff] [ 0.435537] pnp 00:01: [mem 0x7f700000-0x7f7fffff] [ 0.435545] pnp 00:01: [mem 0x7f800000-0x7fffffff] [ 0.435554] pnp 00:01: [mem 0xfee00000-0xfeefffff] [ 0.435727] system 00:01: [mem 0xe0000000-0xefffffff] has been reserved [ 0.435754] system 00:01: [mem 0x7f700000-0x7f7fffff] has been reserved [ 0.435775] system 00:01: [mem 0x7f800000-0x7fffffff] has been reserved [ 0.435796] system 00:01: [mem 0xfee00000-0xfeefffff] has been reserved [ 0.435818] system 00:01: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.436233] pnp 00:02: [io 0x0000-0xffffffffffffffff disabled] [ 0.436245] pnp 00:02: [io 0x0000-0xffffffffffffffff disabled] [ 0.436414] system 00:02: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.436512] pnp 00:03: [io 0x0060] [ 0.436521] pnp 00:03: [io 0x0064] [ 0.436548] pnp 00:03: [irq 1] [ 0.436682] pnp 00:03: Plug and Play ACPI device, IDs PNP0303 PNP030b (active) [ 0.436825] pnp 00:04: [irq 12] [ 0.436958] pnp 00:04: Plug and Play ACPI device, IDs PNP0f03 PNP0f13 (active) [ 0.437835] pnp 00:05: [io 0x03f8-0x03ff] [ 0.437861] pnp 00:05: [irq 4] [ 0.437870] pnp 00:05: [dma 0 disabled] [ 0.438142] pnp 00:05: Plug and Play ACPI device, IDs PNP0501 (active) [ 0.439014] pnp 00:06: [io 0x02f8-0x02ff] [ 0.439036] pnp 00:06: [irq 3] [ 0.439045] pnp 00:06: [dma 0 disabled] [ 0.439297] pnp 00:06: Plug and Play ACPI device, IDs PNP0501 (active) [ 0.439346] pnp 00:07: [io 0x0000-0x000f] [ 0.439355] pnp 00:07: [io 0x0081-0x0083] [ 0.439363] pnp 00:07: [io 0x0087] [ 0.439371] pnp 00:07: [io 0x0089-0x008b] [ 0.439380] pnp 00:07: [io 0x008f] [ 0.439388] pnp 00:07: [io 0x00c0-0x00df] [ 0.439563] system 00:07: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.439617] pnp 00:08: [io 0x0070-0x0077] [ 0.439639] pnp 00:08: [irq 8] [ 0.439751] pnp 00:08: Plug and Play ACPI device, IDs PNP0b00 (active) [ 0.439788] pnp 00:09: [io 0x0061] [ 0.439893] pnp 00:09: Plug and Play ACPI device, IDs PNP0800 (active) [ 0.439977] pnp 00:0a: [io 0x0010-0x001f] [ 0.439986] pnp 00:0a: [io 0x0022-0x003f] [ 0.439994] pnp 00:0a: [io 0x0044-0x005f] [ 0.440055] pnp 00:0a: [io 0x0063] [ 0.440063] pnp 00:0a: [io 0x0065] [ 0.440071] pnp 00:0a: [io 0x0067-0x006f] [ 0.440079] pnp 00:0a: [io 0x0072-0x007f] [ 0.440086] pnp 00:0a: [io 0x0080] [ 0.440094] pnp 00:0a: [io 0x0084-0x0086] [ 0.440102] pnp 00:0a: [io 0x0088] [ 0.440109] pnp 00:0a: [io 0x008c-0x008e] [ 0.440117] pnp 00:0a: [io 0x0090-0x009f] [ 0.440125] pnp 00:0a: [io 0x00a2-0x00bf] [ 0.440133] pnp 00:0a: [io 0x00e0-0x00ef] [ 0.440141] pnp 00:0a: [io 0x04d0-0x04d1] [ 0.440150] pnp 00:0a: [io 0x0000-0xffffffffffffffff disabled] [ 0.440160] pnp 00:0a: [io 0x0000-0xffffffffffffffff disabled] [ 0.440168] pnp 00:0a: [io 0x03f4] [ 0.440175] pnp 00:0a: [io 0x03f5] [ 0.440183] pnp 00:0a: [io 0x0374] [ 0.440190] pnp 00:0a: [io 0x0375] [ 0.440405] system 00:0a: [io 0x04d0-0x04d1] has been reserved [ 0.440432] system 00:0a: [io 0x03f4] has been reserved [ 0.440451] system 00:0a: [io 0x03f5] has been reserved [ 0.440469] system 00:0a: [io 0x0374] has been reserved [ 0.440488] system 00:0a: [io 0x0375] has been reserved [ 0.440508] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.440550] pnp 00:0b: [io 0x00f0-0x00ff] [ 0.440572] pnp 00:0b: [irq 13] [ 0.440691] pnp 00:0b: Plug and Play ACPI device, IDs PNP0c04 (active) [ 0.440770] pnp 00:0c: [io 0x0810] [ 0.440779] pnp 00:0c: [io 0x0800-0x080f] [ 0.440787] pnp 00:0c: [io 0xffff] [ 0.440947] system 00:0c: [io 0x0810] has been reserved [ 0.440970] system 00:0c: [io 0x0800-0x080f] has been reserved [ 0.440989] system 00:0c: [io 0xffff] has been reserved [ 0.441010] system 00:0c: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.441620] pnp 00:0d: [io 0x0900-0x097f] [ 0.441630] pnp 00:0d: [io 0x09c0-0x09ff] [ 0.441639] pnp 00:0d: [io 0x0400-0x043f] [ 0.441647] pnp 00:0d: [io 0x0480-0x04bf] [ 0.441656] pnp 00:0d: [mem 0xfec00000-0xfec85fff] [ 0.441664] pnp 00:0d: [mem 0xfed1c000-0xfed1ffff] [ 0.441673] pnp 00:0d: [mem 0x000c0000-0x000dffff] [ 0.441689] pnp 00:0d: [mem 0x000e0000-0x000effff] [ 0.441697] pnp 00:0d: [mem 0x000f0000-0x000fffff] [ 0.441706] pnp 00:0d: [mem 0xff800000-0xffffffff] [ 0.441911] system 00:0d: [io 0x0900-0x097f] has been reserved [ 0.441935] system 00:0d: [io 0x09c0-0x09ff] has been reserved [ 0.441955] system 00:0d: [io 0x0400-0x043f] has been reserved [ 0.441975] system 00:0d: [io 0x0480-0x04bf] has been reserved [ 0.441997] system 00:0d: [mem 0xfec00000-0xfec85fff] could not be reserved [ 0.442019] system 00:0d: [mem 0xfed1c000-0xfed1ffff] has been reserved [ 0.442040] system 00:0d: [mem 0x000c0000-0x000dffff] could not be reserved [ 0.442061] system 00:0d: [mem 0x000e0000-0x000effff] could not be reserved [ 0.442082] system 00:0d: [mem 0x000f0000-0x000fffff] could not be reserved [ 0.442103] system 00:0d: [mem 0xff800000-0xffffffff] has been reserved [ 0.442126] system 00:0d: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.442308] pnp 00:0e: [mem 0xfed00000-0xfed003ff] [ 0.442454] pnp 00:0e: Plug and Play ACPI device, IDs PNP0103 (active) [ 0.442569] pnp 00:0f: [mem 0x7f6f0000-0x7f6fffff] [ 0.442762] system 00:0f: [mem 0x7f6f0000-0x7f6fffff] has been reserved [ 0.442788] system 00:0f: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.443360] pnp: PnP ACPI: found 16 devices [ 0.443378] ACPI: ACPI bus type pnp unregistered [ 0.443395] PnPBIOS: Disabled by ACPI PNP [ 0.486106] PCI: max bus depth: 3 pci_try_num: 4 [ 0.486189] pci 0000:00:1c.0: PCI bridge to [bus 01-01] [ 0.486217] pci 0000:00:1c.0: bridge window [io 0xe000-0xefff] [ 0.486241] pci 0000:00:1c.0: bridge window [mem 0xd0100000-0xd01fffff] [ 0.486266] pci 0000:00:1c.0: bridge window [mem 0xff700000-0xff7fffff pref] [ 0.486298] pci 0000:03:01.0: PCI bridge to [bus 04-04] [ 0.486319] pci 0000:03:01.0: bridge window [io 0xd000-0xdfff] [ 0.486348] pci 0000:03:01.0: bridge window [mem 0xd0000000-0xd00fffff] [ 0.486374] pci 0000:03:01.0: bridge window [mem 0xff600000-0xff6fffff 64bit pref] [ 0.486406] pci 0000:03:02.0: PCI bridge to [bus 05-05] [ 0.486444] pci 0000:03:03.0: PCI bridge to [bus 06-06] [ 0.486479] pci 0000:02:00.0: PCI bridge to [bus 03-06] [ 0.486499] pci 0000:02:00.0: bridge window [io 0xd000-0xdfff] [ 0.486522] pci 0000:02:00.0: bridge window [mem 0xd0000000-0xd00fffff] [ 0.486545] pci 0000:02:00.0: bridge window [mem 0xff600000-0xff6fffff 64bit pref] [ 0.486575] pci 0000:00:1c.1: PCI bridge to [bus 02-06] [ 0.486593] pci 0000:00:1c.1: bridge window [io 0xd000-0xdfff] [ 0.486615] pci 0000:00:1c.1: bridge window [mem 0xd0000000-0xd00fffff] [ 0.486637] pci 0000:00:1c.1: bridge window [mem 0xff600000-0xff6fffff pref] [ 0.486710] pci 0000:00:1c.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 0.486735] pci 0000:00:1c.0: setting latency timer to 64 [ 0.486774] pci 0000:00:1c.1: PCI INT B -> GSI 17 (level, low) -> IRQ 17 [ 0.486796] pci 0000:00:1c.1: setting latency timer to 64 [ 0.486817] pci 0000:02:00.0: setting latency timer to 64 [ 0.486836] pci 0000:03:01.0: setting latency timer to 64 [ 0.486858] pci 0000:03:02.0: setting latency timer to 64 [ 0.486880] pci 0000:03:03.0: setting latency timer to 64 [ 0.486893] pci_bus 0000:00: resource 4 [io 0x0000-0x0cf7] [ 0.486902] pci_bus 0000:00: resource 5 [io 0x0d00-0xffff] [ 0.486912] pci_bus 0000:00: resource 6 [mem 0x000a0000-0x000bffff] [ 0.486922] pci_bus 0000:00: resource 7 [mem 0x80000000-0xffffffff] [ 0.486932] pci_bus 0000:01: resource 0 [io 0xe000-0xefff] [ 0.486941] pci_bus 0000:01: resource 1 [mem 0xd0100000-0xd01fffff] [ 0.486951] pci_bus 0000:01: resource 2 [mem 0xff700000-0xff7fffff pref] [ 0.486961] pci_bus 0000:02: resource 0 [io 0xd000-0xdfff] [ 0.486970] pci_bus 0000:02: resource 1 [mem 0xd0000000-0xd00fffff] [ 0.486980] pci_bus 0000:02: resource 2 [mem 0xff600000-0xff6fffff pref] [ 0.486989] pci_bus 0000:03: resource 0 [io 0xd000-0xdfff] [ 0.486998] pci_bus 0000:03: resource 1 [mem 0xd0000000-0xd00fffff] [ 0.487008] pci_bus 0000:03: resource 2 [mem 0xff600000-0xff6fffff 64bit pref] [ 0.487018] pci_bus 0000:04: resource 0 [io 0xd000-0xdfff] [ 0.487028] pci_bus 0000:04: resource 1 [mem 0xd0000000-0xd00fffff] [ 0.487038] pci_bus 0000:04: resource 2 [mem 0xff600000-0xff6fffff 64bit pref] [ 0.487177] NET: Registered protocol family 2 [ 0.487405] IP route cache hash table entries: 32768 (order: 5, 131072 bytes) [ 0.488397] TCP established hash table entries: 131072 (order: 8, 1048576 bytes) [ 0.489792] TCP bind hash table entries: 65536 (order: 7, 524288 bytes) [ 0.490493] TCP: Hash tables configured (established 131072 bind 65536) [ 0.490525] TCP reno registered [ 0.490551] UDP hash table entries: 512 (order: 2, 16384 bytes) [ 0.490590] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes) [ 0.490898] NET: Registered protocol family 1 [ 0.490970] pci 0000:00:02.0: Boot video device [ 0.491052] pci 0000:00:1d.0: PCI INT A -> GSI 20 (level, low) -> IRQ 20 [ 0.491092] pci 0000:00:1d.0: PCI INT A disabled [ 0.491134] pci 0000:00:1d.1: PCI INT B -> GSI 21 (level, low) -> IRQ 21 [ 0.491174] pci 0000:00:1d.1: PCI INT B disabled [ 0.491220] pci 0000:00:1d.2: PCI INT C -> GSI 22 (level, low) -> IRQ 22 [ 0.491259] pci 0000:00:1d.2: PCI INT C disabled [ 0.491307] pci 0000:00:1d.7: PCI INT D -> GSI 23 (level, low) -> IRQ 23 [ 0.864431] Freeing initrd memory: 13820k freed [ 2.088042] pci 0000:00:1d.7: EHCI: BIOS handoff failed (BIOS bug?) 01010001 [ 2.088207] pci 0000:00:1d.7: PCI INT D disabled [ 2.088267] PCI: CLS 64 bytes, default 64 [ 2.089248] audit: initializing netlink socket (disabled) [ 2.089287] type=2000 audit(1349363630.084:1): initialized [ 2.144783] highmem bounce pool size: 64 pages [ 2.144808] HugeTLB registered 2 MB page size, pre-allocated 0 pages [ 2.160057] VFS: Disk quotas dquot_6.5.2 [ 2.160232] Dquot-cache hash table entries: 1024 (order 0, 4096 bytes) [ 2.161716] fuse init (API version 7.17) [ 2.161995] msgmni has been set to 1713 [ 2.162925] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 253) [ 2.163008] io scheduler noop registered [ 2.163023] io scheduler deadline registered [ 2.163048] io scheduler cfq registered (default) [ 2.163339] pcieport 0000:00:1c.0: setting latency timer to 64 [ 2.163530] pcieport 0000:00:1c.1: setting latency timer to 64 [ 2.163706] pcieport 0000:02:00.0: setting latency timer to 64 [ 2.163873] pcieport 0000:03:01.0: setting latency timer to 64 [ 2.163964] pcieport 0000:03:01.0: irq 40 for MSI/MSI-X [ 2.164193] pcieport 0000:03:02.0: setting latency timer to 64 [ 2.164272] pcieport 0000:03:02.0: irq 41 for MSI/MSI-X [ 2.164453] pcieport 0000:03:03.0: setting latency timer to 64 [ 2.164531] pcieport 0000:03:03.0: irq 42 for MSI/MSI-X [ 2.164783] pcieport 0000:00:1c.0: Signaling PME through PCIe PME interrupt [ 2.164801] pci 0000:01:00.0: Signaling PME through PCIe PME interrupt [ 2.164816] pcie_pme 0000:00:1c.0:pcie01: service driver pcie_pme loaded [ 2.164853] pcieport 0000:00:1c.1: Signaling PME through PCIe PME interrupt [ 2.164867] pcieport 0000:02:00.0: Signaling PME through PCIe PME interrupt [ 2.164880] pcieport 0000:03:01.0: Signaling PME through PCIe PME interrupt [ 2.164892] pci 0000:04:00.0: Signaling PME through PCIe PME interrupt [ 2.164904] pcieport 0000:03:02.0: Signaling PME through PCIe PME interrupt [ 2.164917] pcieport 0000:03:03.0: Signaling PME through PCIe PME interrupt [ 2.164932] pcie_pme 0000:00:1c.1:pcie01: service driver pcie_pme loaded [ 2.164988] pci_hotplug: PCI Hot Plug PCI Core version: 0.5 [ 2.165115] pciehp 0000:00:1c.0:pcie04: HPC vendor_id 8086 device_id 8110 ss_vid 8086 ss_did 8119 [ 2.165177] pciehp 0000:00:1c.0:pcie04: service driver pciehp loaded [ 2.165199] pciehp 0000:00:1c.1:pcie04: HPC vendor_id 8086 device_id 8112 ss_vid 8086 ss_did 8119 [ 2.165260] pciehp 0000:00:1c.1:pcie04: service driver pciehp loaded [ 2.165290] pciehp: PCI Express Hot Plug Controller Driver version: 0.4 [ 2.165488] intel_idle: MWAIT substates: 0x3020220 [ 2.165508] intel_idle: v0.4 model 0x1C [ 2.165513] intel_idle: lapic_timer_reliable_states 0x2 [ 2.165519] Marking TSC unstable due to TSC halts in idle states deeper than C2 [ 2.165779] input: Lid Switch as /devices/LNXSYSTM:00/device:00/PNP0C0D:00/input/input0 [ 2.165855] ACPI: Lid Switch [LID] [ 2.165983] input: Power Button as /devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/input1 [ 2.166005] ACPI: Power Button [PWRB] [ 2.173811] thermal LNXTHERM:00: registered as thermal_zone0 [ 2.173829] ACPI: Thermal Zone [TZ00] (48 C) [ 2.174004] thermal LNXTHERM:01: registered as thermal_zone1 [ 2.174018] ACPI: Thermal Zone [TZ01] (34 C) [ 2.174194] thermal LNXTHERM:02: registered as thermal_zone2 [ 2.174207] ACPI: Thermal Zone [TZ02] (34 C) [ 2.174378] thermal LNXTHERM:03: registered as thermal_zone3 [ 2.174392] ACPI: Thermal Zone [TZ03] (34 C) [ 2.174503] ERST: Table is not found! [ 2.174513] GHES: HEST is not enabled! [ 2.174601] isapnp: Scanning for PnP cards... [ 2.176175] Serial: 8250/16550 driver, 32 ports, IRQ sharing enabled [ 2.196702] serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 2.292409] serial8250: ttyS1 at I/O 0x2f8 (irq = 3) is a 16550A [ 2.528909] isapnp: No Plug & Play device found [ 2.588733] 00:05: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 2.624523] 00:06: ttyS1 at I/O 0x2f8 (irq = 3) is a 16550A [ 2.640702] Linux agpgart interface v0.103 [ 2.645138] brd: module loaded [ 2.647452] loop: module loaded [ 2.648149] pata_acpi 0000:00:1f.1: setting latency timer to 64 [ 2.649238] Fixed MDIO Bus: probed [ 2.649315] tun: Universal TUN/TAP device driver, 1.6 [ 2.649327] tun: (C) 1999-2004 Max Krasnyansky <[email protected]> [ 2.649524] PPP generic driver version 2.4.2 [ 2.649824] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver [ 2.649884] ehci_hcd 0000:00:1d.7: PCI INT D -> GSI 23 (level, low) -> IRQ 23 [ 2.649937] ehci_hcd 0000:00:1d.7: setting latency timer to 64 [ 2.649946] ehci_hcd 0000:00:1d.7: EHCI Host Controller [ 2.650082] ehci_hcd 0000:00:1d.7: new USB bus registered, assigned bus number 1 [ 2.650148] ehci_hcd 0000:00:1d.7: debug port 1 [ 2.654045] ehci_hcd 0000:00:1d.7: cache line size of 64 is not supported [ 2.654093] ehci_hcd 0000:00:1d.7: irq 23, io mem 0xd02c4000 [ 2.668035] ehci_hcd 0000:00:1d.7: USB 2.0 started, EHCI 1.00 [ 2.668392] hub 1-0:1.0: USB hub found [ 2.668413] hub 1-0:1.0: 8 ports detected [ 2.668618] ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver [ 2.668666] uhci_hcd: USB Universal Host Controller Interface driver [ 2.668726] uhci_hcd 0000:00:1d.0: PCI INT A -> GSI 20 (level, low) -> IRQ 20 [ 2.668751] uhci_hcd 0000:00:1d.0: setting latency timer to 64 [ 2.668759] uhci_hcd 0000:00:1d.0: UHCI Host Controller [ 2.668910] uhci_hcd 0000:00:1d.0: new USB bus registered, assigned bus number 2 [ 2.668981] uhci_hcd 0000:00:1d.0: irq 20, io base 0x0000f040 [ 2.669335] hub 2-0:1.0: USB hub found [ 2.669355] hub 2-0:1.0: 2 ports detected [ 2.669508] uhci_hcd 0000:00:1d.1: PCI INT B -> GSI 21 (level, low) -> IRQ 21 [ 2.669531] uhci_hcd 0000:00:1d.1: setting latency timer to 64 [ 2.669538] uhci_hcd 0000:00:1d.1: UHCI Host Controller [ 2.669675] uhci_hcd 0000:00:1d.1: new USB bus registered, assigned bus number 3 [ 2.669739] uhci_hcd 0000:00:1d.1: irq 21, io base 0x0000f020 [ 2.670099] hub 3-0:1.0: USB hub found [ 2.670118] hub 3-0:1.0: 2 ports detected [ 2.670271] uhci_hcd 0000:00:1d.2: PCI INT C -> GSI 22 (level, low) -> IRQ 22 [ 2.670295] uhci_hcd 0000:00:1d.2: setting latency timer to 64 [ 2.670302] uhci_hcd 0000:00:1d.2: UHCI Host Controller [ 2.670435] uhci_hcd 0000:00:1d.2: new USB bus registered, assigned bus number 4 [ 2.670502] uhci_hcd 0000:00:1d.2: irq 22, io base 0x0000f000 [ 2.670869] hub 4-0:1.0: USB hub found [ 2.670888] hub 4-0:1.0: 2 ports detected [ 2.671186] usbcore: registered new interface driver libusual [ 2.671332] i8042: PNP: PS/2 Controller [PNP0303:PS2K,PNP0f03:PS2M] at 0x60,0x64 irq 1,12 [ 2.673408] serio: i8042 KBD port at 0x60,0x64 irq 1 [ 2.673437] serio: i8042 AUX port at 0x60,0x64 irq 12 [ 2.673844] mousedev: PS/2 mouse device common for all mice [ 2.674272] rtc_cmos 00:08: RTC can wake from S4 [ 2.674482] rtc_cmos 00:08: rtc core: registered rtc_cmos as rtc0 [ 2.674529] rtc0: alarms up to one year, y3k, 242 bytes nvram, hpet irqs [ 2.674691] device-mapper: uevent: version 1.0.3 [ 2.674903] device-mapper: ioctl: 4.22.0-ioctl (2011-10-19) initialised: [email protected] [ 2.675024] EISA: Probing bus 0 at eisa.0 [ 2.675037] EISA: Cannot allocate resource for mainboard [ 2.675050] Cannot allocate resource for EISA slot 1 [ 2.675061] Cannot allocate resource for EISA slot 2 [ 2.675072] Cannot allocate resource for EISA slot 3 [ 2.675083] Cannot allocate resource for EISA slot 4 [ 2.675094] Cannot allocate resource for EISA slot 5 [ 2.675105] Cannot allocate resource for EISA slot 6 [ 2.675116] Cannot allocate resource for EISA slot 7 [ 2.675127] Cannot allocate resource for EISA slot 8 [ 2.675137] EISA: Detected 0 cards. [ 2.675161] cpufreq-nforce2: No nForce2 chipset. [ 2.675401] cpuidle: using governor ladder [ 2.675786] cpuidle: using governor menu [ 2.675797] EFI Variables Facility v0.08 2004-May-17 [ 2.676429] TCP cubic registered [ 2.676751] NET: Registered protocol family 10 [ 2.678031] NET: Registered protocol family 17 [ 2.678052] Registering the dns_resolver key type [ 2.678107] Using IPI No-Shortcut mode [ 2.678515] PM: Hibernation image not present or could not be loaded. [ 2.678543] registered taskstats version 1 [ 2.701145] Magic number: 0:84:234 [ 2.701312] rtc_cmos 00:08: setting system clock to 2012-10-04 15:13:51 UTC (1349363631) [ 2.702280] BIOS EDD facility v0.16 2004-Jun-25, 0 devices found [ 2.702294] EDD information not available. [ 2.702858] Freeing unused kernel memory: 740k freed [ 2.703630] Write protecting the kernel text: 5816k [ 2.703692] Write protecting the kernel read-only data: 2376k [ 2.703706] NX-protecting the kernel data: 4424k [ 2.751226] udevd[84]: starting version 175 [ 2.980162] usb 1-1: new high-speed USB device number 2 using ehci_hcd [ 3.001394] r8169 Gigabit Ethernet driver 2.3LK-NAPI loaded [ 3.001474] r8169 0000:01:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 3.001554] r8169 0000:01:00.0: setting latency timer to 64 [ 3.001654] r8169 0000:01:00.0: irq 43 for MSI/MSI-X [ 3.004220] r8169 0000:01:00.0: eth0: RTL8168c/8111c at 0xf8416000, 00:18:92:03:10:46, XID 1c4000c0 IRQ 43 [ 3.004254] r8169 0000:01:00.0: eth0: jumbo features [frames: 6128 bytes, tx checksumming: ko] [ 3.004347] r8169 Gigabit Ethernet driver 2.3LK-NAPI loaded [ 3.005085] r8169 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 [ 3.005182] r8169 0000:04:00.0: setting latency timer to 64 [ 3.005292] r8169 0000:04:00.0: irq 44 for MSI/MSI-X [ 3.007187] r8169 0000:04:00.0: eth1: RTL8168c/8111c at 0xf8418000, 00:18:92:03:10:47, XID 1c4000c0 IRQ 44 [ 3.007224] r8169 0000:04:00.0: eth1: jumbo features [frames: 6128 bytes, tx checksumming: ko] [ 3.034417] pata_sch 0000:00:1f.1: version 0.2 [ 3.034518] pata_sch 0000:00:1f.1: setting latency timer to 64 [ 3.036698] scsi0 : pata_sch [ 3.039842] scsi1 : pata_sch [ 3.040913] ata1: PATA max UDMA/100 cmd 0x1f0 ctl 0x3f6 bmdma 0xf060 irq 14 [ 3.040940] ata2: PATA max UDMA/100 cmd 0x170 ctl 0x376 bmdma 0xf068 irq 15 [ 3.131850] Initializing USB Mass Storage driver... [ 3.136405] scsi2 : usb-storage 1-1:1.0 [ 3.136642] usbcore: registered new interface driver usb-storage [ 3.136656] USB Mass Storage support registered. [ 3.524465] usb 3-1: new low-speed USB device number 2 using uhci_hcd [ 3.968144] usb 3-2: new full-speed USB device number 3 using uhci_hcd [ 4.137903] scsi 2:0:0:0: Direct-Access TS TS4GUFM-H 1100 PQ: 0 ANSI: 0 CCS [ 4.140067] sd 2:0:0:0: Attached scsi generic sg0 type 0 [ 4.140590] sd 2:0:0:0: [sda] 8028160 512-byte logical blocks: (4.11 GB/3.82 GiB) [ 4.141597] sd 2:0:0:0: [sda] Write Protect is off [ 4.141618] sd 2:0:0:0: [sda] Mode Sense: 43 00 00 00 [ 4.142974] sd 2:0:0:0: [sda] No Caching mode page present [ 4.143000] sd 2:0:0:0: [sda] Assuming drive cache: write through [ 4.145837] sd 2:0:0:0: [sda] No Caching mode page present [ 4.145858] sd 2:0:0:0: [sda] Assuming drive cache: write through [ 4.147931] sda: sda1 sda2 < sda5 > [ 4.150972] sd 2:0:0:0: [sda] No Caching mode page present [ 4.151001] sd 2:0:0:0: [sda] Assuming drive cache: write through [ 4.151023] sd 2:0:0:0: [sda] Attached SCSI disk [ 4.249168] input: HID 046a:004b as /devices/pci0000:00/0000:00:1d.1/usb3/3-1/3-1:1.0/input/input2 [ 4.249579] generic-usb 0003:046A:004B.0001: input,hidraw0: USB HID v1.11 Keyboard [HID 046a:004b] on usb-0000:00:1d.1-1/input0 [ 4.287805] input: HID 046a:004b as /devices/pci0000:00/0000:00:1d.1/usb3/3-1/3-1:1.1/input/input3 [ 4.289235] generic-usb 0003:046A:004B.0002: input,hidraw1: USB HID v1.11 Mouse [HID 046a:004b] on usb-0000:00:1d.1-1/input1 [ 4.297604] input: EloTouchSystems,Inc Elo TouchSystems 2216 AccuTouch\xffffffc2\xffffffae\xffffffae USB Touchmonitor Interface as /devices/pci0000:00/0000:00:1d.1/usb3/3-2/3-2:1.0/input/input4 [ 4.298913] generic-usb 0003:04E7:0050.0003: input,hidraw2: USB HID v1.00 Pointer [EloTouchSystems,Inc Elo TouchSystems 2216 AccuTouch\xffffffc2\xffffffae\xffffffae USB Touchmonitor Interface] on usb-0000:00:1d.1-2/input0 [ 4.299878] usbcore: registered new interface driver usbhid [ 4.299925] usbhid: USB HID core driver [ 4.352639] EXT4-fs (sda1): INFO: recovery required on readonly filesystem [ 4.352661] EXT4-fs (sda1): write access will be enabled during recovery [ 8.519257] EXT4-fs (sda1): recovery complete [ 8.564389] EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts: (null) [ 14.280922] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 14.280944] ADDRCONF(NETDEV_UP): eth1: link is not ready [ 14.310368] udevd[308]: starting version 175 [ 14.353873] Adding 1045500k swap on /dev/sda5. Priority:-1 extents:1 across:1045500k [ 14.428718] lp: driver loaded but no devices found [ 14.521667] EXT4-fs (sda1): re-mounted. Opts: errors=remount-ro [ 15.073459] [drm] Initialized drm 1.1.0 20060810 [ 15.097073] psb_gfx: module is from the staging directory, the quality is unknown, you have been warned. [ 15.180630] gma500 0000:00:02.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 15.180648] gma500 0000:00:02.0: setting latency timer to 64 [ 15.182117] Stolen memory information [ 15.182127] base in RAM: 0x7f800000 [ 15.182134] size: 7932K, calculated by (GTT RAM base) - (Stolen base), seems wrong [ 15.182143] the correct size should be: 8M(dvmt mode=3) [ 15.234889] Set up 1983 stolen pages starting at 0x7f800000, GTT offset 0K [ 15.235126] [drm] SGX core id = 0x01130000 [ 15.235135] [drm] SGX core rev major = 0x01, minor = 0x02 [ 15.235143] [drm] SGX core rev maintenance = 0x01, designer = 0x00 [ 15.268796] [Firmware Bug]: ACPI: No _BQC method, cannot determine initial brightness [ 15.269888] acpi device:04: registered as cooling_device2 [ 15.270568] acpi device:05: registered as cooling_device3 [ 15.270947] input: Video Bus as /devices/LNXSYSTM:00/device:00/PNP0A08:00/LNXVIDEO:00/input/input5 [ 15.271238] ACPI: Video Device [GFX0] (multi-head: yes rom: no post: no) [ 15.271424] [drm] Supports vblank timestamp caching Rev 1 (10.10.2010). [ 15.271434] [drm] No driver support for vblank timestamp query. [ 15.374694] type=1400 audit(1349363644.167:2): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=435 comm="apparmor_parser" [ 15.385518] type=1400 audit(1349363644.179:3): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=435 comm="apparmor_parser" [ 15.386369] type=1400 audit(1349363644.179:4): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=435 comm="apparmor_parser" [ 15.677514] r8169 0000:01:00.0: eth0: link down [ 15.694828] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 16.537490] gma500 0000:00:02.0: allocated 800x480 fb [ 16.558066] fbcon: psbfb (fb0) is primary device [ 16.747122] gma500 0000:00:02.0: BL bug: Reg 00000000 save 00000000 [ 16.775550] Console: switching to colour frame buffer device 100x30 [ 16.781804] fb0: psbfb frame buffer device [ 16.781812] drm: registered panic notifier [ 16.870168] [drm] Initialized gma500 1.0.0 2011-06-06 for 0000:00:02.0 on minor 0 [ 16.871166] snd_hda_intel 0000:00:1b.0: power state changed by ACPI to D0 [ 16.871186] snd_hda_intel 0000:00:1b.0: power state changed by ACPI to D0 [ 16.871207] snd_hda_intel 0000:00:1b.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 16.871284] snd_hda_intel 0000:00:1b.0: setting latency timer to 64 [ 29.338953] r8169 0000:01:00.0: eth0: link up [ 29.339471] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 31.427223] init: failsafe main process (675) killed by TERM signal [ 31.522411] type=1400 audit(1349363660.316:5): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=889 comm="apparmor_parser" [ 31.523956] type=1400 audit(1349363660.316:6): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=889 comm="apparmor_parser" [ 31.524882] type=1400 audit(1349363660.320:7): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=889 comm="apparmor_parser" [ 31.525940] type=1400 audit(1349363660.320:8): apparmor="STATUS" operation="profile_load" name="/usr/sbin/tcpdump" pid=891 comm="apparmor_parser" [ 34.526445] postgres (1003): /proc/1003/oom_adj is deprecated, please use /proc/1003/oom_score_adj instead. [ 40.144048] eth0: no IPv6 routers present

    Read the article

  • Displaying an image on a LED matrix with a Netduino

    - by Bertrand Le Roy
    In the previous post, we’ve been flipping bits manually on three ports of the Netduino to simulate the data, clock and latch pins that a shift register expected. We did all that in order to control one line of a LED matrix and create a simple Knight Rider effect. It was rightly pointed out in the comments that the Netduino has built-in knowledge of the sort of serial protocol that this shift register understands through a feature called SPI. That will of course make our code a whole lot simpler, but it will also make it a whole lot faster: writing to the Netduino ports is actually not that fast, whereas SPI is very, very fast. Unfortunately, the Netduino documentation for SPI is severely lacking. Instead, we’ve been reliably using the documentation for the Fez, another .NET microcontroller. To send data through SPI, we’ll just need  to move a few wires around and update the code. SPI uses pin D11 for writing, pin D12 for reading (which we won’t do) and pin D13 for the clock. The latch pin is a parameter that can be set by the user. This is very close to the wiring we had before (data on D11, clock on D12 and latch on D13). We just have to move the latch from D13 to D10, and the clock from D12 to D13. The code that controls the shift register has slimmed down considerably with that change. Here is the new version, which I invite you to compare with what we had before: public class ShiftRegister74HC595 { protected SPI Spi; public ShiftRegister74HC595(Cpu.Pin latchPin) : this(latchPin, SPI.SPI_module.SPI1) { } public ShiftRegister74HC595(Cpu.Pin latchPin, SPI.SPI_module spiModule) { var spiConfig = new SPI.Configuration( SPI_mod: spiModule, ChipSelect_Port: latchPin, ChipSelect_ActiveState: false, ChipSelect_SetupTime: 0, ChipSelect_HoldTime: 0, Clock_IdleState: false, Clock_Edge: true, Clock_RateKHz: 1000 ); Spi = new SPI(spiConfig); } public void Write(byte buffer) { Spi.Write(new[] {buffer}); } } All we have to do here is configure SPI. The write method couldn’t be any simpler. Everything is now handled in hardware by the Netduino. We set the frequency to 1MHz, which is largely sufficient for what we’ll be doing, but it could potentially go much higher. The shift register addresses the columns of the matrix. The rows are directly wired to ports D0 to D7 of the Netduino. The code writes to only one of those eight lines at a time, which will make it fast enough. The way an image is displayed is that we light the lines one after the other so fast that persistence of vision will give the illusion of a stable image: foreach (var bitmap in matrix.MatrixBitmap) { matrix.OnRow(row, bitmap, true); matrix.OnRow(row, bitmap, false); row++; } Now there is a twist here: we need to run this code as fast as possible in order to display the image with as little flicker as possible, but we’ll eventually have other things to do. In other words, we need the code driving the display to run in the background, except when we want to change what’s being displayed. Fortunately, the .NET Micro Framework supports multithreading. In our implementation, we’ve added an Initialize method that spins a new thread that is tied to the specific instance of the matrix it’s being called on. public LedMatrix Initialize() { DisplayThread = new Thread(() => DoDisplay(this)); DisplayThread.Start(); return this; } I quite like this way to spin a thread. As you may know, there is another, built-in way to contextualize a thread by passing an object into the Start method. For the method to work, the thread must have been constructed with a ParameterizedThreadStart delegate, which takes one parameter of type object. I like to use object as little as possible, so instead I’m constructing a closure with a Lambda, currying it with the current instance. This way, everything remains strongly-typed and there’s no casting to do. Note that this method would extend perfectly to several parameters. Of note as well is the return value of Initialize, a common technique to add some fluency to the API and enabling the matrix to be instantiated and initialized in a single line: using (var matrix = new LedMS88SR74HC595().Initialize()) The “using” in the previous line is because we have implemented IDisposable so that the matrix kills the thread and clears the display when the user code is done with it: public void Dispose() { Clear(); DisplayThread.Abort(); } Thanks to the multi-threaded version of the matrix driver class, we can treat the display as a simple bitmap with a very synchronous programming model: matrix.Set(someimage); while (button.Read()) { Thread.Sleep(10); } Here, the call into Set returns immediately and from the moment the bitmap is set, the background display thread will constantly continue refreshing no matter what happens in the main thread. That enables us to wait or read a button’s port on the main thread knowing that the current image will continue displaying unperturbed and without requiring manual refreshing. We’ve effectively hidden the implementation of the display behind a convenient, synchronous-looking API. Pretty neat, eh? Before I wrap up this post, I want to talk about one small caveat of using SPI rather than driving the shift register directly: when we got to the point where we could actually display images, we noticed that they were a mirror image of what we were sending in. Oh noes! Well, the reason for it is that SPI is sending the bits in a big-endian fashion, in other words backwards. Now sure you could fix that in software by writing some bit-level code to reverse the bits we’re sending in, but there is a far more efficient solution than that. We are doing hardware here, so we can simply reverse the order in which the outputs of the shift register are connected to the columns of the matrix. That’s switching 8 wires around once, as compared to doing bit operations every time we send a line to display. All right, so bringing it all together, here is the code we need to write to display two images in succession, separated by a press on the board’s button: var button = new InputPort(Pins.ONBOARD_SW1, false, Port.ResistorMode.Disabled); using (var matrix = new LedMS88SR74HC595().Initialize()) { // Oh, prototype is so sad! var sad = new byte[] { 0x66, 0x24, 0x00, 0x18, 0x00, 0x3C, 0x42, 0x81 }; DisplayAndWait(sad, matrix, button); // Let's make it smile! var smile = new byte[] { 0x42, 0x18, 0x18, 0x81, 0x7E, 0x3C, 0x18, 0x00 }; DisplayAndWait(smile, matrix, button); } And here is a video of the prototype running: The prototype in action I’ve added an artificial delay between the display of each row of the matrix to clearly show what’s otherwise happening very fast. This way, you can clearly see each of the two images being displayed line by line. Next time, we’ll do no hardware changes, focusing instead on building a nice programming model for the matrix, with sprites, text and hardware scrolling. Fun stuff. By the way, can any of my reader guess where we’re going with all that? The code for this prototype can be downloaded here: http://weblogs.asp.net/blogs/bleroy/Samples/NetduinoLedMatrixDriver.zip

    Read the article

  • Diving into OpenStack Network Architecture - Part 1

    - by Ronen Kofman
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} rkofman Normal rkofman 83 3045 2014-05-23T21:11:00Z 2014-05-27T06:58:00Z 3 1883 10739 Oracle Corporation 89 25 12597 12.00 140 Clean Clean false false false false EN-US X-NONE HE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} Before we begin OpenStack networking has very powerful capabilities but at the same time it is quite complicated. In this blog series we will review an existing OpenStack setup using the Oracle OpenStack Tech Preview and explain the different network components through use cases and examples. The goal is to show how the different pieces come together and provide a bigger picture view of the network architecture in OpenStack. This can be very helpful to users making their first steps in OpenStack or anyone wishes to understand how networking works in this environment.  We will go through the basics first and build the examples as we go. According to the recent Icehouse user survey and the one before it, Neutron with Open vSwitch plug-in is the most widely used network setup both in production and in POCs (in terms of number of customers) and so in this blog series we will analyze this specific OpenStack networking setup. As we know there are many options to setup OpenStack networking and while Neturon + Open vSwitch is the most popular setup there is no claim that it is either best or the most efficient option. Neutron + Open vSwitch is an example, one which provides a good starting point for anyone interested in understanding OpenStack networking. Even if you are using different kind of network setup such as different Neutron plug-in or even not using Neutron at all this will still be a good starting point to understand the network architecture in OpenStack. The setup we are using for the examples is the one used in the Oracle OpenStack Tech Preview. Installing it is simple and it would be helpful to have it as reference. In this setup we use eth2 on all servers for VM network, all VM traffic will be flowing through this interface.The Oracle OpenStack Tech Preview is using VLANs for L2 isolation to provide tenant and network isolation. The following diagram shows how we have configured our deployment: This first post is a bit long and will focus on some basic concepts in OpenStack networking. The components we will be discussing are Open vSwitch, network namespaces, Linux bridge and veth pairs. Note that this is not meant to be a comprehensive review of these components, it is meant to describe the component as much as needed to understand OpenStack network architecture. All the components described here can be further explored using other resources. Open vSwitch (OVS) In the Oracle OpenStack Tech Preview OVS is used to connect virtual machines to the physical port (in our case eth2) as shown in the deployment diagram. OVS contains bridges and ports, the OVS bridges are different from the Linux bridge (controlled by the brctl command) which are also used in this setup. To get started let’s view the OVS structure, use the following command: # ovs-vsctl show 7ec51567-ab42-49e8-906d-b854309c9edf     Bridge br-int         Port br-int             Interface br-int type: internal         Port "int-br-eth2"             Interface "int-br-eth2"     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2" ovs_version: "1.11.0" We see a standard post deployment OVS on a compute node with two bridges and several ports hanging off of each of them. The example above is a compute node without any VMs, we can see that the physical port eth2 is connected to a bridge called “br-eth2”. We also see two ports "int-br-eth2" and "phy-br-eth2" which are actually a veth pair and form virtual wire between the two bridges, veth pairs are discussed later in this post. When a virtual machine is created a port is created on one the br-int bridge and this port is eventually connected to the virtual machine (we will discuss the exact connectivity later in the series). Here is how OVS looks after a VM was launched: # ovs-vsctl show efd98c87-dc62-422d-8f73-a68c2a14e73d     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port br-int             Interface br-int type: internal         Port "qvocb64ea96-9f" tag: 1             Interface "qvocb64ea96-9f"     Bridge "br-eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2" ovs_version: "1.11.0" Bridge "br-int" now has a new port "qvocb64ea96-9f" which connects to the VM and tagged with VLAN 1. Every VM which will be launched will add a port on the “br-int” bridge for every network interface the VM has. Another useful command on OVS is dump-flows for example: # ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4): cookie=0x0, duration=735.544s, table=0, n_packets=70, n_bytes=9976, idle_age=17, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL cookie=0x0, duration=76679.786s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=2,in_port=1 actions=drop cookie=0x0, duration=76681.36s, table=0, n_packets=68, n_bytes=7950, idle_age=17, hard_age=65534, priority=1 actions=NORMAL As we see the port which is connected to the VM has the VLAN tag 1. However the port on the VM network (eth2) will be using tag 1000. OVS is modifying the vlan as the packet flow from the VM to the physical interface. In OpenStack the Open vSwitch agent takes care of programming the flows in Open vSwitch so the users do not have to deal with this at all. If you wish to learn more about how to program the Open vSwitch you can read more about it at http://openvswitch.org looking at the documentation describing the ovs-ofctl command. Network Namespaces (netns) Network namespaces is a very cool Linux feature can be used for many purposes and is heavily used in OpenStack networking. Network namespaces are isolated containers which can hold a network configuration and is not seen from outside of the namespace. A network namespace can be used to encapsulate specific network functionality or provide a network service in isolation as well as simply help to organize a complicated network setup. Using the Oracle OpenStack Tech Preview we are using the latest Unbreakable Enterprise Kernel R3 (UEK3), this kernel provides a complete support for netns. Let's see how namespaces work through couple of examples to control network namespaces we use the ip netns command: Defining a new namespace: # ip netns add my-ns # ip netns list my-ns As mentioned the namespace is an isolated container, we can perform all the normal actions in the namespace context using the exec command for example running the ifconfig command: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:16436 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) We can run every command in the namespace context, this is especially useful for debug using tcpdump command, we can ping or ssh or define iptables all within the namespace. Connecting the namespace to the outside world: There are various ways to connect into a namespaces and between namespaces we will focus on how this is done in OpenStack. OpenStack uses a combination of Open vSwitch and network namespaces. OVS defines the interfaces and then we can add those interfaces to namespace. So first let's add a bridge to OVS: # ovs-vsctl add-br my-bridge Now let's add a port on the OVS and make it internal: # ovs-vsctl add-port my-bridge my-port # ovs-vsctl set Interface my-port type=internal And let's connect it into the namespace: # ip link set my-port netns my-ns Looking inside the namespace: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:65536 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) my-port   Link encap:Ethernet HWaddr 22:04:45:E2:85:21           BROADCAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) Now we can add more ports to the OVS bridge and connect it to other namespaces or other device like physical interfaces. Neutron is using network namespaces to implement network services such as DCHP, routing, gateway, firewall, load balance and more. In the next post we will go into this in further details. Linux Bridge and veth pairs Linux bridge is used to connect the port from OVS to the VM. Every port goes from the OVS bridge to a Linux bridge and from there to the VM. The reason for using regular Linux bridges is for security groups’ enforcement. Security groups are implemented using iptables and iptables can only be applied to Linux bridges and not to OVS bridges. Veth pairs are used extensively throughout the network setup in OpenStack and are also a good tool to debug a network problem. Veth pairs are simply a virtual wire and so veths always come in pairs. Typically one side of the veth pair will connect to a bridge and the other side to another bridge or simply left as a usable interface. In this example we will create some veth pairs, connect them to bridges and test connectivity. This example is using regular Linux server and not an OpenStack node: Creating a veth pair, note that we define names for both ends: # ip link add veth0 type veth peer name veth1 # ifconfig -a . . veth0     Link encap:Ethernet HWaddr 5E:2C:E6:03:D0:17           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) veth1     Link encap:Ethernet HWaddr E6:B6:E2:6D:42:B8           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) . . To make the example more meaningful this we will create the following setup: veth0 => veth1 => br-eth3 => eth3 ======> eth2 on another Linux server br-eth3 – a regular Linux bridge which will be connected to veth1 and eth3 eth3 – a physical interface with no IP on it, connected to a private network eth2 – a physical interface on the remote Linux box connected to the private network and configured with the IP of 50.50.50.1 Once we create the setup we will ping 50.50.50.1 (the remote IP) through veth0 to test that the connection is up: # brctl addbr br-eth3 # brctl addif br-eth3 eth3 # brctl addif br-eth3 veth1 # brctl show bridge name     bridge id               STP enabled     interfaces br-eth3         8000.00505682e7f6       no              eth3                                                         veth1 # ifconfig veth0 50.50.50.50 # ping -I veth0 50.50.50.51 PING 50.50.50.51 (50.50.50.51) from 50.50.50.50 veth0: 56(84) bytes of data. 64 bytes from 50.50.50.51: icmp_seq=1 ttl=64 time=0.454 ms 64 bytes from 50.50.50.51: icmp_seq=2 ttl=64 time=0.298 ms When the naming is not as obvious as the previous example and we don't know who are the paired veth interfaces we can use the ethtool command to figure this out. The ethtool command returns an index we can look up using ip link command, for example: # ethtool -S veth1 NIC statistics: peer_ifindex: 12 # ip link . . 12: veth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 Summary That’s all for now, we quickly reviewed OVS, network namespaces, Linux bridges and veth pairs. These components are heavily used in the OpenStack network architecture we are exploring and understanding them well will be very useful when reviewing the different use cases. In the next post we will look at how the OpenStack network is laid out connecting the virtual machines to each other and to the external world. @RonenKofman

    Read the article

  • Storage Configuration

    - by jchang
    Storage performance is not inherently complicated subject. The concepts are relatively simple. In fact, scaling storage performance is far easier compared with the difficulties encounters in scaling processor performance in NUMA systems. Storage performance is achieved by properly distributing IO over: 1) multiple independent PCI-E ports (system memory and IO bandwith is key) 2) multiple RAID controllers or host bus adapters (HBAs) 3) multiple storage IO channels (SAS or FC, complete path) most importantly,...(read more)

    Read the article

  • Storage Configuration

    - by jchang
    Storage performance is not inherently complicated subject. The concepts are relatively simple. In fact, scaling storage performance is far easier compared with the difficulties encounters in scaling processor performance in NUMA systems. Storage performance is achieved by properly distributing IO over: 1) multiple independent PCI-E ports (system memory and IO bandwith is key) 2) multiple RAID controllers or host bus adapters (HBAs) 3) multiple storage IO channels (SAS or FC, complete path) most importantly,...(read more)

    Read the article

< Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >