Search Results

Search found 130 results on 6 pages for 'libvirt'.

Page 6/6 | < Previous Page | 2 3 4 5 6 

  • Proper network configuration for a KVM guest to be on the same networks at the host

    - by Steve Madsen
    I am running a Debian Linux server on Lenny. Within it, I am running another Lenny instance using KVM. Both servers are externally available, with public IPs, as well as a second interface with private IPs for the LAN. Everything works fine, except the VM sees all network traffic as originating from the host server. I suspect this might have something to do with the iptables-based firewall I'm running on the host. What I'd like to figure out is: how to I properly configure the host's networking such that all of these requirements are met? Both host and VMs have 2 network interfaces (public and private). Both host and VMs can be independently firewalled. Ideally, VM traffic does not have to traverse the host firewall. VMs see real remote IP addresses, not the host's. Currently, the host's network interfaces are configured as bridges. eth0 and eth1 do not have IP addresses assigned to them, but br0 and br1 do. /etc/network/interfaces on the host: # The primary network interface auto br1 iface br1 inet static address 24.123.138.34 netmask 255.255.255.248 network 24.123.138.32 broadcast 24.123.138.39 gateway 24.123.138.33 bridge_ports eth1 bridge_stp off auto br1:0 iface br1:0 inet static address 24.123.138.36 netmask 255.255.255.248 network 24.123.138.32 broadcast 24.123.138.39 # Internal network auto br0 iface br0 inet static address 192.168.1.1 netmask 255.255.255.0 network 192.168.1.0 broadcast 192.168.1.255 bridge_ports eth0 bridge_stp off This is the libvirt/qemu configuration file for the VM: <domain type='kvm'> <name>apps</name> <uuid>636b6620-0949-bc88-3197-37153b88772e</uuid> <memory>393216</memory> <currentMemory>393216</currentMemory> <vcpu>1</vcpu> <os> <type arch='i686' machine='pc'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='cdrom'> <target dev='hdc' bus='ide'/> <readonly/> </disk> <disk type='file' device='disk'> <source file='/raid/kvm-images/apps.qcow2'/> <target dev='vda' bus='virtio'/> </disk> <interface type='bridge'> <mac address='54:52:00:27:5e:02'/> <source bridge='br0'/> <model type='virtio'/> </interface> <interface type='bridge'> <mac address='54:52:00:40:cc:7f'/> <source bridge='br1'/> <model type='virtio'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target port='0'/> </console> <input type='mouse' bus='ps2'/> <graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/> </devices> </domain> Along with the rest of my firewall rules, the firewalling script includes this command to pass packets destined for a KVM guest: # Allow bridged packets to pass (for KVM guests). iptables -A FORWARD -m physdev --physdev-is-bridged -j ACCEPT (Not applicable to this question, but a side-effect of my bridging configuration appears to be that I can't ever shut down cleanly. The kernel eventually tells me "unregister_netdevice: waiting for br1 to become free" and I have to hard reset the system. Maybe a sign I've done something dumb?)

    Read the article

  • How to add addtional disks to a Windows 2008 KVM based Guest?

    - by taazaa
    I have a Win 2008 KVM based guest VM running on a Ubuntu 10 host. It is a raw image of 22G. I want to add a "data" drive which would show up as "D:\" drive on the guest. I first created a raw image using: qemu-img create -f raw ~/vmdisk2.img 50G Then, tried attaching it using virsh attach-disk. When that did not work, I tried editing the xml file of the VM directly. Both did not seem to work. I would greatly appreciate any help on how to do this and what the best practice is. I want to keep the base image small, so that I can clone it (hopefully) and then attach necessary storage based on the application at hand. Update: The xml of the vm before adding the second drive: <domain type='kvm'> <name>win08e-vm1</name> <uuid>183a4ba0-1c0b-0b04-ad01-aa7c3a4cb390</uuid> <memory>1048576</memory> <currentMemory>1048576</currentMemory> <vcpu>2</vcpu> <os> <type arch='x86_64' machine='pc-0.12'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='localtime'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/var/lib/libvirt/images/win08e-vm1.img'/> <target dev='hda' bus='ide'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <disk type='file' device='cdrom'> <driver name='qemu' type='raw'/> <source file='/home/taazaa/iso/Win08ER264.iso'/> <target dev='hdc' bus='ide'/> <readonly/> <address type='drive' controller='0' bus='1' unit='0'/> </disk> <controller type='ide' index='0'> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/> </controller> <interface type='bridge'> <mac address='52:54:00:7f:a7:ae'/> <source bridge='br0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target type='serial' port='0'/> </console> <input type='tablet' bus='usb'/> <input type='mouse' bus='ps2'/> <graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/> <video> <model type='vga' vram='9216' heads='1'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/> </video> <memballoon model='virtio'> <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/> </memballoon> </devices> </domain> Thanks!

    Read the article

  • qemu-kvm virtual machine virtio network freeze under load

    - by Rick Koshi
    I'm having a problem with my virtual machines, where the network will freeze under heavy load. I'm using CentOS 6.2 as both host and guest, not using libvirt, just running qemu-kvm directly as follows: /usr/libexec/qemu-kvm \ -drive file=/data2/vm/rb-dev2-www1-vm.img,index=0,media=disk,cache=none,if=virtio \ -boot order=c \ -m 2G \ -smp cores=1,threads=2 \ -vga std \ -name rb-dev2-www1-vm \ -vnc :84,password \ -net nic,vlan=0,macaddr=52:54:20:00:00:54,model=virtio \ -net tap,vlan=0,ifname=tap84,script=/etc/qemu-ifup \ -monitor unix:/var/run/vm/rb-dev2-www1-vm.mon,server,nowait \ -rtc base=utc \ -device piix3-usb-uhci \ -device usb-tablet /etc/qemu-ifup (used by the above command) is a very simple script, containing the following: #!/bin/sh sudo /sbin/ifconfig $1 0.0.0.0 promisc up sudo /usr/sbin/brctl addif br0 $1 sleep 2 And here's the info on br0 and other interfaces: avl-host3 14# brctl show bridge name bridge id STP enabled interfaces br0 8000.180373f5521a no bond0 tap84 virbr0 8000.525400858961 yes virbr0-nic avl-host3 15# ip addr show 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: em1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP qlen 1000 link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff 3: em2: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP qlen 1000 link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff 4: em3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 18:03:73:f5:52:1e brd ff:ff:ff:ff:ff:ff 5: em4: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 18:03:73:f5:52:20 brd ff:ff:ff:ff:ff:ff 6: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff inet6 fe80::1a03:73ff:fef5:521a/64 scope link valid_lft forever preferred_lft forever 7: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff inet 172.16.1.46/24 brd 172.16.1.255 scope global br0 inet6 fe80::1a03:73ff:fef5:521a/64 scope link valid_lft forever preferred_lft forever 8: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 52:54:00:85:89:61 brd ff:ff:ff:ff:ff:ff inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr0 9: virbr0-nic: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 500 link/ether 52:54:00:85:89:61 brd ff:ff:ff:ff:ff:ff 12: tap84: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 500 link/ether ba:e8:9b:2a:ff:48 brd ff:ff:ff:ff:ff:ff inet6 fe80::b8e8:9bff:fe2a:ff48/64 scope link valid_lft forever preferred_lft forever bond0 is a bond of em1 and em2. virbr0 and virbr0-nic are vestigial interfaces left over from CentOS's default installation. They are unused (as far as I know). The guest runs perfectly until I run a large 'rsync', when the network will freeze after some seemingly-random time (usually under a minute). When it freezes, there is no network activity in or out of the guest. I can still connect to the guest's console via vnc, but it is unable to speak out its network interface. Any attempt to 'ping' from the guest gives a "Destination Host Unreachable" error for 3/4 packets and no reply for every fourth packet. Sometimes (perhaps two thirds of the time), I can bring the interface back to life by doing a "service network restart" from the guest's console. If this works (and if I do it before the rsync times out), the rsync will resume. Usually it will freeze again within a minute or two. If I repeat, the rsync will eventually finish, and I presume the machine goes back to waiting for another period of heavy load. Throughout the whole process, there are no console errors or relevant (that I can see) syslog messages on either guest or host machine. If the "service network restart" doesn't work the first time, trying again (and again and again) never seems to work. The command completes normally, with normal output, but the interface stays frozen. However, a soft reboot of the guest machine (without restarting qemu-kvm) always seems to bring it back. I am aware of the "lowest mac address" assignment problem, where the bridge takes on the mac address of the slave interface with the lowest mac address. This causes temporary network freezes, but is definitely not what's happening for me. My freezes are permanent until manual intervention, and you can see from the 'ip addr show' output above that the mac address being used by br0 is that of the physical ethernet. There are no other virtual machines running on the host. I've verified that each virtual machine on the subnet has its own unique mac address. I have rebuilt the guest machine several times, and I have tried this on three different host machines (identical hardware, built identically). Oddly, I do have one virtual host (the second of this series) which never seemed to have a problem. It never had its network freeze when it was running the same rsync during its build. It's particularly odd because it was the second build. The first, on a different host, did have the freezing problem, but the second did not. I assumed at the time that I had done something wrong with the first build, and that the problem was resolved. Unfortunately, the problem reappeared when I built the third VM. Also unfortunately, I can't do many tests with the working VM, as it's now in production use, and I'm hoping I can find the cause of this issue before that machine starts having problems. It's possible that I just got really lucky while running the rsync on the working machine, and that one time it didn't freeze. Of course it's possible that I somehow changed the build scripts without realizing it and re-broke something, but I can't find any such thing. In any case, I'm hoping someone has some idea what could cause this. Addendum: Preliminary tests suggest that I don't have the problem if I substitute e1000 for virtio in the first -net flag to qemu-kvm. I don't consider this a solution, but it is suitable for a stopgap. Has anyone else had (or better yet, solved) this problem with the virtio network driver?

    Read the article

  • How to set up linux watchdog daemon with Intel 6300esb

    - by ACiD GRiM
    I've been searching for this on Google for sometime now and I have yet to find proper documentation on how to connect the kernel driver for my 6300esb watchdog timer to /dev/watchdog and ensure that watchdog daemon is keeping it alive. I am using RHEL compatible Scientific Linux 6.3 in a KVM virtual machine by the way Below is everything I've tried so far: dmesg|grep 6300 i6300ESB timer: Intel 6300ESB WatchDog Timer Driver v0.04 i6300ESB timer: initialized (0xffffc900008b8000). heartbeat=30 sec (nowayout=0) | ll /dev/watchdog crw-rw----. 1 root root 10, 130 Sep 22 22:25 /dev/watchdog | /etc/watchdog.conf #ping = 172.31.14.1 #ping = 172.26.1.255 #interface = eth0 file = /var/log/messages #change = 1407 # Uncomment to enable test. Setting one of these values to '0' disables it. # These values will hopefully never reboot your machine during normal use # (if your machine is really hung, the loadavg will go much higher than 25) max-load-1 = 24 max-load-5 = 18 max-load-15 = 12 # Note that this is the number of pages! # To get the real size, check how large the pagesize is on your machine. #min-memory = 1 #repair-binary = /usr/sbin/repair #test-binary = #test-timeout = watchdog-device = /dev/watchdog # Defaults compiled into the binary #temperature-device = #max-temperature = 120 # Defaults compiled into the binary #admin = root interval = 10 #logtick = 1 # This greatly decreases the chance that watchdog won't be scheduled before # your machine is really loaded realtime = yes priority = 1 # Check if syslogd is still running by enabling the following line #pidfile = /var/run/syslogd.pid Now maybe I'm not testing it correctly, but I would expecting that stopping the watchdog service would cause the /dev/watchdog to time out after 30 seconds and I should see the host reboot, however this does not happen. Also, here is my config for the KVM vm <!-- WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE OVERWRITTEN AND LOST. Changes to this xml configuration should be made using: virsh edit sl6template or other application using the libvirt API. --> <domain type='kvm'> <name>sl6template</name> <uuid>960d0ac2-2e6a-5efa-87a3-6bb779e15b6a</uuid> <memory unit='KiB'>262144</memory> <currentMemory unit='KiB'>262144</currentMemory> <vcpu placement='static'>1</vcpu> <os> <type arch='x86_64' machine='rhel6.3.0'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <cpu mode='custom' match='exact'> <model fallback='allow'>Westmere</model> <vendor>Intel</vendor> <feature policy='require' name='tm2'/> <feature policy='require' name='est'/> <feature policy='require' name='vmx'/> <feature policy='require' name='ds'/> <feature policy='require' name='smx'/> <feature policy='require' name='ss'/> <feature policy='require' name='vme'/> <feature policy='require' name='dtes64'/> <feature policy='require' name='rdtscp'/> <feature policy='require' name='ht'/> <feature policy='require' name='dca'/> <feature policy='require' name='pbe'/> <feature policy='require' name='tm'/> <feature policy='require' name='pdcm'/> <feature policy='require' name='pdpe1gb'/> <feature policy='require' name='ds_cpl'/> <feature policy='require' name='pclmuldq'/> <feature policy='require' name='xtpr'/> <feature policy='require' name='acpi'/> <feature policy='require' name='monitor'/> <feature policy='require' name='aes'/> </cpu> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/libexec/qemu-kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/mnt/data/vms/sl6template.img'/> <target dev='vda' bus='virtio'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/> </disk> <controller type='usb' index='0'> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x2'/> </controller> <interface type='bridge'> <mac address='52:54:00:44:57:f6'/> <source bridge='br0.2'/> <model type='virtio'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </interface> <interface type='bridge'> <mac address='52:54:00:88:0f:42'/> <source bridge='br1'/> <model type='virtio'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target type='serial' port='0'/> </console> <watchdog model='i6300esb' action='reset'> <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/> </watchdog> <memballoon model='virtio'> <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/> </memballoon> </devices> </domain> Any help is appreciated as the most I've found are patches to kvm and general softdog documentation or IPMI watchdog answers.

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

< Previous Page | 2 3 4 5 6