Search Results

Search found 67143 results on 2686 pages for 'complex data types'.

Page 6/2686 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Tellago && Tellago Studios 2010

    - by gsusx
    With 2011 around the corner we, at Tellago and Tellago Studios , we have been spending a lot of times evaluating our successes and failures (yes those too ;)) of 2010 and delineating some of our goals and strategies for 2011. When I look at 2010 here are some of the things that quickly jump off the page: Growing Tellago by 300% Launching a brand new company: Tellago Studios Expanding our customer base Establishing our business intelligence practice http://tellago.com/what-we-say/events/business-intelligence...(read more)

    Read the article

  • A separate solution for types, etc?

    - by hayer
    I'm currently in progress updating some engine-code(which does not work, so it is more like creating a engine). I've decided to swap over to SFML(instead of my own crappy renderer, window manager, and audio), Box2d(since I need physics, but have none), and some small utils I've built myself. The problem is that each of the project mentioned over use different types for things like Vector2, etc. So to the question; Is it a good idea to replace box2d and SFML vectors with my own vector class? (Which is one of my better implementations) My idea then was to have a seperate .lib with all my classes that should be shared between all the projects in the solution.

    Read the article

  • Java: over-typed structures? To have many types in Object[]?

    - by HH
    Term over-type structure = a data structure that accepts different types, can be primitive or user-defined. I think ruby supports many types in structures such as tables. I tried a table with types 'String', 'char' and 'File' in Java but errs. How can I have over-typed structure in Java? How to show types in declaration? What about in initilization? Suppose a structure: INDEX VAR FILETYPE //0 -> file FILE //1 -> lineMap SizeSequence //2 -> type char //3 -> binary boolean //4 -> name String //5 -> path String Code import java.io.*; import java.util.*; public class Object { public static void print(char a) { System.out.println(a); } public static void print(String s) { System.out.println(s); } public static void main(String[] args) { Object[] d = new Object[6]; d[0] = new File("."); d[2] = 'T'; d[4] = "."; print(d[2]); print(d[4]); } } Errors Object.java:18: incompatible types found : java.io.File required: Object d[0] = new File("."); ^ Object.java:19: incompatible types found : char required: Object d[2] = 'T'; ^

    Read the article

  • Data Security Through Structure, Procedures, Policies, and Governance

    Security Structure and Procedures One of the easiest ways to implement security is through the use of structure, in particular the structure in which data is stored. The preferred method for this through the use of User Roles, these Roles allow for specific access to be granted based on what role a user plays in relation to the data that they are manipulating. Typical data access actions are defined by the CRUD Principle. CRUD Principle: Create New Data Read Existing Data Update Existing Data Delete Existing Data Based on the actions assigned to a role assigned, User can manipulate data as they need to preform daily business operations.  An example of this can be seen in a hospital where doctors have been assigned Create, Read, Update, and Delete access to their patient’s prescriptions so that a doctor can prescribe and adjust any existing prescriptions as necessary. However, a nurse will only have Read access on the patient’s prescriptions so that they will know what medicines to give to the patients. If you notice, they do not have access to prescribe new prescriptions, update or delete existing prescriptions because only the patient’s doctor has access to preform those actions. With User Roles comes responsibility, companies need to constantly monitor data access to ensure that the proper roles have the most appropriate access levels to ensure users are not exposed to inappropriate data.  In addition this also protects rouge employees from gaining access to critical business information that could be destroyed, altered or stolen. It is important that all data access is monitored because of this threat. Security Governance Current Data Governance laws regarding security Health Insurance Portability and Accountability Act (HIPAA) Sarbanes-Oxley Act Database Breach Notification Act The US Department of Health and Human Services defines HIIPAA as a Privacy Rule. This legislation protects the privacy of individually identifiable health information. Currently, HIPAA   sets the national standards for securing electronically protected health records. Additionally, its confidentiality provisions protect identifiable information being used to analyze patient safety events and improve patient safety. In 2002 after the wake of the Enron and World Com Financial scandals Senator Paul Sarbanes and Representative Michael Oxley lead the creation of the Sarbanes-Oxley Act. This act administered by the Securities and Exchange Commission (SEC) dramatically altered corporate financial practices and data governance. In addition, it also set specific deadlines for compliance. The Sarbanes-Oxley is not a set of standard business rules and does not specify how a company should retain its records; In fact, this act outlines which pieces of data are to be stored as well as the storage duration. The Database Breach Notification Act requires companies, in the event of a data breach containing personally identifiable information, to notify all California residents whose information was stored on the compromised system at the time of the event, according to Gregory Manter. He further explains that this act is only California legislation. However, it does affect “any person or business that conducts business in California, and that owns or licenses computerized data that includes personal information,” regardless of where the compromised data is located.  This will force any business that maintains at least limited interactions with California residents will find themselves subject to the Act’s provisions. Security Policies All companies must work in accordance with the appropriate city, county, state, and federal laws. One way to ensure that a company is legally compliant is to enforce security policies that adhere to the appropriate legislation in their area or areas that they service. These types of polices need to be mandated by a company’s Security Officer. For smaller companies, these policies need to come from executives, Directors, and Owners.

    Read the article

  • Excel Help: Data Input Help

    - by B-Ballerl
    Everyday I download data from a site that will have rows each filled with individual data for clients. I'm able to input the data into excel as a whole but after that I'm having trouble figuring out how to put it into a chart. For example Web visits time. So say Client 1 stayed for 5 min increasing his total time on the site to 20 min and Client 2 stayed for 0 min keeping his time of 10 min and they were both registered on new years eve, and R1's last login was today and R2's was yesterday. (R for some reason repersents Client, no idea why...). Client 3 hasn't been on since he registered keeping his total at 4 min So my data would look something like this for Today (20110104) R1,20101231,20110104,20 R2,20101231,20110103,10 R3,20101231,20101231,4 And this for the day before (201101030), R1,20101231,20110102,15 R2,20101231,20110103,10 R3,20101231,20101231,4 I get about 200+ client rows each day where even the names of the Client list are changing. Is it possible to import the data each day and fill it in a excel sheet where the Client number is off on the left hand side in a table, and the amount of time (Whole Number ex. 4) each day it spends on the site extend to the right under it's specific date see Picture? I've manage to create a manual sheet but have been unsucessful at getting excel to do any of it for me. Here are two pictures:

    Read the article

  • Recover data from hard drive with partitions (but not most data) overwritten

    - by Macha
    I have a 500GB hard drive I've been keeping around to recover data from that I removed from a failing NAS drive that got sort of... erratic at the end. I finally got rid of the NAS when during a firmware update it removed the partition table. Fast forward to a week ago, when I was building a new PC, and a mixup resulted in me placing the hard drive in question in the new PC and installing Windows XP on the first 100GB. I'm presuming any data on that first 100GB is now gone, but for the rest of it, is there any way I can recover it at home, as professional data recovery is currently too expensive? I have a blank 1TB HDD if I can store any images of that hard drive on. The problem was definitely with the NAS and not the hard drive, as the hard drive had a successful install of Windows when mistakenly place in the new PC, and there were capacitors in the NAS's circuitry clearly broken. The data I want to recover (in order of priority) is: High: Some jpgs of family photos. Medium: Some RAW files. (There are also jpg versions of all of these) Low: Some mp3s, avis and ISOs, I can re-rip most of these if need be, but it'd be handy not to have to. (I don't need a backup lecture, and if you can hold it in from nagging Jeff Atwood for it, you can hold it in from nagging me for it) In short: The partition tables are gone and overwritten. The data is not overwritten, except for an amount equal to the size of a Windows XP SP3 installation.

    Read the article

  • Why Oracle Delivers More Value than IBM in Data Integration Solutions

    - by irem.radzik(at)oracle.com
    For data integration projects, IT organization look for a robust but an easy-to-use solution, which simplifies enterprise data architecture while providing exceptional value-- not one that adds complexity and costs. This is a major challenge today for customers who are using IBM InfoSphere products like DataStage or Change Data Capture. Whereas, Oracle consistently delivers higher level value with its data integration products such as Oracle Data Integrator, Oracle GoldenGate. There are many differentiators for Oracle's Data Integration offering in comparison to IBM. Here are the top five: Lower cost of ownership Higher performance in both real-time and bulk data movement Ease of use and flexibility Reliability Complete, Open, and Integrated Middleware Offering Architectural differences between products contribute a great deal to these differences. First of all, Oracle's ETL architecture does not require a middle-tier transformation server, something IBM does require. Not only it costs more to manage an additional transformation server including energy costs, but it adds a performance bottleneck as well. In addition, IBM's data integration products are complex and often require lengthy professional services engagements to integrate. This translates to higher costs and delayed time to market. Then there's the reliability factor. Our customers choose Oracle GoldenGate over IBM's InfoSphere Change Data Capture product because Oracle GoldenGate is designed for mission-critical systems that require guaranteed data delivery and automatic recovery in case of process interruptions. On Thursday we will discuss these key differentiators in detail and provide customer examples that chose Oracle over IBM in data integration projects. Join us on Thursday Feb 10th at 11am PT to learn how Oracle delivers more value than IBM in data integration solutions.

    Read the article

  • Writing cross-platforms Types, Interfaces and Classes/Methods in C++

    - by user827992
    I'm looking for the best solution to write cross-platform software, aka code that I write and that I have to interface with different libraries and platforms each time. What I consider the easiest part, correct me if I'm wrong, is the definition of new types, all I have to do is to write an hpp file with a list of typedefs, I can keep the same names for each new type across the different platforms so my codebase can be shared without any problem. typedefs also helps me to redefine a better scope for my types in my code. I will probably end up having something like this: include |-windows | |-types.hpp |-linux | |-types.hpp |-mac |-types.hpp For the interfaces I'm thinking about the same solution used for the types, a series of hpp files, probably I will write all the interfaces only once since they rely on the types and all "cross-platform portability" is ensured by the work done on the types. include | |-interfaces.hpp | |-windows | |-types.hpp |-linux | |-types.hpp |-mac | |-types.hpp For classes and methods I do not have a real answer, I would like to avoid 2 things: the explicit use of pointers the use of templates I want to avoid the use of the pointers because they can make the code less readable for someone and I want to avoid templates just because if I write them, I can't separate the interface from the definition. What is the best option to hide the use of the pointers? I would also like some words about macros and how to implement some OS-specifics calls and definitions.

    Read the article

  • MooseX::Types declaration issue, tight test case :)

    - by TJ Thompson
    So after an embarrassing amount of time debugging, I've finally stripped this issue ([http://stackoverflow.com/questions/4621589/perl-moose-typedecorator-error-how-do-i-debug][1]) down to a simple test case. I would humbly request some help understanding why it's failing :) Here is the error message I'm getting: plxc16479 $h2/tmp/tmp18.pl This method [new] requires a single argument. at /nfs/pdx/disks/nehalem.pde.077/perl/5.12.2/lib64/site_perl/MooseX/Types/TypeDecorator.pm line 91 MooseX::Types::TypeDecorator::new('MooseX::Types::TypeDecorator=HASH(0x655b90)') called at /nfs/pdx/disks/nehalem.pde.077/projects/lib/Program-Plist-Pl/lib/Program/Plist/Pl.pm line 10 Program::Plist::Pl::BUILD('Program::Plist::Pl=HASH(0x63d478)', 'HASH(0x63d220)') called at generated method (unknown origin) line 29 Program::Plist::Pl::new('Program::Plist::Pl') called at /nfs/pdx/disks/nehalem.pde.077/tmp/tmp18.pl line 10 Wrapper test script: use strict; use warnings; BEGIN {push(@INC, split(':', $ENV{PERL_TEST_LIBS}))}; use Program::Plist::Pl; my $obj = Program::Plist::Pl->new(); Program::Plist::Pl file: package Program::Plist::Pl; use Moose; use namespace::autoclean; use Program::Types qw(Pattern); # <-- Removing this fixes error use Program::Plist::Pl::Pattern; sub BUILD { my $pattern_obj = Program::Plist::Pl::Pattern->new(); } __PACKAGE__->meta->make_immutable; 1; Program::Types file: package Program::Types; use MooseX::Types -declare => [qw(Pattern)]; class_type Pattern, {class => 'Program::Plist::Pl::Pattern'}; 1; And the Program::Plist::Pl::Pattern file: package Program::Plist::Pl::Pattern; use Moose; use namespace::autoclean; __PACKAGE__->meta->make_immutable; 1; Notes: While I don't need the Pattern type from Program::Types in the above code, I do in other code that is stripped out. The PERL_TEST_LIBS env var I'm pulling INC paths from only contains paths to the project modules. There are no other modules loaded from these paths. It appears the MooseX::Types definition for Pattern is causing problems, but I'm not sure why. Documentation shows the syntax I am using, but it's possible I'm misusing class_type as there isn't much said about it. Intent is to be able to use Pattern for type checking via MooseX::Params::Validate to verify the argument is a 'Program::Plist::Pl::Program' object. I've found that removing the intervening class Program::Plist::Pl from the equation by directly calling Pattern-new from the tmp18.pl wrapper results in no error, even when the Program::Types Pattern type is imported.

    Read the article

  • C#/.NET Little Wonders: The Joy of Anonymous Types

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the .NET 3 Framework, Microsoft introduced the concept of anonymous types, which provide a way to create a quick, compiler-generated types at the point of instantiation.  These may seem trivial, but are very handy for concisely creating lightweight, strongly-typed objects containing only read-only properties that can be used within a given scope. Creating an Anonymous Type In short, an anonymous type is a reference type that derives directly from object and is defined by its set of properties base on their names, number, types, and order given at initialization.  In addition to just holding these properties, it is also given appropriate overridden implementations for Equals() and GetHashCode() that take into account all of the properties to correctly perform property comparisons and hashing.  Also overridden is an implementation of ToString() which makes it easy to display the contents of an anonymous type instance in a fairly concise manner. To construct an anonymous type instance, you use basically the same initialization syntax as with a regular type.  So, for example, if we wanted to create an anonymous type to represent a particular point, we could do this: 1: var point = new { X = 13, Y = 7 }; Note the similarity between anonymous type initialization and regular initialization.  The main difference is that the compiler generates the type name and the properties (as readonly) based on the names and order provided, and inferring their types from the expressions they are assigned to. It is key to remember that all of those factors (number, names, types, order of properties) determine the anonymous type.  This is important, because while these two instances share the same anonymous type: 1: // same names, types, and order 2: var point1 = new { X = 13, Y = 7 }; 3: var point2 = new { X = 5, Y = 0 }; These similar ones do not: 1: var point3 = new { Y = 3, X = 5 }; // different order 2: var point4 = new { X = 3, Y = 5.0 }; // different type for Y 3: var point5 = new {MyX = 3, MyY = 5 }; // different names 4: var point6 = new { X = 1, Y = 2, Z = 3 }; // different count Limitations on Property Initialization Expressions The expression for a property in an anonymous type initialization cannot be null (though it can evaluate to null) or an anonymous function.  For example, the following are illegal: 1: // Null can't be used directly. Null reference of what type? 2: var cantUseNull = new { Value = null }; 3:  4: // Anonymous methods cannot be used. 5: var cantUseAnonymousFxn = new { Value = () => Console.WriteLine(“Can’t.”) }; Note that the restriction on null is just that you can’t use it directly as the expression, because otherwise how would it be able to determine the type?  You can, however, use it indirectly assigning a null expression such as a typed variable with the value null, or by casting null to a specific type: 1: string str = null; 2: var fineIndirectly = new { Value = str }; 3: var fineCast = new { Value = (string)null }; All of the examples above name the properties explicitly, but you can also implicitly name properties if they are being set from a property, field, or variable.  In these cases, when a field, property, or variable is used alone, and you don’t specify a property name assigned to it, the new property will have the same name.  For example: 1: int variable = 42; 2:  3: // creates two properties named varriable and Now 4: var implicitProperties = new { variable, DateTime.Now }; Is the same type as: 1: var explicitProperties = new { variable = variable, Now = DateTime.Now }; But this only works if you are using an existing field, variable, or property directly as the expression.  If you use a more complex expression then the name cannot be inferred: 1: // can't infer the name variable from variable * 2, must name explicitly 2: var wontWork = new { variable * 2, DateTime.Now }; In the example above, since we typed variable * 2, it is no longer just a variable and thus we would have to assign the property a name explicitly. ToString() on Anonymous Types One of the more trivial overrides that an anonymous type provides you is a ToString() method that prints the value of the anonymous type instance in much the same format as it was initialized (except actual values instead of expressions as appropriate of course). For example, if you had: 1: var point = new { X = 13, Y = 42 }; And then print it out: 1: Console.WriteLine(point.ToString()); You will get: 1: { X = 13, Y = 42 } While this isn’t necessarily the most stunning feature of anonymous types, it can be handy for debugging or logging values in a fairly easy to read format. Comparing Anonymous Type Instances Because anonymous types automatically create appropriate overrides of Equals() and GetHashCode() based on the underlying properties, we can reliably compare two instances or get hash codes.  For example, if we had the following 3 points: 1: var point1 = new { X = 1, Y = 2 }; 2: var point2 = new { X = 1, Y = 2 }; 3: var point3 = new { Y = 2, X = 1 }; If we compare point1 and point2 we’ll see that Equals() returns true because they overridden version of Equals() sees that the types are the same (same number, names, types, and order of properties) and that the values are the same.   In addition, because all equal objects should have the same hash code, we’ll see that the hash codes evaluate to the same as well: 1: // true, same type, same values 2: Console.WriteLine(point1.Equals(point2)); 3:  4: // true, equal anonymous type instances always have same hash code 5: Console.WriteLine(point1.GetHashCode() == point2.GetHashCode()); However, if we compare point2 and point3 we get false.  Even though the names, types, and values of the properties are the same, the order is not, thus they are two different types and cannot be compared (and thus return false).  And, since they are not equal objects (even though they have the same value) there is a good chance their hash codes are different as well (though not guaranteed): 1: // false, different types 2: Console.WriteLine(point2.Equals(point3)); 3:  4: // quite possibly false (was false on my machine) 5: Console.WriteLine(point2.GetHashCode() == point3.GetHashCode()); Using Anonymous Types Now that we’ve created instances of anonymous types, let’s actually use them.  The property names (whether implicit or explicit) are used to access the individual properties of the anonymous type.  The main thing, once again, to keep in mind is that the properties are readonly, so you cannot assign the properties a new value (note: this does not mean that instances referred to by a property are immutable – for more information check out C#/.NET Fundamentals: Returning Data Immutably in a Mutable World). Thus, if we have the following anonymous type instance: 1: var point = new { X = 13, Y = 42 }; We can get the properties as you’d expect: 1: Console.WriteLine(“The point is: ({0},{1})”, point.X, point.Y); But we cannot alter the property values: 1: // compiler error, properties are readonly 2: point.X = 99; Further, since the anonymous type name is only known by the compiler, there is no easy way to pass anonymous type instances outside of a given scope.  The only real choices are to pass them as object or dynamic.  But really that is not the intention of using anonymous types.  If you find yourself needing to pass an anonymous type outside of a given scope, you should really consider making a POCO (Plain Old CLR Type – i.e. a class that contains just properties to hold data with little/no business logic) instead. Given that, why use them at all?  Couldn’t you always just create a POCO to represent every anonymous type you needed?  Sure you could, but then you might litter your solution with many small POCO classes that have very localized uses. It turns out this is the key to when to use anonymous types to your advantage: when you just need a lightweight type in a local context to store intermediate results, consider an anonymous type – but when that result is more long-lived and used outside of the current scope, consider a POCO instead. So what do we mean by intermediate results in a local context?  Well, a classic example would be filtering down results from a LINQ expression.  For example, let’s say we had a List<Transaction>, where Transaction is defined something like: 1: public class Transaction 2: { 3: public string UserId { get; set; } 4: public DateTime At { get; set; } 5: public decimal Amount { get; set; } 6: // … 7: } And let’s say we had this data in our List<Transaction>: 1: var transactions = new List<Transaction> 2: { 3: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = 2200.00m }, 4: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = -1100.00m }, 5: new Transaction { UserId = "Jim", At = DateTime.Now.AddDays(-1), Amount = 900.00m }, 6: new Transaction { UserId = "John", At = DateTime.Now.AddDays(-2), Amount = 300.00m }, 7: new Transaction { UserId = "John", At = DateTime.Now, Amount = -10.00m }, 8: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = 200.00m }, 9: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = -50.00m }, 10: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = -100.00m }, 11: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = 300.00m }, 12: }; So let’s say we wanted to get the transactions for each day for each user.  That is, for each day we’d want to see the transactions each user performed.  We could do this very simply with a nice LINQ expression, without the need of creating any POCOs: 1: // group the transactions based on an anonymous type with properties UserId and Date: 2: byUserAndDay = transactions 3: .GroupBy(tx => new { tx.UserId, tx.At.Date }) 4: .OrderBy(grp => grp.Key.Date) 5: .ThenBy(grp => grp.Key.UserId); Now, those of you who have attempted to use custom classes as a grouping type before (such as GroupBy(), Distinct(), etc.) may have discovered the hard way that LINQ gets a lot of its speed by utilizing not on Equals(), but also GetHashCode() on the type you are grouping by.  Thus, when you use custom types for these purposes, you generally end up having to write custom Equals() and GetHashCode() implementations or you won’t get the results you were expecting (the default implementations of Equals() and GetHashCode() are reference equality and reference identity based respectively). As we said before, it turns out that anonymous types already do these critical overrides for you.  This makes them even more convenient to use!  Instead of creating a small POCO to handle this grouping, and then having to implement a custom Equals() and GetHashCode() every time, we can just take advantage of the fact that anonymous types automatically override these methods with appropriate implementations that take into account the values of all of the properties. Now, we can look at our results: 1: foreach (var group in byUserAndDay) 2: { 3: // the group’s Key is an instance of our anonymous type 4: Console.WriteLine("{0} on {1:MM/dd/yyyy} did:", group.Key.UserId, group.Key.Date); 5:  6: // each grouping contains a sequence of the items. 7: foreach (var tx in group) 8: { 9: Console.WriteLine("\t{0}", tx.Amount); 10: } 11: } And see: 1: Jaime on 06/18/2012 did: 2: -100.00 3: 300.00 4:  5: John on 06/19/2012 did: 6: 300.00 7:  8: Jim on 06/20/2012 did: 9: 900.00 10:  11: Jane on 06/21/2012 did: 12: 200.00 13: -50.00 14:  15: Jim on 06/21/2012 did: 16: 2200.00 17: -1100.00 18:  19: John on 06/21/2012 did: 20: -10.00 Again, sure we could have just built a POCO to do this, given it an appropriate Equals() and GetHashCode() method, but that would have bloated our code with so many extra lines and been more difficult to maintain if the properties change.  Summary Anonymous types are one of those Little Wonders of the .NET language that are perfect at exactly that time when you need a temporary type to hold a set of properties together for an intermediate result.  While they are not very useful beyond the scope in which they are defined, they are excellent in LINQ expressions as a way to create and us intermediary values for further expressions and analysis. Anonymous types are defined by the compiler based on the number, type, names, and order of properties created, and they automatically implement appropriate Equals() and GetHashCode() overrides (as well as ToString()) which makes them ideal for LINQ expressions where you need to create a set of properties to group, evaluate, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,Anonymous Types,LINQ

    Read the article

  • Design for complex ATG applications

    - by Glen Borkowski
    Overview Needless to say, some ATG applications are more complex than others.  Some ATG applications support a single site, single language, single catalog, single currency, have a single development staff, single business team, and a relatively simple business model.  The real complex applications have to support multiple sites, multiple languages, multiple catalogs, multiple currencies, a couple different development teams, multiple business teams, and a highly complex business model (and processes to go along with it).  While it's still important to implement a proper design for simple applications, it's absolutely critical to do this for the complex applications.  Why?  It's all about time and money.  If you are unable to manage your complex applications in an efficient manner, the cost of managing it will increase dramatically as will the time to get things done (time to market).  On the positive side, your competition is most likely in the same situation, so you just need to be more efficient than they are. This article is intended to discuss a number of key areas to think about when designing complex applications on ATG.  Some of this can get fairly technical, so it may help to get some background first.  You can get enough of the required background information from this post.  After reading that, come back here and follow along. Application Design Of all the various types of ATG applications out there, the most complex tend to be the ones in the telecommunications industry - especially the ones which operate in multiple countries.  To get started, let's assume that we are talking about an application like that.  One that has these properties: Operates in multiple countries - must support multiple sites, catalogs, languages, and currencies The organization is fairly loosely-coupled - single brand, but different businesses across different countries There is some common functionality across all sites in all countries There is some common functionality across different sites within the same country Sites within a single country may have some unique functionality - relative to other sites in the same country Complex product catalog (mostly in terms of bundles, eligibility, and compatibility) At this point, I'll assume you have read through the required reading and have a decent understanding of how ATG modules work... Code / configuration - assemble into modules When it comes to defining your modules for a complex application, there are a number of goals: Divide functionality between the modules in a way that maps to your business Group common functionality 'further down in the stack of modules' Provide a good balance between shared resources and autonomy for countries / sites Now I'll describe a high level approach to how you could accomplish those goals...  Let's start from the bottom and work our way up.  At the very bottom, you have the modules that ship with ATG - the 'out of the box' stuff.  You want to make sure that you are leveraging all the modules that make sense in order to get the most value from ATG as possible - and less stuff you'll have to write yourself.  On top of the ATG modules, you should create what we'll refer to as the Corporate Foundation Module described as follows: Sits directly on top of ATG modules Used by all applications across all countries and sites - this is the foundation for everyone Contains everything that is common across all countries / all sites Once established and settled, will change less frequently than other 'higher' modules Encapsulates as many enterprise-wide integrations as possible Will provide means of code sharing therefore less development / testing - faster time to market Contains a 'reference' web application (described below) The next layer up could be multiple modules for each country (you could replace this with region if that makes more sense).  We'll define those modules as follows: Sits on top of the corporate foundation module Contains what is unique to all sites in a given country Responsible for managing any resource bundles for this country (to handle multiple languages) Overrides / replaces corporate integration points with any country-specific ones Finally, we will define what should be a fairly 'thin' (in terms of functionality) set of modules for each site as follows: Sits on top of the country it resides in module Contains what is unique for a given site within a given country Will mostly contain configuration, but could also define some unique functionality as well Contains one or more web applications The graphic below should help to indicate how these modules fit together: Web applications As described in the previous section, there are many opportunities for sharing (minimizing costs) as it relates to the code and configuration aspects of ATG modules.  Web applications are also contained within ATG modules, however, sharing web applications can be a bit more difficult because this is what the end customer actually sees, and since each site may have some degree of unique look & feel, sharing becomes more challenging.  One approach that can help is to define a 'reference' web application at the corporate foundation layer to act as a solid starting point for each site.  Here's a description of the 'reference' web application: Contains minimal / sample reference styling as this will mostly be addressed at the site level web app Focus on functionality - ensure that core functionality is revealed via this web application Each individual site can use this as a starting point There may be multiple types of web apps (i.e. B2C, B2B, etc) There are some techniques to share web application assets - i.e. multiple web applications, defined in the web.xml, and it's worth investigating, but is out of scope here. Reference infrastructure In this complex environment, it is assumed that there is not a single infrastructure for all countries and all sites.  It's more likely that different countries (or regions) could have their own solution for infrastructure.  In this case, it will be advantageous to define a reference infrastructure which contains all the hardware and software that make up the core environment.  Specifications and diagrams should be created to outline what this reference infrastructure looks like, as well as it's baseline cost and the incremental cost to scale up with volume.  Having some consistency in terms of infrastructure will save time and money as new countries / sites come online.  Here are some properties of the reference infrastructure: Standardized approach to setup of hardware Type and number of servers Defines application server, operating system, database, etc... - including vendor and specific versions Consistent naming conventions Provides a consistent base of terminology and understanding across environments Defines which ATG services run on which servers Production Staging BCC / Preview Each site can change as required to meet scale requirements Governance / organization It should be no surprise that the complex application we're talking about is backed by an equally complex organization.  One of the more challenging aspects of efficiently managing a series of complex applications is to ensure the proper level of governance and organization.  Here are some ideas and goals to work towards: Establish a committee to make enterprise-wide decisions that affect all sites Representation should be evenly distributed Should have a clear communication procedure Focus on high level business goals Evaluation of feature / function gaps and how that relates to ATG release schedule / roadmap Determine when to upgrade & ensure value will be realized Determine how to manage various levels of modules Who is responsible for maintaining corporate / country / site layers Determine a procedure for controlling what goes in the corporate foundation module Standardize on source code control, database, hardware, OS versions, J2EE app servers, development procedures, etc only use tested / proven versions - this is something that should be centralized so that every country / site does not have to worry about compatibility between versions Create a innovation team Quickly develop new features, perform proof of concepts All teams can benefit from their findings Summary At this point, it should be clear why the topics above (design, governance, organization, etc) are critical to being able to efficiently manage a complex application.  To summarize, it's all about competitive advantage...  You will need to reduce costs and improve time to market with the goal of providing a better experience for your end customers.  You can reduce cost by reducing development time, time allocated to testing (don't have to test the corporate foundation module over and over again - do it once), and optimizing operations.  With an efficient design, you can improve your time to market and your business will be more flexible  and agile.  Over time, you'll find that you're becoming more focused on offering functionality that is new to the market (creativity) and this will be rewarded - you're now a leader. In addition to the above, you'll realize soft benefits as well.  Your staff will be operating in a culture based on sharing.  You'll want to reward efforts to improve and enhance the foundation as this will benefit everyone.  This culture will inspire innovation, which can only lend itself to your competitive advantage.

    Read the article

  • Big GRC: Turning Data into Actionable GRC Intelligence

    - by Jenna Danko
    While it’s no longer headline news that Governments have carried out large scale data-mining programmes aimed at terrorism detection and identifying other patterns of interest across a wide range of digital data sources, the debate over the ethics and justification over this action, will clearly continue for some time to come. What is becoming clear is that these programmes are a framework for the collation and aggregation of massive amounts of unstructured data and from this, the creation of actionable intelligence from analyses that allowed the analysts to explore and extract a variety of patterns and then direct resources. This data included audio and video chats, phone calls, photographs, e-mails, documents, internet searches, social media posts and mobile phone logs and connections. Although Governance, Risk and Compliance (GRC) professionals are not looking at the implementation of such programmes, there are many similar GRC “Big data” challenges to be faced and potential lessons to be learned from these high profile government programmes that can be applied a lot closer to home. For example, how can GRC professionals collect, manage and analyze an enormous and disparate volume of data to create and manage their own actionable intelligence covering hidden signs and patterns of criminal activity, the early or retrospective, violation of regulations/laws/corporate policies and procedures, emerging risks and weakening controls etc. Not exactly the stuff of James Bond to be sure, but it is certainly more applicable to most GRC professional’s day to day challenges. So what is Big Data and how can it benefit the GRC process? Although it often varies, the definition of Big Data largely refers to the following types of data: Traditional Enterprise Data – includes customer information from CRM systems, transactional ERP data, web store transactions, and general ledger data. Machine-Generated /Sensor Data – includes Call Detail Records (“CDR”), weblogs and trading systems data. Social Data – includes customer feedback streams, micro-blogging sites like Twitter, and social media platforms like Facebook. The McKinsey Global Institute estimates that data volume is growing 40% per year, and will grow 44x between 2009 and 2020. But while it’s often the most visible parameter, volume of data is not the only characteristic that matters. In fact, according to sources such as Forrester there are four key characteristics that define big data: Volume. Machine-generated data is produced in much larger quantities than non-traditional data. This is all the data generated by IT systems that power the enterprise. This includes live data from packaged and custom applications – for example, app servers, Web servers, databases, networks, virtual machines, telecom equipment, and much more. Velocity. Social media data streams – while not as massive as machine-generated data – produce a large influx of opinions and relationships valuable to customer relationship management as well as offering early insight into potential reputational risk issues. Even at 140 characters per tweet, the high velocity (or frequency) of Twitter data ensures large volumes (over 8 TB per day) need to be managed. Variety. Traditional data formats tend to be relatively well defined by a data schema and change slowly. In contrast, non-traditional data formats exhibit a dizzying rate of change. Without question, all GRC professionals work in a dynamic environment and as new services, new products, new business lines are added or new marketing campaigns executed for example, new data types are needed to capture the resultant information.  Value. The economic value of data varies significantly. Typically, there is good information hidden amongst a larger body of non-traditional data that GRC professionals can use to add real value to the organisation; the greater challenge is identifying what is valuable and then transforming and extracting that data for analysis and action. For example, customer service calls and emails have millions of useful data points and have long been a source of information to GRC professionals. Those calls and emails are critical in helping GRC professionals better identify hidden patterns and implement new policies that can reduce the amount of customer complaints.   Now on a scale and depth far beyond those in place today, all that unstructured call and email data can be captured, stored and analyzed to reveal the reasons for the contact, perhaps with the aggregated customer results cross referenced against what is being said about the organization or a similar peer organization on social media. The organization can then take positive actions, communicating to the market in advance of issues reaching the press, strengthening controls, adjusting risk profiles, changing policy and procedures and completely minimizing, if not eliminating, complaints and compensation for that specific reason in the future. In this one example of many similar ones, the GRC team(s) has demonstrated real and tangible business value. Big Challenges - Big Opportunities As pointed out by recent Forrester research, high performing companies (those that are growing 15% or more year-on-year compared to their peers) are taking a selective approach to investing in Big Data.  "Tomorrow's winners understand this, and they are making selective investments aimed at specific opportunities with tangible benefits where big data offers a more economical solution to meet a need." (Forrsights Strategy Spotlight: Business Intelligence and Big Data, Q4 2012) As pointed out earlier, with the ever increasing volume of regulatory demands and fines for getting it wrong, limited resource availability and out of date or inadequate GRC systems all contributing to a higher cost of compliance and/or higher risk profile than desired – a big data investment in GRC clearly falls into this category. However, to make the most of big data organizations must evolve both their business and IT procedures, processes, people and infrastructures to handle these new high-volume, high-velocity, high-variety sources of data and be able integrate them with the pre-existing company data to be analyzed. GRC big data clearly allows the organization access to and management over a huge amount of often very sensitive information that although can help create a more risk intelligent organization, also presents numerous data governance challenges, including regulatory compliance and information security. In addition to client and regulatory demands over better information security and data protection the sheer amount of information organizations deal with the need to quickly access, classify, protect and manage that information can quickly become a key issue  from a legal, as well as technical or operational standpoint. However, by making information governance processes a bigger part of everyday operations, organizations can make sure data remains readily available and protected. The Right GRC & Big Data Partnership Becomes Key  The "getting it right first time" mantra used in so many companies remains essential for any GRC team that is sponsoring, helping kick start, or even overseeing a big data project. To make a big data GRC initiative work and get the desired value, partnerships with companies, who have a long history of success in delivering successful GRC solutions as well as being at the very forefront of technology innovation, becomes key. Clearly solutions can be built in-house more cheaply than through vendor, but as has been proven time and time again, when it comes to self built solutions covering AML and Fraud for example, few have able to scale or adapt appropriately to meet the changing regulations or challenges that the GRC teams face on a daily basis. This has led to the creation of GRC silo’s that are causing so many headaches today. The solutions that stand out and should be explored are the ones that can seamlessly merge the traditional world of well-known data, analytics and visualization with the new world of seemingly innumerable data sources, utilizing Big Data technologies to generate new GRC insights right across the enterprise.Ultimately, Big Data is here to stay, and organizations that embrace its potential and outline a viable strategy, as well as understand and build a solid analytical foundation, will be the ones that are well positioned to make the most of it. A Blueprint and Roadmap Service for Big Data Big data adoption is first and foremost a business decision. As such it is essential that your partner can align your strategies, goals, and objectives with an architecture vision and roadmap to accelerate adoption of big data for your environment, as well as establish practical, effective governance that will maintain a well managed environment going forward. Key Activities: While your initiatives will clearly vary, there are some generic starting points the team and organization will need to complete: Clearly define your drivers, strategies, goals, objectives and requirements as it relates to big data Conduct a big data readiness and Information Architecture maturity assessment Develop future state big data architecture, including views across all relevant architecture domains; business, applications, information, and technology Provide initial guidance on big data candidate selection for migrations or implementation Develop a strategic roadmap and implementation plan that reflects a prioritization of initiatives based on business impact and technology dependency, and an incremental integration approach for evolving your current state to the target future state in a manner that represents the least amount of risk and impact of change on the business Provide recommendations for practical, effective Data Governance, Data Quality Management, and Information Lifecycle Management to maintain a well-managed environment Conduct an executive workshop with recommendations and next steps There is little debate that managing risk and data are the two biggest obstacles encountered by financial institutions.  Big data is here to stay and risk management certainly is not going anywhere, and ultimately financial services industry organizations that embrace its potential and outline a viable strategy, as well as understand and build a solid analytical foundation, will be best positioned to make the most of it. Matthew Long is a Financial Crime Specialist for Oracle Financial Services. He can be reached at matthew.long AT oracle.com.

    Read the article

  • Introducing Data Annotations Extensions

    - by srkirkland
    Validation of user input is integral to building a modern web application, and ASP.NET MVC offers us a way to enforce business rules on both the client and server using Model Validation.  The recent release of ASP.NET MVC 3 has improved these offerings on the client side by introducing an unobtrusive validation library built on top of jquery.validation.  Out of the box MVC comes with support for Data Annotations (that is, System.ComponentModel.DataAnnotations) and can be extended to support other frameworks.  Data Annotations Validation is becoming more popular and is being baked in to many other Microsoft offerings, including Entity Framework, though with MVC it only contains four validators: Range, Required, StringLength and Regular Expression.  The Data Annotations Extensions project attempts to augment these validators with additional attributes while maintaining the clean integration Data Annotations provides. A Quick Word About Data Annotations Extensions The Data Annotations Extensions project can be found at http://dataannotationsextensions.org/, and currently provides 11 additional validation attributes (ex: Email, EqualTo, Min/Max) on top of Data Annotations’ original 4.  You can find a current list of the validation attributes on the afore mentioned website. The core library provides server-side validation attributes that can be used in any .NET 4.0 project (no MVC dependency). There is also an easily pluggable client-side validation library which can be used in ASP.NET MVC 3 projects using unobtrusive jquery validation (only MVC3 included javascript files are required). On to the Preview Let’s say you had the following “Customer” domain model (or view model, depending on your project structure) in an MVC 3 project: public class Customer { public string Email { get; set; } public int Age { get; set; } public string ProfilePictureLocation { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When it comes time to create/edit this Customer, you will probably have a CustomerController and a simple form that just uses one of the Html.EditorFor() methods that the ASP.NET MVC tooling generates for you (or you can write yourself).  It should look something like this: With no validation, the customer can enter nonsense for an email address, and then can even report their age as a negative number!  With the built-in Data Annotations validation, I could do a bit better by adding a Range to the age, adding a RegularExpression for email (yuck!), and adding some required attributes.  However, I’d still be able to report my age as 10.75 years old, and my profile picture could still be any string.  Let’s use Data Annotations along with this project, Data Annotations Extensions, and see what we can get: public class Customer { [Email] [Required] public string Email { get; set; }   [Integer] [Min(1, ErrorMessage="Unless you are benjamin button you are lying.")] [Required] public int Age { get; set; }   [FileExtensions("png|jpg|jpeg|gif")] public string ProfilePictureLocation { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now let’s try to put in some invalid values and see what happens: That is very nice validation, all done on the client side (will also be validated on the server).  Also, the Customer class validation attributes are very easy to read and understand. Another bonus: Since Data Annotations Extensions can integrate with MVC 3’s unobtrusive validation, no additional scripts are required! Now that we’ve seen our target, let’s take a look at how to get there within a new MVC 3 project. Adding Data Annotations Extensions To Your Project First we will File->New Project and create an ASP.NET MVC 3 project.  I am going to use Razor for these examples, but any view engine can be used in practice.  Now go into the NuGet Extension Manager (right click on references and select add Library Package Reference) and search for “DataAnnotationsExtensions.”  You should see the following two packages: The first package is for server-side validation scenarios, but since we are using MVC 3 and would like comprehensive sever and client validation support, click on the DataAnnotationsExtensions.MVC3 project and then click Install.  This will install the Data Annotations Extensions server and client validation DLLs along with David Ebbo’s web activator (which enables the validation attributes to be registered with MVC 3). Now that Data Annotations Extensions is installed you have all you need to start doing advanced model validation.  If you are already using Data Annotations in your project, just making use of the additional validation attributes will provide client and server validation automatically.  However, assuming you are starting with a blank project I’ll walk you through setting up a controller and model to test with. Creating Your Model In the Models folder, create a new User.cs file with a User class that you can use as a model.  To start with, I’ll use the following class: public class User { public string Email { get; set; } public string Password { get; set; } public string PasswordConfirm { get; set; } public string HomePage { get; set; } public int Age { get; set; } } Next, create a simple controller with at least a Create method, and then a matching Create view (note, you can do all of this via the MVC built-in tooling).  Your files will look something like this: UserController.cs: public class UserController : Controller { public ActionResult Create() { return View(new User()); }   [HttpPost] public ActionResult Create(User user) { if (!ModelState.IsValid) { return View(user); }   return Content("User valid!"); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Create.cshtml: @model NuGetValidationTester.Models.User   @{ ViewBag.Title = "Create"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>User</legend> @Html.EditorForModel() <p> <input type="submit" value="Create" /> </p> </fieldset> } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } In the Create.cshtml view, note that we are referencing jquery validation and jquery unobtrusive (jquery is referenced in the layout page).  These MVC 3 included scripts are the only ones you need to enjoy both the basic Data Annotations validation as well as the validation additions available in Data Annotations Extensions.  These references are added by default when you use the MVC 3 “Add View” dialog on a modification template type. Now when we go to /User/Create we should see a form for editing a User Since we haven’t yet added any validation attributes, this form is valid as shown (including no password, email and an age of 0).  With the built-in Data Annotations attributes we can make some of the fields required, and we could use a range validator of maybe 1 to 110 on Age (of course we don’t want to leave out supercentenarians) but let’s go further and validate our input comprehensively using Data Annotations Extensions.  The new and improved User.cs model class. { [Required] [Email] public string Email { get; set; }   [Required] public string Password { get; set; }   [Required] [EqualTo("Password")] public string PasswordConfirm { get; set; }   [Url] public string HomePage { get; set; }   [Integer] [Min(1)] public int Age { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now let’s re-run our form and try to use some invalid values: All of the validation errors you see above occurred on the client, without ever even hitting submit.  The validation is also checked on the server, which is a good practice since client validation is easily bypassed. That’s all you need to do to start a new project and include Data Annotations Extensions, and of course you can integrate it into an existing project just as easily. Nitpickers Corner ASP.NET MVC 3 futures defines four new data annotations attributes which this project has as well: CreditCard, Email, Url and EqualTo.  Unfortunately referencing MVC 3 futures necessitates taking an dependency on MVC 3 in your model layer, which may be unadvisable in a multi-tiered project.  Data Annotations Extensions keeps the server and client side libraries separate so using the project’s validation attributes don’t require you to take any additional dependencies in your model layer which still allowing for the rich client validation experience if you are using MVC 3. Custom Error Message and Globalization: Since the Data Annotations Extensions are build on top of Data Annotations, you have the ability to define your own static error messages and even to use resource files for very customizable error messages. Available Validators: Please see the project site at http://dataannotationsextensions.org/ for an up-to-date list of the new validators included in this project.  As of this post, the following validators are available: CreditCard Date Digits Email EqualTo FileExtensions Integer Max Min Numeric Url Conclusion Hopefully I’ve illustrated how easy it is to add server and client validation to your MVC 3 projects, and how to easily you can extend the available validation options to meet real world needs. The Data Annotations Extensions project is fully open source under the BSD license.  Any feedback would be greatly appreciated.  More information than you require, along with links to the source code, is available at http://dataannotationsextensions.org/. Enjoy!

    Read the article

  • Cleaning a dataset of song data - what sort of problem is this?

    - by Rob Lourens
    I have a set of data about songs. Each entry is a line of text which includes the artist name, song title, and some extra text. Some entries are only "extra text". My goal is to resolve as many of these as possible to songs on Spotify using their web API. My strategy so far has been to search for the entry via the API - if there are no results, apply a transformation such as "remove all text between ( )" and search again. I have a list of heuristics and I've had reasonable success with this but as the code gets more and more convoluted I keep thinking there must be a more generic and consistent way. I don't know where to look - any suggestions for what to try, topics to study, buzzwords to google?

    Read the article

  • Augmenting your Social Efforts via Data as a Service (DaaS)

    - by Mike Stiles
    The following is the 3rd in a series of posts on the value of leveraging social data across your enterprise by Oracle VP Product Development Don Springer and Oracle Cloud Data and Insight Service Sr. Director Product Management Niraj Deo. In this post, we will discuss the approach and value of integrating additional “public” data via a cloud-based Data-as-as-Service platform (or DaaS) to augment your Socially Enabled Big Data Analytics and CX Management. Let’s assume you have a functional Social-CRM platform in place. You are now successfully and continuously listening and learning from your customers and key constituents in Social Media, you are identifying relevant posts and following up with direct engagement where warranted (both 1:1, 1:community, 1:all), and you are starting to integrate signals for communication into your appropriate Customer Experience (CX) Management systems as well as insights for analysis in your business intelligence application. What is the next step? Augmenting Social Data with other Public Data for More Advanced Analytics When we say advanced analytics, we are talking about understanding causality and correlation from a wide variety, volume and velocity of data to Key Performance Indicators (KPI) to achieve and optimize business value. And in some cases, to predict future performance to make appropriate course corrections and change the outcome to your advantage while you can. The data to acquire, process and analyze this is very nuanced: It can vary across structured, semi-structured, and unstructured data It can span across content, profile, and communities of profiles data It is increasingly public, curated and user generated The key is not just getting the data, but making it value-added data and using it to help discover the insights to connect to and improve your KPIs. As we spend time working with our larger customers on advanced analytics, we have seen a need arise for more business applications to have the ability to ingest and use “quality” curated, social, transactional reference data and corresponding insights. The challenge for the enterprise has been getting this data inline into an easily accessible system and providing the contextual integration of the underlying data enriched with insights to be exported into the enterprise’s business applications. The following diagram shows the requirements for this next generation data and insights service or (DaaS): Some quick points on these requirements: Public Data, which in this context is about Common Business Entities, such as - Customers, Suppliers, Partners, Competitors (all are organizations) Contacts, Consumers, Employees (all are people) Products, Brands This data can be broadly categorized incrementally as - Base Utility data (address, industry classification) Public Master Reference data (trade style, hierarchy) Social/Web data (News, Feeds, Graph) Transactional Data generated by enterprise process, workflows etc. This Data has traits of high-volume, variety, velocity etc., and the technology needed to efficiently integrate this data for your needs includes - Change management of Public Reference Data across all categories Applied Big Data to extract statics as well as real-time insights Knowledge Diagnostics and Data Mining As you consider how to deploy this solution, many of our customers will be using an online “cloud” service that provides quality data and insights uniformly to all their necessary applications. In addition, they are requesting a service that is: Agile and Easy to Use: Applications integrated with the service can obtain data on-demand, quickly and simply Cost-effective: Pre-integrated into applications so customers don’t have to Has High Data Quality: Single point access to reference data for data quality and linkages to transactional, curated and social data Supports Data Governance: Becomes more manageable and cost-effective since control of data privacy and compliance can be enforced in a centralized place Data-as-a-Service (DaaS) Just as the cloud has transformed and now offers a better path for how an enterprise manages its IT from their infrastructure, platform, and software (IaaS, PaaS, and SaaS), the next step is data (DaaS). Over the last 3 years, we have seen the market begin to offer a cloud-based data service and gain initial traction. On one side of the DaaS continuum, we see an “appliance” type of service that provides a single, reliable source of accurate business data plus social information about accounts, leads, contacts, etc. On the other side of the continuum we see more of an online market “exchange” approach where ISVs and Data Publishers can publish and sell premium datasets within the exchange, with the exchange providing a rich set of web interfaces to improve the ease of data integration. Why the difference? It depends on the provider’s philosophy on how fast the rate of commoditization of certain data types will occur. How do you decide the best approach? Our perspective, as shown in the diagram below, is that the enterprise should develop an elastic schema to support multi-domain applicability. This allows the enterprise to take the most flexible approach to harness the speed and breadth of public data to achieve value. The key tenet of the proposed approach is that an enterprise carefully federates common utility, master reference data end points, mobility considerations and content processing, so that they are pervasively available. One way you may already be familiar with this approach is in how you do Address Verification treatments for accounts, contacts etc. If you design and revise this service in such a way that it is also easily available to social analytic needs, you could extend this to launch geo-location based social use cases (marketing, sales etc.). Our fundamental belief is that value-added data achieved through enrichment with specialized algorithms, as well as applying business “know-how” to weight-factor KPIs based on innovative combinations across an ever-increasing variety, volume and velocity of data, will be where real value is achieved. Essentially, Data-as-a-Service becomes a single entry point for the ever-increasing richness and volume of public data, with enrichment and combined capabilities to extract and integrate the right data from the right sources with the right factoring at the right time for faster decision-making and action within your core business applications. As more data becomes available (and in many cases commoditized), this value-added data processing approach will provide you with ongoing competitive advantage. Let’s look at a quick example of creating a master reference relationship that could be used as an input for a variety of your already existing business applications. In phase 1, a simple master relationship is achieved between a company (e.g. General Motors) and a variety of car brands’ social insights. The reference data allows for easy sort, export and integration into a set of CRM use cases for analytics, sales and marketing CRM. In phase 2, as you create more data relationships (e.g. competitors, contacts, other brands) to have broader and deeper references (social profiles, social meta-data) for more use cases across CRM, HCM, SRM, etc. This is just the tip of the iceberg, as the amount of master reference relationships is constrained only by your imagination and the availability of quality curated data you have to work with. DaaS is just now emerging onto the marketplace as the next step in cloud transformation. For some of you, this may be the first you have heard about it. Let us know if you have questions, or perspectives. In the meantime, we will continue to share insights as we can.Photo: Erik Araujo, stock.xchng

    Read the article

  • ASP.net MVC - Update Model on complex models

    - by ludicco
    Hi there, I'm struggling myself trying to get the contents of a form which is a complex model and then update the model with that complex model. My account model has many individuals [AcceptVerbs(HttpVerbs.Post)] public ActionResult OpenAnAccount(string area,[Bind(Exclude = "Id")]Account account, [Bind(Prefix="Account.Individuals")] EntitySet<Individual> individuals){ var db = new DB(); account.individuals = invdividuals; db.Accounts.InsertOnSubmit(account); db.SubmitChanges(); } So it works nicely for adding new Records, but not for update them like: [AcceptVerbs(HttpVerbs.Post)] public ActionResult OpenAnAccount(string area,[Bind(Exclude = "Id")]Account account, [Bind(Prefix="Account.Individuals")] EntitySet<Individual> individuals){ var db = new DB(); var record = db.Accounts.Single(a => a.Reference == area); account.individuals = invdividuals; try{ UpdateModel(record, account); // I can't convert account ToValueProvider() db.SubmitChanges(); } catch{ return ... //Error Message } } My problem is being how to use UpdateModel with the account model since it's not a FormCollection. How can I convert it? How can I use ToValueProvider with a complex model? I hope I was clear enough Thanks a lot :)

    Read the article

  • mysql complex key or + auto increment key (guid)

    - by darko
    Hi, I have not very big db. I am using auto increment primary keys and in my case there is no problem with that. GUID is not necessary. I have a table containing this fields: from_destination to_testination shipper quantity Where the fields 1,2,3 needs to be unique. Also I have second table that for the fields 1,2,3 stores bought quantities per day One to many. from_destination to_destination shipper date reserved_quantity case 1 Is it better to make fields 1,2,3 as primary complex key in the first table and the same fields in the second table to be foreign key First table from_destination | to_destination | primary shipper | quaitity Second table second_id - autoincrement primary from_destination | to_destination | foreign key shipper | date reserved_quantity Case 2 or just to add auto increment filed in the first table and make fields 1,2,3 unique. In the second table there will be one ingeger foreign key pointing to the first table, and one auto increment key for the table. First table first_id - autoincrement primary from_destination | to_destination | unique shipper | quaitity Second table second_id - autoincrement primary first_id - forein date reserved_quantity If so why we need complex keys, when we can have one field auto increment or GUID and all other fields that are candidates for complex key to be unique. Regards

    Read the article

  • Working with data and meta data that are separated on different servers

    - by afuzzyllama
    While developing a product, I've come across a situation where my group wants to store meta data for data entry forms (questions, layout, etc) in a different database then the database where the collected data is stored. This is mostly for security because we want to be able to have our meta data public facing, while keeping collected data as secure as possible. I was thinking about writing a web service that provides the meta information that the data collection program could access. The only issue I see with this approach is the front end is going to have to match the meta data with the collected data, which would be more efficient as a join on the back end. Currently, this system is slated to run on .NET and MSSQL. I haven't played around with .NET libraries running in SQL, but I'm considering trying to create logic that would pull from the web service, convert the meta data into a table that SQL can join on, and return the combined data and meta data that way. Is this solution the wrong way to approach the problem? Is there a pattern or "industry standard" way of bringing together two datasets that don't live in the same database?

    Read the article

  • The Business case for Big Data

    - by jasonw
    The Business Case for Big Data Part 1 What's the Big Deal Okay, so a new buzz word is emerging. It's gone beyond just a buzzword now, and I think it is going to change the landscape of retail, financial services, healthcare....everything. Let me spend a moment to talk about what i'm going to talk about. Massive amounts of data are being collected every second, more than ever imaginable, and the size of this data is more than can be practically managed by today’s current strategies and technologies. There is a revolution at hand centering on this groundswell of data and it will change how we execute our businesses through greater efficiencies, new revenue discovery and even enable innovation. It is the revolution of Big Data. This is more than just a new buzzword is being tossed around technology circles.This blog series for Big Data will explain this new wave of technology and provide a roadmap for businesses to take advantage of this growing trend. Cases for Big Data There is a growing list of use cases for big data. We naturally think of Marketing as the low hanging fruit. Many projects look to analyze twitter feeds to find new ways to do marketing. I think of a great example from a TED speech that I recently saw on data visualization from Facebook from my masters studies at University of Virginia. We can see when the most likely time for breaks-ups occurs by looking at status changes and updates on users Walls. This is the intersection of Big Data, Analytics and traditional structured data. Ted Video Marketers can use this to sell more stuff. I really like the following piece on looking at twitter feeds to measure mood. The following company was bought by a hedge fund. They could predict how the S&P was going to do within three days at an 85% accuracy. Link to the article Here we see a convergence of predictive analytics and Big Data. So, we'll look at a lot of these business cases and start talking about what this means for the business. It's more than just finding ways to use Hadoop + NoSql and we'll talk about that too. How do I start in Big Data? That's what is coming next post.

    Read the article

  • Big Data – Buzz Words: What is NoSQL – Day 5 of 21

    - by Pinal Dave
    In yesterday’s blog post we explored the basic architecture of Big Data . In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – NoSQL. What is NoSQL? NoSQL stands for Not Relational SQL or Not Only SQL. Lots of people think that NoSQL means there is No SQL, which is not true – they both sound same but the meaning is totally different. NoSQL does use SQL but it uses more than SQL to achieve its goal. As per Wikipedia’s NoSQL Database Definition – “A NoSQL database provides a mechanism for storage and retrieval of data that uses looser consistency models than traditional relational databases.“ Why use NoSQL? A traditional relation database usually deals with predictable structured data. Whereas as the world has moved forward with unstructured data we often see the limitations of the traditional relational database in dealing with them. For example, nowadays we have data in format of SMS, wave files, photos and video format. It is a bit difficult to manage them by using a traditional relational database. I often see people using BLOB filed to store such a data. BLOB can store the data but when we have to retrieve them or even process them the same BLOB is extremely slow in processing the unstructured data. A NoSQL database is the type of database that can handle unstructured, unorganized and unpredictable data that our business needs it. Along with the support to unstructured data, the other advantage of NoSQL Database is high performance and high availability. Eventual Consistency Additionally to note that NoSQL Database may not provided 100% ACID (Atomicity, Consistency, Isolation, Durability) compliance.  Though, NoSQL Database does not support ACID they provide eventual consistency. That means over the long period of time all updates can be expected to propagate eventually through the system and data will be consistent. Taxonomy Taxonomy is the practice of classification of things or concepts and the principles. The NoSQL taxonomy supports column store, document store, key-value stores, and graph databases. We will discuss the taxonomy in detail in later blog posts. Here are few of the examples of the each of the No SQL Category. Column: Hbase, Cassandra, Accumulo Document: MongoDB, Couchbase, Raven Key-value : Dynamo, Riak, Azure, Redis, Cache, GT.m Graph: Neo4J, Allegro, Virtuoso, Bigdata As of now there are over 150 NoSQL Database and you can read everything about them in this single link. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – Hadoop. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • BAM Data Control in multiple ADF Faces Components

    - by [email protected]
    As we know Oracle BAM data control instance sharing is not supported.When two or more ADF Faces components must display the same data, and are bound to the same Oracle BAM data control definition, we have to make sure that we wrap each ADF Faces component in an ADF task flow, and set the Data Control Scope to isolated. This blog will show a small sample to demonstrate this. In this sample we will create a Pie and Bar using same BAM DC, such that both components use same Data control but have isolated scope.This sample can be downloaded  fromSample1.zip Set-up: Create a BAM data control using employees DO (sample) Steps: Right click on View Controller project and select "New->ADF Task Flow" Check "Create Bounded Task Flow" and give some meaningful name (ex:EmpPieTF.xml ) to the TaskFlow(TF) and click on "OK"CreateTF.bmpFrom the "Components Palette", drag and drop "View" into the task flow diagram. Give a meaningful name to the view. Double Click and Click "Ok" for  "Create New JSF Page Fragment" From "Data Controls" drag and drop "Employees->Query"  into this jsff page as "Graph->Pie" (Pie: Sales_Number and Slices: Salesperson) Repeat step 1 through 4 for another Task Flow (ex: EmpBarTF). From "Data Controls" drag and drop "Employees->Query"  into this jsff page as "Graph->Bar" (Bars :Sales_Number and X-axis : Salesperson). Open the Taskflow created in step 2. In the Structure Pane, right click on "Task Flow Definition -EmpPieTF" Click "Insert inside Task Flow Definition - EmpPieTF -> ADF Task Flow -> Data Control Scope". Click "OK"TFDCScope.bmpFor the "Data Control Scope", In the Property Inspector ->General section, change data control scope from Shared to Isolated. Repeat step 8 through 11 for the 2nd Task flow created. Now create a new jspx page example: Main.jspxDrag and drop both the Task flows (ex: "EmpPieTF" and "EmpBarTF") as regions. Surround with panel components as needed.Run the page Main.jspxMainPage.bmpNow when the page runs although both components are created using same Data control the bindings are not shared and each component will have a separate instance of the data control.

    Read the article

  • Getting Types in Win32 Dll

    - by Usman
    Hello, I want to know the types and details in a plain Win32DLL just like we can get in case of COM.In COM every thing embed inside idl and results in TLB, here we get every thing , MSFT exposes APIS by which we can extract types. In case of Win32 I strongly needed types defined in it and all details of that type(e.g what are members in it and their types as well). Parsing PE file and looking up export table only gives the exported functions. I want all custom types(Win32 interfaces,classes and members details with types) defined in it. How? Regards Usman

    Read the article

  • NDepend query methods/types in framework assembly being used by other assemblies/types

    - by icelava
    I am trying to determine which types or methods in a base framework assembly are being used by other assemblies in the application system. I cannot seem to find a straight-cut query to do that. What i have to do is first determine which assemblies are directly using the framework assembly, then manually list them in a second query SELECT TYPES FROM ASSEMBLIES "IBM.Data.DB2" WHERE IsDirectlyUsedBy "ASSEMBLY:FirstDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:SecondDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:ThirdDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:FourthDirectUsedByAssebmly" Is there a better/faster way to query for this? Additionally, the query results are focused on the matched types only. The Dependency graph or matrix exported only shows details of those. I do not know how to render a graph that shows those types or methods plus show the dependent types/methods from other assemblies that are consuming them?

    Read the article

  • Bound a treeview control to user-defined complex type using EF 4

    - by GIbboK
    Hi, I use Asp.net, SQL 2008 and EF 4. I need display hierarchy data in a treeview control, Data is stored in a DB that use HierarchyId. Unfortunately, EF4 doesn't support HierarchyId. So in this case, I thought to have a stored procedure that deals with my hierarchy and return a result set back to EF that EF4 can turn into a collection of user-defined complex type that can then be bound directly to the treeview control. I imported a SPROC in EF 4 using Import Function and now I have a Complex DataType called: CategoryHierarchy_Result An image of my Model: Here some data from the Complex Type (in a GridView for example GridView1.DataSource = context.CategoryHierarchy(1);): My questions is: How to display my data from my Complex Type in a TreeView Control, showing a Tree structure that respect CategoryNodeString? I am a beginner an I never use TreeView before, any help or resource would be appreciated! Thanks!. Here some useful resource: http://www.robbagby.com/entity-framework/entity-framework-modeling-action-stored-procedures/

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >