Search Results

Search found 7960 results on 319 pages for 'distributed cache'.

Page 6/319 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Datanucleus/JDO Level 2 Cache on Google App Engine

    - by Thilo
    Is it possible (and does it make sense) to use the JDO Level 2 Cache for the Google App Engine Datastore? First of all, why is there no documentation about this on Google's pages? Are there some problems with it? Do we need to set up limits to protect our memcache quota? According to DataNucleus on Stackoverflow, you can set the following persistence properties: datanucleus.cache.level2.type=javax.cache datanucleus.cache.level2.cacheName={cache name} Is that all? Can we choose any cache name? Other sources on the Internet report using different settings. Also, it seems we need to download the DataNucleus Cache support plugin. Which version would be appropriate? And do we just place it in WEB-INF/lib or does it need more setup to activate it?

    Read the article

  • Collections not read from hibernate/ehcache second-level-cache

    - by Mark van Venrooij
    I'm trying to cache lazy loaded collections with ehcache/hibernate in a Spring project. When I execute a session.get(Parent.class, 123) and browse through the children multiple times a query is executed every time to fetch the children. The parent is only queried the first time and then resolved from the cache. Probably I'm missing something, but I can't find the solution. Please see the relevant code below. I'm using Spring (3.2.4.RELEASE) Hibernate(4.2.1.Final) and ehcache(2.6.6) The parent class: @Entity @Table(name = "PARENT") @Cacheable @Cache(usage = CacheConcurrencyStrategy.READ_WRITE, include = "all") public class ServiceSubscriptionGroup implements Serializable { /** The Id. */ @Id @Column(name = "ID") private int id; @OneToMany(fetch = FetchType.LAZY, mappedBy = "parent") @Cache(usage = CacheConcurrencyStrategy.READ_WRITE) private List<Child> children; public List<Child> getChildren() { return children; } public void setChildren(List<Child> children) { this.children = children; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Parent that = (Parent) o; if (id != that.id) return false; return true; } @Override public int hashCode() { return id; } } The child class: @Entity @Table(name = "CHILD") @Cacheable @Cache(usage = CacheConcurrencyStrategy.READ_WRITE, include = "all") public class Child { @Id @Column(name = "ID") private int id; @ManyToOne(fetch = FetchType.LAZY, cascade = CascadeType.ALL) @JoinColumn(name = "PARENT_ID") @Cache(usage = CacheConcurrencyStrategy.READ_WRITE) private Parent parent; public int getId() { return id; } public void setId(final int id) { this.id = id; } private Parent getParent(){ return parent; } private void setParent(Parent parent) { this.parent = parent; } @Override public boolean equals(final Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } final Child that = (Child) o; return id == that.id; } @Override public int hashCode() { return id; } } The application context: <bean id="sessionFactory" class="org.springframework.orm.hibernate4.LocalSessionFactoryBean"> <property name="dataSource" ref="dataSource" /> <property name="annotatedClasses"> <list> <value>Parent</value> <value>Child</value> </list> </property> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">org.hibernate.dialect.SQLServer2008Dialect</prop> <prop key="hibernate.hbm2ddl.auto">validate</prop> <prop key="hibernate.ejb.naming_strategy">org.hibernate.cfg.ImprovedNamingStrategy</prop> <prop key="hibernate.connection.charSet">UTF-8</prop> <prop key="hibernate.show_sql">true</prop> <prop key="hibernate.format_sql">true</prop> <prop key="hibernate.use_sql_comments">true</prop> <!-- cache settings ehcache--> <prop key="hibernate.cache.use_second_level_cache">true</prop> <prop key="hibernate.cache.use_query_cache">true</prop> <prop key="hibernate.cache.region.factory_class"> org.hibernate.cache.ehcache.SingletonEhCacheRegionFactory</prop> <prop key="hibernate.generate_statistics">true</prop> <prop key="hibernate.cache.use_structured_entries">true</prop> <prop key="hibernate.cache.use_query_cache">true</prop> <prop key="hibernate.transaction.factory_class"> org.hibernate.engine.transaction.internal.jta.JtaTransactionFactory</prop> <prop key="hibernate.transaction.jta.platform"> org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform</prop> </props> </property> </bean> The testcase I'm running: @Test public void testGetParentFromCache() { for (int i = 0; i <3 ; i++ ) { getEntity(); } } private void getEntity() { Session sess = sessionFactory.openSession() sess.setCacheMode(CacheMode.NORMAL); Transaction t = sess.beginTransaction(); Parent p = (Parent) s.get(Parent.class, 123); Assert.assertNotNull(p); Assert.assertNotNull(p.getChildren().size()); t.commit(); sess.flush(); sess.clear(); sess.close(); } In the logging I can see that the first time 2 queries are executed getting the parent and getting the children. Furthermore the logging shows that the child entities as well as the collection are stored in the 2nd level cache. However when reading the collection a query is executed to fetch the children on second and third attempt.

    Read the article

  • For distributed applications, which to use, ASIO vs. MPI?

    - by Rhubarb
    I am a bit confused about this. If you're building a distributed application, which in some cases may perform parallel operations (although not necessarily mathematical), should you use ASIO or something like MPI? I take it MPI is a higher level than ASIO, but it's not clear where in the stack one would begin.

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

  • Is it OK to set "Cache-Control: public" when sending “304 Not Modified” for images stored in the dat

    - by Emilien
    After asking a question about sending “304 Not Modified” for images stored in the in the Google App Engine datastore, I now have a question about Cache-Control. My app now sends Last-Modified and Etag, but by default GAE alsto sends Cache-Control: no-cache. According to this page: The “no-cache” directive, according to the RFC, tells the browser that it should revalidate with the server before serving the page from the cache. [...] In practice, IE and Firefox have started treating the no-cache directive as if it instructs the browser not to even cache the page. As I DO want browsers to cache the image, I've added the following line to my code: self.response.headers['Cache-Control'] = "public" According to the same page as before: The “cache-control: public” directive [...] tells the browser and proxies [...] that the page may be cached. This is good for non-sensitive pages, as caching improves performance. The question is if this could be harmful to the application in some way? Would it be best to send Cache-Control: must-revalidate to "force" the browser to revalidate (I suppose that is the behavior that was originally the reason behind sending Cache-Control: no-cache) This directive insists that the browser must revalidate the page against the server before serving it from cache. Note that it implicitly lets the browser cache the page.

    Read the article

  • ideas for a distributed cache proxy server

    - by Neeraj
    Hi everyone! I am implementing, a distributed cache proxy server.I have an idea of the HTTP and related stuff, so i am rather concentrating on the sub part "Distributed data storage". From some search on web i found that this could be done using Distributed Hash Tables(DHT). I was wondering if there exists some kind of library for this preferably in C/C++. Any better suggestions for the same will also be appreciated.

    Read the article

  • Squid refresh_pattern won't cache "Expires: ..."

    - by Marcelo Cantos
    Background I frequent the OpenGL ES documentation site at http://www.khronos.org/opengles/sdk/1.1/docs/man/. Even though the content is completely static, it seems to force a reload on every single page I visit, which is very annoying. I have a squid 3.0 proxy set up (apt-get install squid3 on Ubuntu 10.04), and I added a refresh_pattern to force the pages to cache: refresh_pattern ^http://www.khronos.org/opengles/sdk/1\.1/docs/man/ … 1440 20% 10080 … override-expire ignore-reload ignore-no-cache ignore-private ignore-no-store This is all on one line, of course. While this appears to work for the XHTML documents (e.g., glBindTexture), it fails to cache the linked content, such as the DTD, some .ent files (?) and some XSL files. The delay in fetching these extra files delays rendering of the main document, so my principal annoyance isn't fixed. The only difference I can glean with these ancillary files is that they come with an Expires: header set to the current time, whereas the XHTML document has none. But I would have expected the override-expire option to fix this. I have confirmed that documents have the same base URL. I have also truncated the pattern to varying degrees, with no effect. My questions Why does the override-expire option not seem to work? Is there a simple way to tell squid to unconditionally cache a document, no matter what it finds in the response headers? (Hopefully) relevant output cache.log Jan 01 10:33:30 1970/06/25 21:18:27| Processing Configuration File: /etc/squid3/squid.conf (depth 0) Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'override-expire' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'ignore-reload' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'ignore-no-cache' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'ignore-no-store' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| WARNING: use of 'ignore-private' in 'refresh_pattern' violates HTTP Jan 01 10:33:30 1970/06/25 21:18:27| DNS Socket created at 0.0.0.0, port 37082, FD 10 Jan 01 10:33:30 1970/06/25 21:18:27| Adding nameserver 192.168.1.1 from /etc/resolv.conf Jan 01 10:33:30 1970/06/25 21:18:27| Accepting HTTP connections at 0.0.0.0, port 3128, FD 11. Jan 01 10:33:30 1970/06/25 21:18:27| Accepting ICP messages at 0.0.0.0, port 3130, FD 13. Jan 01 10:33:30 1970/06/25 21:18:27| HTCP Disabled. Jan 01 10:33:30 1970/06/25 21:18:27| Loaded Icons. Jan 01 10:33:30 1970/06/25 21:18:27| Ready to serve requests. access.log Jun 25 21:19:35 2010.710 0 192.168.1.50 TCP_MEM_HIT/200 2452 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/glBindTexture.xml - NONE/- text/xml Jun 25 21:19:36 2010.263 543 192.168.1.50 TCP_MISS/304 322 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml1-transitional.dtd - DIRECT/74.54.224.215 - Jun 25 21:19:36 2010.276 556 192.168.1.50 TCP_MISS/304 370 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/mathml.xsl - DIRECT/74.54.224.215 - Jun 25 21:19:36 2010.666 278 192.168.1.50 TCP_MISS/304 322 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-lat1.ent - DIRECT/74.54.224.215 - Jun 25 21:19:36 2010.958 279 192.168.1.50 TCP_MISS/304 322 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-symbol.ent - DIRECT/74.54.224.215 - Jun 25 21:19:37 2010.251 276 192.168.1.50 TCP_MISS/304 322 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-special.ent - DIRECT/74.54.224.215 - Jun 25 21:19:37 2010.332 0 192.168.1.50 TCP_IMS_HIT/304 316 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/ctop.xsl - NONE/- text/xml Jun 25 21:19:37 2010.332 0 192.168.1.50 TCP_IMS_HIT/304 316 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/pmathml.xsl - NONE/- text/xml store.log Jun 25 21:19:36 2010.263 RELEASE -1 FFFFFFFF D3056C09B42659631A65A08F97794E45 304 1277464776 -1 1277464776 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml1-transitional.dtd Jun 25 21:19:36 2010.276 RELEASE -1 FFFFFFFF 9BF7F37442FD84DD0AC0479E38329E3C 304 1277464776 -1 1277464776 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/mathml.xsl Jun 25 21:19:36 2010.666 RELEASE -1 FFFFFFFF 7BCFCE88EC91578C8E2589CB6310B3A1 304 1277464776 -1 1277464776 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-lat1.ent Jun 25 21:19:36 2010.958 RELEASE -1 FFFFFFFF ECF1B24E437CFAA08A2785AA31A042A0 304 1277464777 -1 1277464777 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-symbol.ent Jun 25 21:19:37 2010.251 RELEASE -1 FFFFFFFF 36FE3D76C80F0106E6E9F3B7DCE924FA 304 1277464777 -1 1277464777 unknown -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/xhtml-special.ent Jun 25 21:19:37 2010.332 RELEASE -1 FFFFFFFF A33E5A5CCA2BFA059C0FA25163485192 304 1277462871 1221139523 1277462871 text/xml -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/ctop.xsl Jun 25 21:19:37 2010.332 RELEASE -1 FFFFFFFF E2CF8854443275755915346052ACE14E 304 1277462872 1221139523 1277462872 text/xml -1/0 GET http://www.khronos.org/opengles/sdk/1.1/docs/man/pmathml.xsl

    Read the article

  • Open source Distributed computing tool

    - by Prasenjit Chatterjee
    I want to set up distributed computing on my Local Area Network consisting a bunch of PCs. Say for the time being each one has the same OS - Windows 7. Is there any opensource tool available so that I can share the resources of these PCs over the LAN and increase the speed of my applications and the memory space. I know that if its a graphics intensive application then, it is not very practical, because the speed of LAN is much slower than Graphics processors. But I only want to share general applications, some basic softwares, Programming language IDEs etc. Can anyone shed some light on it? Thanks in Advance..

    Read the article

  • distributed, fault-tolerant network block device

    - by gucki
    I'm looking for a distributed, fault-tolerant network storage system which exposes block devices (not filesystems) on the clients. A client's block device should write simultaneously to several storage nodes A client's block device should not fail as long as not all storage nodes backing it went down The master should automatically redistribute storages' data when a storage node fails or gets added/ removed A single master (which is for metadata only) is fine So ideally the architecture would be very similar to moosefs (http://www.moosefs.org/) but instead of exposing a real filesystem mounted using a fuse client it'd expose block devices on the clients. I know of iscsi and drbd but both don't seem to offer what I'm looking for. Or am I missing something?

    Read the article

  • Help create a unit test for test response header, specifically Cache-Control, in determining if cach

    - by VajNyiaj
    Scenario: I have a base controller which disables caching within the OnActionExecuting override. protected override void OnActionExecuting(ActionExecutingContext filterContext) { filterContext.HttpContext.Response.Cache.SetExpires(DateTime.UtcNow.AddDays(-1)); filterContext.HttpContext.Response.Cache.SetValidUntilExpires(false); filterContext.HttpContext.Response.Cache.SetRevalidation(HttpCacheRevalidation.AllCaches); filterContext.HttpContext.Response.Cache.SetCacheability(HttpCacheability.NoCache); //IE filterContext.HttpContext.Response.Cache.SetNoStore(); //FireFox } How can I create a Unit Test to test this behavior?

    Read the article

  • Clear Asp.Net cache from outside of application (not using source code)

    - by TheJudge
    Hi, I have a asp.net web application and I'm using cache (HttpRuntime.Cache) to save some stuff from db. I also update db from time to time so that data in db does not match the data in my application's cache. Is there any way how to clear my application's cache without modifying any source code or republishing the page? I tried to restart IIS and to clear browsers cache but nothing helps. Please help.

    Read the article

  • Working with the IE cache from C# & WPF

    - by Eric
    I'm writing a program in C# using the WPF framework. I need to display images, and I'd like to cache them to avoid downloading them constantly. I can code my own cache, however, IE already has a caching system. I can find code to read entries out of the IE cache, however I've found nothing dealing with the issue of adding items to the cache. Is there a good way to do it, or should I just implement a separate cache?

    Read the article

  • Is there a distributed project management software like Redmine?

    - by Tobias Kienzler
    I am quite familiar with and love using git, among other reasons due to its distributed nature. Now I'd like to set up some similarly distributed (FOSS) Project Management software with features similar to what Redmine offers, such as Issue & time tracking, milestones Gantt charts, calendar git integration, maybe some automatic linking of commits and issues Wiki (preferably with Mathjax support) Forum, news, notifications Multiple Projects However, I am looking for a solution that does not require a permanently accesible server, i.e. like in git, each user should have their own copy which can be easily synchronized with others. However it should be possible to not have a copy of every Project on every machine. Since trac uses multiple instances for multiple projects anyway, I was considering using that, but I neither know how well it adapts to simply giting the database itself (which would be be easiest way to handle the distribution due to git being used anyway), nor does it include all of Redmine's feature. So, can you recommend me a distributed project management software? If your suggestion is a software that usually runs on a server please include a description of the distribution method (e.g. whether simply putting the data in a git repository would do the trick), and if it's e.g. trac, please mention plugins required to include the features mentioned.

    Read the article

  • Use a custom value object or a Guid as an entity identifier in a distributed system?

    - by Kazark
    tl;dr I've been told that in domain-driven design, an identifier for an entity could be a custom value object, i.e. something other than Guid, string, int, etc. Can this really be advisable in a distributed system? Long version I will invent an situation analogous to the one I am currently facing. Say I have a distributed system in which a central concept is an egg. The system allows you to order eggs and see spending reports and inventory-centric data such as quantity on hand, usage, valuation and what have you. There area variety of services backing these behaviors. And say there is also another app which allows you to compose recipes that link to a particular egg type. Now egg type is broken down by the species—ostrich, goose, duck, chicken, quail. This is fine and dandy because it means that users don't end up with ostrich eggs when they wanted quail eggs and whatnot. However, we've been getting complaints because jumbo chicken eggs are not even close to equivalent to small ones. The price is different, and they really aren't substitutable in recipes. And here we thought we were doing users a favor by not overwhelming them with too many options. Currently each of the services (say, OrderSubmitter, EggTypeDefiner, SpendingReportsGenerator, InventoryTracker, RecipeCreator, RecipeTracker, or whatever) are identifying egg types with an industry-standard integer representation the species (let's call it speciesCode). We realize we've goofed up because this change could effect every service. There are two basic proposed solutions: Use a predefined identifier type like Guid as the eggTypeID throughout all the services, but make EggTypeDefiner the only service that knows that this maps to a speciesCode and eggSizeCode (and potentially to an isOrganic flag in the future, or whatever). Use an EggTypeID value object which is a combination of speciesCode and eggSizeCode in every service. I've proposed the first solution because I'm hoping it better encapsulates the definition of what an egg type is in the EggTypeDefiner and will be more resilient to changes, say if some people now want to differentiate eggs by whether or not they are "organic". The second solution is being suggested by some people who understand DDD better than I do in the hopes that less enrichment and lookup will be necessary that way, with the justification that in DDD using a value object as an ID is fine. Also, they are saying that EggTypeDefiner is not a domain and EggType is not an entity and as such should not have a Guid for an ID. However, I'm not sure the second solution is viable. This "value object" is going to have to be serialized into JSON and URLs for GET requests and used with a variety of technologies (C#, JavaScript...) which breaks encapsulation and thus removes any behavior of the identifier value object (is either of the fields optional? etc.) Is this a case where we want to avoid something that would normally be fine in DDD because we are trying to do DDD in a distributed fashion? Summary Can it be a good idea to use a custom value object as an identifier in a distributed system (solution #2)?

    Read the article

  • Geographically distributed file system with preferred locality

    - by dpb
    Hi All -- I'm building a application that needs to distribute a standard file server across a few sites over a WAN. Basically, each site needs to write a lot of misc files of varying size (some in the 100s MB range, but most small), and the application is written such that collisions aren't a problem. I'd like to have a system set up that meets the following qualifications: Each site can store files in a shared "namespace". That is, all the files would show up in the same filesystem. Each site would not send data over the WAN unless necessary. I.e., there would be local storage on each side of the WAN that would be "merged" into the same logical filesystem. Linux & Free ($$$) is a must. Basically, something like a central NFS share would meet most of the requirements, however it would not allow the locally written data to stay local. All data from remote sides of the WAN would be copied locally all the time. I have looked into Lustre, and have run some successful tests with it, however, it appears to distribute files fairly uniformly across the distributed storage. I have dug through the documentation and have not found anything that automatically will "prefer" local storage over remote storage. Even something that went with the lowest latency storage would be fine. It would work most of the time, which would meet this application's requirements. Any ideas?

    Read the article

  • Distributed File Systems.

    - by GruffTech
    So, I've been reading several articles around ServerFault as well as google. (For Example, this link) My Requirements are very similar to the link above, however i'd like to also have dynamic or at least resizeable file volumes, so if necessary i can add 4-5 servers to the pool, and then expand the volume. Any Distributed File systems that support that, to save me some time? Thanks! LustreFS will be my next test cluster to build. GlusterFS I've build a 3-machine test GlusterFS cluster, However i quickly became aware of several of its limitations that it doesn't seem to make clearly public. One, i can't seem to resize a volume. Once a volume is created, its done. Which seems retarded, why have a fully scalable file system if i can't scale a volume? So maybe i'm doing something wrong. I'm not sure. AmazonS3 while gives the cheapest startup adds too much cost when broken down to per client per month, so its out. Building my own system when prorated over several years with no bandwidth costs makes it significantly cheaper. MogileFS isn't an option as we'd like this server to be a SAN-Replacement, for storing tons of media from a multitude of systems, which for us means it needs to be POSIX compliant so it can be remotely mounted via NFS or CIFS.

    Read the article

  • Using Openfire for distributed XMPP-based video-chat

    - by Yitzhak
    I have been tasked with setting up a distributed video-chat system built on XMPP. Currently my setup looks like this: Openfire (XMPP server) + JingleNodes plugin for video chat OpenLDAP (LDAP server) for storing user information and allowing directory queries Kerberos server for authentication and passwords In testing with one set of machines (i.e. only three), everything works as expected: I can log in to Openfire and it looks up the user information in the OpenLDAP database, which in turn authenticates my user with Kerberos. Now, I want to have several clusters, so that there is a cluster on each continent. A typical cluster will probably contain 2-5 servers. Users logging in will be directed to the closest cluster based on geographical location. Something that concerns me particularly is the dynamic maintenance of contact lists. If a user is using a machine in Asia, for example, how would contact lists be updated around the world to reflect the current server he is using? How would that work with LDAP? Specific questions: How do I direct users based on geographical location? What is the best architecture for a cluster? -- would all traffic need to come into a load-balancer on each one, for example? How do I manage the update of contact lists across all these servers? In general, how do I go about setting this up? What are the pitfalls in doing this? I am inexperienced in this area, so any advice and suggestions would be appreciated.

    Read the article

  • Aggregating cache data from OCEP in CQL

    - by Manju James
    There are several use cases where OCEP applications need to join stream data with external data, such as data available in a Coherence cache. OCEP’s streaming language, CQL, supports simple cache-key based joins of stream data with data in Coherence (more complex queries will be supported in a future release). However, there are instances where you may need to aggregate the data in Coherence based on input data from a stream. This blog describes a sample that does just that. For our sample, we will use a simplified credit card fraud detection use case. The input to this sample application is a stream of credit card transaction data. The input stream contains information like the credit card ID, transaction time and transaction amount. The purpose of this application is to detect suspicious transactions and send out a warning event. For the sake of simplicity, we will assume that all transactions with amounts greater than $1000 are suspicious. The transaction history is available in a Coherence distributed cache. For every suspicious transaction detected, a warning event must be sent with maximum amount, total amount and total number of transactions over the past 30 days, as shown in the diagram below. Application Input Stream input to the EPN contains events of type CCTransactionEvent. This input has to be joined with the cache with all credit card transactions. The cache is configured in the EPN as shown below: <wlevs:caching-system id="CohCacheSystem" provider="coherence"/> <wlevs:cache id="CCTransactionsCache" value-type="CCTransactionEvent" key-properties="cardID, transactionTime" caching-system="CohCacheSystem"> </wlevs:cache> Application Output The output that must be produced by the application is a fraud warning event. This event is configured in the spring file as shown below. Source for cardHistory property can be seen here. <wlevs:event-type type-name="FraudWarningEvent"> <wlevs:properties type="tuple"> <wlevs:property name="cardID" type="CHAR"/> <wlevs:property name="transactionTime" type="BIGINT"/> <wlevs:property name="transactionAmount" type="DOUBLE"/> <wlevs:property name="cardHistory" type="OBJECT"/> </wlevs:properties </wlevs:event-type> Cache Data Aggregation using Java Cartridge In the output warning event, cardHistory property contains data from the cache aggregated over the past 30 days. To get this information, we use a java cartridge method. This method uses Coherence’s query API on credit card transactions cache to get the required information. Therefore, the java cartridge method requires a reference to the cache. This may be set up by configuring it in the spring context file as shown below: <bean class="com.oracle.cep.ccfraud.CCTransactionsAggregator"> <property name="cache" ref="CCTransactionsCache"/> </bean> This is used by the java class to set a static property: public void setCache(Map cache) { s_cache = (NamedCache) cache; } The code snippet below shows how the total of all the transaction amounts in the past 30 days is computed. Rest of the information required by CardHistory object is calculated in a similar manner. Complete source of this class can be found here. To find out more information about using Coherence's API to query a cache, please refer Coherence Developer’s Guide. public static CreditHistoryData(String cardID) { … Filter filter = QueryHelper.createFilter("cardID = :cardID and transactionTime :transactionTime", map); CardHistoryData history = new CardHistoryData(); Double sum = (Double) s_cache.aggregate(filter, new DoubleSum("getTransactionAmount")); history.setTotalAmount(sum); … return history; } The java cartridge method is used from CQL as seen below: select cardID, transactionTime, transactionAmount, CCTransactionsAggregator.execute(cardID) as cardHistory from inputChannel where transactionAmount1000 This produces a warning event, with history data, for every credit card transaction over $1000. That is all there is to it. The complete source for the sample application, along with the configuration files, is available here. In the sample, I use a simple java bean to load the cache with initial transaction history data. An input adapter is used to create and send transaction events for the input stream.

    Read the article

  • The clock hands of the buffer cache

    - by Tony Davis
    Over a leisurely beer at our local pub, the Waggon and Horses, Phil Factor was holding forth on the esoteric, but strangely poetic, language of SQL Server internals, riddled as it is with 'sleeping threads', 'stolen pages', and 'memory sweeps'. Generally, I remain immune to any twinge of interest in the bowels of SQL Server, reasoning that there are certain things that I don't and shouldn't need to know about SQL Server in order to use it successfully. Suddenly, however, my attention was grabbed by his mention of the 'clock hands of the buffer cache'. Back at the office, I succumbed to a moment of weakness and opened up Google. He wasn't lying. SQL Server maintains various memory buffers, or caches. For example, the plan cache stores recently-used execution plans. The data cache in the buffer pool stores frequently-used pages, ensuring that they may be read from memory rather than via expensive physical disk reads. These memory stores are classic LRU (Least Recently Updated) buffers, meaning that, for example, the least frequently used pages in the data cache become candidates for eviction (after first writing the page to disk if it has changed since being read into the cache). SQL Server clearly needs some mechanism to track which pages are candidates for being cleared out of a given cache, when it is getting too large, and it is this mechanism that is somewhat more labyrinthine than I previously imagined. Each page that is loaded into the cache has a counter, a miniature "wristwatch", which records how recently it was last used. This wristwatch gets reset to "present time", each time a page gets updated and then as the page 'ages' it clicks down towards zero, at which point the page can be removed from the cache. But what is SQL Server is suffering memory pressure and urgently needs to free up more space than is represented by zero-counter pages (or plans etc.)? This is where our 'clock hands' come in. Each cache has associated with it a "memory clock". Like most conventional clocks, it has two hands; one "external" clock hand, and one "internal". Slava Oks is very particular in stressing that these names have "nothing to do with the equivalent types of memory pressure". He's right, but the names do, in that peculiar Microsoft tradition, seem designed to confuse. The hands do relate to memory pressure; the cache "eviction policy" is determined by both global and local memory pressures on SQL Server. The "external" clock hand responds to global memory pressure, in other words pressure on SQL Server to reduce the size of its memory caches as a whole. Global memory pressure – which just to confuse things further seems sometimes to be referred to as physical memory pressure – can be either external (from the OS) or internal (from the process itself, e.g. due to limited virtual address space). The internal clock hand responds to local memory pressure, in other words the need to reduce the size of a single, specific cache. So, for example, if a particular cache, such as the plan cache, reaches a defined "pressure limit" the internal clock hand will start to turn and a memory sweep will be performed on that cache in order to remove plans from the memory store. During each sweep of the hands, the usage counter on the cache entry is reduced in value, effectively moving its "last used" time to further in the past (in effect, setting back the wrist watch on the page a couple of hours) and increasing the likelihood that it can be aged out of the cache. There is even a special Dynamic Management View, sys.dm_os_memory_cache_clock_hands, which allows you to interrogate the passage of the clock hands. Frequently turning hands equates to excessive memory pressure, which will lead to performance problems. Two hours later, I emerged from this rather frightening journey into the heart of SQL Server memory management, fascinated but still unsure if I'd learned anything that I'd put to any practical use. However, I certainly began to agree that there is something almost Tolkeinian in the language of the deep recesses of SQL Server. Cheers, Tony.

    Read the article

  • Disable linux read and write file cache on partition

    - by complistic
    How do i disable the linux file cache on a xfs partition (both read an write). We have a xfs partition over a hardware RAID that stores our RAW HD Video. Most of the shoots are 50-300gb each so the linux cache has a hit-rate of 0.001%. I have tryed the sync option but it still fills up the cache when copinging the files. ( about 30x over per shoot :P ) /etc/fstab: /dev/sdb1 /video xfs sync,noatime,nodiratime,logbufs=8 0 1 Im running debian lenny if it helps.

    Read the article

  • Error headers: ap_headers_output_filter() after putting cache header in htaccess file

    - by Brad
    Receiving error: [debug] mod_headers.c(663): headers: ap_headers_output_filter() after I included this within the htaccess file: # 6 DAYS <FilesMatch "\.(ico|pdf|flv|jpg|jpeg|png|gif|js|css|swf)$"> Header set Cache-Control "max-age=518400, public" </FilesMatch> # 2 DAYS <FilesMatch "\.(xml|txt)$"> Header set Cache-Control "max-age=172800, public, must-revalidate" </FilesMatch> # 2 HOURS <FilesMatch "\.(html|htm)$"> Header set Cache-Control "max-age=7200, must-revalidate" </FilesMatch> Any help is appreciated as to what I could do to fix this?

    Read the article

  • Nginx proxy cache (proxy_pass $request_uri;)

    - by imastar
    I need to create proxy web using nginx. If I access http://myweb.com/http://www.target.com/ the proxy_pass should be http://www.target.com/ Here is my configuration: location / { proxy_pass $request_uri; proxy_cache_methods GET; proxy_set_header Referer "$request_uri"; proxy_redirect off; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_ignore_headers Cache-Control; proxy_hide_header Pragma; proxy_hide_header Set-Cookie; proxy_set_header Cache-Control Public; proxy_cache cache; proxy_cache_valid 200 10h; proxy_cache_valid 301 302 1h; proxy_cache_valid any 1h; } Here is the log error 2013/02/05 12:58:51 [error] 2118#0: *8 invalid URL prefix in "/http://www.target.com/", client: 108.59.8.83, server: myweb.com, request: "HEAD /http://www.target.com/ HTTP/1.1", host: "myweb.com"

    Read the article

  • Error headers: ap_headers_output_filter() after putting cache header in htaccess file

    - by Brad
    Receiving error: [debug] mod_headers.c(663): headers: ap_headers_output_filter() after I included this within the htaccess file: # 6 DAYS <FilesMatch "\.(ico|pdf|flv|jpg|jpeg|png|gif|js|css|swf)$"> Header set Cache-Control "max-age=518400, public" </FilesMatch> # 2 DAYS <FilesMatch "\.(xml|txt)$"> Header set Cache-Control "max-age=172800, public, must-revalidate" </FilesMatch> # 2 HOURS <FilesMatch "\.(html|htm)$"> Header set Cache-Control "max-age=7200, must-revalidate" </FilesMatch> Any help is appreciated as to what I could do to fix this?

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >