Search Results

Search found 36521 results on 1461 pages for 'aq advanced queue oracle support streams propagation schedule dblink troubleshoo'.

Page 590/1461 | < Previous Page | 586 587 588 589 590 591 592 593 594 595 596 597  | Next Page >

  • JPA/EclipseLink multitenancy screencast

    - by alexismp
    I find JPA and in particular EclipseLink 2.3 to be particularly well suited to illustrate the concept of multitenancy, one of the key PaaS features en route for Java EE 7. Here's a short (5-minute) screencast showing GlassFish 3.1.1 (due out real soon now) and its EclipseLink 2.3 JPA provider showing multitenancy in action. In short, it adds EclipseLink annotations to a JPA entity and deploys two identical applications with different tenant-id properties defined in the persistence.xml descriptor. Each application only sees its own data, yet everything is stored in the same table which was augmented with a discriminator column. For more advanced uses such as tenant property being set on the @PersistenceContext, XML configuration of multitenant JPA entities, and more check out the nicely written wiki page.

    Read the article

  • What's up with LDoms: Part 1 - Introduction & Basic Concepts

    - by Stefan Hinker
    LDoms - the correct name is Oracle VM Server for SPARC - have been around for quite a while now.  But to my surprise, I get more and more requests to explain how they work or to give advise on how to make good use of them.  This made me think that writing up a few articles discussing the different features would be a good idea.  Now - I don't intend to rewrite the LDoms Admin Guide or to copy and reformat the (hopefully) well known "Beginners Guide to LDoms" by Tony Shoumack from 2007.  Those documents are very recommendable - especially the Beginners Guide, although based on LDoms 1.0, is still a good place to begin with.  However, LDoms have come a long way since then, and I hope to contribute to their adoption by discussing how they work and what features there are today.  In this and the following posts, I will use the term "LDoms" as a common abbreviation for Oracle VM Server for SPARC, just because it's a lot shorter and easier to type (and presumably, read). So, just to get everyone on the same baseline, lets briefly discuss the basic concepts of virtualization with LDoms.  LDoms make use of a hypervisor as a layer of abstraction between real, physical hardware and virtual hardware.  This virtual hardware is then used to create a number of guest systems which each behave very similar to a system running on bare metal:  Each has its own OBP, each will install its own copy of the Solaris OS and each will see a certain amount of CPU, memory, disk and network resources available to it.  Unlike some other type 1 hypervisors running on x86 hardware, the SPARC hypervisor is embedded in the system firmware and makes use both of supporting functions in the sun4v SPARC instruction set as well as the overall CPU architecture to fulfill its function. The CMT architecture of the supporting CPUs (T1 through T4) provide a large number of cores and threads to the OS.  For example, the current T4 CPU has eight cores, each running 8 threads, for a total of 64 threads per socket.  To the OS, this looks like 64 CPUs.  The SPARC hypervisor, when creating guest systems, simply assigns a certain number of these threads exclusively to one guest, thus avoiding the overhead of having to schedule OS threads to CPUs, as do typical x86 hypervisors.  The hypervisor only assigns CPUs and then steps aside.  It is not involved in the actual work being dispatched from the OS to the CPU, all it does is maintain isolation between different guests. Likewise, memory is assigned exclusively to individual guests.  Here,  the hypervisor provides generic mappings between the physical hardware addresses and the guest's views on memory.  Again, the hypervisor is not involved in the actual memory access, it only maintains isolation between guests. During the inital setup of a system with LDoms, you start with one special domain, called the Control Domain.  Initially, this domain owns all the hardware available in the system, including all CPUs, all RAM and all IO resources.  If you'd be running the system un-virtualized, this would be what you'd be working with.  To allow for guests, you first resize this initial domain (also called a primary domain in LDoms speak), assigning it a small amount of CPU and memory.  This frees up most of the available CPU and memory resources for guest domains.  IO is a little more complex, but very straightforward.  When LDoms 1.0 first came out, the only way to provide IO to guest systems was to create virtual disk and network services and attach guests to these services.  In the meantime, several different ways to connect guest domains to IO have been developed, the most recent one being SR-IOV support for network devices released in version 2.2 of Oracle VM Server for SPARC. I will cover these more advanced features in detail later.  For now, lets have a short look at the initial way IO was virtualized in LDoms: For virtualized IO, you create two services, one "Virtual Disk Service" or vds, and one "Virtual Switch" or vswitch.  You can, of course, also create more of these, but that's more advanced than I want to cover in this introduction.  These IO services now connect real, physical IO resources like a disk LUN or a networt port to the virtual devices that are assigned to guest domains.  For disk IO, the normal case would be to connect a physical LUN (or some other storage option that I'll discuss later) to one specific guest.  That guest would be assigned a virtual disk, which would appear to be just like a real LUN to the guest, while the IO is actually routed through the virtual disk service down to the physical device.  For network, the vswitch acts very much like a real, physical ethernet switch - you connect one physical port to it for outside connectivity and define one or more connections per guest, just like you would plug cables between a real switch and a real system. For completeness, there is another service that provides console access to guest domains which mimics the behavior of serial terminal servers. The connections between the virtual devices on the guest's side and the virtual IO services in the primary domain are created by the hypervisor.  It uses so called "Logical Domain Channels" or LDCs to create point-to-point connections between all of these devices and services.  These LDCs work very similar to high speed serial connections and are configured automatically whenever the Control Domain adds or removes virtual IO. To see all this in action, now lets look at a first example.  I will start with a newly installed machine and configure the control domain so that it's ready to create guest systems. In a first step, after we've installed the software, let's start the virtual console service and downsize the primary domain.  root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- UART 512 261632M 0.3% 2d 13h 58m root@sun # ldm add-vconscon port-range=5000-5100 \ primary-console primary root@sun # svcadm enable vntsd root@sun # svcs vntsd STATE STIME FMRI online 9:53:21 svc:/ldoms/vntsd:default root@sun # ldm set-vcpu 16 primary root@sun # ldm set-mau 1 primary root@sun # ldm start-reconf primary root@sun # ldm set-memory 7680m primary root@sun # ldm add-config initial root@sun # shutdown -y -g0 -i6 So what have I done: I've defined a range of ports (5000-5100) for the virtual network terminal service and then started that service.  The vnts will later provide console connections to guest systems, very much like serial NTS's do in the physical world. Next, I assigned 16 vCPUs (on this platform, a T3-4, that's two cores) to the primary domain, freeing the rest up for future guest systems.  I also assigned one MAU to this domain.  A MAU is a crypto unit in the T3 CPU.  These need to be explicitly assigned to domains, just like CPU or memory.  (This is no longer the case with T4 systems, where crypto is always available everywhere.) Before I reassigned the memory, I started what's called a "delayed reconfiguration" session.  That avoids actually doing the change right away, which would take a considerable amount of time in this case.  Instead, I'll need to reboot once I'm all done.  I've assigned 7680MB of RAM to the primary.  That's 8GB less the 512MB which the hypervisor uses for it's own private purposes.  You can, depending on your needs, work with less.  I'll spend a dedicated article on sizing, discussing the pros and cons in detail. Finally, just before the reboot, I saved my work on the ILOM, to make this configuration available after a powercycle of the box.  (It'll always be available after a simple reboot, but the ILOM needs to know the configuration of the hypervisor after a power-cycle, before the primary domain is booted.) Now, lets create a first disk service and a first virtual switch which is connected to the physical network device igb2. We will later use these to connect virtual disks and virtual network ports of our guest systems to real world storage and network. root@sun # ldm add-vds primary-vds root@sun # ldm add-vswitch net-dev=igb2 switch-primary primary You are free to choose whatever names you like for the virtual disk service and the virtual switch.  I strongly recommend that you choose names that make sense to you and describe the function of each service in the context of your implementation.  For the vswitch, for example, you could choose names like "admin-vswitch" or "production-network" etc. This already concludes the configuration of the control domain.  We've freed up considerable amounts of CPU and RAM for guest systems and created the necessary infrastructure - console, vts and vswitch - so that guests systems can actually interact with the outside world.  The system is now ready to create guests, which I'll describe in the next section. For further reading, here are some recommendable links: The LDoms 2.2 Admin Guide The "Beginners Guide to LDoms" The LDoms Information Center on MOS LDoms on OTN

    Read the article

  • Fix: Azure Disabled over 49 cents? Beware of using a Java Virtual Machine on Microsoft Azure

    - by Ken Cox [MVP]
    I love my MSDN Azure account. I can spin up a demo/dev app or VM in seconds. In fact, it is so easy to create a virtual machine that Azure shut down my whole account! Last night I spun up a Java Virtual Machine to play with some Android stuff. My mistake was that I didn’t read the Virtual Machine pricing warning: “I have a MSDN Azure Benefit subscription. Can I use my monthly Azure credits to purchase Oracle software?” “No, Azure credits in our MSDN offers are not applicable to Oracle software. In order to purchase Oracle software in the MSDN Azure Benefit subscription, customers need to turn off their {0} spending limit and pay at the regular pay-as-you-go rate. Otherwise, Oracle usage will hit the {1} spending limit and the subscription will be immediately disabled.”  Immediately disabled? Yup. Everything connected to the subscription was shut off, deallocated, rendered useless - even the free Web sites and the free Sendgrid email service.  The fix? I had to remove the spending limit from my account so I could pay $0.49 (49 cents) for the JVM usage. I still had $134.10 in credits remaining for regular usage with 6 days left in the billing month.  Now the restoration/clean-up begins… figuring out how to get the web sites and services back online.  To me, the preferable way would be for Azure to warn me when setting up a JVM that I had no way of paying for the service. In the alternative, shut down just the offending services – the ones that can’t be covered by the regular credits. What a mess.

    Read the article

  • The JRockit Book is Now in Print!

    - by Marcus Hirt
    Yes. I know. It’s been in print for some days already, but I haven’t found time to write about it until now. The book is a good guide for JVM’s in general, and for JRockit in particular. If you’ve ever wondered how the innards of the Java Virtual Machine works, or how to use the JRockit Mission Control to hunt down problems in your Java applications, this book is for you. The book is written for intermediate to advanced Java Developers. These are the chapters: Getting Started Adaptive Code Generation Adaptive Memory Management Threads and Synchronization Benchmarking and Tuning JRockit Mission Control The Management Console The Runtime Analyzer The Flight Recorder The Memory Leak Detector JRCMD Using the JRockit Management APIs JRockit Virtual Edition Appendix A: Bibliography Appendix B: Glossary Index The book is 588 pages long. For more information about the book, see the book page at Packt.

    Read the article

  • CodePlex Daily Summary for Tuesday, May 11, 2010

    CodePlex Daily Summary for Tuesday, May 11, 2010New ProjectsASP.NET MVC Extensions: ASP.NET MVC Extensions is developed on top of ASP.NET MVC extensibility point, which allows your IoC Container to rule everywhere.Best practices in .NET: NMA is a collection of knowledges that I learned from my co-worker and Internet. It's built on Domain Driven Design theories. I used Struture Map,...BioRider: Project participant of the 1st National Award for InteroperabilityBSoft: that's the project for bsoftClosedXML - The easy way to OpenXML: ClosedXML makes it easier for developers to create OpenXML files for Excel 2007. It provides a nice object oriented way to manipulate the files (si...Dragon Master: A tool for all D&D masters that need to create Dragon NPCsFacturator - Create invoices easy and fast: Windows forms application for creating invoices based on a Word template. Including a simple workflow for send, payed and finished invoices and a q...FreeEPG: An Australian EPG using the Freeview online guide. All Freeview regions are supported and data can be exported in either XMLTV or Microsoft Media ...GreedyRSS: Convert everything to RSS FeedHByte: In honor of the heisenberg uncertainty principle. This is an implementation of a type who has byte semantics, but who's value and location can not...JSON RPC 2.0 - Javascript/.NET Implementation: JSON RPC 2.0 - Javascript/.NET Implementation - NOT READY YETMjollnir - Supplemental Library for BCL: Mjollnir is Supplements Library for BCL. Mjollnir is Compatible with .NET Framework 4 (or maybe later).Money Spinner: MoneySpinnerMSPY 2010 Open Extended Dictionary Building Tool: A tool to create Open Extend Dictionary for Microsoft Pinyin IME 2010, it is develped in C#Sharepoint Data Store: This is a small library that lets SharePoint developers store and manage custom application information in SharePoint.SharePointSlim: We are going to use it in conjunction with the PowerSlim projectSSTA: A Tool to Compare SQL Database Schema Versionstbeasy: tbeasyNew Releases8085 Microprocessor simulator: 8085 Instruction Set Simulator with source code: 8085 Instruction set simulator with windows installer plus complete source code and examplesAutoArchive: Site Template...: Slightly off topic, but take a looK!BioRider: Uptiva Dreams IT Entry: ==================================== National Interoperability Award ==================================== TEAM: Uptiva Dreams IT PROJECT: BioRide...C# Developer Utility Library: ScrimpNet.Core Library May 2010: Initial upload of project library. Contains only source files. Recommend adding extracted files to your project as a project reference.Coot: Beta 1: To install the screen saver: Extract the contents of the zip file (all three files) to C:\Windows\System32 Go to screen saver properties, select ...Deploy Workflow Manager: Deploy Workflow Manager v1: Recommend you test on your development environment first before implementing into production. Criteria to run the workflow is assumed to be inclu...Expression Encoder 3 Visual Basic Samples: Encoder 3 VB Samples: Zip file contains the Encoder 3 samples written in Visual Basic.FreeEPG: Debug Release: Initial Release. Run the application from the command line for options. If you choose to run the client as a Windows Service, then you will need t...FSharpChess: Alpha Release 0.197: This is just the latest version of the binaries. Note that there are two excecutables: FSharpChess includes a UI partially written in C# FSharpCh...GreedyRSS: GreedyRSS V2: V2与V1相比: 改进了插件架构 用数据库取代XML配置文件 用Web Services暴露了部分功能Headspring Labs: ASP.NET MVC 2 tips and tricks (code): Contains example app that demonstrates techniques in the Tips & Tricks powerpointHeadspring Labs: ASP.NET MVC tips and tricks PPT: Powerpoint file for the ASP.NET MVC tips and tricks talk.HouseFly controls: HouseFly controls beta 1.0.0.0: HouseFly controls release 1.0.0.0 betaiTuner - The iTunes Companion: iTuner 1.2.3782: This production release of iTuner 1.2 allows you to synchronize one or more iTunes playlists to a USB MP3 player. It also provides the ability to ...JSON RPC 2.0 - Javascript/.NET Implementation: v0.7: Protocol implemented. Most of the extra features implemented.MapWindow6: MapWindow 6.0 msi May 10, 2010: This version fixes a reproject bug where false_easting from .prj files was not being correctly converted into meters when the projection was in feet.Mouse Zoom - Visual Studio Extension: MouseZoom 1.7: Version 1.7 fixes a bug that can cause the keys to stick when leaving focus (e.g. opening a VS dialog box).Mouse Zoom - Visual Studio Extension: MouseZoom 1.8: Override mouse wheel scroll functionality to always scroll 25% no matter what zoom level you are on (by default, scrolling with the mouse wheel bec...MSPY 2010 Open Extended Dictionary Building Tool: 20100511build: First release. 1. Installation After you download it to your local disk, create a new folder and unzip it to the new folder, that's it. 2. run ...MSPY 2010 Open Extended Dictionary Building Tool: 20100511build2: First release. 1. Installation After you download it to your local disk, create a new folder and unzip it to the new folder, that's it. 2. run ...Multiwfn: multiwfn1.3.2: multiwfn1.3.2NASA Space Shuttle TV Schedule Transfer to Outlook Calendar: NASA Space Shuttle TV Schedule Release v1.4.132.1: Warning!There is a problem with the latest version of the program and rev 0 of STS-132 mission schedule. I am looking into the problem when the yea...NASA Space Shuttle TV Schedule Transfer to Outlook Calendar: NASA Space Shuttle TV Schedule Release v1.4.132.2: This release fixes a problem with rev 0 of the STS-132 mission schedule in recognizing the year of launch. NASA changed the year of launch to a fo...Object/Relational Mapper & Code Generator in Net 2.0 for Relational & XML Schema: 2.8: Switched compliation options to always run in 32-bit mode, to ensure it can connect to MSAccess & MSExcel on 64-bit machines. Updated parameterised...Open NFSe: OpenNFSe-Salvador v1.0.0: Atualização do OpenNFSe-Salvador para o novo schema utilizado pela prefeitura de Salvador.OpenSLIM: OpenSLIM-v373b0-20100509-0: Here is the list of new additions and improvements that this new major release incorporates: Systems Decommissioning Management. Improvements on...Pcap.Net: Pcap.Net 0.6.0 (44468): Pcap.Net - May 2010 Release Pcap.Net is a .NET wrapper for WinPcap written in C++/CLI and C#. It Features almost all WinPcap features and includes ...PowerShell Community Extensions: 2.0 Production: PowerShell Community Extensions 2.0 Release NotesMay 10, 2010 The primary purpose of the Pscx 2.0 release is to convert from the previous approach...Scrum Sprint Monitor: v1.0.0.47921 (.NET 4-TFS 2010): What is new in this release? Minor version over 1.0.0.47911 introducing CEIP (Customer Experience Improvement Program). This is taking advantage of...Sharepoint Data Store: 1.0: First ReleaseSPVisualDev - SharePoint Developer Tool: Version 2.2.0: Visual Studio 2010 is now supported. Note that this is only intended to be used for MOSS 2007 / WSS 3.0 development and not for SP 2010. Package SP...SQL Server PowerShell Extensions: 2.2.1 Production: Release 2.2 re-implements SQLPSX as PowersShell version 2.0 modules. SQLPSX consists of 9 modules with 133 advanced functions, 2 cmdlets and 7 scri...VCC: Latest build, v2.1.30510.0: Automatic drop of latest buildVCC: Latest build, v2.1.30510.1: Automatic drop of latest buildVCC: Latest build, v2.1.30510.2: Automatic drop of latest buildVolumeMaster: Volume Master 2.0 Beta: First release of VolumeMaster. So if you're running Windows Vista / 7 you can have a handy Volume OSD and control your volume with the following sh...WabbitStudio Z80 Software Tools: SPASM2 32-Bit: A test release for SPASM2.Web Camera Shooter: 1.0.0.1: Video capturing: Touchless SDK -> AForge.Video. Main window shown in taskbar and not top most. Native images generated for all assemblies. Sm...Most Popular ProjectsWBFS ManagerRawrAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)patterns & practices – Enterprise LibraryMicrosoft SQL Server Community & SamplesASP.NETPHPExcelMost Active Projectspatterns & practices – Enterprise LibraryMirror Testing SystemThe Information Literacy Education Learning Environment (ILE)RawrCaliburn: An Application Framework for WPF and SilverlightwhiteBlogEngine.NETTweetSharpjQuery Library for SharePoint Web ServicesIonics Isapi Rewrite Filter

    Read the article

  • Client side code snipets

    - by raghu.yadav
    function clientMethodCall(event) { component = event.getSource(); AdfCustomEvent.queue(component, "customEvent",{payload:component.getSubmittedValue()}, true); event.cancel(); } ]]-- <af:document>      <f:facet name="metaContainer">      <af:group>        <!--[CDATA[            <script>                function clientMethodCall(event) {                                       component = event.getSource();                    AdfCustomEvent.queue(component, "customEvent",{payload:component.getSubmittedValue()}, true);                                                     event.cancel();                                    }                 </script> ]]-->      </af:group>    </f:facet>      <af:form>        <af:panelformlayout>          <f:facet name="footer">          <af:inputtext label="Let me spy on you: Please enter your mail password">            <af:clientlistener method="clientMethodCall" type="keyUp">            <af:serverlistener type="customEvent" method="#{customBean.handleRequest}">          </af:serverlistener>bean code    public void handleRequest(ClientEvent event){                System.out.println("---"+event.getParameters().get("payload"));            } tree<af:tree id="tree1" value="#{bindings.DepartmentsView11.treeModel}" var="node" selectionlistener="#{bindings.DepartmentsView11.treeModel.makeCurrent}" rowselection="single">    <f:facet name="nodeStamp">      <af:outputtext value="#{node}">    </af:outputtext>    <af:clientlistener method="expandNode" type="selection">  </af:clientlistener></f:facet>   <f:facet name="metaContainer">        <af:group>          <!--[CDATA[            <script>                function expandNode(event){                    var _tree = event.getSource();                    rwKeySet = event.getAddedSet();                    var firstRowKey;                    for(rowKey in rwKeySet){                       firstRowKey  = rowKey;                        // we are interested in the first hit, so break out here                        break;                    }                    if (_tree.isPathExpanded(firstRowKey)){                         _tree.setDisclosedRowKey(firstRowKey,false);                    }                    else{                        _tree.setDisclosedRowKey(firstRowKey,true);                    }               }        </script> ]]-->        </af:group>      </f:facet>   </af:tree> </af:clientlistener></af:inputtext></f:facet></af:panelformlayout></af:form></af:document> bean code public void handleRequest(ClientEvent event){ System.out.println("---"+event.getParameters().get("payload")); } tree function expandNode(event){ var _tree = event.getSource(); rwKeySet = event.getAddedSet(); var firstRowKey; for(rowKey in rwKeySet){ firstRowKey = rowKey; // we are interested in the first hit, so break out here break; } if (_tree.isPathExpanded(firstRowKey)){ _tree.setDisclosedRowKey(firstRowKey,false); } else{ _tree.setDisclosedRowKey(firstRowKey,true); } } ]]--

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • The Threats are Outside the Risks are Inside

    - by Naresh Persaud
    In the past few years we have seen the threats against the enterprise increase dramatically. The number of attacks originating externally have outpaced the number of attacks driven by insiders. During the CSO Summit at Open World, Sonny Singh examined the phenomenon and shared Oracle's security story. While the threats are largely external, the risks are largely inside. Criminals are going after our sensitive customer data. In some cases the attacks are advanced. In most cases the attacks are very simple. Taking a security inside out approach can provide a cost effective way to secure an organization's most valuable assets. &amp;amp;amp;lt;/span&amp;amp;amp;gt;border-width:1px 1px 0;margin-bottom:5px&amp;amp;amp;quot; allowfullscreen=&amp;amp;amp;quot;&amp;amp;amp;quot;&amp;amp;amp;gt; Cso oow12-summit-sonny-sing hv4 from OracleIDM

    Read the article

  • The UIManager Pattern

    - by Duncan Mills
    One of the most common mistakes that I see when reviewing ADF application code, is the sin of storing UI component references, most commonly things like table or tree components in Session or PageFlow scope. The reasons why this is bad are simple; firstly, these UI object references are not serializable so would not survive a session migration between servers and secondly there is no guarantee that the framework will re-use the same component tree from request to request, although in practice it generally does do so. So there danger here is, that at best you end up with an NPE after you session has migrated, and at worse, you end up pinning old generations of the component tree happily eating up your precious memory. So that's clear, we should never. ever, be storing references to components anywhere other than request scope (or maybe backing bean scope). So double check the scope of those binding attributes that map component references into a managed bean in your applications.  Why is it Such a Common Mistake?  At this point I want to examine why there is this urge to hold onto these references anyway? After all, JSF will obligingly populate your backing beans with the fresh and correct reference when needed.   In most cases, it seems that the rational is down to a lack of distinction within the application between what is data and what is presentation. I think perhaps, a cause of this is the logical separation between business data behind the ADF data binding (#{bindings}) façade and the UI components themselves. Developers tend to think, OK this is my data layer behind the bindings object and everything else is just UI.  Of course that's not the case.  The UI layer itself will have state which is intrinsically linked to the UI presentation rather than the business model, but at the same time should not be tighly bound to a specific instance of any single UI component. So here's the problem.  I think developers try and use the UI components as state-holders for this kind of data, rather than using them to represent that state. An example of this might be something like the selection state of a tabset (panelTabbed), you might be interested in knowing what the currently disclosed tab is. The temptation that leads to the component reference sin is to go and ask the tabset what the selection is.  That of course is fine in context - e.g. a handler within the same request scoped bean that's got the binding to the tabset. However, it leads to problems when you subsequently want the same information outside of the immediate scope.  The simple solution seems to be to chuck that component reference into session scope and then you can simply re-check in the same way, leading of course to this mistake. Turn it on its Head  So the correct solution to this is to turn the problem on its head. If you are going to be interested in the value or state of some component outside of the immediate request context then it becomes persistent state (persistent in the sense that it extends beyond the lifespan of a single request). So you need to externalize that state outside of the component and have the component reference and manipulate that state as needed rather than owning it. This is what I call the UIManager pattern.  Defining the Pattern The  UIManager pattern really is very simple. The premise is that every application should define a session scoped managed bean, appropriately named UIManger, which is specifically responsible for holding this persistent UI component related state.  The actual makeup of the UIManger class varies depending on a needs of the application and the amount of state that needs to be stored. Generally I'll start off with a Map in which individual flags can be created as required, although you could opt for a more formal set of typed member variables with getters and setters, or indeed a mix. This UIManager class is defined as a session scoped managed bean (#{uiManager}) in the faces-config.xml.  The pattern is to then inject this instance of the class into any other managed bean (usually request scope) that needs it using a managed property.  So typically you'll have something like this:   <managed-bean>     <managed-bean-name>uiManager</managed-bean-name>     <managed-bean-class>oracle.demo.view.state.UIManager</managed-bean-class>     <managed-bean-scope>session</managed-bean-scope>   </managed-bean>  When is then injected into any backing bean that needs it:    <managed-bean>     <managed-bean-name>mainPageBB</managed-bean-name>     <managed-bean-class>oracle.demo.view.MainBacking</managed-bean-class>     <managed-bean-scope>request</managed-bean-scope>     <managed-property>       <property-name>uiManager</property-name>       <property-class>oracle.demo.view.state.UIManager</property-class>       <value>#{uiManager}</value>     </managed-property>   </managed-bean> In this case the backing bean in question needs a member variable to hold and reference the UIManager: private UIManager _uiManager;  Which should be exposed via a getter and setter pair with names that match the managed property name (e.g. setUiManager(UIManager _uiManager), getUiManager()).  This will then give your code within the backing bean full access to the UI state. UI components in the page can, of course, directly reference the uiManager bean in their properties, for example, going back to the tab-set example you might have something like this: <af:paneltabbed>   <af:showDetailItem text="First"                disclosed="#{uiManager.settings['MAIN_TABSET_STATE'].['FIRST']}"> ...   </af:showDetailItem>   <af:showDetailItem text="Second"                      disclosed="#{uiManager.settings['MAIN_TABSET_STATE'].['SECOND']}">     ...   </af:showDetailItem>   ... </af:panelTabbed> Where in this case the settings member within the UI Manger is a Map which contains a Map of Booleans for each tab under the MAIN_TABSET_STATE key. (Just an example you could choose to store just an identifier for the selected tab or whatever, how you choose to store the state within UI Manger is up to you.) Get into the Habit So we can see that the UIManager pattern is not great strain to implement for an application and can even be retrofitted to an existing application with ease. The point is, however, that you should always take this approach rather than committing the sin of persistent component references which will bite you in the future or shotgun scattered UI flags on the session which are hard to maintain.  If you take the approach of always accessing all UI state via the uiManager, or perhaps a pageScope focused variant of it, you'll find your applications much easier to understand and maintain. Do it today!

    Read the article

  • OracleWebLogic YouTube Channel

    - by Jeffrey West
    James Bayer and I have been working on content for an Oracle WebLogic YouTube channel to host demos and overview of WebLogic features.  The goal is to provide short educational overviews and demos of new, useful, or 'hidden gem' WLS features that may be underutilized.  We currently have 26 videos including Advanced JMS features, WLST and JRockit Mission Control.  We also have a few videos about our JRockit Virtual Edition software that is pretty neat. We will be making ongoing updates to the content.  We really do want people to give us feedback on what they want to see with regard to WebLogic.  Whether its how you achieve a certain architectural goal with WLS or a demonstration and sample code for a feature - All requests related to WLS are welcome! You can find the channel here: http://www.YouTube.com/OracleWebLogic.  Please comment on the Channel or our WebLogic Server blog to let us know what you think.  Thanks!

    Read the article

  • About Entitlement Grants in ADF Security of JDeveloper 11.1.1.4

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Oracle JDeveloper 11.1.1.4 comes with a new ADF Security feature called "entitlement grants". This has nothing to do with Oracle Entitlement Server (OES) but is the ability to group resources into permission sets so they can be granted with a single grant statement. For example, as good practices when organizing your projects, you may have grouped your bounded task flows by functionality and responsibility in sub folders under the WEB-INF directory. If one of the folders holds bounded task flows that are accessible to all authenticated users, you may create an entitlement grant allAuthUserBTF and select all bounded task flows that are accessible for authenticated users as resources. You can then grant allAuthUserBTF to the authenticated-role so that with only a single grant statement all selected bounded task flows are protected. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} <permission-sets>         <permission-set>             <name>PublicBoundedTaskFlows</name>             <member-resources>               <member-resource>                 <resource-name>                      /WEB-INF/public/home-btf.xml#home-btf                 </resource-name>                 <type-name-ref>TaskFlowResourceType</type-name-ref>                 <display-name> ... </display-name>                 <actions>view</actions>               </member-resource>               <member-resource>                 <resource-name>                         /WEB-INF/public/preferences-btf.xml#preferences-btf                </resource-name>                 <type-name-ref>TaskFlowResourceType</type-name-ref>                 <display-name>...</display-name>                 <actions>view</actions>               </member-resource>             </member-resources>           </permission-set>   </permission-sets> The grant statement for this permission set is added as shown below <grant>   <grantee>     <principals>        <principal>             <name>authenticated-role</name>             <class>oracle.security.jps.internal.core.principals.JpsAuthenticatedRoleImpl</class>         </principal>       </principals>     </grantee>     <permission-set-refs>         <permission-set-ref>            <name>PublicBoundedTaskFlows</name>         </permission-set-ref>      </permission-set-refs> </grant>

    Read the article

  • Using the OAM Mobile & Social SDK to secure native mobile apps - Part 2 : OAM Mobile & Social Server configuration

    - by kanishkmahajan
    Objective  In the second part of this blog post I'll now cover configuration of OAM to secure our sample native apps developed using the iOS SDK. First, here are some key server side concepts: Application Profiles: An application profile is a logical representation of your application within OAM server. It could be a web (html/javascript) or native (iOS or Android) application. Applications may have different requirements for AuthN/AuthZ, and therefore each application that interacts with OAM Mobile & Social REST services must be uniquely defined. Service Providers: Service providers represent the back end services that are accessed by applications. With OAM Mobile & Social these services are in the areas of authentication, authorization and user profile access. A Service Provider then defines a type or class of service for authentication, authorization or user profiles. For example, the JWTAuthentication provider performs authentication and returns JWT (JSON Web Tokens) to the application. In contrast, the OAMAuthentication also provides authentication but uses OAM SSO tokens Service Profiles:  A Service Profile is a logical envelope that defines a service endpoint URL for a service provider for the OAM Mobile & Social Service. You can create multiple service profiles for a service provider to define token capabilities and service endpoints. Each service provider instance requires atleast one corresponding service profile.The  OAM Mobile & Social Service includes a pre-configured service profile for each pre-configured service provider. Service Domains: Service domains bind together application profiles and service profiles with an optional security handler. So now let's configure the OAM server. Additional details are in the OAM Documentation and this post simply provides an outline of configuration tasks required to configure OAM for securing native apps.  Configuration  Create The Application Profile Log on to the Oracle Access Management console and from System Configuration -> Mobile and Social -> Mobile Services, select "Create" under Application Profiles. You would do this  step twice - once for each of the native apps - AvitekInventory and AvitekScheduler. Enter the parameters for the new Application profile: Name:  The application name. In this example we use 'InventoryApp' for the AvitekInventory app and 'SchedulerApp' for the AvitekScheduler app. The application name configured here must match the application name in the settings for the deployed iOS application. BaseSecret: Enter a password here. This does not need to match any existing password. It is used as an encryption key between the client and the OAM server.  Mobile Configuration: Enable this checkbox for any mobile applications. This enables the SDK to collect and send Mobile specific attributes to the OAM server.  Webview: Controls the type of browser that the iOS application will use. The embedded browser (default) will render the browser within the application. External will use the system standalone browser. External can sometimes be preferable for debugging URLScheme: The URL scheme associated with the iOS apps that is also used as a custom URL scheme to register O/S handlers that will take control when OAM transfers control to device. For the AvitekInventory and the AvitekScheduler apps I used osa:// and client:// respectively. You set this scheme in Xcode while developing your iOS Apps under Info->URL Types.  Bundle Identifier : The fully qualified name of your iOS application. You typically set this when you create a new Xcode project or under General->Identity in Xcode. For the AvitekInventory and AvitekScheduler apps these were com.us.oracle.AvitekInventory and com.us.oracle.AvitekScheduler respectively.  Create The Service Domain Select create under Service domains. Create a name for your domain (AvitekDomain is what I've used). The name configured must match the service domain set in the iOS application settings. Under "Application Profile Selection" click the browse button. Choose the application profiles that you created in the previous step one by one. Set the InventoryApp as the SSO agent (with an automatic priority of 1) and the SchedulerApp as the SSO client. This associates these applications with this service domain and configures them in a 'circle of trust'.  Advance to the next page of the wizard to configure the services for this domain. For this example we will use the following services:  Authentication:   This will use the JWT (JSON Web Token) format authentication provider. The iOS application upon successful authentication will receive a signed JWT token from OAM Mobile & Social service. This token will be used in subsequent calls to OAM. Use 'MobileOAMAuthentication' here. Authorization:  The authorization provider. The SDK makes calls to this provider endpoint to obtain authorization decisions on resource requests. Use 'OAMAuthorization' here. User Profile Service:  This is the service that provides user profile services (attribute lookup, attribute modification). It can be any directory configured as a data source in OAM.  And that's it! We're done configuring our native apps. In the next section, let's look at some additional features that were mentioned in the earlier post that are automated by the SDK for the app developer i.e. these are areas that require no additional coding by the app developer when developing with the SDK as they only require server side configuration: Additional Configuration  Offline Authentication Select this option in the service domain configuration to allow users to log in and authenticate to the application locally. Clear the box to block users from authenticating locally. Strong Authentication By simply selecting the OAAMSecurityHandlerPlugin while configuring mobile related Service Domains, the OAM Mobile&Social service allows sophisticated device and client application registration logic as well as the advanced risk and fraud analysis logic found in OAAM to be applied to mobile authentication. Let's look at some scenarios where the OAAMSecurityHandlerPlugin gets used. First, when we configure OAM and OAAM to integrate together using the TAP scheme, then that integration kicks off by selecting the OAAMSecurityHandlerPlugin in the mobile service domain. This is how the mobile device is now prompted for KBA,OTP etc depending on the TAP scheme integration and the OAM users registered in the OAAM database. Second, when we configured the service domain, there were claim attributes there that are already pre-configured in OAM Mobile&Social service and we simply accepted the default values- these are the set of attributes that will be fetched from the device and passed to the server during registration/authentication as device profile attributes. When a mobile application requests a token through the Mobile Client SDK, the SDK logic will send the Device Profile attributes as a part of an HTTP request. This set of Device Profile attributes enhances security by creating an audit trail for devices that assists device identification. When the OAAM Security Plug-in is used, a particular combination of Device Profile attribute values is treated as a device finger print, known as the Digital Finger Print in the OAAM Administration Console. Each finger print is assigned a unique fingerprint number. Each OAAM session is associated with a finger print and the finger print makes it possible to log (and audit) the devices that are performing authentication and token acquisition. Finally, if the jail broken option is selected while configuring an application profile, the SDK detects a device is jail broken based on configured policy and if the OAAM handler is configured the plug-in can allow or block access to client device depending on the OAAM policy as well as detect blacklisted, lost or stolen devices and send a wipeout command that deletes all the mobile &social relevant data and blocks the device from future access. 1024x768 Social Logins Finally, let's complete this post by adding configuration to configure social logins for mobile applications. Although the Avitek sample apps do not demonstrate social logins this would be an ideal exercise for you based on the sample code provided in the earlier post. I'll cover the server side configuration here (with Facebook as an example) and you can retrofit the code to accommodate social logins by following the steps outlined in "Invoking Authentication Services" and add code in LoginViewController and maybe create a new delegate - AvitekRPDelegate based on the description in the previous post. So, here all you will need to do is configure an application profile for social login, configure a new service domain that uses the social login application profile, register the app on Facebook and finally configure the Facebook OAuth provider in OAM with those settings. Navigate to Mobile and Social, click on "Internet Identity Services" and create a new application profile. Here are the relevant parameters for the new application profile (-also we're not registering the social user in OAM with this configuration below, however that is a key feature as well): Name:  The application name. This must match the name of the of mobile application profile created for your application under Mobile Services. We used InventoryApp for this example. SharedSecret: Enter a password here. This does not need to match any existing password. It is used as an encryption key between the client and the OAM Mobile and Social service.  Mobile Application Return URL: After the Relying Party (social) login, the OAM Mobile & Social service will redirect to the iOS application using this URI. This is defined under Info->URL type and we used 'osa', so we define this here as 'osa://' Login Type: Choose to allow only internet identity authentication for this exercise. Authentication Service Endpoint : Make sure that /internetidentityauthentication is selected. Login to http://developers.facebook.com using your Facebook account and click on Apps and register the app as InventoryApp. Note that the consumer key and API secret gets generated automatically by the Facebook OAuth server. Navigate back to OAM and under Mobile and Social, click on "Internet Identity Services" and edit the Facebook OAuth Provider. Add the consumer key and API secret from the Facebook developers site to the Facebook OAuth Provider: Navigate to Mobile Services. Click on New to create a new service domain. In this example we call the domain "AvitekDomainRP". The type should be 'Mobile Application' and the application credential type 'User Token'. Add the application "InventoryApp" to the domain. Advance the next page of the wizard. Select the  default service profiles but ensure that the Authentication Service is set to 'InternetIdentityAuthentication'. Finish the creation of the service domain.

    Read the article

  • Adding an LOV to a query parameter (executeWithParams)

    - by shay.shmeltzer
    I showed in the past how you can use the executeWithParams operation to build your own query page to filter a view object to show specific rows. I also showed how you can make the parameter fields display as drop down lists of values (selectOneChoice). However this week someone asked me if you can have those parameter fields use the advanced LOV component. Well if you just try and drag the parameter over, you'll see that the LOV option is not there as a drop option. But with a little bit of hacking around you can achieve this. (without actual Java coding). Here is a quick demo:

    Read the article

  • Big GRC: Turning Data into Actionable GRC Intelligence

    - by Jenna Danko
    While it’s no longer headline news that Governments have carried out large scale data-mining programmes aimed at terrorism detection and identifying other patterns of interest across a wide range of digital data sources, the debate over the ethics and justification over this action, will clearly continue for some time to come. What is becoming clear is that these programmes are a framework for the collation and aggregation of massive amounts of unstructured data and from this, the creation of actionable intelligence from analyses that allowed the analysts to explore and extract a variety of patterns and then direct resources. This data included audio and video chats, phone calls, photographs, e-mails, documents, internet searches, social media posts and mobile phone logs and connections. Although Governance, Risk and Compliance (GRC) professionals are not looking at the implementation of such programmes, there are many similar GRC “Big data” challenges to be faced and potential lessons to be learned from these high profile government programmes that can be applied a lot closer to home. For example, how can GRC professionals collect, manage and analyze an enormous and disparate volume of data to create and manage their own actionable intelligence covering hidden signs and patterns of criminal activity, the early or retrospective, violation of regulations/laws/corporate policies and procedures, emerging risks and weakening controls etc. Not exactly the stuff of James Bond to be sure, but it is certainly more applicable to most GRC professional’s day to day challenges. So what is Big Data and how can it benefit the GRC process? Although it often varies, the definition of Big Data largely refers to the following types of data: Traditional Enterprise Data – includes customer information from CRM systems, transactional ERP data, web store transactions, and general ledger data. Machine-Generated /Sensor Data – includes Call Detail Records (“CDR”), weblogs and trading systems data. Social Data – includes customer feedback streams, micro-blogging sites like Twitter, and social media platforms like Facebook. The McKinsey Global Institute estimates that data volume is growing 40% per year, and will grow 44x between 2009 and 2020. But while it’s often the most visible parameter, volume of data is not the only characteristic that matters. In fact, according to sources such as Forrester there are four key characteristics that define big data: Volume. Machine-generated data is produced in much larger quantities than non-traditional data. This is all the data generated by IT systems that power the enterprise. This includes live data from packaged and custom applications – for example, app servers, Web servers, databases, networks, virtual machines, telecom equipment, and much more. Velocity. Social media data streams – while not as massive as machine-generated data – produce a large influx of opinions and relationships valuable to customer relationship management as well as offering early insight into potential reputational risk issues. Even at 140 characters per tweet, the high velocity (or frequency) of Twitter data ensures large volumes (over 8 TB per day) need to be managed. Variety. Traditional data formats tend to be relatively well defined by a data schema and change slowly. In contrast, non-traditional data formats exhibit a dizzying rate of change. Without question, all GRC professionals work in a dynamic environment and as new services, new products, new business lines are added or new marketing campaigns executed for example, new data types are needed to capture the resultant information.  Value. The economic value of data varies significantly. Typically, there is good information hidden amongst a larger body of non-traditional data that GRC professionals can use to add real value to the organisation; the greater challenge is identifying what is valuable and then transforming and extracting that data for analysis and action. For example, customer service calls and emails have millions of useful data points and have long been a source of information to GRC professionals. Those calls and emails are critical in helping GRC professionals better identify hidden patterns and implement new policies that can reduce the amount of customer complaints.   Now on a scale and depth far beyond those in place today, all that unstructured call and email data can be captured, stored and analyzed to reveal the reasons for the contact, perhaps with the aggregated customer results cross referenced against what is being said about the organization or a similar peer organization on social media. The organization can then take positive actions, communicating to the market in advance of issues reaching the press, strengthening controls, adjusting risk profiles, changing policy and procedures and completely minimizing, if not eliminating, complaints and compensation for that specific reason in the future. In this one example of many similar ones, the GRC team(s) has demonstrated real and tangible business value. Big Challenges - Big Opportunities As pointed out by recent Forrester research, high performing companies (those that are growing 15% or more year-on-year compared to their peers) are taking a selective approach to investing in Big Data.  "Tomorrow's winners understand this, and they are making selective investments aimed at specific opportunities with tangible benefits where big data offers a more economical solution to meet a need." (Forrsights Strategy Spotlight: Business Intelligence and Big Data, Q4 2012) As pointed out earlier, with the ever increasing volume of regulatory demands and fines for getting it wrong, limited resource availability and out of date or inadequate GRC systems all contributing to a higher cost of compliance and/or higher risk profile than desired – a big data investment in GRC clearly falls into this category. However, to make the most of big data organizations must evolve both their business and IT procedures, processes, people and infrastructures to handle these new high-volume, high-velocity, high-variety sources of data and be able integrate them with the pre-existing company data to be analyzed. GRC big data clearly allows the organization access to and management over a huge amount of often very sensitive information that although can help create a more risk intelligent organization, also presents numerous data governance challenges, including regulatory compliance and information security. In addition to client and regulatory demands over better information security and data protection the sheer amount of information organizations deal with the need to quickly access, classify, protect and manage that information can quickly become a key issue  from a legal, as well as technical or operational standpoint. However, by making information governance processes a bigger part of everyday operations, organizations can make sure data remains readily available and protected. The Right GRC & Big Data Partnership Becomes Key  The "getting it right first time" mantra used in so many companies remains essential for any GRC team that is sponsoring, helping kick start, or even overseeing a big data project. To make a big data GRC initiative work and get the desired value, partnerships with companies, who have a long history of success in delivering successful GRC solutions as well as being at the very forefront of technology innovation, becomes key. Clearly solutions can be built in-house more cheaply than through vendor, but as has been proven time and time again, when it comes to self built solutions covering AML and Fraud for example, few have able to scale or adapt appropriately to meet the changing regulations or challenges that the GRC teams face on a daily basis. This has led to the creation of GRC silo’s that are causing so many headaches today. The solutions that stand out and should be explored are the ones that can seamlessly merge the traditional world of well-known data, analytics and visualization with the new world of seemingly innumerable data sources, utilizing Big Data technologies to generate new GRC insights right across the enterprise.Ultimately, Big Data is here to stay, and organizations that embrace its potential and outline a viable strategy, as well as understand and build a solid analytical foundation, will be the ones that are well positioned to make the most of it. A Blueprint and Roadmap Service for Big Data Big data adoption is first and foremost a business decision. As such it is essential that your partner can align your strategies, goals, and objectives with an architecture vision and roadmap to accelerate adoption of big data for your environment, as well as establish practical, effective governance that will maintain a well managed environment going forward. Key Activities: While your initiatives will clearly vary, there are some generic starting points the team and organization will need to complete: Clearly define your drivers, strategies, goals, objectives and requirements as it relates to big data Conduct a big data readiness and Information Architecture maturity assessment Develop future state big data architecture, including views across all relevant architecture domains; business, applications, information, and technology Provide initial guidance on big data candidate selection for migrations or implementation Develop a strategic roadmap and implementation plan that reflects a prioritization of initiatives based on business impact and technology dependency, and an incremental integration approach for evolving your current state to the target future state in a manner that represents the least amount of risk and impact of change on the business Provide recommendations for practical, effective Data Governance, Data Quality Management, and Information Lifecycle Management to maintain a well-managed environment Conduct an executive workshop with recommendations and next steps There is little debate that managing risk and data are the two biggest obstacles encountered by financial institutions.  Big data is here to stay and risk management certainly is not going anywhere, and ultimately financial services industry organizations that embrace its potential and outline a viable strategy, as well as understand and build a solid analytical foundation, will be best positioned to make the most of it. Matthew Long is a Financial Crime Specialist for Oracle Financial Services. He can be reached at matthew.long AT oracle.com.

    Read the article

  • can't run sqldeveloper on Ubuntu

    - by nazar_art
    I tried to install sqldeveloper by following way: Download SQL Developer from Oracle website (I chose Other Platforms download). Extract file to /opt: sudo unzip sqldeveloper-*-no-jre.zip -d /opt/ sudo chmod +x /opt/sqldeveloper/sqldeveloper.sh Linking over an in-path launcher for Oracle SQL Developer: sudo ln -s /opt/sqldeveloper/sqldeveloper.sh /usr/local/bin/sqldeveloper Edit /usr/local/bin/sqldeveloper.sh replace it's content to: #!/bin/bash cd /opt/sqldeveloper/sqldeveloper/bin ./sqldeveloper "$@" Run SQL Developer: sqldeveloper But it shows next output: nazar@lelyak-desktop:/opt/sqldeveloper? ./sqldeveloper.sh Oracle SQL Developer Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. LOAD TIME : 401# # A fatal error has been detected by the Java Runtime Environment: # # SIGSEGV (0xb) at pc=0x00007f3b2dcacbe0, pid=20351, tid=139892273444608 # # JRE version: Java(TM) SE Runtime Environment (7.0_65-b17) (build 1.7.0_65-b17) # Java VM: Java HotSpot(TM) 64-Bit Server VM (24.65-b04 mixed mode linux-amd64 compressed oops) # Problematic frame: # C 0x00007f3b2dcacbe0 # # Core dump written. Default location: /opt/sqldeveloper/sqldeveloper/bin/core or core.20351 # # An error report file with more information is saved as: # /tmp/hs_err_pid20351.log # # If you would like to submit a bug report, please visit: # http://bugreport.sun.com/bugreport/crash.jsp # /opt/sqldeveloper/sqldeveloper/bin/../../ide/bin/launcher.sh: line 1193: 20351 Aborted (core dumped) ${JAVA} "${APP_VM_OPTS[@]}" ${APP_ENV_VARS} -classpath ${APP_CLASSPATH} ${APP_MAIN_CLASS} "${APP_APP_OPTS[@]}" 134 nazar@lelyak-desktop:/opt/sqldeveloper? java -version java version "1.7.0_65" Java(TM) SE Runtime Environment (build 1.7.0_65-b17) Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode) Here is content of /tmp/hs_err_pid20351.log How to solve this trouble?

    Read the article

  • Annotation Processing Virtual Mini-Track at JavaOne 2012

    - by darcy
    Putting together the list of JavaOne talks I'm interested in attending, I noticed there is a virtual mini-track on annotation processing and related technology this year, with a combination of bofs, sessions, and a hands-on-lab: Monday Multidevice Content Display and a Smart Use of Annotation Processing, Dimitri BAELI and Gilles Di Guglielmo Tuesday Advanced Annotation Processing with JSR 269, Jaroslav Tulach Build Your Own Type System for Fun and Profit, Werner Dietl and Michael Ernst Wednesday Annotations and Annotation Processing: What’s New in JDK 8?, Joel Borggrén-Franck Thursday Hack into Your Compiler!, Jaroslav Tulach Writing Annotation Processors to Aid Your Development Process, Ian Robertson As the lead engineer on bot apt (rest in peace) in JDK 5 and JSR 269 in JDK 6, I'd be heartened to see greater adoption and use of annotation processing by Java developers.

    Read the article

  • How can I save state from script in a multithreaded engine?

    - by Peter Ren
    We are building a multithreaded game engine and we've encountered some problems as described below. The engine have 3 threads in total: script, render, and audio. Each frame, we update these 3 threads simultaneously. As these threads updating themselves, they produce some tasks and put them into a public storage area. As all the threads finish their update, each thread go and copy the tasks for themselves one by one. After all the threads finish their task copying, we make the threads process those tasks and update these threads simultaneously as described before. So this is the general idea of the task schedule part of our engine. Ok, well, all the task schedule part work well, but here's the problem: For the simplest, I'll take Camera as an example: local oldPos = camera:getPosition() -- ( 0, 0, 0 ) camera:setPosition( 1, 1, 1 ) -- Won't work now, cuz the render thread will process the task at the beginning of the next frame local newPos = camera:getPosition() -- Still ( 0, 0, 0 ) So that's the problem: If you intend to change a property of an object in another thread, you have to wait until that thread process this property-changing message. As a result, what you get from the object is still the information in the last frame. So, is there a way to solve this problem? Or are we build the task schedule part in a wrong way? Thanks for your answers :)

    Read the article

  • Compute the AES-encryption key given the plaintext and its ciphertext?

    - by Null Pointers etc.
    I'm tasked with creating database tables in Oracle which contain encrypted strings (i.e., the columns are RAW). The strings are encrypted by the application (using AES, 128-bit key) and stored in Oracle, then later retrieved from Oracle and decrypted (i.e., Oracle itself never sees the unencrypted strings). I've come across this one column that will be one of two strings. I'm worried that someone will notice and presumably figure out what those two values to figure out the AES key. For example, if someone sees that the column is either Ciphertext #1 or #2: Ciphertext #1: BF,4F,8B,FE, 60,D8,33,56, 1B,F2,35,72, 49,20,DE,C6. Ciphertext #2: BC,E8,54,BD, F4,B3,36,3B, DD,70,76,45, 29,28,50,07. and knows the corresponding Plaintexts: Plaintext #1 ("Detroit"): 44,00,65,00, 74,00,72,00, 6F,00,69,00, 74,00,00,00. Plaintext #2 ("Chicago"): 43,00,68,00, 69,00,63,00, 61,00,67,00, 6F,00,00,00. can he deduce that the encryption key is "Buffalo"? 42,00,75,00, 66,00,66,00, 61,00,6C,00, 6F,00,00,00. I'm thinking that there should be only one 128-bit key that could convert Plaintext #1 to Ciphertext #1. Does this mean I should go to a 192-bit or 256-bit key instead, or find some other solution? (As an aside, here are two other ciphertexts for the same plaintexts but with a different key.) Ciphertext #1 A ("Detroit"): E4,28,29,E3, 6E,C2,64,FA, A1,F4,F4,96, FC,18,4A,C5. Ciphertext #2 A ("Chicago"): EA,87,30,F0, AC,44,5D,ED, FD,EB,A8,79, 83,59,53,B7.

    Read the article

  • New "delay" keyword for JavaScript

    - by Van Coding
    I had a great idea for a new javascript keyword "delay", but I don't know what I can do to bring it to the new specification. Also I want to know what you guys think about it and if it's even realistic. What does the delay keyword ? The delay keyword does nothing more than stop the execution of the current stack and immediately continues to the next "job" in the queue. But that's not all! Instead of discarding the stack, it adds it to the end of the queue. After all "jobs" before it are done, the stack continues to execute. What is it good for? delay could help make blocking code non-blocking while it still looks like synchronous code. A short example: setTimeout(function(){ console.log("two"); },0); console.log("one"); delay; //since there is currently another task in the queue, do this task first before continuing console.log("three"); //Outputs: one, two, three This simple keyword would allow us to create a synchronous-looking code wich is asynchronous behind the scenes. Using node.js modules, for example, would no longer be impossible to use in the browser without trickery. There would be so many possibilites with such a keyword! Is this pattern useful? What can I do to bring this into the new ECMAscript specification? Note: I asked this previously on Stack Overflow, where it was closed.

    Read the article

  • How to manage drawing loop when changing render targets

    - by George Duckett
    I'm managing my game state by having a base GameScreen class with a Draw method. I then have (basically) a stack of GameScreens that I render. I render the bottom one first, as screens above might not completely cover the ones below. I now have a problem where one GameScreen changes render targets while doing its rendering. Anything the previous screens have drawn to the backbuffer is lost (as XNA emulates what happens on the xbox). I don't want to just set the backbuffer to preserve its contents as I want this to work on the xbox as well as PC. How should I manage this problem? A few ideas I've had: Render every GameScreen to its own render target, then render them all to the backbuffer. Create some kind of RenderAction queue where a game screen (and anything else I guess) could queue something to be rendered to the back buffer. They'd render whatever they wanted to any render target as normal, but if they wanted to render to the backbuffer they'd stick that in a queue which would get processed once all rendertarget rendering was done. Abstract away from render targets and backbuffers and have some way of representing the way graphics flows and transforms between render targets and have something manage/work out the correct rendering order (and render targets) given what rendering process needs as input and what it produces as output. I think each of my ideas have pros and cons and there are probably several other ways of approaching this general problem so I'm interested in finding out what solutions are out there.

    Read the article

  • Java ME Tech Holiday Gift Idea #3: Kindle Touch Wi-Fi

    - by hinkmond
    Here's a Java ME tech-enabled device holiday gift idea: The venerable Amazon Kindle Touch with built-in Wi-Fi. Niiiice! See: Java ME Tech Gift Idea #3 Here's a quote: + Most-advanced E Ink display, now with multi-touch + New sleek design - 8% lighter, 11% smaller, holds 3,000 books + Only e-reader with text-to-speech, audiobooks and mp3 support + Built in Wi-Fi - Get books in 60 seconds If you want to give someone special a cool device, you want to give something with Java ME technology. Give only the best this holiday season! Hinkmond

    Read the article

  • 12c - Invisible Columns...

    - by noreply(at)blogger.com (Thomas Kyte)
    Remember when 11g first came out and we had "invisible indexes"?  It seemed like a confusing feature - indexes that would be maintained by modifications (hence slowing them down), but would not be used by queries (hence never speeding them up).  But - after you looked at them a while, you could see how they can be useful.  For example - to add an index in a running production system, an index used by the next version of the code to be introduced later that week - but not tested against the queries in version one of the application in place now.  We all know that when you add an index - one of three things can happen - a given query will go much faster, it won't affect a given query at all, or... It will make some untested query go much much slower than it used to.  So - invisible indexes allowed us to modify the schema in a 'safe' manner - hiding the change until we were ready for it.Invisible columns accomplish the same thing - the ability to introduce a change while minimizing any negative side effects of that change.  Normally when you add a column to a table - any program with a SELECT * would start seeing that column, and programs with an INSERT INTO T VALUES (...) would pretty much immediately break (an INSERT without a list of columns in it).  Now we can add a column to a table in an invisible fashion, the column will not show up in a DESCRIBE command in SQL*Plus, it will not be returned with a SELECT *, it will not be considered in an INSERT INTO T VALUES statement.  It can be accessed by any query that asks for it, it can be populated by an INSERT statement that references it, but you won't see it otherwise.For example, let's start with a simple two column table:ops$tkyte%ORA12CR1> create table t  2  ( x int,  3    y int  4  )  5  /Table created.ops$tkyte%ORA12CR1> insert into t values ( 1, 2 );1 row created.Now, we will add an invisible column to it:ops$tkyte%ORA12CR1> alter table t add                     ( z int INVISIBLE );Table altered.Notice that a DESCRIBE will not show us this column:ops$tkyte%ORA12CR1> desc t Name              Null?    Type ----------------- -------- ------------ X                          NUMBER(38) Y                          NUMBER(38)and existing inserts are unaffected by it:ops$tkyte%ORA12CR1> insert into t values ( 3, 4 );1 row created.A SELECT * won't see it either:ops$tkyte%ORA12CR1> select * from t;         X          Y---------- ----------         1          2         3          4But we have full access to it (in well written programs! The ones that use a column list in the insert and select - never relying on "defaults":ops$tkyte%ORA12CR1> insert into t (x,y,z)                         values ( 5,6,7 );1 row created.ops$tkyte%ORA12CR1> select x, y, z from t;         X          Y          Z---------- ---------- ----------         1          2         3          4         5          6          7and when we are sure that we are ready to go with this column, we can just modify it:ops$tkyte%ORA12CR1> alter table t modify z visible;Table altered.ops$tkyte%ORA12CR1> select * from t;         X          Y          Z---------- ---------- ----------         1          2         3          4         5          6          7I will say that a better approach to this - one that is available in 11gR2 and above - would be to use editioning views (part of Edition Based Redefinition - EBR ).  I would rather use EBR over this approach, but in an environment where EBR is not being used, or the editioning views are not in place, this will achieve much the same.Read these for information on EBR:http://www.oracle.com/technetwork/issue-archive/2010/10-jan/o10asktom-172777.htmlhttp://www.oracle.com/technetwork/issue-archive/2010/10-mar/o20asktom-098897.htmlhttp://www.oracle.com/technetwork/issue-archive/2010/10-may/o30asktom-082672.html

    Read the article

  • Skynet Big Data Demo Using Hexbug Spider Robot, Raspberry Pi, and Java SE Embedded (Part 4)

    - by hinkmond
    Here's the first sign of life of a Hexbug Spider Robot converted to become a Skynet Big Data model T-1. Yes, this is T-1 the precursor to the Cyberdyne Systems T-101 (and you know where that will lead to...) It is demonstrating a heartbeat using a simple Java SE Embedded program to drive it. See: Skynet Model T-1 Heartbeat It's alive!!! Well, almost alive. At least there's a pulse. We'll program more to its actions next, and then finally connect it to Skynet Big Data to do more advanced stuff, like hunt for Sara Connor. Java SE Embedded programming makes it simple to create the first model in the long line of T-XXX robots to take on the world. Raspberry Pi makes connecting it all together on one simple device, easy. Next post, I'll show how the wires are connected to drive the T-1 robot. Hinkmond

    Read the article

  • What will be the better way for data retrieval on application that needs to handle limited amount of data?

    - by Milanix
    Just moved this question from Stack Overflow. Since, adding my code snippets itself would make this question really long. Instead, I am pretty interested in knowing a better ways for data retrieval on application that needs to handle limited amount of data which isn't updated regularly. Let's take this example: I am writing an application which gets a schedule as an XML from server. I have written a logic in order to parse XML version and update database only if the version is newer than the local version. Although the update is checked automatically/manually on daily basis based on user preference, the actual version update happens only once per few months or so. Since, this is done by some other authority which doesn't provide API but, rather inform publicly on their changes. The actual XML contains a "(n number of groups)(days in a week) (n number of schedule)" . The group is usually 6 and the number of schedule is usually 2. So basically there would usually be only around 100 strings. Now although I have used SQLite at the moment. I want to know how to make update on database. Should I show progress dialog that the application is updating and exit the app when it's done? Since, my updates are infrequent i don't think this will really harm user experience but, is there any better ways to do it? Because I don't want update to be made when user is searching which is done using database. This will cause an database already open exception. At least I have faced this problem before. Is it better to rather parse XML every time when user wants to view certain things or to use SQLite? Since, I make lots of use of adapter in my app to create lists, will that degrade the performance?

    Read the article

  • Using ConcurrentQueue for thread-safe Performance Bookkeeping.

    - by Strenium
    Just a small tidbit that's sprung up today. I had to book-keep and emit diagnostics for the average thread performance in a highly-threaded code over a period of last X number of calls and no more. Need of the day: a thread-safe, self-managing stats container. Since .NET 4.0 introduced new thread-safe 'Collections.Concurrent' objects and I've been using them frequently - the one in particular seemed like a good fit for storing each threads' performance data - ConcurrentQueue. But I wanted to store only the most recent X# of calls and since the ConcurrentQueue currently does not support size constraint I had to come up with my own generic version which attempts to restrict usage to numeric types only: unfortunately there is no IArithmetic-like interface which constrains to only numeric types – so the constraints here here aren't as elegant as they could be. (Note the use of the Average() method, of course you can use others as well as make your own).   FIFO FixedSizedConcurrentQueue using System;using System.Collections.Concurrent;using System.Linq; namespace xxxxx.Data.Infrastructure{    [Serializable]    public class FixedSizedConcurrentQueue<T> where T : struct, IConvertible, IComparable<T>    {        private FixedSizedConcurrentQueue() { }         public FixedSizedConcurrentQueue(ConcurrentQueue<T> queue)        {            _queue = queue;        }         ConcurrentQueue<T> _queue = new ConcurrentQueue<T>();         public int Size { get { return _queue.Count; } }        public double Average { get { return _queue.Average(arg => Convert.ToInt32(arg)); } }         public int Limit { get; set; }        public void Enqueue(T obj)        {            _queue.Enqueue(obj);            lock (this)            {                T @out;                while (_queue.Count > Limit) _queue.TryDequeue(out @out);            }        }    } }   The usage case is straight-forward, in this case I’m using a FIFO queue of maximum size of 200 to store doubles to which I simply Enqueue() the calculated rates: Usage var RateQueue = new FixedSizedConcurrentQueue<double>(new ConcurrentQueue<double>()) { Limit = 200 }; /* greater size == longer history */   That’s about it. Happy coding!

    Read the article

< Previous Page | 586 587 588 589 590 591 592 593 594 595 596 597  | Next Page >