Search Results

Search found 1150 results on 46 pages for 'linear regression'.

Page 6/46 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • How can I regress a number series in Excel?

    - by jcollum
    I'd like to use these data to derive an equation using Excel. 300 13 310 12.6 320 12.2 330 11.8 340 11.4 350 11 360 10.8 370 10.6 380 10.4 As x goes up, y goes down. Seems straightforward. But when I do a polynomial regression on these data, even though the trendline matches the data pretty well, the equation it generates doesn't work. The equation is When I plug in x values to that equation, the numbers go up! So something is pretty wrong here. My steps: place both number series in excel select the second set (13, 12.6 ...) plot a line graph set the first set as the x axis labels select Series1 and add a polynomial (2) trendline, display equation, display R-squared That produces the equation above, with an R^2 value of .9955. But when I use that equation, it doesn't produce those outputs for those inputs. Clearly I'm doing something wrong.

    Read the article

  • Moving from Linear Probing to Quadratic Probing (hash collisons)

    - by Nazgulled
    Hi, My current implementation of an Hash Table is using Linear Probing and now I want to move to Quadratic Probing (and later to chaining and maybe double hashing too). I've read a few articles, tutorials, wikipedia, etc... But I still don't know exactly what I should do. Linear Probing, basically, has a step of 1 and that's easy to do. When searching, inserting or removing an element from the Hash Table, I need to calculate an hash and for that I do this: index = hash_function(key) % table_size; Then, while searching, inserting or removing I loop through the table until I find a free bucket, like this: do { if(/* CHECK IF IT'S THE ELEMENT WE WANT */) { // FOUND ELEMENT return; } else { index = (index + 1) % table_size; } while(/* LOOP UNTIL IT'S NECESSARY */); As for Quadratic Probing, I think what I need to do is change how the "index" step size is calculated but that's what I don't understand how I should do it. I've seen various pieces of code, and all of them are somewhat different. Also, I've seen some implementations of Quadratic Probing where the hash function is changed to accommodated that (but not all of them). Is that change really needed or can I avoid modifying the hash function and still use Quadratic Probing? EDIT: After reading everything pointed out by Eli Bendersky below I think I got the general idea. Here's part of the code at http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_hashtable.aspx: 15 for ( step = 1; table->table[h] != EMPTY; step++ ) { 16 if ( compare ( key, table->table[h] ) == 0 ) 17 return 1; 18 19 /* Move forward by quadratically, wrap if necessary */ 20 h = ( h + ( step * step - step ) / 2 ) % table->size; 21 } There's 2 things I don't get... They say that quadratic probing is usually done using c(i)=i^2. However, in the code above, it's doing something more like c(i)=(i^2-i)/2 I was ready to implement this on my code but I would simply do: index = (index + (index^index)) % table_size; ...and not: index = (index + (index^index - index)/2) % table_size; If anything, I would do: index = (index + (index^index)/2) % table_size; ...cause I've seen other code examples diving by two. Although I don't understand why... 1) Why is it subtracting the step? 2) Why is it diving it by 2?

    Read the article

  • Calculating rotation and translation matrices between two odometry positions for monocular linear triangulation

    - by user1298891
    Recently I've been trying to implement a system to identify and triangulate the 3D position of an object in a robotic system. The general outline of the process goes as follows: Identify the object using SURF matching, from a set of "training" images to the actual live feed from the camera Move/rotate the robot a certain amount Identify the object using SURF again in this new view Now I have: a set of corresponding 2D points (same object from the two different views), two odometry locations (position + orientation), and camera intrinsics (focal length, principal point, etc.) since it's been calibrated beforehand, so I should be able to create the 2 projection matrices and triangulate using a basic linear triangulation method as in Hartley & Zissermann's book Multiple View Geometry, pg. 312. Solve the AX = 0 equation for each of the corresponding 2D points, then take the average In practice, the triangulation only works when there's almost no change in rotation; if the robot even rotates a slight bit while moving (due to e.g. wheel slippage) then the estimate is way off. This also applies for simulation. Since I can only post two hyperlinks, here's a link to a page with images from the simulation (on the map, the red square is simulated robot position and orientation, and the yellow square is estimated position of the object using linear triangulation.) So you can see that the estimate is thrown way off even by a little rotation, as in Position 2 on that page (that was 15 degrees; if I rotate it any more then the estimate is completely off the map), even in a simulated environment where a perfect calibration matrix is known. In a real environment when I actually move around with the robot, it's worse. There aren't any problems with obtaining point correspondences, nor with actually solving the AX = 0 equation once I compute the A matrix, so I figure it probably has to do with how I'm setting up the two camera projection matrices, specifically how I'm calculating the translation and rotation matrices from the position/orientation info I have relative to the world frame. How I'm doing that right now is: Rotation matrix is composed by creating a 1x3 matrix [0, (change in orientation angle), 0] and then converting that to a 3x3 one using OpenCV's Rodrigues function Translation matrix is composed by rotating the two points (start angle) degrees and then subtracting the final position from the initial position, in order to get the robot's straight and lateral movement relative to its starting orientation Which results in the first projection matrix being K [I | 0] and the second being K [R | T], with R and T calculated as described above. Is there anything I'm doing really wrong here? Or could it possibly be some other problem? Any help would be greatly appreciated.

    Read the article

  • How to use unset() for this Linear Linked List in PHP

    - by Peter
    I'm writing a simple linear linked list implementation in PHP. This is basically just for practice... part of a Project Euler problem. I'm not sure if I should be using unset() to help in garbage collection in order to avoid memory leaks. Should I include an unset() for head and temp in the destructor of LLL? I understand that I'll use unset() to delete nodes when I want, but is unset() necessary for general clean up at any point? Is the memory map freed once the script terminates even if you don't use unset()? I saw this SO question, but I'm still a little unclear. Is the answer that you simply don't have to use unset() to avoid any sort of memory leaks associated with creating references? I'm using PHP 5.. btw. Unsetting references in PHP PHP references tutorial Here is the code - I'm creating references when I create $temp and $this-head at certain points in the LLL class: class Node { public $data; public $next; } class LLL { // The first node private $head; public function __construct() { $this->head = NULL; } public function insertFirst($data) { if (!$this->head) { // Create the head $this->head = new Node; $temp =& $this->head; $temp->data = $data; $temp->next = NULL; } else { // Add a node, and make it the new head. $temp = new Node; $temp->next = $this->head; $temp->data = $data; $this->head =& $temp; } } public function showAll() { echo "The linear linked list:<br/>&nbsp;&nbsp;"; if ($this->head) { $temp =& $this->head; do { echo $temp->data . " "; } while ($temp =& $temp->next); } else { echo "is empty."; } echo "<br/>"; } } Thanks!

    Read the article

  • Android: Using linear gradient as background looks banded

    - by user329692
    Hi All! I'm trying to apply a linear gradient to my ListView. This is the content of my drawable xml: <?xml version="1.0" encoding="utf-8"?> <shape xmlns:android="http://schemas.android.com/apk/res/android"> <gradient android:startColor="#3A3C39" android:endColor="#181818" android:angle="270" /> <corners android:radius="0dp" /> </shape> So I apply it to my ListView with: android:background="@drawable/shape_background_grey" It works but it looks very "banded" on emulator and on a real device too. Is there any way to reduce this "behaviour"?

    Read the article

  • linear interpolation on 8bit microcontroller

    - by JB
    I need to do a linear interpolation over time between two values on an 8 bit PIC microcontroller (Specifically 16F627A but that shouldn't matter) using PIC assembly language. Although I'm looking for an algorithm here as much as actual code. I need to take an 8 bit starting value, an 8 bit ending value and a position between the two (Currently represented as an 8 bit number 0-255 where 0 means the output should be the starting value and 255 means it should be the final value but that can change if there is a better way to represent this) and calculate the interpolated value. Now PIC doesn't have a divide instruction so I could code up a general purpose divide routine and effectivly calculate (B-A)/(x/255)+A at each step but I feel there is probably a much better way to do this on a microcontroller than the way I'd do it on a PC in c++ Has anyone got any suggestions for implementing this efficiently on this hardware?

    Read the article

  • android linear layout solution

    - by dykzei
    ![alt text][1] [1]: http://s48.radikal.ru/i120/1005/ff/6e439e04bbc8.jpg hi what i'm trying to achieve is #1 but what i get is #2 it seems linear layout stacks with height of it's first element and shrinks second's element height to that. the xml for those is the following: <?xml version="1.0" encoding="utf-8"?> android:layout_weight="5" / android:text="Aaa aaaaa aaa aaaaa, aaaaaaa aaa aaa a, aaa aa aaaaaaa aaa aa. Aaa aaaaa aaa aaaaa, aaaaaaa aaa aaa a, aaa aa aaaaaaa aaa aa. Aaa aaaaa aaa aaaaa, aaaaaaa aaa aaa a, aaa aa aaaaaaa aaa aa. Aaa aaaaa aaa aaaaa, aaaaaaa aaa aaa a, aaa aa aaaaaaa aaa aa. Aaa aaaaa aaa aaaaa, aaaaaaa aaa aaa a, aaa aa aaaaaaa aaa aa. Aaa aaaaa aaa aaaaa, aaaaaaa aaa aaa a, aaa aa aaaaaaa aaa aa." /

    Read the article

  • Linear complexity and quadratic complexity

    - by jasonline
    I'm just not sure... If you have a code that can be executed in either of the following complexities: A sequence of O(n), like for example: two O(n) in sequence O(n²) The preferred version would be the one that can be executed in linear time. Would there be a time such that the sequence of O(n) would be too much and that O(n²) would be preferred? In other words, is the statement C x O(n) < O(n²) always true for any constant C? Why or why not? What are the factors that would affect the condition such that it would be better to choose the O(n²) complexity?

    Read the article

  • Implementing a linear, binary SVM (support vector machine)

    - by static_rtti
    I want to implement a simple SVM classifier, in the case of high-dimensional binary data (text), for which I think a simple linear SVM is best. The reason for implementing it myself is basically that I want to learn how it works, so using a library is not what I want. The problem is that most tutorials go up to an equation that can be solved as a "quadratic problem", but they never show an actual algorithm! So could you point me either to a very simple implementation I could study, or (better) to a tutorial that goes all the way to the implementation details? Thanks a lot!

    Read the article

  • Tool to write linear temporal logic from UML 2.0 sequence diagram

    - by user326180
    i am working on checking model consistency of software. to do this i need to write linear temporal logic for UML 2.0 sequence diagram. if any body have any other tool for the same please response as soon as possible. I will be very obliged to you. i have found charmy tool have plugin for the same. Does anybody have source code for charmy tool(CHecking ARchitectural Model consistencY). It is not available on their website. Thanks in advance.

    Read the article

  • Linear time and quadratic time

    - by jasonline
    I'm just not sure... If you have a code that can be executed in either of the following complexities: (1) A sequence of O(n), like for example: two O(n) in sequence (2) O(n²) The preferred version would be the one that can be executed in linear time. Would there be a time such that the sequence of O(n) would be too much and that O(n²) would be preferred? In other words, is the statement C x O(n) < O(n²) always true for any constant C? If no, what are the factors that would affect the condition such that it would be better to choose the O(n²) complexity?

    Read the article

  • Reporting Services Linear Gauge Scale

    - by lnediger
    I have set up a linear gauge in Reporting Services 2008. What I would like to do is specify my scale interval. The only problem with this is the scale intervals I would like to use are not at constant intervals. For example, say the scale min is $0 and the scale max is $10 000. Depending on the chart I may want an interval marker labelled at $2000, $5000, then $7945. These numbers would be calculated based on percentages of scale max specified in the dataset. I have not been able to figure out how I would go about doing this.

    Read the article

  • Understanding linear linked list

    - by ArtWorkAD
    Hi, I have some problems understanding the linear linked list data structure. This is how I define a list element: class Node{ Object data; Node link; public Node(Object pData, Node pLink){ this.data = pData; this.link = pLink; } } To keep it simple we say that a list are linked nodes so we do not need to define a class list (recursion principle). My problem is that I am really confused in understanding how nodes are connected, more precisely the sequence of the nodes when we connect them. Node n1 = new Node(new Integer(2), null); Node n2 = new Node(new Integer(1), n1); What is link? Is it the previous or the next element? Any other suggestions to help me understanding this data structure?

    Read the article

  • Linear Layout over relative layout

    - by Sai
    I have a relative layout for Camera preview with some overlay features. The layout file looks like the one in shown below: <?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="fill_parent" android:layout_height="fill_parent" > <android.view.SurfaceView xmlns:android="http://schemas.android.com/apk/res/android" android:id="@+id/preview" android:layout_width="fill_parent" android:layout_height="fill_parent" > </android.view.SurfaceView> </RelativeLayout> I integrated some menu options from the android bluetooth chat example. The menu options work fine but if I click on one of the options, the app just froze. It opens a debug perspective but I am not able to understand them. The app does not seem to crash but it just froze. The layout that I am using for the menu options is: <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="vertical" android:layout_width="match_parent" android:layout_height="match_parent" > <TextView android:id="@+id/title_paired_devices" android:layout_width="match_parent" android:layout_height="wrap_content" android:text="@string/title_paired_devices" android:visibility="gone" android:textColor="#fff" android:paddingLeft="5dp" /> <ListView android:id="@+id/paired_devices" android:layout_width="match_parent" android:layout_height="wrap_content" android:stackFromBottom="true" android:layout_weight="1" /> <TextView android:id="@+id/title_new_devices" android:layout_width="match_parent" android:layout_height="wrap_content" android:text="@string/title_other_devices" android:visibility="gone" android:textColor="#fff" android:paddingLeft="5dp" /> <ListView android:id="@+id/new_devices" android:layout_width="match_parent" android:layout_height="wrap_content" android:stackFromBottom="true" android:layout_weight="2" /> Can I attribute this to the fact that I am trying to overlay Linear layout over relative layout? Any suggestions to display the list of bluetooth devices over camera preview would be greatly appreciated

    Read the article

  • How to solve non-linear equations using python

    - by stars83clouds
    I have the following code: #!/usr/bin/env python from scipy.optimize import fsolve import math h = 6.634e-27 k = 1.38e-16 freq1 = 88633.9360e6 freq2 = 88631.8473e6 freq3 = 88630.4157e6 def J(freq,T): return (h*freq/k)/(math.exp(h*freq/(k*T))-1) def equations(x,y,z,w,a,b,c,d): f1 = a*(J(freq1,y)-J(freq1,2.73))*(1-math.exp(-a*z))-(J(freq2,x)-J(freq2,2.73))*(1-math.exp(-z)) f2 = b*(J(freq3,w)-J(freq3,2.73))*(1-math.exp(-b*z))-(J(freq2,x)-J(freq2,2.73))*(1-math.exp(-z)) f3 = c*(J(freq3,w)-J(freq3,2.73))*(1-math.exp(-b*z))-(J(freq1,y)-J(freq1,2.73))*(1-math.exp(-a*z)) f4 = d*(J((freq3+freq1)/2,(y+w)/2)-J((freq3+freq1)/2,2.73))-(J(freq2,x)-J(freq2,2.73))*(1-math.exp(-z)) return (f1,f2,f3,f4) So, I have defined the equations in the above code. However, I now wish to solve the above set of equations using fsolve or other alternative non-linear numerical routine. I tried the following syntax but with no avail: x,y,z,w = fsolve(equations, (1,1,1,1)) I keep getting the error that "x" is not defined. I am executing all commands at the command-line, since I have no idea how to run a batch of commands as above automatically in python. I welcome any advice on how to solve this.

    Read the article

  • Is this linear search implementation actually useful?

    - by Helper Method
    In Matters Computational I found this interesting linear search implementation (it's actually my Java implementation ;-)): public static int linearSearch(int[] a, int key) { int high = a.length - 1; int tmp = a[high]; // put a sentinel at the end of the array a[high] = key; int i = 0; while (a[i] != key) { i++; } // restore original value a[high] = tmp; if (i == high && key != tmp) { return NOT_CONTAINED; } return i; } It basically uses a sentinel, which is the searched for value, so that you always find the value and don't have to check for array boundaries. The last element is stored in a temp variable, and then the sentinel is placed at the last position. When the value is found (remember, it is always found due to the sentinel), the original element is restored and the index is checked if it represents the last index and is unequal to the searched for value. If that's the case, -1 (NOT_CONTAINED) is returned, otherwise the index. While I found this implementation really clever, I wonder if it is actually useful. For small arrays, it seems to be always slower, and for large arrays it only seems to be faster when the value is not found. Any ideas?

    Read the article

  • Android Linear Layout steching

    - by Maffo
    Hi, I think that's a rather simple Question but I don't get it the way I want it to. I Want do do a Linear Layout in Android with 3 areas. The Top area should have a fixed height, fill_parent width. The second, below the first, should use all the room available, fill_parent width. The third, below the second, should have fixed height, fill_parent width. Here is what i got: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="fill_parent" android:layout_height="fill_parent" android:orientation="vertical" android:gravity="bottom" android:background="#ff63a920"> <LinearLayout android:id="@+id/top_bar" android:layout_width="fill_parent" android:layout_height="32dp" > </LinearLayout> <com.google.android.maps.MapView android:id="@+id/mymapView" android:layout_width="fill_parent" android:layout_height="fill_parent" android:enabled="true" android:clickable="true" /> <LinearLayout android:id="@+id/bottombar" android:layout_width="fill_parent" android:layout_height="32dp" > </LinearLayout> </LinearLayout> The Problem is, that the mapview in the middle ist too big, so it pushes out the topbar. I Hope you can help me.

    Read the article

  • Creating Linear Layout with TextViews using a for loop

    - by cad8
    Hi all, I was wondering if there is a way to dynamically create an additional linear layout with a textview within a predefined liner layout. THis is my code so you get the gist of what I am asking: LinearLayout MainLL= (LinearLayout) findViewById(R.id.myLayoutId); for(int i=0; i<5; i++) { LinearLayout childLL= new LinearLayout(this); childLL.setOrientation(LinearLayout.VERTICAL); childLL.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT)); childLL.setGravity(Gravity.LEFT); TextView text = new TextView(this); text.setText("The Value of i is :"i); text.setTextSize(12); text.setGravity(Gravity.LEFT); text.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.WRAP_CONTENT)); childLL.addView(text); MainLL.addView(childLL); } My problem is that I am only getting "The Value of i is :0" as the output, i.e. the first instance. Any help would be much appreciated

    Read the article

  • How to find "y" values of the already estimated monotone function of the non-monotone regression curve corresponding to the original "x" points?

    - by parenthesis
    The title sounds complicated but that is what I am looking for. Focus on the picture. ## data x <- c(1.009648,1.017896,1.021773,1.043659,1.060277,1.074578,1.075495,1.097086,1.106268,1.110550,1.117795,1.143573,1.166305,1.177850,1.188795,1.198032,1.200526,1.223329,1.235814,1.239068,1.243189,1.260003,1.262732,1.266907,1.269932,1.284472,1.307483,1.323714,1.326705,1.328625,1.372419,1.398703,1.404474,1.414360,1.415909,1.418254,1.430865,1.431476,1.437642,1.438682,1.447056,1.456152,1.457934,1.457993,1.465968,1.478041,1.478076,1.485995,1.486357,1.490379,1.490719) y <- c(0.5102649,0.0000000,0.6360097,0.0000000,0.8692671,0.0000000,1.0000000,0.0000000,0.4183691,0.8953987,0.3442624,0.0000000,0.7513169,0.0000000,0.0000000,0.0000000,0.0000000,0.1291901,0.4936121,0.7565551,1.0085108,0.0000000,0.0000000,0.1655482,0.0000000,0.1473168,0.0000000,0.0000000,0.0000000,0.1875293,0.4918018,0.0000000,0.0000000,0.8101771,0.6853480,0.0000000,0.0000000,0.0000000,0.0000000,0.4068802,1.1061434,0.0000000,0.0000000,0.0000000,0.0000000,0.0000000,0.0000000,0.0000000,0.0000000,0.0000000,0.6391678) fit1 <- c(0.5102649100,0.5153380934,0.5177234836,0.5255544980,0.5307668662,0.5068087080,0.5071001179,0.4825657520,0.4832969250,0.4836378194,0.4842147729,0.5004039310,0.4987301366,0.4978800742,0.4978042478,0.4969807064,0.5086987191,0.4989497612,0.4936121200,0.4922210302,0.4904593166,0.4775197108,0.4757040857,0.4729265271,0.4709141776,0.4612406896,0.4459316517,0.4351338346,0.4331439717,0.4318664278,0.3235179189,0.2907908968,0.1665721429,0.1474035158,0.1443999345,0.1398517097,0.1153991839,0.1142140393,0.1022584672,0.1002410843,0.0840033244,0.0663669309,0.0629119398,0.0627979240,0.0473336492,0.0239237481,0.0238556876,0.0084990298,0.0077970954,0.0000000000,-0.0006598571) fit2 <- c(-0.0006598571,0.0153328298,0.0228511733,0.0652889427,0.0975108758,0.1252414661,0.1270195143,0.1922510501,0.2965234797,0.3018551305,0.3108761043,0.3621749370,0.4184150225,0.4359301495,0.4432114081,0.4493565757,0.4510158144,0.4661865431,0.4744926045,0.4766574718,0.4796937554,0.4834718810,0.4836125426,0.4839450098,0.4841092849,0.4877317306,0.4930561638,0.4964939389,0.4970089201,0.4971376528,0.4990394601,0.5005881678,0.5023814257,0.5052125977,0.5056691690,0.5064254338,0.5115481820,0.5117259449,0.5146054557,0.5149729419,0.5184178197,0.5211542908,0.5216215426,0.5216426533,0.5239797875,0.5273573222,0.5273683002,0.5293994824,0.5295130266,0.5306236672,0.5307303109) ## picture plot(x, y) ## red regression curve points(x, fit1, col=2); lines(x, fit1, col=2) ## blue monotonic curve to the regression points(min(x) + cumsum(c(0, rev(diff(x)))), rev(fit2), col="blue"); lines(min(x) + cumsum(c(0, rev(diff(x)))), rev(fit2), col="blue") ## "x" original point matches with the regression estimated point ## but not with the estimated (fit2=estimate) monotonic curve abline(v=1.223329, lty=2, col="grey") Focus on the dashed grey line. The idea is to get y value of the monotonic blue curve corresponding to x original value. The grey line should cross three points (the original one "black", the regression estimate "red", the adjusted regression estimate "blue"). Can we do this? Methodology: The object "fit2" is the output of the function rearrangement(). It is always monotonically increasing. library(Rearrangement) fit2 <- rearrangement(x=as.data.frame(x), y=fit1)

    Read the article

  • python regular expression for domain names

    - by user230911
    I am trying use the following regression to extract domain name from a text, but it just produce nothing, what's wrong with it? I don't know if this is suitable to ask this "fix code" question, maybe I should read more. I just want to save some time. Thanks pat_url = re.compile(r''' (?:https?://)* (?:[\w]+[\-\w]+[.])* (?P<domain>[\w\-]*[\w.](com|net)([.](cn|jp|us))*[/]*) ''') print re.findall(pat_url,"http://www.google.com/abcde") I want the output to be google.com

    Read the article

  • m-estimate for continuous values

    - by Null
    I'm building a custom regression tree and want to use m-estimate for pruning. Does anyone know how to calculate that. http://www.ailab.si/blaz/predavanja/UISP/slides/uisp07-RegTrees.ppt might help (slide 12, how should Em look like?)

    Read the article

  • Converting Numpy Lstsq residual value to R^2

    - by whatnick
    I am performing a least squares regression as below (univariate). I would like to express the significance of the result in terms of R^2. Numpy returns a value of unscaled residual, what would be a sensible way of normalizing this. field_clean,back_clean = rid_zeros(backscatter,field_data) num_vals = len(field_clean) x = field_clean[:,row:row+1] y = 10*log10(back_clean) A = hstack([x, ones((num_vals,1))]) soln = lstsq(A, y ) m, c = soln [0] residues = soln [1] print residues

    Read the article

  • LVM / Device Mapper maps wrong device

    - by DaDaDom
    Hi, I run a LVM setup on a raid1 created by mdadm. md2 is based on sda6 (major:minor 8:6) and sdb6 (8:22). md2 is partition 9:2. The VG on top of md2 has 4 LVs, var, home, usr, tmp. First the problem: While booting it seems as if the device mapper takes the wrong partition for the mapping! Immediately after boot the information is like ~# dmsetup table systemlvm-home: 0 4194304 linear 8:22 384 systemlvm-home: 4194304 16777216 linear 8:22 69206400 systemlvm-home: 20971520 8388608 linear 8:22 119538048 systemlvm-home: 29360128 6291456 linear 8:22 243270016 systemlvm-tmp: 0 2097152 linear 8:22 41943424 systemlvm-usr: 0 10485760 linear 8:22 20971904 systemlvm-var: 0 10485760 linear 8:22 10486144 systemlvm-var: 10485760 6291456 linear 8:22 4194688 systemlvm-var: 16777216 4194304 linear 8:22 44040576 systemlvm-var: 20971520 10485760 linear 8:22 31457664 systemlvm-var: 31457280 20971520 linear 8:22 48234880 systemlvm-var: 52428800 33554432 linear 8:22 85983616 systemlvm-var: 85983232 115343360 linear 8:22 127926656 ~# cat /proc/mdstat Personalities : [raid1] md2 : active (auto-read-only) raid1 sda6[0] 151798080 blocks [2/1] [U_] md0 : active raid1 sda1[0] sdb1[1] 96256 blocks [2/2] [UU] md1 : active raid1 sda2[0] sdb2[1] 2931776 blocks [2/2] [UU] I have to manually "lvchange -an" all LVs, add /dev/sdb6 back to the raid and reactivate the LVs, then all is fine. But it prevents me from automounting the partitions and obviously leads to a bunch of other problems. If everything works fine, the information is like ~$ cat /proc/mdstat Personalities : [raid1] md2 : active raid1 sdb6[1] sda6[0] 151798080 blocks [2/2] [UU] ... ~# dmsetup table systemlvm-home: 0 4194304 linear 9:2 384 systemlvm-home: 4194304 16777216 linear 9:2 69206400 systemlvm-home: 20971520 8388608 linear 9:2 119538048 systemlvm-home: 29360128 6291456 linear 9:2 243270016 systemlvm-tmp: 0 2097152 linear 9:2 41943424 systemlvm-usr: 0 10485760 linear 9:2 20971904 systemlvm-var: 0 10485760 linear 9:2 10486144 systemlvm-var: 10485760 6291456 linear 9:2 4194688 systemlvm-var: 16777216 4194304 linear 9:2 44040576 systemlvm-var: 20971520 10485760 linear 9:2 31457664 systemlvm-var: 31457280 20971520 linear 9:2 48234880 systemlvm-var: 52428800 33554432 linear 9:2 85983616 systemlvm-var: 85983232 115343360 linear 9:2 127926656 I think that LVM for some reason just "takes" /dev/sdb6 which is then missing in the raid. I tried almost all options in the lvm.conf but none seems to work. Below is some more information, like config files. Does anyone have any idea about what is going on here and how to prevent that? If you need any additional information, please let me know Thanks in advance! Dominik The information (off a "repaired" system): ~# cat /etc/debian_version 5.0.4 ~# uname -a Linux kermit 2.6.26-2-686 #1 SMP Wed Feb 10 08:59:21 UTC 2010 i686 GNU/Linux ~# lvm version LVM version: 2.02.39 (2008-06-27) Library version: 1.02.27 (2008-06-25) Driver version: 4.13.0 ~# cat /etc/mdadm/mdadm.conf DEVICE partitions ARRAY /dev/md1 level=raid1 num-devices=2 metadata=00.90 UUID=11e9dc6c:1da99f3f:b3088ca6:c6fe60e9 ARRAY /dev/md0 level=raid1 num-devices=2 metadata=00.90 UUID=92ed1e4b:897361d3:070682b3:3baa4fa1 ARRAY /dev/md2 level=raid1 num-devices=2 metadata=00.90 UUID=601d4642:39dc80d7:96e8bbac:649924ba ~# mount /dev/md1 on / type ext3 (rw,errors=remount-ro) tmpfs on /lib/init/rw type tmpfs (rw,nosuid,mode=0755) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) procbususb on /proc/bus/usb type usbfs (rw) udev on /dev type tmpfs (rw,mode=0755) tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=620) /dev/md0 on /boot type ext3 (rw) /dev/mapper/systemlvm-usr on /usr type reiserfs (rw) /dev/mapper/systemlvm-tmp on /tmp type reiserfs (rw) /dev/mapper/systemlvm-home on /home type reiserfs (rw) /dev/mapper/systemlvm-var on /var type reiserfs (rw) ~# grep -v ^$ /etc/lvm/lvm.conf | grep -v "#" devices { dir = "/dev" scan = [ "/dev" ] preferred_names = [ ] filter = [ "a|/dev/md.*|", "r/.*/" ] cache_dir = "/etc/lvm/cache" cache_file_prefix = "" write_cache_state = 1 sysfs_scan = 1 md_component_detection = 1 ignore_suspended_devices = 0 } log { verbose = 0 syslog = 1 overwrite = 0 level = 0 indent = 1 command_names = 0 prefix = " " } backup { backup = 1 backup_dir = "/etc/lvm/backup" archive = 1 archive_dir = "/etc/lvm/archive" retain_min = 10 retain_days = 30 } shell { history_size = 100 } global { umask = 077 test = 0 units = "h" activation = 1 proc = "/proc" locking_type = 1 fallback_to_clustered_locking = 1 fallback_to_local_locking = 1 locking_dir = "/lib/init/rw" } activation { missing_stripe_filler = "/dev/ioerror" reserved_stack = 256 reserved_memory = 8192 process_priority = -18 mirror_region_size = 512 readahead = "auto" mirror_log_fault_policy = "allocate" mirror_device_fault_policy = "remove" } :~# vgscan -vvv Processing: vgscan -vvv O_DIRECT will be used Setting global/locking_type to 1 File-based locking selected. Setting global/locking_dir to /lib/init/rw Locking /lib/init/rw/P_global WB Wiping cache of LVM-capable devices /dev/block/1:0: Added to device cache /dev/block/1:1: Added to device cache /dev/block/1:10: Added to device cache /dev/block/1:11: Added to device cache /dev/block/1:12: Added to device cache /dev/block/1:13: Added to device cache /dev/block/1:14: Added to device cache /dev/block/1:15: Added to device cache /dev/block/1:2: Added to device cache /dev/block/1:3: Added to device cache /dev/block/1:4: Added to device cache /dev/block/1:5: Added to device cache /dev/block/1:6: Added to device cache /dev/block/1:7: Added to device cache /dev/block/1:8: Added to device cache /dev/block/1:9: Added to device cache /dev/block/253:0: Added to device cache /dev/block/253:1: Added to device cache /dev/block/253:2: Added to device cache /dev/block/253:3: Added to device cache /dev/block/8:0: Added to device cache /dev/block/8:1: Added to device cache /dev/block/8:16: Added to device cache /dev/block/8:17: Added to device cache /dev/block/8:18: Added to device cache /dev/block/8:19: Added to device cache /dev/block/8:2: Added to device cache /dev/block/8:21: Added to device cache /dev/block/8:22: Added to device cache /dev/block/8:3: Added to device cache /dev/block/8:5: Added to device cache /dev/block/8:6: Added to device cache /dev/block/9:0: Already in device cache /dev/block/9:1: Already in device cache /dev/block/9:2: Already in device cache /dev/bsg/0:0:0:0: Not a block device /dev/bsg/1:0:0:0: Not a block device /dev/bus/usb/001/001: Not a block device [... many more "not a block device"] /dev/core: Not a block device /dev/cpu_dma_latency: Not a block device /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L507895: Aliased to /dev/block/8:16 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L507895-part1: Aliased to /dev/block/8:17 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L507895-part2: Aliased to /dev/block/8:18 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L507895-part3: Aliased to /dev/block/8:19 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L507895-part5: Aliased to /dev/block/8:21 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L507895-part6: Aliased to /dev/block/8:22 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L526800: Aliased to /dev/block/8:0 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L526800-part1: Aliased to /dev/block/8:1 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L526800-part2: Aliased to /dev/block/8:2 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L526800-part3: Aliased to /dev/block/8:3 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L526800-part5: Aliased to /dev/block/8:5 in device cache /dev/disk/by-id/ata-SAMSUNG_HD160JJ_S08HJ10L526800-part6: Aliased to /dev/block/8:6 in device cache /dev/disk/by-id/dm-name-systemlvm-home: Aliased to /dev/block/253:2 in device cache /dev/disk/by-id/dm-name-systemlvm-tmp: Aliased to /dev/block/253:3 in device cache /dev/disk/by-id/dm-name-systemlvm-usr: Aliased to /dev/block/253:1 in device cache /dev/disk/by-id/dm-name-systemlvm-var: Aliased to /dev/block/253:0 in device cache /dev/disk/by-id/dm-uuid-LVM-rL8Oq2dA7oeRYeu1orJA7Ufnb1kjOyvr25N7CRZpUMzR18NfS6zeSeAVnVT98LuU: Aliased to /dev/block/253:0 in device cache /dev/disk/by-id/dm-uuid-LVM-rL8Oq2dA7oeRYeu1orJA7Ufnb1kjOyvr3TpFXtLjYGEwn79IdXsSCZPl8AxmqbmQ: Aliased to /dev/block/253:1 in device cache /dev/disk/by-id/dm-uuid-LVM-rL8Oq2dA7oeRYeu1orJA7Ufnb1kjOyvrc5MJ4KolevMjt85PPBrQuRTkXbx6NvTi: Aliased to /dev/block/253:3 in device cache /dev/disk/by-id/dm-uuid-LVM-rL8Oq2dA7oeRYeu1orJA7Ufnb1kjOyvrYXrfdg5OSYDVkNeiQeQksgCI849Z2hx8: Aliased to /dev/block/253:2 in device cache /dev/disk/by-id/md-uuid-11e9dc6c:1da99f3f:b3088ca6:c6fe60e9: Already in device cache /dev/disk/by-id/md-uuid-601d4642:39dc80d7:96e8bbac:649924ba: Already in device cache /dev/disk/by-id/md-uuid-92ed1e4b:897361d3:070682b3:3baa4fa1: Already in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L507895: Aliased to /dev/block/8:16 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L507895-part1: Aliased to /dev/block/8:17 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L507895-part2: Aliased to /dev/block/8:18 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L507895-part3: Aliased to /dev/block/8:19 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L507895-part5: Aliased to /dev/block/8:21 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L507895-part6: Aliased to /dev/block/8:22 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L526800: Aliased to /dev/block/8:0 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L526800-part1: Aliased to /dev/block/8:1 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L526800-part2: Aliased to /dev/block/8:2 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L526800-part3: Aliased to /dev/block/8:3 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L526800-part5: Aliased to /dev/block/8:5 in device cache /dev/disk/by-id/scsi-SATA_SAMSUNG_HD160JJS08HJ10L526800-part6: Aliased to /dev/block/8:6 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-0:0:0:0: Aliased to /dev/block/8:0 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-0:0:0:0-part1: Aliased to /dev/block/8:1 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-0:0:0:0-part2: Aliased to /dev/block/8:2 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-0:0:0:0-part3: Aliased to /dev/block/8:3 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-0:0:0:0-part5: Aliased to /dev/block/8:5 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-0:0:0:0-part6: Aliased to /dev/block/8:6 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-1:0:0:0: Aliased to /dev/block/8:16 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-1:0:0:0-part1: Aliased to /dev/block/8:17 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-1:0:0:0-part2: Aliased to /dev/block/8:18 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-1:0:0:0-part3: Aliased to /dev/block/8:19 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-1:0:0:0-part5: Aliased to /dev/block/8:21 in device cache /dev/disk/by-path/pci-0000:00:0f.0-scsi-1:0:0:0-part6: Aliased to /dev/block/8:22 in device cache /dev/disk/by-uuid/13c1262b-e06f-40ce-b088-ce410640a6dc: Aliased to /dev/block/253:3 in device cache /dev/disk/by-uuid/379f57b0-2e03-414c-808a-f76160617336: Aliased to /dev/block/253:2 in device cache /dev/disk/by-uuid/4fb2d6d3-bd51-48d3-95ee-8e404faf243d: Already in device cache /dev/disk/by-uuid/5c6728ec-82c1-49c0-93c5-f6dbd5c0d659: Aliased to /dev/block/8:5 in device cache /dev/disk/by-uuid/a13cdfcd-2191-4185-a727-ffefaf7a382e: Aliased to /dev/block/253:1 in device cache /dev/disk/by-uuid/e0d5893d-ff88-412f-b753-9e3e9af3242d: Aliased to /dev/block/8:21 in device cache /dev/disk/by-uuid/e79c9da6-8533-4e55-93ec-208876671edc: Aliased to /dev/block/253:0 in device cache /dev/disk/by-uuid/f3f176f5-12f7-4af8-952a-c6ac43a6e332: Already in device cache /dev/dm-0: Aliased to /dev/block/253:0 in device cache (preferred name) /dev/dm-1: Aliased to /dev/block/253:1 in device cache (preferred name) /dev/dm-2: Aliased to /dev/block/253:2 in device cache (preferred name) /dev/dm-3: Aliased to /dev/block/253:3 in device cache (preferred name) /dev/fd: Symbolic link to directory /dev/full: Not a block device /dev/hpet: Not a block device /dev/initctl: Not a block device /dev/input/by-path/platform-i8042-serio-0-event-kbd: Not a block device /dev/input/event0: Not a block device /dev/input/mice: Not a block device /dev/kmem: Not a block device /dev/kmsg: Not a block device /dev/log: Not a block device /dev/loop/0: Added to device cache /dev/MAKEDEV: Not a block device /dev/mapper/control: Not a block device /dev/mapper/systemlvm-home: Aliased to /dev/dm-2 in device cache /dev/mapper/systemlvm-tmp: Aliased to /dev/dm-3 in device cache /dev/mapper/systemlvm-usr: Aliased to /dev/dm-1 in device cache /dev/mapper/systemlvm-var: Aliased to /dev/dm-0 in device cache /dev/md0: Already in device cache /dev/md1: Already in device cache /dev/md2: Already in device cache /dev/mem: Not a block device /dev/net/tun: Not a block device /dev/network_latency: Not a block device /dev/network_throughput: Not a block device /dev/null: Not a block device /dev/port: Not a block device /dev/ppp: Not a block device /dev/psaux: Not a block device /dev/ptmx: Not a block device /dev/pts/0: Not a block device /dev/ram0: Aliased to /dev/block/1:0 in device cache (preferred name) /dev/ram1: Aliased to /dev/block/1:1 in device cache (preferred name) /dev/ram10: Aliased to /dev/block/1:10 in device cache (preferred name) /dev/ram11: Aliased to /dev/block/1:11 in device cache (preferred name) /dev/ram12: Aliased to /dev/block/1:12 in device cache (preferred name) /dev/ram13: Aliased to /dev/block/1:13 in device cache (preferred name) /dev/ram14: Aliased to /dev/block/1:14 in device cache (preferred name) /dev/ram15: Aliased to /dev/block/1:15 in device cache (preferred name) /dev/ram2: Aliased to /dev/block/1:2 in device cache (preferred name) /dev/ram3: Aliased to /dev/block/1:3 in device cache (preferred name) /dev/ram4: Aliased to /dev/block/1:4 in device cache (preferred name) /dev/ram5: Aliased to /dev/block/1:5 in device cache (preferred name) /dev/ram6: Aliased to /dev/block/1:6 in device cache (preferred name) /dev/ram7: Aliased to /dev/block/1:7 in device cache (preferred name) /dev/ram8: Aliased to /dev/block/1:8 in device cache (preferred name) /dev/ram9: Aliased to /dev/block/1:9 in device cache (preferred name) /dev/random: Not a block device /dev/root: Already in device cache /dev/rtc: Not a block device /dev/rtc0: Not a block device /dev/sda: Aliased to /dev/block/8:0 in device cache (preferred name) /dev/sda1: Aliased to /dev/block/8:1 in device cache (preferred name) /dev/sda2: Aliased to /dev/block/8:2 in device cache (preferred name) /dev/sda3: Aliased to /dev/block/8:3 in device cache (preferred name) /dev/sda5: Aliased to /dev/block/8:5 in device cache (preferred name) /dev/sda6: Aliased to /dev/block/8:6 in device cache (preferred name) /dev/sdb: Aliased to /dev/block/8:16 in device cache (preferred name) /dev/sdb1: Aliased to /dev/block/8:17 in device cache (preferred name) /dev/sdb2: Aliased to /dev/block/8:18 in device cache (preferred name) /dev/sdb3: Aliased to /dev/block/8:19 in device cache (preferred name) /dev/sdb5: Aliased to /dev/block/8:21 in device cache (preferred name) /dev/sdb6: Aliased to /dev/block/8:22 in device cache (preferred name) /dev/shm/network/ifstate: Not a block device /dev/snapshot: Not a block device /dev/sndstat: stat failed: Datei oder Verzeichnis nicht gefunden /dev/stderr: Not a block device /dev/stdin: Not a block device /dev/stdout: Not a block device /dev/systemlvm/home: Aliased to /dev/dm-2 in device cache /dev/systemlvm/tmp: Aliased to /dev/dm-3 in device cache /dev/systemlvm/usr: Aliased to /dev/dm-1 in device cache /dev/systemlvm/var: Aliased to /dev/dm-0 in device cache /dev/tty: Not a block device /dev/tty0: Not a block device [... many more "not a block device"] /dev/vcsa6: Not a block device /dev/xconsole: Not a block device /dev/zero: Not a block device Wiping internal VG cache lvmcache: initialised VG #orphans_lvm1 lvmcache: initialised VG #orphans_pool lvmcache: initialised VG #orphans_lvm2 Reading all physical volumes. This may take a while... Finding all volume groups /dev/ram0: Skipping (regex) /dev/loop/0: Skipping (sysfs) /dev/sda: Skipping (regex) Opened /dev/md0 RO /dev/md0: size is 192512 sectors Closed /dev/md0 /dev/md0: size is 192512 sectors Opened /dev/md0 RW O_DIRECT /dev/md0: block size is 1024 bytes Closed /dev/md0 Using /dev/md0 Opened /dev/md0 RW O_DIRECT /dev/md0: block size is 1024 bytes /dev/md0: No label detected Closed /dev/md0 /dev/dm-0: Skipping (regex) /dev/ram1: Skipping (regex) /dev/sda1: Skipping (regex) Opened /dev/md1 RO /dev/md1: size is 5863552 sectors Closed /dev/md1 /dev/md1: size is 5863552 sectors Opened /dev/md1 RW O_DIRECT /dev/md1: block size is 4096 bytes Closed /dev/md1 Using /dev/md1 Opened /dev/md1 RW O_DIRECT /dev/md1: block size is 4096 bytes /dev/md1: No label detected Closed /dev/md1 /dev/dm-1: Skipping (regex) /dev/ram2: Skipping (regex) /dev/sda2: Skipping (regex) Opened /dev/md2 RO /dev/md2: size is 303596160 sectors Closed /dev/md2 /dev/md2: size is 303596160 sectors Opened /dev/md2 RW O_DIRECT /dev/md2: block size is 4096 bytes Closed /dev/md2 Using /dev/md2 Opened /dev/md2 RW O_DIRECT /dev/md2: block size is 4096 bytes /dev/md2: lvm2 label detected lvmcache: /dev/md2: now in VG #orphans_lvm2 (#orphans_lvm2) /dev/md2: Found metadata at 39936 size 2632 (in area at 2048 size 194560) for systemlvm (rL8Oq2-dA7o-eRYe-u1or-JA7U-fnb1-kjOyvr) lvmcache: /dev/md2: now in VG systemlvm with 1 mdas lvmcache: /dev/md2: setting systemlvm VGID to rL8Oq2dA7oeRYeu1orJA7Ufnb1kjOyvr lvmcache: /dev/md2: VG systemlvm: Set creation host to rescue. Closed /dev/md2 /dev/dm-2: Skipping (regex) /dev/ram3: Skipping (regex) /dev/sda3: Skipping (regex) /dev/dm-3: Skipping (regex) /dev/ram4: Skipping (regex) /dev/ram5: Skipping (regex) /dev/sda5: Skipping (regex) /dev/ram6: Skipping (regex) /dev/sda6: Skipping (regex) /dev/ram7: Skipping (regex) /dev/ram8: Skipping (regex) /dev/ram9: Skipping (regex) /dev/ram10: Skipping (regex) /dev/ram11: Skipping (regex) /dev/ram12: Skipping (regex) /dev/ram13: Skipping (regex) /dev/ram14: Skipping (regex) /dev/ram15: Skipping (regex) /dev/sdb: Skipping (regex) /dev/sdb1: Skipping (regex) /dev/sdb2: Skipping (regex) /dev/sdb3: Skipping (regex) /dev/sdb5: Skipping (regex) /dev/sdb6: Skipping (regex) Locking /lib/init/rw/V_systemlvm RB Finding volume group "systemlvm" Opened /dev/md2 RW O_DIRECT /dev/md2: block size is 4096 bytes /dev/md2: lvm2 label detected lvmcache: /dev/md2: now in VG #orphans_lvm2 (#orphans_lvm2) with 1 mdas /dev/md2: Found metadata at 39936 size 2632 (in area at 2048 size 194560) for systemlvm (rL8Oq2-dA7o-eRYe-u1or-JA7U-fnb1-kjOyvr) lvmcache: /dev/md2: now in VG systemlvm with 1 mdas lvmcache: /dev/md2: setting systemlvm VGID to rL8Oq2dA7oeRYeu1orJA7Ufnb1kjOyvr lvmcache: /dev/md2: VG systemlvm: Set creation host to rescue. Using cached label for /dev/md2 Read systemlvm metadata (19) from /dev/md2 at 39936 size 2632 /dev/md2 0: 0 16: home(0:0) /dev/md2 1: 16 24: var(40:0) /dev/md2 2: 40 40: var(0:0) /dev/md2 3: 80 40: usr(0:0) /dev/md2 4: 120 40: var(80:0) /dev/md2 5: 160 8: tmp(0:0) /dev/md2 6: 168 16: var(64:0) /dev/md2 7: 184 80: var(120:0) /dev/md2 8: 264 64: home(16:0) /dev/md2 9: 328 128: var(200:0) /dev/md2 10: 456 32: home(80:0) /dev/md2 11: 488 440: var(328:0) /dev/md2 12: 928 24: home(112:0) /dev/md2 13: 952 206: NULL(0:0) Found volume group "systemlvm" using metadata type lvm2 Read volume group systemlvm from /etc/lvm/backup/systemlvm Unlocking /lib/init/rw/V_systemlvm Closed /dev/md2 Unlocking /lib/init/rw/P_global ~# vgdisplay --- Volume group --- VG Name systemlvm System ID Format lvm2 Metadata Areas 1 Metadata Sequence No 19 VG Access read/write VG Status resizable MAX LV 0 Cur LV 4 Open LV 4 Max PV 0 Cur PV 1 Act PV 1 VG Size 144,75 GB PE Size 128,00 MB Total PE 1158 Alloc PE / Size 952 / 119,00 GB Free PE / Size 206 / 25,75 GB VG UUID rL8Oq2-dA7o-eRYe-u1or-JA7U-fnb1-kjOyvr ~# pvdisplay --- Physical volume --- PV Name /dev/md2 VG Name systemlvm PV Size 144,77 GB / not usable 16,31 MB Allocatable yes PE Size (KByte) 131072 Total PE 1158 Free PE 206 Allocated PE 952 PV UUID ZSAzP5-iBvr-L7jy-wB8T-AiWz-0g3m-HLK66Y :~# lvdisplay --- Logical volume --- LV Name /dev/systemlvm/home VG Name systemlvm LV UUID YXrfdg-5OSY-DVkN-eiQe-Qksg-CI84-9Z2hx8 LV Write Access read/write LV Status available # open 2 LV Size 17,00 GB Current LE 136 Segments 4 Allocation inherit Read ahead sectors auto - currently set to 256 Block device 253:2 --- Logical volume --- LV Name /dev/systemlvm/var VG Name systemlvm LV UUID 25N7CR-ZpUM-zR18-NfS6-zeSe-AVnV-T98LuU LV Write Access read/write LV Status available # open 2 LV Size 96,00 GB Current LE 768 Segments 7 Allocation inherit Read ahead sectors auto - currently set to 256 Block device 253:0 --- Logical volume --- LV Name /dev/systemlvm/usr VG Name systemlvm LV UUID 3TpFXt-LjYG-Ewn7-9IdX-sSCZ-Pl8A-xmqbmQ LV Write Access read/write LV Status available # open 2 LV Size 5,00 GB Current LE 40 Segments 1 Allocation inherit Read ahead sectors auto - currently set to 256 Block device 253:1 --- Logical volume --- LV Name /dev/systemlvm/tmp VG Name systemlvm LV UUID c5MJ4K-olev-Mjt8-5PPB-rQuR-TkXb-x6NvTi LV Write Access read/write LV Status available # open 2 LV Size 1,00 GB Current LE 8 Segments 1 Allocation inherit Read ahead sectors auto - currently set to 256 Block device 253:3

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >