Search Results

Search found 58956 results on 2359 pages for 'data structures'.

Page 6/2359 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Shrinking Windows Size to 0 on Cisco ASA

    - by Brent
    Having an issue with any large file transfer that crosses our Cisco ASA unit come to an eventual pause. Setup Test1: Server A, FileZilla Client <- 1GBPS - Cisco ASA <- 1 GBPS - Server B, FileZilla Server TCP Window size on large transfers will drop to 0 after around 30 seconds of a large file transfer. RDP session then becomes unresponsive for a minute or two and then is sporadic. After a minute or two, the FTP transfer resumes, but at 1-2 MB/s. When the FTP transfer is over, the responsiveness of the RDP session returns to normal. Test2: Server C in same network as Server B, FileZilla Client <- local network - Server B, FileZilla Server File will transfer at 30+ MB/s. Details ASA: 5520 running 8.3(1) with ASDM 6.3(1) Windows: Server 2003 R2 SP2 with latest patches Server: VMs running on HP C3000 blade chasis FileZilla: 3.3.5.1, latest stable build Transfer: 20 GB SQL .BAK file Protocol: Active FTP over tcp/20, tcp/21 Switches: Cisco Small Business 2048 Gigabit running latest 2.0.0.8 VMware: 4.1 HP: Flex-10 3.15, latest version Notes All servers are VMs. Thoughts Pretty sure the ASA is at fault since a transfer between VMs on the same network will not show a shrinking Window size. Our ASA is pretty vanilla. No major changes made to any of the settings. It has a bunch of NAT and ACLs. Wireshark Sample No. Time Source Destination Protocol Info 234905 73.916986 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=131981791 Win=65535 Len=0 234906 73.917220 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234907 73.917224 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234908 73.917231 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=131984551 Win=64155 Len=0 234909 73.917463 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234910 73.917467 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234911 73.917469 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234912 73.917476 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=131988691 Win=60015 Len=0 234913 73.917706 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234914 73.917710 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234915 73.917715 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=131991451 Win=57255 Len=0 234916 73.917949 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234917 73.917953 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234918 73.917958 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=131994211 Win=54495 Len=0 234919 73.918193 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234920 73.918197 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234921 73.918202 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=131996971 Win=51735 Len=0 234922 73.918435 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234923 73.918440 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234924 73.918445 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=131999731 Win=48975 Len=0 234925 73.918679 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234926 73.918684 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234927 73.918689 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132002491 Win=46215 Len=0 234928 73.918922 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234929 73.918927 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234930 73.918932 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132005251 Win=43455 Len=0 234931 73.919165 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234932 73.919169 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234933 73.919174 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132008011 Win=40695 Len=0 234934 73.919408 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234935 73.919413 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234936 73.919418 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132010771 Win=37935 Len=0 234937 73.919652 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234938 73.919656 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234939 73.919661 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132013531 Win=35175 Len=0 234940 73.919895 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234941 73.919899 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234942 73.919904 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132016291 Win=32415 Len=0 234943 73.920138 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234944 73.920142 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234945 73.920147 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132019051 Win=29655 Len=0 234946 73.920381 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234947 73.920386 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234948 73.920391 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132021811 Win=26895 Len=0 234949 73.920625 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234950 73.920629 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234951 73.920632 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234952 73.920638 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132025951 Win=22755 Len=0 234953 73.920868 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234954 73.920871 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234955 73.920876 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132028711 Win=19995 Len=0 234956 73.921111 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234957 73.921115 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234958 73.921120 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132031471 Win=17235 Len=0 234959 73.921356 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234960 73.921362 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234961 73.921370 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132034231 Win=14475 Len=0 234962 73.921598 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234963 73.921606 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234964 73.921613 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132036991 Win=11715 Len=0 234965 73.921841 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234966 73.921848 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234967 73.921855 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132039751 Win=8955 Len=0 234968 73.922085 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234969 73.922092 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234970 73.922099 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132042511 Win=6195 Len=0 234971 73.922328 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234972 73.922335 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234973 73.922342 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132045271 Win=3435 Len=0 234974 73.922571 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234975 73.922579 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 1380 bytes 234976 73.922586 1.1.1.1 2.2.2.2 TCP ftp-data ivecon-port [ACK] Seq=1 Ack=132048031 Win=675 Len=0 234981 75.866453 2.2.2.2 1.1.1.1 FTP-DATA FTP Data: 675 bytes 234985 76.020168 1.1.1.1 2.2.2.2 TCP [TCP ZeroWindow] ftp-data ivecon-port [ACK] Seq=1 Ack=132048706 Win=0 Len=0 234989 76.771633 2.2.2.2 1.1.1.1 TCP [TCP ZeroWindowProbe] ivecon-port ftp-data [ACK] Seq=132048706 Ack=1 Win=65535 Len=1 234990 76.771648 1.1.1.1 2.2.2.2 TCP [TCP ZeroWindowProbeAck] [TCP ZeroWindow] ftp-data ivecon-port [ACK] Seq=1 Ack=132048706 Win=0 Len=0 234997 78.279701 2.2.2.2 1.1.1.1 TCP [TCP ZeroWindowProbe] ivecon-port ftp-data [ACK] Seq=132048706 Ack=1 Win=65535 Len=1 234998 78.279714 1.1.1.1 2.2.2.2 TCP [TCP ZeroWindowProbeAck] [TCP ZeroWindow] ftp-data ivecon-port [ACK] Seq=1 Ack=132048706 Win=0 Len=0

    Read the article

  • Java: versioned data structures?

    - by Jason S
    I have a data structure that is pretty simple (basically a structure containing some arrays and single values), but I need to record the history of the data structure so that I can efficiently get the contents of the data structure at any point in time. Is there a relatively straightforward way to do this? The best way I can think of would be to encapsulate the whole data structure with something that handles all the mutating operations by storing data in functional data structures, and then for each mutation operation caching a copy of the data structure in a Map indexed by time-ordering (e.g. a TreeMap with real time as keys, or a HashMap with a counter of mutation operations combined with one or more indexes stored in TreeMaps mapping real time / tick count / etc. to mutation operations) any suggestions?

    Read the article

  • Javascript: Safely upload a client data file

    - by Jeffrey Sweeney
    I'm (still) working on a template-based XML editing program. It's a GUI-based XML editor that only allows users to add certain tags and attributes based off the requirements. You can see the current version here for an idea. Now, I'd like to allow users to upload their own data templates, but I'm concerned about potential XSS hacks. Currently, the template file is in Javascript object literal notation, which unsurprisingly is a security nightmare if the user can upload their own. I was thinking of using XML instead, but is there an even better alternative?

    Read the article

  • How do you handle the fetchxml result data?

    - by Luke Baulch
    I have avoided working with fetchxml as I have been unsure the best way to handle the result data after calling crmService.Fetch(fetchXml). In a couple of situations, I have used an XDocument with LINQ to retrieve the data from this data structure, such as: XDocument resultset = XDocument.Parse(_service.Fetch(fetchXml)); if (resultset.Root == null || !resultset.Root.Elements("result").Any()) { return; } foreach (var displayItem in resultset.Root.Elements("result").Select(item => item.Element(displayAttributeName)).Distinct()) { if (displayItem!= null && displayItem.Value != null) { dropDownList.Items.Add(displayItem.Value); } } What is the best way to handle fetchxml result data, so that it can be easily used. Applications such as passing these records into an ASP.NET datagrid would be quite useful.

    Read the article

  • C# - Fast and simple multi dimensional data structures?

    - by Jeremy Rudd
    I need to store multi-dimensional data consisting of numbers in a manner thats easy to work with. I'm capturing data in real time, and once processed I would destroy and GC older data. This data structure must be fast so it won't hit my overall app performance. The faster the better. What are my choices in terms of platform supported data structures? I'm using VS 2010. and .NET 4.

    Read the article

  • find the top K most frequent numbers in a data stream

    - by Jin
    This is more of a data structure question rather than a coding question. If I am fetching a data stream, i.e, I keep receiving float numbers once at a time, how should I keep track of the top K frequent numbers? Here my memory is 4G and I prefer to have less communication with hard drive unless necessary. I think heap is good for updating the max and min. How should I design the data structure? Thanks

    Read the article

  • Big Data Appliance X4-2 Release Announcement

    - by Jean-Pierre Dijcks
    Today we are announcing the release of the 3rd generation Big Data Appliance. Read the Press Release here. Software Focus The focus for this 3rd generation of Big Data Appliance is: Comprehensive and Open - Big Data Appliance now includes all Cloudera Software, including Back-up and Disaster Recovery (BDR), Search, Impala, Navigator as well as the previously included components (like CDH, HBase and Cloudera Manager) and Oracle NoSQL Database (CE or EE). Lower TCO then DIY Hadoop Systems Simplified Operations while providing an open platform for the organization Comprehensive security including the new Audit Vault and Database Firewall software, Apache Sentry and Kerberos configured out-of-the-box Hardware Update A good place to start is to quickly review the hardware differences (no price changes!). On a per node basis the following is a comparison between old and new (X3-2) hardware: Big Data Appliance X3-2 Big Data Appliance X4-2 CPU 2 x 8-Core Intel® Xeon® E5-2660 (2.2 GHz) 2 x 8-Core Intel® Xeon® E5-2650 V2 (2.6 GHz) Memory 64GB 64GB Disk 12 x 3TB High Capacity SAS 12 x 4TB High Capacity SAS InfiniBand 40Gb/sec 40Gb/sec Ethernet 10Gb/sec 10Gb/sec For all the details on the environmentals and other useful information, review the data sheet for Big Data Appliance X4-2. The larger disks give BDA X4-2 33% more capacity over the previous generation while adding faster CPUs. Memory for BDA is expandable to 512 GB per node and can be done on a per-node basis, for example for NameNodes or for HBase region servers, or for NoSQL Database nodes. Software Details More details in terms of software and the current versions (note BDA follows a three monthly update cycle for Cloudera and other software): Big Data Appliance 2.2 Software Stack Big Data Appliance 2.3 Software Stack Linux Oracle Linux 5.8 with UEK 1 Oracle Linux 6.4 with UEK 2 JDK JDK 6 JDK 7 Cloudera CDH CDH 4.3 CDH 4.4 Cloudera Manager CM 4.6 CM 4.7 And like we said at the beginning it is important to understand that all other Cloudera components are now included in the price of Oracle Big Data Appliance. They are fully supported by Oracle and available for all BDA customers. For more information: Big Data Appliance Data Sheet Big Data Connectors Data Sheet Oracle NoSQL Database Data Sheet (CE | EE) Oracle Advanced Analytics Data Sheet

    Read the article

  • Review: Data Modeling 101

    I just recently read “Data Modeling 101”by Scott W. Ambler where he gave an overview of fundamental data modeling skills. I think this article was excellent for anyone who was just starting to learn or refresh their skills in regards to the modeling of data.  Scott defines data modeling as the act of exploring data oriented structures.  He goes on to explain about how data models are actually used by defining three different types of models. Types of Data Models Conceptual Data Model  Logical Data Model (LDMs) Physical Data Model(PDMs) He further expands on modeling by exploring common data modeling notations because there are no industry standards for the practice of data modeling. Scott then defines how to actually model data by expanding on entities, attributes, identities, and relationships which are the basic building blocks of data models. In addition he discusses the value of normalization for redundancy and demoralization for performance. Finally, he discuss ways in which Developers and DBAs can become better data modelers through the use of practice, and seeking guidance from more experienced data modelers.

    Read the article

  • HTML5 data-* (custom data attribute)

    - by Renso
    Goal: Store custom data with the data attribute on any DOM element and retrieve it. Previously under HTML4 we used to use classes to store custom data, something to the affect of <input class="account void limit-5000 over-4999" /> and then have to parse the data out of the class In a book published by Peter-Paul Koch in 2007, ppk on JavaScript, he explains why and how to use custom attributes to make data more accessible to JavaScript, using name-value pairs. Accessing a custom attribute account-limit=5000 is much easier and more intuitive than trying to parse it out of a class, Plus, what if the class name for example "color-5" has a representative class definition in a CSS stylesheet that hides it away or worse some JavaScript plugin that automatically adds 5000 to it, or something crazy like that, just because it is a valid class name. As you can see there are quite a few reasons why using classes is a bad design and why it was important to define custom data attributes in HTML5. Syntax: You define the data attribute by simply prefixing any data item you want to store with any HTML element with "data-". For example to store our customers account data with a hidden input element: <input type="hidden" data-account="void" data-limit=5000 data-over=4999  /> How to access the data: account  -     element.dataset.account limit    -     element.dataset.limit You can also access it by using the more traditional get/setAttribute method or if using jQuery $('#element').attr('data-account','void') Browser support: All except for IE. There is an IE hack around this at http://gist.github.com/362081. Special Note: Be AWARE, do not use upper-case when defining your data elements as it is all converted to lower-case when reading it, so: data-myAccount="A1234" will not be found when you read it with: element.dataset.myAccount Use only lowercase when reading so this will work: element.dataset.myaccount

    Read the article

  • Master Data Management – A Foundation for Big Data Analysis

    - by Manouj Tahiliani
    While Master Data Management has crossed the proverbial chasm and is on its way to becoming mainstream, businesses are being hammered by a new megatrend called Big Data. Big Data is characterized by massive volumes, its high frequency, the variety of less structured data sources such as email, sensors, smart meters, social networks, and Weblogs, and the need to analyze vast amounts of data to determine value to improve upon management decisions. Businesses that have embraced MDM to get a single, enriched and unified view of Master data by resolving semantic discrepancies and augmenting the explicit master data information from within the enterprise with implicit data from outside the enterprise like social profiles will have a leg up in embracing Big Data solutions. This is especially true for large and medium-sized businesses in industries like Retail, Communications, Financial Services, etc that would find it very challenging to get comprehensive analytical coverage and derive long-term success without resolving the limitations of the heterogeneous topology that leads to disparate, fragmented and incomplete master data. For analytical success from Big Data or in other words ROI from Big Data Investments, businesses need to acquire, organize and analyze the deluge of data to make better decisions. There will need to be a coexistence of structured and unstructured data and to maintain a tight link between the two to extract maximum insights. MDM is the catalyst that helps maintain that tight linkage by providing an understanding about the identity, characteristics of Persons, Companies, Products, Suppliers, etc. associated with the Big Data and thereby help accelerate ROI. In my next post I will discuss about patterns for co-existing Big Data Solutions and MDM. Feel free to provide comments and thoughts on above as well as Integration or Architectural patterns.

    Read the article

  • How to Assure an Effective Data Model

    As a general rule in my opinion the effectiveness of a data model can be directly related to the accuracy and complexity of a project’s requirements. For example there is no need to work on very detailed data models when the details surrounding a specific data model have not been defined or even clarified. Developing data models when the clarity of project requirements is limited tends to introduce designed issues because the proper details to create an effective data model are not even known. One way to avoid this issue is to create data models that correspond to the complexity of the existing project requirements so that when requirements are updated then new data models can be created based any new discoveries regarding requirements on a fine grain level.  This allows for data models to be composed of general entities to be created initially when a project’s requirements are very vague and then the entities are refined as new and more substantial requirements are defined or redefined. This promotes communication amongst all stakeholders within a project as they go through the process of defining and finalizing project requirements.In addition, here are some general tips that can be applied to projects in regards to data modeling.Initially model all data generally and slowly reactor the data model as new requirements and business constraints are applied to a project.Ensure that data modelers have the proper tools and training they need to design a data model accurately.Create a common location for all project documents so that everyone will be able to review a project’s data models along with any other project documentation.All data models should follow a clear naming schema that tells readers the intended purpose for the data and how it is going to be applied within a project.

    Read the article

  • Data Structure for Small Number of Agents in a Relatively Big 2D World

    - by Seçkin Savasçi
    I'm working on a project where we will implement a kind of world simulation where there is a square 2D world. Agents live on this world and make decisions like moving or replicating themselves based on their neighbor cells(world=grid) and some extra parameters(which are not based on the state of the world). I'm looking for a data structure to implement such a project. My concerns are : I will implement this 3 times: sequential, using OpenMP, using MPI. So if I can use the same structure that will be quite good. The first thing comes up is keeping a 2D array for the world and storing agent references in it. And simulate the world for each time slice by checking every cell in each iteration and further processing if an agents is found in the cell. The downside is what if I have 1000x1000 world and only 5 agents in it. It will be an overkill for both sequential and parallel versions to check each cell and look for possible agents in them. I can use quadtree and store agents in it, but then how can I get the information about neighbor cells then? Please let me know if I should elaborate more.

    Read the article

  • Data structure for grid with negative indeces

    - by The Secret Imbecile
    Sorry if this is an insultingly obvious concept, but it's something I haven't done before and I've been unable to find any material discussing the best way to approach it. I'm wondering what's the best data structure for holding a 2D grid of unknown size. The grid has integer coordinates (x,y), and will have negative indices in both directions. So, what is the best way to hold this grid? I'm programming in c# currently, so I can't have negative array indices. My initial thought was to have class with 4 separate arrays for (+x,+y),(+x,-y),(-x,+y), and (-x,-y). This seems to be a valid way to implement the grid, but it does seem like I'm over-engineering the solution, and array resizing will be a headache. Another idea was to keep track of the center-point of the array and set that as the topological (0,0), however I would have the issue of having to do a shift to every element of the grid when repeatedly adding to the top-left of the grid, which would be similar to grid resizing though in all likelihood more frequent. Thoughts?

    Read the article

  • Data structures for storing finger/stylus movements in drawing application?

    - by mattja?øb
    I have a general question about creating a drawing application, the language could be C++ or ObjectiveC with OpenGL. I would like to hear what are the best methods and practices for storing strokes data. Think of the many iPad apps that allow you to draw with your finger (or a stylus) or any other similar function on a desktop app. To summarize, the data structure must: be highly responsive to the movement store precise values (close in space / time) usable for rendering the strokes with complex textures (textures based on the dynamic of the stroke etc) exportable to a text file for saving/loading

    Read the article

  • SQL SERVER – Why Do We Need Data Quality Services – Importance and Significance of Data Quality Services (DQS)

    - by pinaldave
    Databases are awesome.  I’m sure my readers know my opinion about this – I have made SQL Server my life’s work after all!  I love technology and all things computer-related.  Of course, even with my love for technology, I have to admit that it has its limits.  For example, it takes a human brain to notice that data has been input incorrectly.  Computer “brains” might be faster than humans, but human brains are still better at pattern recognition.  For example, a human brain will notice that “300” is a ridiculous age for a human to be, but to a computer it is just a number.  A human will also notice similarities between “P. Dave” and “Pinal Dave,” but this would stump most computers. In a database, these sorts of anomalies are incredibly important.  Databases are often used by multiple people who rely on this data to be true and accurate, so data quality is key.  That is why the improved SQL Server features Master Data Management talks about Data Quality Services.  This service has the ability to recognize and flag anomalies like out of range numbers and similarities between data.  This allows a human brain with its pattern recognition abilities to double-check and ensure that P. Dave is the same as Pinal Dave. A nice feature of Data Quality Services is that once you set the rules for the program to follow, it will not only keep your data organized in the future, but go to the past and “fix up” any data that has already been entered.  It also allows you do combine data from multiple places and it will apply these rules across the board, so that you don’t have any weird issues that crop up when trying to fit a round peg into a square hole. There are two parts of Data Quality Services that help you accomplish all these neat things.  The first part is DQL Server, which you can think of as the hardware component of the system.  It is installed on the side of (it needs to install separately after SQL Server is installed) SQL Server and runs quietly in the background, performing all its cleanup services. DQS Client is the user interface that you can interact with to set the rules and check over your data.  There are three main aspects of Client: knowledge base management, data quality projects and administration.  Knowledge base management is the part of the system that allows you to set the rules, or program the “knowledge base,” so that your database is clean and consistent. Data Quality projects are what run in the background and clean up the data that is already present.  The administration allows you to check out what DQS Client is doing, change rules, and generally oversee the entire process.  The whole process is user-friendly and a pleasure to use.  I highly recommend implementing Data Quality Services in your database. Here are few of my blog posts which are related to Data Quality Services and I encourage you to try this out. SQL SERVER – Installing Data Quality Services (DQS) on SQL Server 2012 SQL SERVER – Step by Step Guide to Beginning Data Quality Services in SQL Server 2012 – Introduction to DQS SQL SERVER – DQS Error – Cannot connect to server – A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessions” – SetDataQualitySessionPhaseTwo SQL SERVER – Configuring Interactive Cleansing Suggestion Min Score for Suggestions in Data Quality Services (DQS) – Sensitivity of Suggestion SQL SERVER – Unable to DELETE Project in Data Quality Projects (DQS) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Data Quality Services, DQS

    Read the article

  • Welcome Oracle Data Integration 12c: Simplified, Future-Ready Solutions with Extreme Performance

    - by Irem Radzik
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 The big day for the Oracle Data Integration team has finally arrived! It is my honor to introduce you to Oracle Data Integration 12c. Today we announced the general availability of 12c release for Oracle’s key data integration products: Oracle Data Integrator 12c and Oracle GoldenGate 12c. The new release delivers extreme performance, increase IT productivity, and simplify deployment, while helping IT organizations to keep pace with new data-oriented technology trends including cloud computing, big data analytics, real-time business intelligence. With the 12c release Oracle becomes the new leader in the data integration and replication technologies as no other vendor offers such a complete set of data integration capabilities for pervasive, continuous access to trusted data across Oracle platforms as well as third-party systems and applications. Oracle Data Integration 12c release addresses data-driven organizations’ critical and evolving data integration requirements under 3 key themes: Future-Ready Solutions Extreme Performance Fast Time-to-Value       There are many new features that support these key differentiators for Oracle Data Integrator 12c and for Oracle GoldenGate 12c. In this first 12c blog post, I will highlight only a few:·Future-Ready Solutions to Support Current and Emerging Initiatives: Oracle Data Integration offer robust and reliable solutions for key technology trends including cloud computing, big data analytics, real-time business intelligence and continuous data availability. Via the tight integration with Oracle’s database, middleware, and application offerings Oracle Data Integration will continue to support the new features and capabilities right away as these products evolve and provide advance features. E    Extreme Performance: Both GoldenGate and Data Integrator are known for their high performance. The new release widens the gap even further against competition. Oracle GoldenGate 12c’s Integrated Delivery feature enables higher throughput via a special application programming interface into Oracle Database. As mentioned in the press release, customers already report up to 5X higher performance compared to earlier versions of GoldenGate. Oracle Data Integrator 12c introduces parallelism that significantly increases its performance as well. Fast Time-to-Value via Higher IT Productivity and Simplified Solutions:  Oracle Data Integrator 12c’s new flow-based declarative UI brings superior developer productivity, ease of use, and ultimately fast time to market for end users.  It also gives the ability to seamlessly reuse mapping logic speeds development.Oracle GoldenGate 12c ‘s Integrated Delivery feature automatically optimally tunes the process, saving time while improving performance. This is just a quick glimpse into Oracle Data Integrator 12c and Oracle GoldenGate 12c. On November 12th we will reveal much more about the new release in our video webcast "Introducing 12c for Oracle Data Integration". Our customer and partner speakers, including SolarWorld, BT, Rittman Mead will join us in launching the new release. Please join us at this free event to learn more from our executives about the 12c release, hear our customers’ perspectives on the new features, and ask your questions to our experts in the live Q&A. Also, please continue to follow our blogs, tweets, and Facebook updates as we unveil more about the new features of the latest release. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Functional data structures in C++

    - by drg
    Does anyone know of a C++ data structure library providing functional (a.k.a. immutable, or "persistent" in the FP sense) equivalents of the familiar STL structures? By "functional" I mean that the objects themselves are immutable, while modifications to those objects return new objects sharing the same internals as the parent object where appropriate. Ideally, such a library would resemble STL, and would work well with Boost.Phoenix (caveat- I haven't actually used Phoenix, but as far as I can tell it provides many algorithms but no data structures, unless a lazily-computed change to an existing data structure counts - does it?)

    Read the article

  • structures, inheritance and definition

    - by Meloun
    Hi, i need to help with structures, inheritance and definition. //define struct struct tStruct1{ int a; }; //definition tStruct1 struct1{1}; and inheritance struct tStruct2:tStruct1{ int b; }; How can I define it in declaration line? tStruct2 struct2{ ????? }; One more question, how can i use inheritance for structures defined with typedef struct?

    Read the article

  • migrating C++ code from structures to classes

    - by eSKay
    I am migrating some C++ code from structures to classes. I was using structures mainly for bit-field optimizations which I do not need any more (I am more worried about speed than saving space now). What are the general guidelines for doing this migration? I am still in the planning stage as this is a very big move affecting a major part of the code. I want to plan everything first before doing it. What are all the essential things I should keep in mind?

    Read the article

  • using structures with multidimentional tables

    - by gem
    I have a table of structures and this structures are 2 dimentional table of constants. can you teach me on how to get the values in the table of constants. (note following is just example) typedef struct { unsigned char ** Type1; unsigned char ** Type2; } Formula; typedef struct { Formula tformula[size]; } table; const table Values = { (unsigned char**) &(default_val1), (unsigned char**) &(default_val2) }; const unsigned char default_val1[4][4] = { {0,1,2,3}, {4,5,6,7}, {8,9,0,11}, {12,13,14,15} } const unsigned char default_val2[4][4] = { {15,16,17,13}, {14,15,16,17}, {18,19,10,21}, {22,23,24,25} }

    Read the article

  • Data Structure Behind Amazon S3s Keys (Filtering Data Structure)

    - by dimo414
    I'd like to implement a data structure similar to the lookup functionality of Amazon S3. For those of you who don't know what I'm taking about, Amazon S3 stores all files at the root, but allows you to look up groups of files by common prefixes in their names, therefore replicating the power of a directory tree without the complexity of it. The catch is, both lookup and filter operations are O(1) (or close enough that even on very large buckets - S3's disk equivalents - both operations might as well be O(1))). So in short, I'm looking for a data structure that functions like a hash map, with the added benefit of efficient (at the very least not O(n)) filtering. The best I can come up with is extending HashMap so that it also contains a (sorted) list of contents, and doing a binary search for the range that matches the prefix, and returning that set. This seems slow to me, but I can't think of any other way to do it. Does anyone know either how Amazon does it, or a better way to implement this data structure?

    Read the article

  • Static Data Structures on Embedded Devices (Android in particular)

    - by Mark
    I've started working on some Android applications and have a question regarding how people normally deal with situations where you have a static data set and have an application where that data is needed in memory as one of the standard java collections or as an array. In my current specific issue i have a spreadsheet with some pre-calculated data. It consists of ~100 rows and 3 columns. 1 Column is a string, 1 column is a float, 1 column is an integer. I need access to this data as an array in java. It seems like i could: 1) Encode in XML - This would be cpu intensive to decode in my experience. 2) build into SQLite database - seems like a lot of overhead for static access to data i only need array style access to in ram. 3) Build into binary blob and read in. (never done this in java, i miss void *) 4) Build a python script to take the CSV version of my data and spit out a java function that adds the values to my desired structure with hard coded values. 5) Store a string array via androids resource mechanism and compute the other 2 columns on application load. In my case the computation would require a lot of calls to Math.log, Math.pow and Math.floor which i'd rather not have to do for load time and battery usage reasons. I mostly work in low power embedded applications in C and as such #4 is what i'm used to doing in these situations. It just seems like it should be far easier to gain access to static data structures in java/android. Perhaps I'm just being too battery usage conscious and in my single case i imagine the answer is that it doesn't matter much, but if every application took that stance it could begin to matter. What approaches do people usually take in this situation? Anything I missed?

    Read the article

  • Big Data – Final Wrap and What Next – Day 21 of 21

    - by Pinal Dave
    In yesterday’s blog post we explored various resources related to learning Big Data and in this blog post we will wrap up this 21 day series on Big Data. I have been exploring various terms and technology related to Big Data this entire month. It was indeed fun to write about Big Data in 21 days but the subject of Big Data is much bigger and larger than someone can cover it in 21 days. My first goal was to write about the basics and I think we have got that one covered pretty well. During this 21 days I have received many questions and answers related to Big Data. I have covered a few of the questions in this series and a few more I will be covering in the next coming months. Now after understanding Big Data basics. I am personally going to do a list of the things next. I thought I will share the same with you as this will give you a good idea how to continue the journey of the Big Data. Build a schedule to read various Apache documentations Watch all Pluralsight Courses Explore HortonWorks Sandbox Start building presentation about Big Data – this is a great way to learn something new Present in User Groups Meetings on Big Data Topics Write more blog posts about Big Data I am going to continue learning about Big Data – I want you to continue learning Big Data. Please leave a comment how you are going to continue learning about Big Data. I will publish all the informative comments on this blog with due credit. I want to end this series with the infographic by UMUC. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Partner Webcast - Focus on Oracle Data Profiling and Data Quality 11g

    - by lukasz.romaszewski(at)oracle.com
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-ansi-language:RO;} Partner Webcast Focus on Oracle Data Profiling and Data Quality 11g February 24th, 12am  CET   Oracle offers an integrated suite Data Quality software architected to discover and correct today's data quality problems and establish a platform prepared for tomorrow's yet unknown data challenges. Oracle Data Profiling provides data investigation, discovery, and profiling in support of quality, migration, integration, stewardship, and governance initiatives. It includes a broad range of features that expand upon basic profiling, including automated monitoring, business-rule validation, and trend analysis. Oracle Data Quality for Data Integrator provides cleansing, standardization, matching, address validation, location enrichment, and linking functions for global customer data and operational business data. It ensures that data adheres to established standards that are adaptable to fit each organization's specific needs.  Both single - and double - byte data are processed in local languages to provide a unique and centralized view of customers, products and services.   During this in-person briefing, Data Integration Solution Specialists will be providing a technical overview and a walkthrough.   Agenda ·         Oracle Data Integration Strategy overview ·         A focus on Oracle Data Profiling and Oracle Data Quality for Data Integrator: o   Oracle Data Profiling o   Oracle Data Quality for Data Integrator o   Live demoo   Q&A Delivery Format  This FREE online LIVE eSeminar will be delivered over the Web and Conference Call. Registrations   received less than 24hours  prior to start time may not receive confirmation to attend. To register , click here. For any questions please contact [email protected]

    Read the article

  • How do we keep dependent data structures up to date?

    - by Geo
    Suppose you have a parse tree, an abstract syntax tree, and a control flow graph, each one logically derived from the one before. In principle it is easy to construct each graph given the parse tree, but how can we manage the complexity of updating the graphs when the parse tree is modified? We know exactly how the tree has been modified, but how can the change be propagated to the other trees in a way that doesn't become difficult to manage? Naturally the dependent graph can be updated by simply reconstructing it from scratch every time the first graph changes, but then there would be no way of knowing the details of the changes in the dependent graph. I currently have four ways to attempt to solve this problem, but each one has difficulties. Nodes of the dependent tree each observe the relevant nodes of the original tree, updating themselves and the observer lists of original tree nodes as necessary. The conceptual complexity of this can become daunting. Each node of the original tree has a list of the dependent tree nodes that specifically depend upon it, and when the node changes it sets a flag on the dependent nodes to mark them as dirty, including the parents of the dependent nodes all the way down to the root. After each change we run an algorithm that is much like the algorithm for constructing the dependent graph from scratch, but it skips over any clean node and reconstructs each dirty node, keeping track of whether the reconstructed node is actually different from the dirty node. This can also get tricky. We can represent the logical connection between the original graph and the dependent graph as a data structure, like a list of constraints, perhaps designed using a declarative language. When the original graph changes we need only scan the list to discover which constraints are violated and how the dependent tree needs to change to correct the violation, all encoded as data. We can reconstruct the dependent graph from scratch as though there were no existing dependent graph, and then compare the existing graph and the new graph to discover how it has changed. I'm sure this is the easiest way because I know there are algorithms available for detecting differences, but they are all quite computationally expensive and in principle it seems unnecessary so I'm deliberately avoiding this option. What is the right way to deal with these sorts of problems? Surely there must be a design pattern that makes this whole thing almost easy. It would be nice to have a good solution for every problem of this general description. Does this class of problem have a name?

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >