Search Results

Search found 128 results on 6 pages for 'datediff'.

Page 6/6 | < Previous Page | 2 3 4 5 6 

  • SQL Server Table Polling by Multiple Subscribers

    - by Daniel Hester
    Background Designing Stored Procedures that are safe for multiple subscribers (to call simultaneously) can be challenging.  For example let’s say that you want multiple worker processes to poll a shared work queue that’s encapsulated as a SQL Table. This is a common scenario and through experience you’ll find that you want to use Table Hints to prevent unwanted locking when performing simultaneous queries on the same table. There are three table hints to consider: NOLOCK, READPAST and UPDLOCK. Both NOLOCK and READPAST table hints allow you to SELECT from a table without placing a LOCK on that table. However, SELECTs with the READPAST hint will ignore any records that are locked due to being updated/inserted (or otherwise “dirty”), whereas a SELECT with NOLOCK ignores all locks including dirty reads. For the initial update of the flag (that marks the record as available for subscription) I don’t use the NOLOCK Table Hint because I want to be sensitive to the “active” records in the table and I want to exclude them.  I use an Update Lock (UPDLOCK) in conjunction with a WHERE clause that uses a sub-select with a READPAST Table Hint in order to explicitly lock the records I’m updating (UPDLOCK) but not place a lock on the table when selecting the records that I’m going to update (READPAST). UPDATES should be allowed to lock the rows affected because we’re probably changing a flag on a record so that it is not included in a SELECT from another subscriber. On the UPDATE statement we should explicitly use the UPDLOCK to guard against lock escalation. A SELECT to check for the next record(s) to process can result in a shared read lock being held by more than one subscriber polling the shared work queue (SQL table). It is expected that more than one worker process (or server) might try to process the same new record(s) at the same time. When each process then tries to obtain the update lock, none of them can because another process has a shared read lock in place. Thus without the UPDLOCK hint the result would be a lock escalation deadlock; however with the UPDLOCK hint this condition is mitigated against. Note that using the READPAST table hint requires that you also set the ISOLATION LEVEL of the transaction to be READ COMMITTED (rather than the default of SERIALIZABLE). Guidance In the Stored Procedure that returns records to the multiple subscribers: Perform the UPDATE first. Change the flag that makes the record available to subscribers.  Additionally, you may want to update a LastUpdated datetime field in order to be able to check for records that “got stuck” in an intermediate state or for other auditing purposes. In the UPDATE statement use the (UPDLOCK) Table Hint on the UPDATE statement to prevent lock escalation. In the UPDATE statement also use a WHERE Clause that uses a sub-select with a (READPAST) Table Hint to select the records that you’re going to update. In the UPDATE statement use the OUTPUT clause in conjunction with a Temporary Table to isolate the record(s) that you’ve just updated and intend to return to the subscriber. This is the fastest way to update the record(s) and to get the records’ identifiers within the same operation. Finally do a set-based SELECT on the main Table (using the Temporary Table to identify the records in the set) with either a READPAST or NOLOCK table hint.  Use NOLOCK if there are other processes (besides the multiple subscribers) that might be changing the data that you want to return to the multiple subscribers; or use READPAST if you're sure there are no other processes (besides the multiple subscribers) that might be updating column data in the table for other purposes (e.g. changes to a person’s last name).  NOLOCK is generally the better fit in this part of the scenario. See the following as an example: CREATE PROCEDURE [dbo].[usp_NewCustomersSelect] AS BEGIN -- OVERRIDE THE DEFAULT ISOLATION LEVEL SET TRANSACTION ISOLATION LEVEL READ COMMITTED -- SET NOCOUNT ON SET NOCOUNT ON -- DECLARE TEMP TABLE -- Note that this example uses CustomerId as an identifier; -- you could just use the Identity column Id if that’s all you need. DECLARE @CustomersTempTable TABLE ( CustomerId NVARCHAR(255) ) -- PERFORM UPDATE FIRST -- [Customers] is the name of the table -- [Id] is the Identity Column on the table -- [CustomerId] is the business document key used to identify the -- record globally, i.e. in other systems or across SQL tables -- [Status] is INT or BIT field (if the status is a binary state) -- [LastUpdated] is a datetime field used to record the time of the -- last update UPDATE [Customers] WITH (UPDLOCK) SET [Status] = 1, [LastUpdated] = GETDATE() OUTPUT [INSERTED].[CustomerId] INTO @CustomersTempTable WHERE ([Id] = (SELECT TOP 100 [Id] FROM [Customers] WITH (READPAST) WHERE ([Status] = 0) ORDER BY [Id] ASC)) -- PERFORM SELECT FROM ENTITY TABLE SELECT [C].[CustomerId], [C].[FirstName], [C].[LastName], [C].[Address1], [C].[Address2], [C].[City], [C].[State], [C].[Zip], [C].[ShippingMethod], [C].[Id] FROM [Customers] AS [C] WITH (NOLOCK), @CustomersTempTable AS [TEMP] WHERE ([C].[CustomerId] = [TEMP].[CustomerId]) END In a system that has been designed to have multiple status values for records that need to be processed in the Work Queue it is necessary to have a “Watch Dog” process by which “stale” records in intermediate states (such as “In Progress”) are detected, i.e. a [Status] of 0 = New or Unprocessed; a [Status] of 1 = In Progress; a [Status] of 2 = Processed; etc.. Thus, if you have a business rule that states that the application should only process new records if all of the old records have been processed successfully (or marked as an error), then it will be necessary to build a monitoring process to detect stalled or stale records in the Work Queue, hence the use of the LastUpdated column in the example above. The Status field along with the LastUpdated field can be used as the criteria to detect stalled / stale records. It is possible to put this watchdog logic into the stored procedure above, but I would recommend making it a separate monitoring function. In writing the stored procedure that checks for stale records I would recommend using the same kind of lock semantics as suggested above. The example below looks for records that have been in the “In Progress” state ([Status] = 1) for greater than 60 seconds: CREATE PROCEDURE [dbo].[usp_NewCustomersWatchDog] AS BEGIN -- TO OVERRIDE THE DEFAULT ISOLATION LEVEL SET TRANSACTION ISOLATION LEVEL READ COMMITTED -- SET NOCOUNT ON SET NOCOUNT ON DECLARE @MaxWait int; SET @MaxWait = 60 IF EXISTS (SELECT 1 FROM [dbo].[Customers] WITH (READPAST) WHERE ([Status] = 1) AND (DATEDIFF(s, [LastUpdated], GETDATE()) > @MaxWait)) BEGIN SELECT 1 AS [IsWatchDogError] END ELSE BEGIN SELECT 0 AS [IsWatchDogError] END END Downloads The zip file below contains two SQL scripts: one to create a sample database with the above stored procedures and one to populate the sample database with 10,000 sample records.  I am very grateful to Red-Gate software for their excellent SQL Data Generator tool which enabled me to create these sample records in no time at all. References http://msdn.microsoft.com/en-us/library/ms187373.aspx http://www.techrepublic.com/article/using-nolock-and-readpast-table-hints-in-sql-server/6185492 http://geekswithblogs.net/gwiele/archive/2004/11/25/15974.aspx http://grounding.co.za/blogs/romiko/archive/2009/03/09/biztalk-sql-receive-location-deadlocks-dirty-reads-and-isolation-levels.aspx

    Read the article

  • Beware Sneaky Reads with Unique Indexes

    - by Paul White NZ
    A few days ago, Sandra Mueller (twitter | blog) asked a question using twitter’s #sqlhelp hash tag: “Might SQL Server retrieve (out-of-row) LOB data from a table, even if the column isn’t referenced in the query?” Leaving aside trivial cases (like selecting a computed column that does reference the LOB data), one might be tempted to say that no, SQL Server does not read data you haven’t asked for.  In general, that’s quite correct; however there are cases where SQL Server might sneakily retrieve a LOB column… Example Table Here’s a T-SQL script to create that table and populate it with 1,000 rows: CREATE TABLE dbo.LOBtest ( pk INTEGER IDENTITY NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( some_value, lob_data ) SELECT TOP (1000) N.n, @Data FROM Numbers N WHERE N.n <= 1000; Test 1: A Simple Update Let’s run a query to subtract one from every value in the some_value column: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; As you might expect, modifying this integer column in 1,000 rows doesn’t take very long, or use many resources.  The STATITICS IO and TIME output shows a total of 9 logical reads, and 25ms elapsed time.  The query plan is also very simple: Looking at the Clustered Index Scan, we can see that SQL Server only retrieves the pk and some_value columns during the scan: The pk column is needed by the Clustered Index Update operator to uniquely identify the row that is being changed.  The some_value column is used by the Compute Scalar to calculate the new value.  (In case you are wondering what the Top operator is for, it is used to enforce SET ROWCOUNT). Test 2: Simple Update with an Index Now let’s create a nonclustered index keyed on the some_value column, with lob_data as an included column: CREATE NONCLUSTERED INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); This is not a useful index for our simple update query; imagine that someone else created it for a different purpose.  Let’s run our update query again: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; We find that it now requires 4,014 logical reads and the elapsed query time has increased to around 100ms.  The extra logical reads (4 per row) are an expected consequence of maintaining the nonclustered index. The query plan is very similar to before (click to enlarge): The Clustered Index Update operator picks up the extra work of maintaining the nonclustered index. The new Compute Scalar operators detect whether the value in the some_value column has actually been changed by the update.  SQL Server may be able to skip maintaining the nonclustered index if the value hasn’t changed (see my previous post on non-updating updates for details).  Our simple query does change the value of some_data in every row, so this optimization doesn’t add any value in this specific case. The output list of columns from the Clustered Index Scan hasn’t changed from the one shown previously: SQL Server still just reads the pk and some_data columns.  Cool. Overall then, adding the nonclustered index hasn’t had any startling effects, and the LOB column data still isn’t being read from the table.  Let’s see what happens if we make the nonclustered index unique. Test 3: Simple Update with a Unique Index Here’s the script to create a new unique index, and drop the old one: CREATE UNIQUE NONCLUSTERED INDEX [UQ dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); GO DROP INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest; Remember that SQL Server only enforces uniqueness on index keys (the some_data column).  The lob_data column is simply stored at the leaf-level of the non-clustered index.  With that in mind, we might expect this change to make very little difference.  Let’s see: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; Whoa!  Now look at the elapsed time and logical reads: Scan count 1, logical reads 2016, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   CPU time = 172 ms, elapsed time = 16172 ms. Even with all the data and index pages in memory, the query took over 16 seconds to update just 1,000 rows, performing over 52,000 LOB logical reads (nearly 16,000 of those using read-ahead). Why on earth is SQL Server reading LOB data in a query that only updates a single integer column? The Query Plan The query plan for test 3 looks a bit more complex than before: In fact, the bottom level is exactly the same as we saw with the non-unique index.  The top level has heaps of new stuff though, which I’ll come to in a moment. You might be expecting to find that the Clustered Index Scan is now reading the lob_data column (for some reason).  After all, we need to explain where all the LOB logical reads are coming from.  Sadly, when we look at the properties of the Clustered Index Scan, we see exactly the same as before: SQL Server is still only reading the pk and some_value columns – so what’s doing the LOB reads? Updates that Sneakily Read Data We have to go as far as the Clustered Index Update operator before we see LOB data in the output list: [Expr1020] is a bit flag added by an earlier Compute Scalar.  It is set true if the some_value column has not been changed (part of the non-updating updates optimization I mentioned earlier). The Clustered Index Update operator adds two new columns: the lob_data column, and some_value_OLD.  The some_value_OLD column, as the name suggests, is the pre-update value of the some_value column.  At this point, the clustered index has already been updated with the new value, but we haven’t touched the nonclustered index yet. An interesting observation here is that the Clustered Index Update operator can read a column into the data flow as part of its update operation.  SQL Server could have read the LOB data as part of the initial Clustered Index Scan, but that would mean carrying the data through all the operations that occur prior to the Clustered Index Update.  The server knows it will have to go back to the clustered index row to update it, so it delays reading the LOB data until then.  Sneaky! Why the LOB Data Is Needed This is all very interesting (I hope), but why is SQL Server reading the LOB data?  For that matter, why does it need to pass the pre-update value of the some_value column out of the Clustered Index Update? The answer relates to the top row of the query plan for test 3.  I’ll reproduce it here for convenience: Notice that this is a wide (per-index) update plan.  SQL Server used a narrow (per-row) update plan in test 2, where the Clustered Index Update took care of maintaining the nonclustered index too.  I’ll talk more about this difference shortly. The Split/Sort/Collapse combination is an optimization, which aims to make per-index update plans more efficient.  It does this by breaking each update into a delete/insert pair, reordering the operations, removing any redundant operations, and finally applying the net effect of all the changes to the nonclustered index. Imagine we had a unique index which currently holds three rows with the values 1, 2, and 3.  If we run a query that adds 1 to each row value, we would end up with values 2, 3, and 4.  The net effect of all the changes is the same as if we simply deleted the value 1, and added a new value 4. By applying net changes, SQL Server can also avoid false unique-key violations.  If we tried to immediately update the value 1 to a 2, it would conflict with the existing value 2 (which would soon be updated to 3 of course) and the query would fail.  You might argue that SQL Server could avoid the uniqueness violation by starting with the highest value (3) and working down.  That’s fine, but it’s not possible to generalize this logic to work with every possible update query. SQL Server has to use a wide update plan if it sees any risk of false uniqueness violations.  It’s worth noting that the logic SQL Server uses to detect whether these violations are possible has definite limits.  As a result, you will often receive a wide update plan, even when you can see that no violations are possible. Another benefit of this optimization is that it includes a sort on the index key as part of its work.  Processing the index changes in index key order promotes sequential I/O against the nonclustered index. A side-effect of all this is that the net changes might include one or more inserts.  In order to insert a new row in the index, SQL Server obviously needs all the columns – the key column and the included LOB column.  This is the reason SQL Server reads the LOB data as part of the Clustered Index Update. In addition, the some_value_OLD column is required by the Split operator (it turns updates into delete/insert pairs).  In order to generate the correct index key delete operation, it needs the old key value. The irony is that in this case the Split/Sort/Collapse optimization is anything but.  Reading all that LOB data is extremely expensive, so it is sad that the current version of SQL Server has no way to avoid it. Finally, for completeness, I should mention that the Filter operator is there to filter out the non-updating updates. Beating the Set-Based Update with a Cursor One situation where SQL Server can see that false unique-key violations aren’t possible is where it can guarantee that only one row is being updated.  Armed with this knowledge, we can write a cursor (or the WHILE-loop equivalent) that updates one row at a time, and so avoids reading the LOB data: SET NOCOUNT ON; SET STATISTICS XML, IO, TIME OFF;   DECLARE @PK INTEGER, @StartTime DATETIME; SET @StartTime = GETUTCDATE();   DECLARE curUpdate CURSOR LOCAL FORWARD_ONLY KEYSET SCROLL_LOCKS FOR SELECT L.pk FROM LOBtest L ORDER BY L.pk ASC;   OPEN curUpdate;   WHILE (1 = 1) BEGIN FETCH NEXT FROM curUpdate INTO @PK;   IF @@FETCH_STATUS = -1 BREAK; IF @@FETCH_STATUS = -2 CONTINUE;   UPDATE dbo.LOBtest SET some_value = some_value - 1 WHERE CURRENT OF curUpdate; END;   CLOSE curUpdate; DEALLOCATE curUpdate;   SELECT DATEDIFF(MILLISECOND, @StartTime, GETUTCDATE()); That completes the update in 1280 milliseconds (remember test 3 took over 16 seconds!) I used the WHERE CURRENT OF syntax there and a KEYSET cursor, just for the fun of it.  One could just as well use a WHERE clause that specified the primary key value instead. Clustered Indexes A clustered index is the ultimate index with included columns: all non-key columns are included columns in a clustered index.  Let’s re-create the test table and data with an updatable primary key, and without any non-clustered indexes: IF OBJECT_ID(N'dbo.LOBtest', N'U') IS NOT NULL DROP TABLE dbo.LOBtest; GO CREATE TABLE dbo.LOBtest ( pk INTEGER NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( pk, some_value, lob_data ) SELECT TOP (1000) N.n, N.n, @Data FROM Numbers N WHERE N.n <= 1000; Now here’s a query to modify the cluster keys: UPDATE dbo.LOBtest SET pk = pk + 1; The query plan is: As you can see, the Split/Sort/Collapse optimization is present, and we also gain an Eager Table Spool, for Halloween protection.  In addition, SQL Server now has no choice but to read the LOB data in the Clustered Index Scan: The performance is not great, as you might expect (even though there is no non-clustered index to maintain): Table 'LOBtest'. Scan count 1, logical reads 2011, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   Table 'Worktable'. Scan count 1, logical reads 2040, physical reads 0, read-ahead reads 0, lob logical reads 34000, lob physical reads 0, lob read-ahead reads 8000.   SQL Server Execution Times: CPU time = 483 ms, elapsed time = 17884 ms. Notice how the LOB data is read twice: once from the Clustered Index Scan, and again from the work table in tempdb used by the Eager Spool. If you try the same test with a non-unique clustered index (rather than a primary key), you’ll get a much more efficient plan that just passes the cluster key (including uniqueifier) around (no LOB data or other non-key columns): A unique non-clustered index (on a heap) works well too: Both those queries complete in a few tens of milliseconds, with no LOB reads, and just a few thousand logical reads.  (In fact the heap is rather more efficient). There are lots more fun combinations to try that I don’t have space for here. Final Thoughts The behaviour shown in this post is not limited to LOB data by any means.  If the conditions are met, any unique index that has included columns can produce similar behaviour – something to bear in mind when adding large INCLUDE columns to achieve covering queries, perhaps. Paul White Email: [email protected] Twitter: @PaulWhiteNZ

    Read the article

  • WMI/VBS/HTML System Information Script

    - by Methical
    Hey guys; havin' a problem with this code here; can't seem to work out whats goin' wrong with it. All other variables seem to print fine in the HTML ouput; but I get an error that relates to the cputype variable. I get the following error C:\Users\Methical\Desktop\sysinfo.vbs(235,1) Microsoft VBScript runtime error: Invalid procedure call or argument I think it has somethin' to do with this line here fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>CPU</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & cputype & "</i></td></tr>" If i delete this line; the script compiles and outputs with no errors. Here is the full code below Dim strComputer, objWMIService, propValue, objItem Dim strUserName, strPassword, colItems, SWBemlocator ' This section querries for the workstation to be scanned. UserName = "" Password = "" strComputer = "127.1.1.1" ImgDir = "C:\Scripts\images\" 'Sets up the connections and opjects to be used throughout the script. Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator") Set objWMIService = SWBemlocator.ConnectServer(,"root\CIMV2",strUserName,strPassword) 'This determines the current date and time of the PC being scanned. Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_LocalTime", "WQL", wbemFlagReturnImmediately + wbemFlagForwardOnly) For Each objItem in colItems If objItem.Minute < 10 Then theMinutes = "0" & objItem.Minute Else theMinutes = objItem.Minute End If If objItem.Second < 10 Then theSeconds = "0" & objItem.Second Else theSeconds = objItem.Second End If DateTime = objItem.Month & "/" & objItem.Day & "/" & objItem.Year & " - " & objItem.Hour & ":" & theMinutes & ":" & theSeconds Next 'Gets some ingomation about the Operating System including Service Pack level. Set colItems = objWMIService.ExecQuery("Select * from Win32_OperatingSystem",,48) For Each objItem in colItems WKID = objItem.CSName WKOS = objItem.Caption CSD = objItem.CSDVersion Architecture = objItem.OSArchitecture SysDir = objItem.SystemDirectory SysDrive = objItem.SystemDrive WinDir = objItem.WindowsDirectory ServicePack = objItem.ServicePackMajorVersion & "." & objItem.ServicePackMinorVersion Next 'This section returns the Time Zone Set colItems = objWMIService.ExecQuery("Select * from Win32_TimeZone") For Each objItem in colItems Zone = objItem.Description Next 'This section displays the Shadow Storage information Set colItems = objWMIService.ExecQuery("Select * from Win32_ShadowStorage") For Each objItem in colItems Allocated = int((objItem.AllocatedSpace/1024)/1024+1) UsedSpace = int((objItem.UsedSpace/1024)/1024+1) MaxSpace = int((objItem.MaxSpace/1024)/1024+1) Next 'This section returns the InstallDate of the OS Set objSWbemDateTime = _ CreateObject("WbemScripting.SWbemDateTime") Set colOperatingSystems = _ objWMIService.ExecQuery _ ("Select * from Win32_OperatingSystem") For Each objOperatingSystem _ in colOperatingSystems objSWbemDateTime.Value = _ objOperatingSystem.InstallDate InstallDate = _ objSWbemDateTime.GetVarDate(False) Next 'This section returns the Video card and current resolution. Set colItems = objWMIService.ExecQuery("Select * from Win32_DisplayConfiguration",,48) For Each objItem in colItems VideoCard = objItem.DeviceName Resolution = objItem.PelsWidth & " x " & objItem.PelsHeight & " x " & objItem.BitsPerPel & " bits" Next 'This section returns the Video card memory. Set objWMIService = GetObject("winmgmts:root\cimv2") Set colItems = objWMIService.ExecQuery ("Select * from Win32_VideoController") For Each objItem in colItems VideoMemory = objItem.AdapterRAM/1024/1024 Next 'This returns various system information including current logged on user, domain, memory, manufacture and model. Set colItems = objWMIService.ExecQuery("Select * from Win32_ComputerSystem",,48) For Each objItem in colItems UserName = objItem.UserName Domain = objItem.Domain TotalMemory = int((objItem.TotalPhysicalMemory/1024)/1024+1) Manufacturer = objItem.Manufacturer Model = objItem.Model SysType = objItem.SystemType Next 'This determines the total hard drive space and free hard drive space. Set colItems = objWMIService.ExecQuery("Select * from Win32_LogicalDisk Where Name='C:'",,48) For Each objItem in colItems FreeHDSpace = Fix(((objItem.FreeSpace/1024)/1024)/1024) TotalHDSpace = Fix(((objItem.Size/1024)/1024)/1024) Next 'This section returns the default printer and printer port. Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_Printer where Default=True", "WQL", wbemFlagReturnImmediately + wbemFlagForwardOnly) For Each objItem in colItems Printer = objItem.Name PortName = objItem.PortName Next 'This returns the CPU information. Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_Processor", "WQL", wbemFlagReturnImmediately + wbemFlagForwardOnly) For Each objItem in colItems CPUDesc = LTrim(objItem.Name) Next '// CPU Info For each objCPU in GetObject("winmgmts:{impersonationLevel=impersonate}\\" & strComputer & "\root\cimv2").InstancesOf("Win32_Processor") Select Case objCPU.Family Case 2 cputype = "Unknown" Case 11 cputype = "Pentium brand" Case 12 cputype = "Pentium Pro" Case 13 cputype = "Pentium II" Case 14 cputype = "Pentium processor with MMX technology" Case 15 cputype = "Celeron " Case 16 cputype = "Pentium II Xeon" Case 17 cputype = "Pentium III" Case 28 cputype = "AMD Athlon Processor Family" Case 29 cputype = "AMD Duron Processor" Case 30 cputype = "AMD2900 Family" Case 31 cputype = "K6-2+" Case 130 cputype = "Itanium Processor" Case 176 cputype = "Pentium III Xeon" Case 177 cputype = "Pentium III Processor with Intel SpeedStep Technology" Case 178 cputype = "Pentium 4" Case 179 cputype = "Intel Xeon" Case 181 cputype = "Intel Xeon processor MP" Case 182 cputype = "AMD AthlonXP Family" Case 183 cputype = "AMD AthlonMP Family" Case 184 cputype = "Intel Itanium 2" Case 185 cputype = "AMD Opteron? Family" End Select Next 'This returns the current uptime (time since last reboot) of the system. Set colOperatingSystems = objWMIService.ExecQuery ("Select * from Win32_OperatingSystem") For Each objOS in colOperatingSystems dtmBootup = objOS.LastBootUpTime dtmLastBootupTime = WMIDateStringToDate(dtmBootup) dtmSystemUptime = DateDiff("h", dtmLastBootUpTime, Now) Uptime = dtmSystemUptime Next Function WMIDateStringToDate(dtmBootup) WMIDateStringToDate = CDate(Mid(dtmBootup, 5, 2) & "/" & Mid(dtmBootup, 7, 2) & "/" & Left(dtmBootup, 4) & " " & Mid (dtmBootup, 9, 2) & ":" & Mid(dtmBootup, 11, 2) & ":" & Mid(dtmBootup,13, 2)) End Function dim objFSO Set objFSO = CreateObject("Scripting.FileSystemObject") ' -- The heart of the create file script ----------------------- ' -- Creates the file using the value of strFile on Line 11 ' -------------------------------------------------------------- Set fileOutput = objFSO.CreateTextFile( "x.html", true ) 'Set fileOutput = objExplorer.Document 'This is the code for the web page to be displayed. fileOutput.WriteLine "<html>" fileOutput.WriteLine " <head>" fileOutput.WriteLine " <title>System Information for '" & WKID & "' </title>" fileOutput.WriteLine " </head>" fileOutput.WriteLine " <body bgcolor='#FFFFFF' text='#000000' link='#0000FF' vlink='000099' alink='#00FF00'>" fileOutput.WriteLine " <center>" fileOutput.WriteLine " <h1>System Information for " & WKID & "</h1>" fileOutput.WriteLine " <table border='0' cellspacing='1' cellpadding='1' width='95%'>" fileOutput.WriteLine " <tr><td background='" & ImgDir & "blue_spacer.gif'>" fileOutput.WriteLine " <table border='0' cellspacing='0' cellpadding='0' width='100%'>" fileOutput.WriteLine " <tr><td>" fileOutput.WriteLine " <table border='0' cellspacing='0' cellpadding='0' width='100%'>" fileOutput.WriteLine " <tr>" fileOutput.WriteLine " <td width='5%' align='left' valign='middle' background='" & ImgDir & "blue_spacer.gif'><img src='" & ImgDir & "write.gif'></td>" fileOutput.WriteLine " <td width='95%' align='left' valign='middle' background='" & ImgDir & "blue_spacer.gif'> <font color='#FFFFFF' size='5'>WKInfo - </font><font color='#FFFFFF' size='3'>General information on the Workstation.</font></td>" fileOutput.WriteLine " </tr>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#FFFFFF'>" fileOutput.WriteLine " <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>Date and Time</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Date/Time</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & DateTime & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Uptime</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Uptime & " hours</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Time Zone</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Zone & " </i></td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>General Computer Information</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Manufacturer</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Manufacturer & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Model</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Model & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Based</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & SysType & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Operating System</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & WKOS & " " & CSD & " " & Architecture & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Operating System Install Date</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & InstallDate & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>UserName</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & UserName & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Workstation Name</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & WKID & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Domain</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Domain & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Drive</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & SysDrive & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Directory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & SysDir & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Windows Directory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & WinDir & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>ShadowStorage Allocated Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Allocated & " MB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>ShadowStorage Used Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & UsedSpace & " MB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>ShadowStorage Max Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & MaxSpace & " MB</i></td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>General Hardware Information</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>CPU</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & cputype & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Memory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & TotalMemory & " MB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Total HDD Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & TotalHDSpace & " GB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Free HDD Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & FreeHDSpace & " GB</i></td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>General Video Card Information</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Video Card</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & VideoCard & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Resolution</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Resolution & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Memory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & VideoMemory & " MB</i></td></tr>" 'This section lists all the current services and their status. fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>Current Service Information</h3></b></TD></TR>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#f0f0f0'>" fileOutput.WriteLine " <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine " <TR><TD width='70%' align='center' bgcolor='#e0e0e0'><b>Service Name</b></td><TD width='30%' align='center' bgcolor='#e0e0e0'><b>Service State</b></td><tr>" Set colRunningServices = objWMIService.ExecQuery("Select * from Win32_Service") For Each objService in colRunningServices fileOutput.WriteLine " <TR><TD align='left' bgcolor='#f0f0f0'>" & objService.DisplayName & "</TD><td bgcolor=#f0f0f0 align=center><i>" & objService.State & "</i></td></tr>" wscript.echo " <TR><TD align='left' bgcolor='#f0f0f0'>" & objService.DisplayName & "</TD><td bgcolor=#f0f0f0 align=center><i>" & objService.State & "</i></td></tr>" Next fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" 'This section lists all the current running processes and some information. fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>Current Process Information</h3></b></TD></TR>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#f0f0f0'>" fileOutput.WriteLine " <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine " <TR><TD width='10%' align='center' bgcolor='#e0e0e0'><b>PID</b></td><TD width='35%' align='center' bgcolor='#e0e0e0'><b>Process Name</b></td><TD width='40%' align='center' bgcolor='#e0e0e0'><b>Owner</b></td><TD width='15%' align='center' bgcolor='#e0e0e0'><b>Memory</b></td></tr>" Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process") For Each objProcess in colProcessList colProperties = objProcess.GetOwner(strNameOfUser,strUserDomain) fileOutput.WriteLine " <TR><TD align='center' bgcolor='#f0f0f0'>" & objProcess.Handle & "</td><TD align='center' bgcolor='#f0f0f0'>" & objProcess.Name & "</td><TD align='center' bgcolor='#f0f0f0'>" & strUserDomain & "\" & strNameOfUser & "</td><TD align='center' bgcolor='#f0f0f0'>" & objProcess.WorkingSetSize/1024 & " kb</td><tr>" Next fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" 'This section lists all the currently installed software on the machine. fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><i>Installed Software</i></b></TD></TR>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#f0f0f0'>" Set colSoftware = objWMIService.ExecQuery ("Select * from Win32_Product") For Each objSoftware in colSoftware fileOutput.WriteLine" <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine" <tr><td width=30% align=center bgcolor='#e0e0e0'><b>Name</b></td><td width=30% align=center bgcolor='#e0e0e0'><b>Vendor</b></td><td width=30% align=center bgcolor='#e0e0e0'><b>Version</b></td></tr>" fileOutput.WriteLine" <tr><td align=center bgcolor=#f0f0f0>" & objSoftware.Name & "</td><td align=center bgcolor=#f0f0f0>" & objSoftware.Vendor & "</td><td align=center bgcolor=#f0f0f0>" & objSoftware.Version & "</td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine" </table>" Next fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " <p><small></small></p>" fileOutput.WriteLine " </center>" fileOutput.WriteLine " </body>" fileOutput.WriteLine "<html>" fileOutput.close WScript.Quit

    Read the article

< Previous Page | 2 3 4 5 6