Search Results

Search found 359 results on 15 pages for 'matrices'.

Page 6/15 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Manipulating matrix operations (transpose, negation, addition, and mutiplication) using functions in

    - by user292489
    I was trying to manipulate matrices in my input file using functions. My input file is: A 3 3 1 2 3 4 5 6 7 8 9 B 3 3 1 0 0 0 1 0 0 0 1 C 2 3 3 5 8 -1 -2 -3 D 3 5 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 E 1 1 10 F 3 10 1 0 2 0 3 0 4 0 5 0 0 2 3 -1 -3 -4 -3 8 3 7 0 0 0 4 6 5 8 2 -1 10 I am having trouble in implementing the functions that I declared. I assumed my program will perform those operations: transpose, negate, add, and multiply matices according to the users choice: /* once this program is compiled and executed, it will perform the basic matrix * operations: negation, transpose, addition, and multiplication. */ #include <stdio.h> #include <stdlib.h> #define MAX 10 int readmatrix(FILE *input, char martixname[6],int , mat[10][10], int i, int j); void printmatrix(char matrixname[6], int mat[10][10], int i, int j); void Negate(char matrixname[6], int mat[10][10], int i, int j); void add(char matrixname[6], int mat[10][10],int i, int k); void multiply(char matrixname[], int mat[][10], char A[], int i, int k); void transpose (char matrixname[], int mat[][10], char A[], int); void printT(int mat[][10], int); int selctoption(); char selectmatrix(); int main(int argc, char *argv[]) { char matrixtype[6]; int mat[][10]; FILE *filein; int size; int optionop; int matrixop; int option; if (argc != 2) { printf("Usage: executable input.\n"); exit(0); } filein = fopen(argv[1], "r"); if (!filein) { printf("ERROR: input file not found.\n"); exit (0); } size = readmatrix (filein, matrixtype); printmatrix(matrix[][10], size); option = selectoption(); matrixtype = selectmatrix(); //printf("You have: %5.2f ", deposit); optionop = readmatrix(option, matrix[][10], size); if (choiceop == 6) { printf("Thanks for using the matrix operation program.\n"); exit(0); } printf("Please select from the following matrix operations:\n") printf("\t1. Print matrix\n"); printf("\t2. Negate matrix\n"); printf("\t3. Transpose matrix\n"); printf("\t4. Add matrices\n"); printf("\t5. Multiply matrices\n"); printf("\t6. Quit\n"); fclose(filein); return 0; } do { printf("Please select option(1-%d):", optionop); scanf("%d", &matrixop); } while(matrixop <= 0 || matrixop > optionop); void readmatrix (FILE *in, int mat[][10], char A[], int i, int j) { int i=0,j = 0; while (fscanf(in, "%d", &mat[i][j]) != EOF) return 0; } // I would appreciate anyone's feedback.

    Read the article

  • manuplating matrix operation(transpose, negation, addition, and mutipication) using functions in c

    - by user292489
    i was trying to manuplate matrices in my input file using functions. my input file is, A 3 3 1 2 3 4 5 6 7 8 9 B 3 3 1 0 0 0 1 0 0 0 1 C 2 3 3 5 8 -1 -2 -3 D 3 5 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 E 1 1 10 F 3 10 1 0 2 0 3 0 4 0 5 0 0 2 3 -1 -3 -4 -3 8 3 7 0 0 0 4 6 5 8 2 -1 10 i am having trouble in impementing the funcitons that i declared. i assumed my program will perform those operations: transpose, negate, add, and mutiply matices according to the users choise: /* once this program is compliled and excuted, it will perform the basic matrix operations: negation, transpose,a\ ddition, and multiplication. */ #include <stdio.h> #include <stdlib.h> #define MAX 10 int readmatrix(FILE *input, char martixname[6],int , mat[10][10], int i, int j); void printmatrix(char matrixname[6], int mat[10][10], int i, int j); void Negate(char matrixname[6], int mat[10][10], int i, int j); void add(char matrixname[6], int mat[10][10],int i, int k); void multiply(char matrixname[], int mat[][10], char A[], int i, int k); void transpose (char matrixname[], int mat[][10], char A[], int); void printT(int mat[][10], int); int selctoption(); char selectmatrix(); int main(int argc, char *argv[]) { char matrixtype[6]; int mat[][10]; FILE *filein; int size; int optionop; int matrixop; int option; if (argc != 2) { printf("Usage: excutable input.\n"); exit (0); } filein = fopen(argv[1], "r"); if (!filein) { printf("ERROR: input file not found.\n"); exit (0); } size = readmatrix (filein, matrixtype); printmatrix(matrix[][10], size); option = selectoption(); matrixtype = selectmatrix(); //printf("You have: %5.2f ", deposit); optionop = readmatrix(option, matrix[][10], size); if (choiceop == 6) { printf("Thanks for using the matrix operation program.\n"); exit(0); } printf("Please select from the following matrix operations:\n") printf("\t1. Print matrix\n"); printf("\t2. Negate matrix\n"); printf("\t3. Transpose matrix\n"); printf("\t4. Add matrices\n"); printf("\t5. Multiply matrices\n"); printf("\t6. Quit\n"); fclose(filein); return 0; } do { printf("Please select option(1-%d):", optionop); scanf("%d", &matrixop); }while(matrixop <= 0 || matrixop > optionop); void readmatrix (FILE *in, int mat[][10], char A[], int i, int j) { int i=0,j = 0; while (fscanf(in, "%d", &mat[i][j]) != EOF) return 0; } // i would apprtaite anyones feedback. //thank you!

    Read the article

  • LibGDX Box2D Body and Sprite AND DebugRenderer out of sync

    - by Free Lancer
    I am having a couple issues with Box2D bodies. I have a GameObject holding a Sprite and Body. I use a ShapeRenderer to draw an outline of the Body's and Sprite's bounding boxes. I also added a Box2DDebugRenderer to make sure everything's lining up properly. My problem is the Sprite and Body at first overlap perfectly, but as I turn the Body moves a bit off the sprite then comes back when the Car is facing either North or South. Here's an image of what I mean: (Not sure what that line is, first time to show up) BLUE is the Body, RED is the Sprite, PURPLE is the Box2DDebugRenderer. Also, you probably noticed a purple square in the top right corner. Well that's the Car drawn by the Box2D Debug Renderer. I thought it might be the camera but I've been playing with the Cameras for hours and nothing seems to work. All give me weird results. Here's my code: Screen: public void show() { // --------------------- SETUP ALL THE CAMERA STUFF ------------------------------ // battleStage = new Stage( 720, 480, false ); // Setup the camera. In Box2D we operate on a meter scale, pixels won't do it. So we use // an Orthographic camera with a Viewport of 24 meters in width and 16 meters in height. battleStage.setCamera( new OrthographicCamera( CAM_METER_WIDTH, CAM_METER_HEIGHT ) ); battleStage.getCamera().position.set( CAM_METER_WIDTH / 2, CAM_METER_HEIGHT / 2, 0 ); // The Box2D Debug Renderer will handle rendering all physics objects for debugging debugger = new Box2DDebugRenderer( true, true, true, true ); //debugCam = new OrthographicCamera( CAM_METER_WIDTH, CAM_METER_HEIGHT ); } public void render(float delta) { // Update the Physics World, use 1/45 for something around 45 Frames/Second for mobile devices physicsWorld.step( 1/45.0f, 8, 3 ); // 1/45 for devices // Set the Camera matrices and clear the screen Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); battleStage.getCamera().update(); // Draw game objects here battleStage.act(delta); battleStage.draw(); // Again update the Camera matrices and call the debug renderer debugCam.update(); debugger.render( physicsWorld, debugCam.combined); // Vehicle handles its own interaction with the HUD // update all Actors movements in the game Stage hudStage.act( delta ); // Draw each Actor onto the Scene at their new positions hudStage.draw(); } Car: (extends Actor) public Car( Texture texture, float posX, float posY, World world ) { super( "Car" ); mSprite = new Sprite( texture ); mSprite.setSize( WIDTH * Consts.PIXEL_METER_RATIO, HEIGHT * Consts.PIXEL_METER_RATIO ); mSprite.setOrigin( mSprite.getWidth()/2, mSprite.getHeight()/2); // set the origin to be at the center of the body mSprite.setPosition( posX * Consts.PIXEL_METER_RATIO, posY * Consts.PIXEL_METER_RATIO ); // place the car in the center of the game map FixtureDef carFixtureDef = new FixtureDef(); mBody = Physics.createBoxBody( BodyType.DynamicBody, carFixtureDef, mSprite ); } public void draw() { mSprite.setPosition( mBody.getPosition().x * Consts.PIXEL_METER_RATIO, mBody.getPosition().y * Consts.PIXEL_METER_RATIO ); mSprite.setRotation( MathUtils.radiansToDegrees * mBody.getAngle() ); // draw the sprite mSprite.draw( batch ); } Physics: (Create the Body) public static Body createBoxBody( final BodyType pBodyType, final FixtureDef pFixtureDef, Sprite pSprite ) { float pRotation = 0; float pWidth = pSprite.getWidth(); float pHeight = pSprite.getHeight(); final BodyDef boxBodyDef = new BodyDef(); boxBodyDef.type = pBodyType; boxBodyDef.position.x = pSprite.getX() / Consts.PIXEL_METER_RATIO; boxBodyDef.position.y = pSprite.getY() / Consts.PIXEL_METER_RATIO; // Temporary Box shape of the Body final PolygonShape boxPoly = new PolygonShape(); final float halfWidth = pWidth * 0.5f / Consts.PIXEL_METER_RATIO; final float halfHeight = pHeight * 0.5f / Consts.PIXEL_METER_RATIO; boxPoly.setAsBox( halfWidth, halfHeight ); // set the anchor point to be the center of the sprite pFixtureDef.shape = boxPoly; final Body boxBody = BattleScreen.getPhysicsWorld().createBody(boxBodyDef); boxBody.createFixture(pFixtureDef); } Sorry for all the code and long description but it's hard to pin down what exactly might be causing the problem.

    Read the article

  • First-Time GLSL Shadow Mapping Problems

    - by Locke
    I'm working on building out a 2.5D engine and having massive problems getting my shadows working. I'm at a point where I'm VERY close. So, let's see a picture to see what I have: As you can see above, the image has lighting -- but the shadow map is displaying incorrectly. The shadow map is shown in the bottom left hand side of the screen as a normal 2D texture, so we can see what it looks like at any given time. If you notice, it appears that the shadows are generating backwards in the wrong direction -- I think. But the problem is a little more deep -- I'm just plotting the shadow onto the screen, which I know is wrong -- I'm ignoring the actual test to see if we NEED to show a shadow. The incoming parameters all appear to be correct -- so there has to be something wrong with my shader code somewhere. Here's what my code looks like: VERTEX: uniform mat4 LightModelViewProjectionMatrix; varying vec3 Normal; // The eye-space normal of the current vertex. varying vec4 LightCoordinate; // The texture coordinate of the light of the current vertex. varying vec3 LightDirection; // The eye-space direction of the light. void main() { Normal = normalize(gl_NormalMatrix * gl_Normal); LightDirection = normalize(gl_NormalMatrix * gl_LightSource[0].position.xyz); LightCoordinate = LightModelViewProjectionMatrix * gl_Vertex; LightCoordinate.xy = ( LightCoordinate.xy * 0.5 ) + 0.5; gl_Position = ftransform(); gl_TexCoord[0] = gl_MultiTexCoord0; } FRAGMENT: uniform sampler2D DiffuseMap; uniform sampler2D ShadowMap; varying vec3 Normal; // The eye-space normal of the current vertex. varying vec4 LightCoordinate; // The texture coordinate of the light of the current vertex. varying vec3 LightDirection; // The eye-space direction of the light. void main() { vec4 Texel = texture2D(DiffuseMap, vec2(gl_TexCoord[0])); // Directional lighting //Build ambient lighting vec4 AmbientElement = gl_LightSource[0].ambient; //Build diffuse lighting float Lambert = max(dot(Normal, LightDirection), 0.0); //max(abs(dot(Normal, LightDirection)), 0.0); vec4 DiffuseElement = ( gl_LightSource[0].diffuse * Lambert ); vec4 LightingColor = ( DiffuseElement + AmbientElement ); LightingColor.r = min(LightingColor.r, 1.0); LightingColor.g = min(LightingColor.g, 1.0); LightingColor.b = min(LightingColor.b, 1.0); LightingColor.a = min(LightingColor.a, 1.0); LightingColor *= Texel; //Everything up to this point is PERFECT // Shadow mapping // ------------------------------ vec4 ShadowCoordinate = LightCoordinate / LightCoordinate.w; float DistanceFromLight = texture2D( ShadowMap, ShadowCoordinate.st ).z; float DepthBias = 0.001; float ShadowFactor = 1.0; if( LightCoordinate.w > 0.0 ) { ShadowFactor = DistanceFromLight < ( ShadowCoordinate.z + DepthBias ) ? 0.5 : 1.0; } LightingColor.rgb *= ShadowFactor; //gl_FragColor = LightingColor; //Yes, I know this is wrong, but the line above (gl_FragColor = LightingColor;) produces the wrong effect gl_FragColor = LightingColor * texture2D( ShadowMap, ShadowCoordinate.st ); } I wanted to make sure the coordinates were correct for the shadow map -- so that's why you see it applied to the image as it is below. But the depth for each point seems to be wrong -- the shadows SHOULD be opposite (look at how the image is -- the shaded areas from normal lighting are facing the opposite direction of the shadows). Maybe my matrices are bad or something going in? They're isolated and appear to be correct -- nothing else is going in unusual. When I view from the light's view and get the MVP matrices for it, they're correct. EDIT: Added an image so you can see what happens when I do the correct command at the end of the GLSL: That's the image when the last line is just glFragColor = LightingColor; Maybe someone has some idea of what I screwed up?

    Read the article

  • Shadows shimmer when camera moves

    - by Chad Layton
    I've implemented shadow maps in my simple block engine as an exercise. I'm using one directional light and using the view volume to create the shadow matrices. I'm experiencing some problems with the shadows shimmering when the camera moves and I'd like to know if it's an issue with my implementation or just an issue with basic/naive shadow mapping itself. Here's a video: http://www.youtube.com/watch?v=vyprATt5BBg&feature=youtu.be Here's the code I use to create the shadow matrices. The commented out code is my original attempt to perfectly fit the view frustum. You can also see my attempt to try clamping movement to texels in the shadow map which didn't seem to make any difference. Then I tried using a bounding sphere instead, also to no apparent effect. public void CreateViewProjectionTransformsToFit(Camera camera, out Matrix viewTransform, out Matrix projectionTransform, out Vector3 position) { BoundingSphere cameraViewFrustumBoundingSphere = BoundingSphere.CreateFromFrustum(camera.ViewFrustum); float lightNearPlaneDistance = 1.0f; Vector3 lookAt = cameraViewFrustumBoundingSphere.Center; float distanceFromLookAt = cameraViewFrustumBoundingSphere.Radius + lightNearPlaneDistance; Vector3 directionFromLookAt = -Direction * distanceFromLookAt; position = lookAt + directionFromLookAt; viewTransform = Matrix.CreateLookAt(position, lookAt, Vector3.Up); float lightFarPlaneDistance = distanceFromLookAt + cameraViewFrustumBoundingSphere.Radius; float diameter = cameraViewFrustumBoundingSphere.Radius * 2.0f; Matrix.CreateOrthographic(diameter, diameter, lightNearPlaneDistance, lightFarPlaneDistance, out projectionTransform); //Vector3 cameraViewFrustumCentroid = camera.ViewFrustum.GetCentroid(); //position = cameraViewFrustumCentroid - (Direction * (camera.FarPlaneDistance - camera.NearPlaneDistance)); //viewTransform = Matrix.CreateLookAt(position, cameraViewFrustumCentroid, Up); //Vector3[] cameraViewFrustumCornersWS = camera.ViewFrustum.GetCorners(); //Vector3[] cameraViewFrustumCornersLS = new Vector3[8]; //Vector3.Transform(cameraViewFrustumCornersWS, ref viewTransform, cameraViewFrustumCornersLS); //Vector3 min = cameraViewFrustumCornersLS[0]; //Vector3 max = cameraViewFrustumCornersLS[0]; //for (int i = 1; i < 8; i++) //{ // min = Vector3.Min(min, cameraViewFrustumCornersLS[i]); // max = Vector3.Max(max, cameraViewFrustumCornersLS[i]); //} //// Clamp to nearest texel //float texelSize = 1.0f / Renderer.ShadowMapSize; //min.X -= min.X % texelSize; //min.Y -= min.Y % texelSize; //min.Z -= min.Z % texelSize; //max.X -= max.X % texelSize; //max.Y -= max.Y % texelSize; //max.Z -= max.Z % texelSize; //// We just use an orthographic projection matrix. The sun is so far away that it's rays are essentially parallel. //Matrix.CreateOrthographicOffCenter(min.X, max.X, min.Y, max.Y, -max.Z, -min.Z, out projectionTransform); } And here's the relevant part of the shader: if (CastShadows) { float4 positionLightCS = mul(float4(position, 1.0f), LightViewProj); float2 texCoord = clipSpaceToScreen(positionLightCS) + 0.5f / ShadowMapSize; float shadowMapDepth = tex2D(ShadowMapSampler, texCoord).r; float distanceToLight = length(LightPosition - position); float bias = 0.2f; if (shadowMapDepth < (distanceToLight - bias)) { return float4(0.0f, 0.0f, 0.0f, 0.0f); } } The shimmer is slightly better if I drastically reduce the view volume but I think that's mostly just because the texels become smaller and it's harder to notice them flickering back and forth. I'd appreciate any insight, I'd very much like to understand what's going on before I try other techniques.

    Read the article

  • Child transforms problem when loading 3DS models using assimp

    - by MhdSyrwan
    I'm trying to load a textured 3d model into my scene using assimp model loader. The problem is that child meshes are not situated correctly (they don't have the correct transformations). In brief: all the mTansform matrices are identity matrices, why would that be? I'm using this code to render the model: void recursive_render (const struct aiScene *sc, const struct aiNode* nd, float scale) { unsigned int i; unsigned int n=0, t; aiMatrix4x4 m = nd->mTransformation; m.Scaling(aiVector3D(scale, scale, scale), m); // update transform m.Transpose(); glPushMatrix(); glMultMatrixf((float*)&m); // draw all meshes assigned to this node for (; n < nd->mNumMeshes; ++n) { const struct aiMesh* mesh = scene->mMeshes[nd->mMeshes[n]]; apply_material(sc->mMaterials[mesh->mMaterialIndex]); if (mesh->HasBones()){ printf("model has bones"); abort(); } if(mesh->mNormals == NULL) { glDisable(GL_LIGHTING); } else { glEnable(GL_LIGHTING); } if(mesh->mColors[0] != NULL) { glEnable(GL_COLOR_MATERIAL); } else { glDisable(GL_COLOR_MATERIAL); } for (t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace* face = &mesh->mFaces[t]; GLenum face_mode; switch(face->mNumIndices) { case 1: face_mode = GL_POINTS; break; case 2: face_mode = GL_LINES; break; case 3: face_mode = GL_TRIANGLES; break; default: face_mode = GL_POLYGON; break; } glBegin(face_mode); for(i = 0; i < face->mNumIndices; i++)// go through all vertices in face { int vertexIndex = face->mIndices[i];// get group index for current index if(mesh->mColors[0] != NULL) Color4f(&mesh->mColors[0][vertexIndex]); if(mesh->mNormals != NULL) if(mesh->HasTextureCoords(0))//HasTextureCoords(texture_coordinates_set) { glTexCoord2f(mesh->mTextureCoords[0][vertexIndex].x, 1 - mesh->mTextureCoords[0][vertexIndex].y); //mTextureCoords[channel][vertex] } glNormal3fv(&mesh->mNormals[vertexIndex].x); glVertex3fv(&mesh->mVertices[vertexIndex].x); } glEnd(); } } // draw all children for (n = 0; n < nd->mNumChildren; ++n) { recursive_render(sc, nd->mChildren[n], scale); } glPopMatrix(); } What's the problem in my code ? I've added some code to abort the program if there's any bone in the meshes, but the program doesn't abort, this means : no bones, is that normal? if (mesh->HasBones()){ printf("model has bones"); abort(); } Note: I am using openGL & SFML & assimp

    Read the article

  • how to export bind and keyframe bone poses from blender to use in OpenGL

    - by SaldaVonSchwartz
    EDIT: I decided to reformulate the question in much simpler terms to see if someone can give me a hand with this. Basically, I'm exporting meshes, skeletons and actions from blender into an engine of sorts that I'm working on. But I'm getting the animations wrong. I can tell the basic motion paths are being followed but there's always an axis of translation or rotation which is wrong. I think the problem is most likely not in my engine code (OpenGL-based) but rather in either my misunderstanding of some part of the theory behind skeletal animation / skinning or the way I am exporting the appropriate joint matrices from blender in my exporter script. I'll explain the theory, the engine animation system and my blender export script, hoping someone might catch the error in either or all of these. The theory: (I'm using column-major ordering since that's what I use in the engine cause it's OpenGL-based) Assume I have a mesh made up of a single vertex v, along with a transformation matrix M which takes the vertex v from the mesh's local space to world space. That is, if I was to render the mesh without a skeleton, the final position would be gl_Position = ProjectionMatrix * M * v. Now assume I have a skeleton with a single joint j in bind / rest pose. j is actually another matrix. A transform from j's local space to its parent space which I'll denote Bj. if j was part of a joint hierarchy in the skeleton, Bj would take from j space to j-1 space (that is to its parent space). However, in this example j is the only joint, so Bj takes from j space to world space, like M does for v. Now further assume I have a a set of frames, each with a second transform Cj, which works the same as Bj only that for a different, arbitrary spatial configuration of join j. Cj still takes vertices from j space to world space but j is rotated and/or translated and/or scaled. Given the above, in order to skin vertex v at keyframe n. I need to: take v from world space to joint j space modify j (while v stays fixed in j space and is thus taken along in the transformation) take v back from the modified j space to world space So the mathematical implementation of the above would be: v' = Cj * Bj^-1 * v. Actually, I have one doubt here.. I said the mesh to which v belongs has a transform M which takes from model space to world space. And I've also read in a couple textbooks that it needs to be transformed from model space to joint space. But I also said in 1 that v needs to be transformed from world to joint space. So basically I'm not sure if I need to do v' = Cj * Bj^-1 * v or v' = Cj * Bj^-1 * M * v. Right now my implementation multiples v' by M and not v. But I've tried changing this and it just screws things up in a different way cause there's something else wrong. Finally, If we wanted to skin a vertex to a joint j1 which in turn is a child of a joint j0, Bj1 would be Bj0 * Bj1 and Cj1 would be Cj0 * Cj1. But Since skinning is defined as v' = Cj * Bj^-1 * v , Bj1^-1 would be the reverse concatenation of the inverses making up the original product. That is, v' = Cj0 * Cj1 * Bj1^-1 * Bj0^-1 * v Now on to the implementation (Blender side): Assume the following mesh made up of 1 cube, whose vertices are bound to a single joint in a single-joint skeleton: Assume also there's a 60-frame, 3-keyframe animation at 60 fps. The animation essentially is: keyframe 0: the joint is in bind / rest pose (the way you see it in the image). keyframe 30: the joint translates up (+z in blender) some amount and at the same time rotates pi/4 rad clockwise. keyframe 59: the joint goes back to the same configuration it was in keyframe 0. My first source of confusion on the blender side is its coordinate system (as opposed to OpenGL's default) and the different matrices accessible through the python api. Right now, this is what my export script does about translating blender's coordinate system to OpenGL's standard system: # World transform: Blender -> OpenGL worldTransform = Matrix().Identity(4) worldTransform *= Matrix.Scale(-1, 4, (0,0,1)) worldTransform *= Matrix.Rotation(radians(90), 4, "X") # Mesh (local) transform matrix file.write('Mesh Transform:\n') localTransform = mesh.matrix_local.copy() localTransform = worldTransform * localTransform for col in localTransform.col: file.write('{:9f} {:9f} {:9f} {:9f}\n'.format(col[0], col[1], col[2], col[3])) file.write('\n') So if you will, my "world" matrix is basically the act of changing blenders coordinate system to the default GL one with +y up, +x right and -z into the viewing volume. Then I also premultiply (in the sense that it's done by the time we reach the engine, not in the sense of post or pre in terms of matrix multiplication order) the mesh matrix M so that I don't need to multiply it again once per draw call in the engine. About the possible matrices to extract from Blender joints (bones in Blender parlance), I'm doing the following: For joint bind poses: def DFSJointTraversal(file, skeleton, jointList): for joint in jointList: bindPoseJoint = skeleton.data.bones[joint.name] bindPoseTransform = bindPoseJoint.matrix_local.inverted() file.write('Joint ' + joint.name + ' Transform {\n') translationV = bindPoseTransform.to_translation() rotationQ = bindPoseTransform.to_3x3().to_quaternion() scaleV = bindPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) DFSJointTraversal(file, skeleton, joint.children) file.write('}\n') Note that I'm actually grabbing the inverse of what I think is the bind pose transform Bj. This is so I don't need to invert it in the engine. Also note I went for matrix_local, assuming this is Bj. The other option is plain "matrix", which as far as I can tell is the same only that not homogeneous. For joint current / keyframe poses: for kfIndex in keyframes: bpy.context.scene.frame_set(kfIndex) file.write('keyframe: {:d}\n'.format(int(kfIndex))) for i in range(0, len(skeleton.data.bones)): file.write('joint: {:d}\n'.format(i)) currentPoseJoint = skeleton.pose.bones[i] currentPoseTransform = currentPoseJoint.matrix translationV = currentPoseTransform.to_translation() rotationQ = currentPoseTransform.to_3x3().to_quaternion() scaleV = currentPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) file.write('\n') Note that here I go for skeleton.pose.bones instead of data.bones and that I have a choice of 3 matrices: matrix, matrix_basis and matrix_channel. From the descriptions in the python API docs I'm not super clear which one I should choose, though I think it's the plain matrix. Also note I do not invert the matrix in this case. The implementation (Engine / OpenGL side): My animation subsystem does the following on each update (I'm omitting parts of the update loop where it's figured out which objects need update and time is hardcoded here for simplicity): static double time = 0; time = fmod((time + elapsedTime),1.); uint16_t LERPKeyframeNumber = 60 * time; uint16_t lkeyframeNumber = 0; uint16_t lkeyframeIndex = 0; uint16_t rkeyframeNumber = 0; uint16_t rkeyframeIndex = 0; for (int i = 0; i < aClip.keyframesCount; i++) { uint16_t keyframeNumber = aClip.keyframes[i].number; if (keyframeNumber <= LERPKeyframeNumber) { lkeyframeIndex = i; lkeyframeNumber = keyframeNumber; } else { rkeyframeIndex = i; rkeyframeNumber = keyframeNumber; break; } } double lTime = lkeyframeNumber / 60.; double rTime = rkeyframeNumber / 60.; double blendFactor = (time - lTime) / (rTime - lTime); GLKMatrix4 bindPosePalette[aSkeleton.jointsCount]; GLKMatrix4 currentPosePalette[aSkeleton.jointsCount]; for (int i = 0; i < aSkeleton.jointsCount; i++) { F3DETQSType& lPose = aClip.keyframes[lkeyframeIndex].skeletonPose.joints[i]; F3DETQSType& rPose = aClip.keyframes[rkeyframeIndex].skeletonPose.joints[i]; GLKVector3 LERPTranslation = GLKVector3Lerp(lPose.t, rPose.t, blendFactor); GLKQuaternion SLERPRotation = GLKQuaternionSlerp(lPose.q, rPose.q, blendFactor); GLKVector3 LERPScaling = GLKVector3Lerp(lPose.s, rPose.s, blendFactor); GLKMatrix4 currentTransform = GLKMatrix4MakeWithQuaternion(SLERPRotation); currentTransform = GLKMatrix4TranslateWithVector3(currentTransform, LERPTranslation); currentTransform = GLKMatrix4ScaleWithVector3(currentTransform, LERPScaling); GLKMatrix4 inverseBindTransform = GLKMatrix4MakeWithQuaternion(aSkeleton.joints[i].inverseBindTransform.q); inverseBindTransform = GLKMatrix4TranslateWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.t); inverseBindTransform = GLKMatrix4ScaleWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.s); if (aSkeleton.joints[i].parentIndex == -1) { bindPosePalette[i] = inverseBindTransform; currentPosePalette[i] = currentTransform; } else { bindPosePalette[i] = GLKMatrix4Multiply(inverseBindTransform, bindPosePalette[aSkeleton.joints[i].parentIndex]); currentPosePalette[i] = GLKMatrix4Multiply(currentPosePalette[aSkeleton.joints[i].parentIndex], currentTransform); } aSkeleton.skinningPalette[i] = GLKMatrix4Multiply(currentPosePalette[i], bindPosePalette[i]); } Finally, this is my vertex shader: #version 100 uniform mat4 modelMatrix; uniform mat3 normalMatrix; uniform mat4 projectionMatrix; uniform mat4 skinningPalette[6]; uniform lowp float skinningEnabled; attribute vec4 position; attribute vec3 normal; attribute vec2 tCoordinates; attribute vec4 jointsWeights; attribute vec4 jointsIndices; varying highp vec2 tCoordinatesVarying; varying highp float lIntensity; void main() { tCoordinatesVarying = tCoordinates; vec4 skinnedVertexPosition = vec4(0.); for (int i = 0; i < 4; i++) { skinnedVertexPosition += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * position; } vec4 skinnedNormal = vec4(0.); for (int i = 0; i < 4; i++) { skinnedNormal += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * vec4(normal, 0.); } vec4 finalPosition = mix(position, skinnedVertexPosition, skinningEnabled); vec4 finalNormal = mix(vec4(normal, 0.), skinnedNormal, skinningEnabled); vec3 eyeNormal = normalize(normalMatrix * finalNormal.xyz); vec3 lightPosition = vec3(0., 0., 2.); lIntensity = max(0.0, dot(eyeNormal, normalize(lightPosition))); gl_Position = projectionMatrix * modelMatrix * finalPosition; } The result is that the animation displays wrong in terms of orientation. That is, instead of bobbing up and down it bobs in and out (along what I think is the Z axis according to my transform in the export clip). And the rotation angle is counterclockwise instead of clockwise. If I try with a more than one joint, then it's almost as if the second joint rotates in it's own different coordinate space and does not follow 100% its parent's transform. Which I assume it should from my animation subsystem which I assume in turn follows the theory I explained for the case of more than one joint. Any thoughts?

    Read the article

  • How to get raw jpeg data (but no metatags / proprietary markers)

    - by CoolAJ86
    I want to get raw jpeg data - no metadata. I'm very confused looking at the jpeg "standards". How correct is my understanding of the marker "tree"? 0xFFD8 - Identifies the file as an image 0xFFE? - EXIF, JFIF, SPIFF, ICC, etc 0x???? - the length of the tag 0xFFD8 - Start of Image 0xFFE0 - should follow SOI as per spec, but often preceded by comments ??? 0x???? - Matrices, tags, random data ??? There are never other markers in-between these markers? Or these include the matrices and such? 0xFFDA - Start of Stream - This is what I want, yes? 0xXXXX - length of stream 0xFFD9 - End of Stream (EOI) 0x???? - Comment tags, extra exif, jfif info??? 0xFFD9 - End of Image 0xFF00 - escaped 0xFF, not to be confused with a marker This has been my reading material: http://en.wikipedia.org/wiki/JPEG http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html http://www.media.mit.edu/pia/Research/deepview/exif.html http://www.faqs.org/faqs/jpeg-faq/part1/section-15.html

    Read the article

  • How can I apply a PSSM efficiently?

    - by flies
    I am fitting for position specific scoring matrices (PSSM aka Position Specific Weight Matrices). The fit I'm using is like simulated annealing, where I the perturb the PSSM, compare the prediction to experiment and accept the change if it improves agreement. This means I apply the PSSM millions of times per fit; performance is critical. In my particular problem, I'm applying a PSSM for an object of length L (~8 bp) at every position of a DNA sequence of length M (~30 bp) (so there are M-L+1 valid positions). I need an efficient algorithm to apply a PSSM. Can anyone help improve performance? My best idea is to convert the DNA into some kind of a matrix so that applying the PSSM is matrix multiplication. There are efficient linear algebra libraries out there (e.g. BLAS), but I'm not sure how best to turn an M-length DNA sequence into a matrix M x 4 matrix and then apply the PSSM at each position. The solution needs to work for higher order/dinucleotide terms in the PSSM - presumably this means representing the sequence-matrix for mono-nucleotides and separately for dinucleotides. My current solution iterates over each position m, then over each letter in word from m to m+L-1, adding the corresponding term in the matrix. I'm storing the matrix as a multi-dimensional STL vector, and profiling has revealed that a lot of the computation time is just accessing the elements of the PSSM (with similar performance bottlenecks accessing the DNA sequence). If someone has an idea besides matrix multiplication, I'm all ears.

    Read the article

  • Precision error on matrix multiplication

    - by Wam
    Hello all, Coding a matrix multiplication in my program, I get precision errors (inaccurate results for large matrices). Here's my code. The current object has data stored in a flattened array, row after row. Other matrix B has data stored in a flattened array, column after column (so I can use pointer arithmetic). protected double[,] multiply (IMatrix B) { int columns = B.columns; int rows = Rows; int size = Columns; double[,] result = new double[rows,columns]; for (int row = 0; row < rows; row++) { for (int col = 0; col < columns; col++) { unsafe { fixed (float* ptrThis = data) fixed (float* ptrB = B.Data) { float* mePtr = ptrThis + row*rows; float* bPtr = ptrB + col*columns; double value = 0.0; for (int i = 0; i < size; i++) { value += *(mePtr++) * *(bPtr++); } result[row, col] = value; } } } } } Actually, the code is a bit more complicated : I do the multiply thing for several chunks (so instead of having i from 0 to size, I go from localStart to localStop), then sum up the resulting matrices. My problem : for a big matrix I get precision error : NUnit.Framework.AssertionException: Error at (0,1) expected: <6.4209571409444209E+18> but was: <6.4207619776304906E+18> Any idea ?

    Read the article

  • Dimension Mismatch MatLab; cant figure out why it is mismatching

    - by Abid
    I think it may be a syntax issue, here is the code. load ([ 'C:\Users\Abid\Desktop\Inquiry Runs\dtS' ]) dtS((dtS==0))=nan; for j=2:9; maxS=max(dtS(j,:)); minS=min(dtS(j,:)); maxval(j,:)=dtS((dtS>(maxS-.1*maxS))); minval(j,:)=dtS((dtS<(minS+.1*minS))); avmax(j)=mean(maxval(j,:)); avmin(j)=mean(minval(j,:)); avs(j,:)=[avmax(j) avmin(j)] end So I know the the row matrices are different sizes every loop. For example maxval(j,:) will change depending one row it is looking through for certain values. I did this manually and I see that on the first loop the matrices are size (1,1), however, if I set the loop to run for only j=2, the row length is 13. Usually if a matrix is changing size on the loop, I only get a warning, but this time I think it is due to a reason I don't understand.

    Read the article

  • optimize 2D array in C++

    - by Hristo
    I'm dealing with a 2D array with the following characteristics: const int cols = 500; const int rows = 100; int arr[rows][cols]; I access array arr in the following manner to do some work: for(int k = 0; k < T; ++k) { // for each trainee myscore[k] = 0; for(int i = 0; i < N; ++i) { // for each sample for(int j = 0; j < E[i]; ++j) { // for each expert myscore[k] += delta(i, anotherArray[k][i], arr[j][i]); } } } So I am worried about the array 'arr' and not the other one. I need to make this more cache-friendly and also boost the speed. I was thinking perhaps transposing the array but I wasn't sure how to do that. My implementation turns out to only work for square matrices. How would I make it work for non-square matrices? Also, would mapping the 2D array into a 1D array boost the performance? If so, how would I do that? Finally, any other advice on how else I can optimize this... I've run out of ideas, but I know that arr[j][i] is the place where I need to make changes because I'm accessing columns by columns instead of rows by rows so that is not cache friendly at all. Thanks, Hristo

    Read the article

  • Out-of-memory algorithms for addressing large arrays

    - by reve_etrange
    I am trying to deal with a very large dataset. I have k = ~4200 matrices (varying sizes) which must be compared combinatorially, skipping non-unique and self comparisons. Each of k(k-1)/2 comparisons produces a matrix, which must be indexed against its parents (i.e. can find out where it came from). The convenient way to do this is to (triangularly) fill a k-by-k cell array with the result of each comparison. These are ~100 X ~100 matrices, on average. Using single precision floats, it works out to 400 GB overall. I need to 1) generate the cell array or pieces of it without trying to place the whole thing in memory and 2) access its elements (and their elements) in like fashion. My attempts have been inefficient due to reliance on MATLAB's eval() as well as save and clear occurring in loops. for i=1:k [~,m] = size(data{i}); cur_var = ['H' int2str(i)]; %# if i == 1; save('FileName'); end; %# If using a single MAT file and need to create it. eval([cur_var ' = cell(1,k-i);']); for j=i+1:k [~,n] = size(data{j}); eval([cur_var '{i,j} = zeros(m,n,''single'');']); eval([cur_var '{i,j} = compare(data{i},data{j});']); end save(cur_var,cur_var); %# Add '-append' when using a single MAT file. clear(cur_var); end The other thing I have done is to perform the split when mod((i+j-1)/2,max(factor(k(k-1)/2))) == 0. This divides the result into the largest number of same-size pieces, which seems logical. The indexing is a little more complicated, but not too bad because a linear index could be used. Does anyone know/see a better way?

    Read the article

  • When using Direct3D, how much math is being done on the CPU?

    - by zirgen
    Context: I'm just starting out. I'm not even touching the Direct3D 11 API, and instead looking at understanding the pipeline, etc. From looking at documentation and information floating around the web, it seems like some calculations are being handled by the application. That, is, instead of simply presenting matrices to multiply to the GPU, the calculations are being done by a math library that operates on the CPU. I don't have any particular resources to point to, although I guess I can point to the XNA Math Library or the samples shipped in the February DX SDK. When you see code like mViewProj = mView * mProj;, that projection is being calculated on the CPU. Or am I wrong? If you were writing a program, where you can have 10 cubes on the screen, where you can move or rotate cubes, as well as viewpoint, what calculations would you do on the CPU? I think I would store the geometry for the a single cube, and then transform matrices representing the actual instances. And then it seems I would use the XNA math library, or another of my choosing, to transform each cube in model space. Then get the coordinates in world space. Then push the information to the GPU. That's quite a bit of calculation on the CPU. Am I wrong? Am I reaching conclusions based on too little information and understanding? What terms should I Google for, if the answer is STFW? Or if I am right, why aren't these calculations being pushed to the GPU as well?

    Read the article

  • Using MPI_Type_Vector and MPI_Gather, in C.

    - by Goloneg
    Hi, I am trying to multiply square matrices in parallele with MPI. I use a MPI_Type_vector to send square submatrixes (arrays of float) to the processes, so they can calculate subproducts. Then, for the next iterations, these submatrices are send to neighbours processes as MPI_Type_contiguous (the whole submatrix is sent). This part is working as expected, and local results are corrects. Then, I use MPI_Gather with the contiguous types to send all local results back to the root process. The problem is, the final matrix is build (obviously, by this method) line by line instead of submatrix by submatrix. I wrote an ugly procedure rearranging the final matrix, but I would like to know if there is a direct way of performing the "inverse" operation of sending MPI_Type_vectors (i.e., sending an array of values and directly arranging it in a subarray form in the receiving array). An example, to try and clarify my long text : A[16] and B[16] are 4x4 matrices to be multiplied ; C[16] will contain the result ; 4 processes are used (Pi with i from 0 to 3) : Pi gets two 2x2 submatrices : subAi[4] and subBi[4] ; their product is stored locally in subCi[4]. For instance, P0 gets : subA0[4] containing A[0], A[1], A[4] and A[5] ; subB0[4] containing B[0], B[1], B[4] and B[5]. After everything is calculed, root process gathers all subCi[4]. Then C[16] contains : [ subC0[0], subC0[1], subC0[2], subC0[3], subC1[0], subC1[1], subC1[2], subC1[3], subC2[0], subC2[1], subC2[2], subC2[3], subC3[0], subC3[1], subC3[2], subC3[3]] and I would like it to be : [ subC0[0], subC0[1], subC1[0], subC1[1], subC0[2], subC0[3], subC1[2], subC1[3], subC2[0], subC2[1], subC3[0], subC3[1], subC2[2], subC2[3], subC3[2], subC3[3]] without further operation. Does someone know a way ? Thanks for your advices.

    Read the article

  • MATLAB: What is an appropriate Data Structure for a Matrix with Random Variable Entries?

    - by user568249
    I'm currently working in an area that is related to simulation and trying to design a data structure that can include random variables within matrices. To motivate this let me say I have the following matrix: [a b; c d] I want to find a data structure that will allow for a, b, c, d to either be real numbers or random variables. As an example, let's say that a = 1, b = -1, c = 2 but let d be a normally distributed random variable with mean 0 and SD 1. The data structure that I have in mind will give no value to d. However, I also want to be able to design a function that can take in the structure, simulate an uniform(0,1), obtain a value for d using an inverse CDF and then spit out an actual matrix. I have several ideas to do this (all related to the MATLAB icdf function) but would like to know how more experienced programmers would do this. In this application, it's important that the structure is as "lean" as possible since I will be working with very very large matrices and memory will be an issue.

    Read the article

  • Error Exception in thread "AWT-EventQueue-0" java.lang.NullPointerException [migrated]

    - by user134212
    I'm new here. I'm learning how to program on java and I have a problem with my code. I really have no clue why my code is not working. I think my mistake may be here, but I'm not quite sure. m3 = new Matriz(ren2,col2); btSumar.addActionListener(new ActionListener() { Matriz m3;//(ren2,col2); public void actionPerformed(ActionEvent e) { m3 = new Matriz(ren2,col2); if(ventanaAbierta==true) { try { crearMat.SUMA(m1,m2); } catch(Exception nul) { System.out.println(nul); } } else { JOptionPane.showMessageDialog(null,"Ya se realizo la suma"); } } }); My Complete code import java.awt.*; import javax.swing.*; import javax.swing.BorderFactory; import javax.swing.border.Border; import java.awt.event.*; import java.awt.*; import java.io.*; import java.util.*; public class Practica2 { private int opcion,ren2,col2; private JFrame ventana,ventanaPrintMatriz; private JPanel panel,panel2; private Border borderRed2,borderBlue2,borderGreen2,borderGreen4; private Color red,green,blue,white,black; private Font Verdana14,ArialBlack18; private JLabel labelTitulo; public JButton btSalir,btSumar,btRestar,btMultiplica,btTranspuesta,btCrear; private ImageIcon suma,resta,multi,crear,salir,trans; private boolean ventanaAbierta = false; private static ValidacionesMatrices valida; private static Operaciones operacion; private static Matriz m1,m2,m3; private static ImprimirMatriz printMat; public Practica2() { panel = new JPanel(); panel.setLayout(null); ventana = new JFrame("Operaciones con Matrices"); ventana.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE); ventana.addWindowListener(new WindowAdapter() { public void windowClosing(WindowEvent e) { //Sale del programa System.exit(0); } }); ventana.setContentPane(panel); ventana.setVisible(true); ventana.setResizable(false); ventana.setBounds(150,150,300,380); //ventana.setBounds(0,0,650,650); } public void inicializarComponentes() { panel2 = new JPanel(); panel2.setLayout(null); labelTitulo = new JLabel("Practica #2"); suma = new ImageIcon("suma1.png"); resta = new ImageIcon("resta1.png"); multi = new ImageIcon("multi1.png"); trans = new ImageIcon("trans2.png"); crear = new ImageIcon("crear1.png"); salir = new ImageIcon("salir1.png"); btTranspuesta = new JButton("Transpuesta",trans); btMultiplica = new JButton("Multiplica",multi); btRestar = new JButton("Restar",resta); btSumar = new JButton("Sumar",suma); btCrear = new JButton("Crear",crear); btSalir = new JButton("Salir",salir); //Tipo de letra ArialBlack18 = new Font("Arial Black",Font.BOLD,18); //Color green = new Color(0,255,0); //Formato labelTitulo labelTitulo.setBounds(80,-60,200,150); labelTitulo.setFont(ArialBlack18); labelTitulo.setForeground(blue); labelTitulo.setVisible(true); //Formato de CrearMatriz btCrear.setBounds(80,50,130,30); btCrear.setToolTipText("Crea una matriz"); //Formato de Muliplica btMultiplica.setBounds(80,100,130,30); btMultiplica.setToolTipText("Mat[A] * Mat[B]"); //Formato de botonRestar btRestar.setBounds(80,150,130,30); btRestar.setToolTipText("Mat[A] - Mat[B]"); //Formato del botonSumar btSumar.setBounds(80,200,130,30); btSumar.setToolTipText("Mat[A] + Mat[B]"); //Formato de Transpuesta btTranspuesta.setBounds(80,250,130,30); btTranspuesta.setToolTipText("Mat[A]^-1"); //Formato del botonSalir btSalir.setBounds(80,300,130,30); //Agregando componentes al panel1 panel2.add(labelTitulo); panel2.add(btMultiplica); panel2.add(btCrear); panel2.add(btRestar); panel2.add(btSumar); panel2.add(btSalir); panel2.add(btTranspuesta); //Formato panel2 panel2.setBackground(green); panel2.setVisible(true); panel2.setBounds(0,0,300,380); //Argregamos componentes al panelPrincipal= panel.add(panel2); //BotonCrear btCrear.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) //throws IOException { if(ventanaAbierta==false) { ventanaAbierta=true; new CrearMatriz(); } else { JOptionPane.showMessageDialog(null,"Ya se crearon las Matrices"); } } }); m3 = new Matriz(ren2,col2); btSumar.addActionListener(new ActionListener() { Matriz m3;//(ren2,col2); public void actionPerformed(ActionEvent e) { m3 = new Matriz(ren2,col2); if(ventanaAbierta==true) { try { crearMat.SUMA(m1,m2); } catch(Exception nul) { System.out.println(nul); } } else { JOptionPane.showMessageDialog(null,"Ya se realizo la suma"); } } }); //BotonSalir btSalir.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) { System.exit(0); } }); panel.setVisible(true); panel.setBounds(0,0,350,380); } class VentanaMatriz { private JFrame ventana; private JPanel panel; private JTextArea textArea1,textArea2; private JLabel mat1,mat2; private JTextField textField1; public VentanaMatriz() { panel = new JPanel(); panel.setLayout(null); ventana = new JFrame("Creacion de Matrices"); ventana.addWindowListener(new WindowAdapter() { public void windowClosing(WindowEvent e) { ventana.dispose(); } }); ventana.setContentPane(panel); ventana.setVisible(true); ventana.setResizable(false); ventana.setBounds(200,100,850,420); } public void inicializarComponentes() { //Colores black = new Color(0,0,0); white = new Color(255,255,255); blue = new Color(0,0,255); green = new Color(0,255,0); red = new Color(255,0,0); //Tipo de letra Verdana14 = new Font("Verdana",Font.BOLD,14); //Tipos de borde borderRed2 = BorderFactory.createLineBorder(red,2); borderBlue2 = BorderFactory.createLineBorder(blue,2); borderGreen2 = BorderFactory.createLineBorder(green,2); borderGreen4 = BorderFactory.createLineBorder(green,4); //Agregando componentes al panel1 panel.add(mat1); panel.add(textArea1); panel.add(mat2); panel.add(textArea2); //Formato panel2 panel.setBackground(blue); panel.setVisible(true); panel.setBounds(0,0,850,420); } } class CrearMatriz { public int col1,re1,ren2,col2; public Matriz m1,m2,m3; public CrearMatriz() { int col1,ren1,ren2,col2; ren2 = Integer.parseInt(JOptionPane.showInputDialog("Numero de Renglones Matriz A: ")); col2 = Integer.parseInt(JOptionPane.showInputDialog("Numero de Columnas Matriz A: ")); final Matriz m1= new Matriz(ren2,col2); ren2 = Integer.parseInt(JOptionPane.showInputDialog("Numero de Renglones Matriz B: ")); col2 = Integer.parseInt(JOptionPane.showInputDialog("Numero de Columnas Matriz B: ")); final Matriz m2= new Matriz(ren2,col2); m3 = new Matriz(ren2,col2); m1.llenarMatriz(); m2.llenarMatriz(); m1.printMat(); m2.printMat(); } public void SUMA(Matriz m1,Matriz m2) { Matriz m3; if(ventanaAbierta==false) { m3 = new Matriz(ren2,col2); if(valida.validaSumayResta(m1,m2)) { m3 = operacion.sumaMat(m1,m2); JOptionPane.showMessageDialog(null,"La suma es = "); m3.imprimeMatriz(); } else { JOptionPane.showMessageDialog(null,"No es posible hacer la suma"); } } } public void RESTA() { } //btSumar = new JButton("Sumar",suma); //BotonSumar //Mostrar matriz 1 y 2 // System.out.println("\n\n\nMatriz 1="); // m1.imprimeMatriz(); // System.out.println("\nMatriz 2="); //Poner en botones /* if(valida.validaSumayResta(m1,m2)) { m3 = operacion.sumaMat(m1,m2); JOptionPane.showMessageDialog(null,"La suma es = "); m3.imprimeMatriz(); } else { JOptionPane.showMessageDialog(null,"No es posible hacer la suma"); } if(valida.validaSumayResta(m1,m2)) { m3=operacion.restaMat(m1,m2); JOptionPane.showMessageDialog(null,"La resta es = "); m3.imprimeMatriz(); } else { JOptionPane.showMessageDialog(null,"No es posible hacer la resta"); } if(valida.validaMultiplicacion(m1,m2)){ m3=operacion.multiplicaMat(m1,m2); JOptionPane.showMessageDialog(null,"La multiplicacion es = "); m3.imprimeMatriz(); } else { JOptionPane.showMessageDialog(null,"No es posible hacer la multiplicacion"); } JOptionPane.showMessageDialog(null,"La multiplicacion es = "); m1=operacion.transpuesta(m1); m2=operacion.transpuesta(m2); */ } class Matriz { public JTextField matriz; //public JTextArea texto; private JFrame ventanaPrintMatriz; private JPanel panel2; int ren; int col; int pos[][]; public Matriz(int ren1, int col1) { ren = ren1; col = col1; pos = new int [ren][col];/*una matriz de enteros de renglon por columan*/ } public void llenarMatriz() { for(int i=0;i<ren;i++) for(int j=0;j<col;j++) pos[i][j]=(int) (Math.random()*10);/*la posicion i y j crea un entero random*/ } /*vuelve a recorrer los espacio de i y j*/ } //Esta clase era un metodo de CrearMatriz class ImprimirMatriz { public void ImprimirMatriz() { panel2 = new JPanel(); panel2.setLayout(null); ventanaPrintMatriz = new JFrame("Matriz"); ventana.addWindowListener(new WindowAdapter() { public void windowClosing(WindowEvent e) { //Practica2.ventanaAbierta=false; ventana.dispose(); } }); int i,j; int x=0,y=0; borderRed2 = BorderFactory.createLineBorder(red,2); white = new Color(255,255,255); red = new Color(255,0,0); black = new Color(0,0,0); blue = new Color(0,0,255); for(i=0;i<ren;i++) { for(j=0;j<col;j++) { matriz = new JTextField(" "+pos[i][j]); matriz.setBorder(borderRed2); matriz.setForeground(white); matriz.setBounds(x+25,y+25,25,25); matriz.setBackground(black); matriz.setEditable(false); matriz.setVisible(true); //Se incrementa la coordenada en X //para el siguiente Textfield no se encime x=x+35; //Agregamos el textField al panel panel2.add(matriz); } //Regreso las cordenadas de X a 0 para que el //siguiente renglon empieze en donde mismo x=0; //Incremento las coordenada Y para que se brinque //de linea y=y+35; } //Formato panel2 panel2.setBounds(150,150,350,380); panel2.setBackground(blue); //panel2.setEditable(false); panel2.setVisible(true); //Formato de Ventana ventanaPrintMatriz.setContentPane(panel2); ventanaPrintMatriz.setBounds(150,150,350,380); ventanaPrintMatriz.setResizable(false); ventanaPrintMatriz.setVisible(true); } } class Operaciones { public Matriz sumaMat(Matriz m1, Matriz m2) { Matriz m3; m3 = new Matriz(m1.ren, m1.col); for(int i=0;i<m1.col;i++) for(int j=0;j<m1.ren;j++) m3.pos[i][j]=m1.pos[i][j]+m2.pos[i][j]; return m3; } public Matriz restaMat(Matriz m1, Matriz m2) { Matriz m3; m3 = new Matriz(m1.ren, m1.col); for(int i=0;i<m1.col;i++) for(int j=0;j<m1.ren;j++) m3.pos[i][j]=m1.pos[i][j]-m2.pos[i][j]; return m3; } public Matriz multiplicaMat(Matriz m1, Matriz m2) { Matriz m3; m3 = new Matriz(m1.ren, m2.col); for(int i=0;i<m1.ren;i++) for(int j=0;j<m2.col;j++) { m3.pos[i][j]=0; for(int k=0;k<m1.col;k++) m3.pos[i][j]+=(m1.pos[i][k]*m2.pos[k][j]); } return m3; } public Matriz transpuesta(Matriz m1) { Matriz m3=new Matriz(m1.col,m1.ren); for(int i=0;i<m1.col;i++) for(int j=0;j<m1.ren;j++) m3.pos[i][j]=m1.pos[j][i]; return m3; } } class ValidacionesMatrices { public boolean validaSumayResta(Matriz m1, Matriz m2) { if((m1.ren==m2.ren) && (m1.col==m2.col)) return true; else return false; } public boolean validaMultiplicacion(Matriz m1, Matriz m2) { if(((m1.ren==m2.ren) && (m1.col==m2.col)) || (m1.col==m2.ren)) return true; else return false; } } public static void main(String[] args) { Practica2 practica2 = new Practica2(); practica2.inicializarComponentes(); } } Exc

    Read the article

  • Quick 2D sight area calculation algorithm?

    - by Rogach
    I have a matrix of tiles, on some of that tiles there are objects. I want to calculate which tiles are visible to player, and which are not, and I need to do it quite efficiently (so it would compute fast enough even when I have a big matrices (100x100) and lots of objects). I tried to do it with Besenham's algorithm, but it was slow. Also, it gave me some errors: ----XXX- ----X**- ----XXX- -@------ -@------ -@------ ----XXX- ----X**- ----XXX- (raw version) (Besenham) (correct, since tunnel walls are still visible at distance) (@ is the player, X is obstacle, * is invisible, - is visible) I'm sure this can be done - after all, we have NetHack, Zangband, and they all dealt with this problem somehow :) What algorithm can you recommend for this? EDIT: Definition of visible (in my opinion): tile is visible when at least a part (e.g. corner) of the tile can be connected to center of player tile with a straight line which does not intersect any of obstacles.

    Read the article

  • OpenGL's matrix stack vs Hand multiplying

    - by deft_code
    Which is more efficient using OpenGL's transformation stack or applying the transformations by hand. I've often heard that you should minimize the number of state transitions in your graphics pipeline. Pushing and popping translation matrices seem like a big change. However, I wonder if the graphics card might be able to more than make up for pipeline hiccup by using its parallel execution hardware to bulk multiply the vertices. My specific case. I have font rendered to a sprite sheet. The coordinates of each character or a string are calculated and added to a vertex buffer. Now I need to move that string. Would it be better to iterate through the vertex buffer and adjust each of the vertices by hand or temporarily push a new translation matrix?

    Read the article

  • Smart View és az Office verziók

    - by Fekete Zoltán
    A Smart View többek között az Oracle Essbase (Hyperion) lekérdezo-elemzo-kontrolling-adatbeviteli stb felülete is. A Smart View egy MS Excel add-in-ként áll rendelkezésre. Teljes mértékben támogatja a tervezési, költségvetéskészítési, kontrolling és elemzési munkát. Az Essbase a kontrollerek szívéhez és kezéhez közelálló OLAP szerver, ami a Hyperion Planningnek is az alapja. Milyen MS Office verziókat támogat a Smart View? MS Office 2000 (XP), 2003, 2007 verziókat. Ezt az információt az Oracle Enterprise Performance Management Products - Supported Platforms Matrices helyen felsorolt dokumentumok írják le. Az Oracle Enterprise Performance Management aktuális verziójának 11.1.1.3 teljes dokumentácója megtalálható itt.

    Read the article

  • What's the standard location of a 3D clipping box?

    - by Kendall Frey
    The way I understand 3D rendering, polygons are transformed using several matrices, and they are then clipped if they are not inside a certain box, before projecting the box onto the screen. Before transformation, the visible area is typically a frustum, and after transformation, I am guessing it's a cube. This cube makes the clipping math easier than a frustum would. My question is, what's the 'standard' location/size for this clipping box? I can think of 3 possibilities: (0,0,0)-(1,1,1), (-0.5,-0.5,-0.5)-(0.5,0.5,0.5), (-1,-1,-1)-(1,1,1) Or is there no standard?

    Read the article

  • How to create projection/view matrix for hole in the monitor effect

    - by Mr Bell
    Lets say I have my XNA app window that is sized at 640 x 480 pixels. Now lets say I have a cube model with its poly's facing in to make a room. This cube is sized 640 units wide by 480 units high by 480 units deep. Lets say the camera is somewhere in front of the box looking at it. How can I set up the view and projection matrices such that the front edge of the box lines up exactly with the edges of the application window? It seems like this should probably involve the Matrix.CreatePerspectiveOffCenter method, but I don't fully understand how the parameters translate on to the screen. For reference, the end result will be something like Johhny Lee's wii head tracking demo: http://www.youtube.com/watch?v=Jd3-eiid-Uw&feature=player_embedded P.S. I realize that his source code is available, but I am afraid I haven't been able to make heads or tails out of it.

    Read the article

  • First time shadow mapping problems

    - by user1294203
    I have implemented basic shadow mapping for the first time in OpenGL using shaders and I'm facing some problems. Below you can see an example of my rendered scene: The process of the shadow mapping I'm following is that I render the scene to the framebuffer using a View Matrix from the light point of view and the projection and model matrices used for normal rendering. In the second pass, I send the above MVP matrix from the light point of view to the vertex shader which transforms the position to light space. The fragment shader does the perspective divide and changes the position to texture coordinates. Here is my vertex shader, #version 150 core uniform mat4 ModelViewMatrix; uniform mat3 NormalMatrix; uniform mat4 MVPMatrix; uniform mat4 lightMVP; uniform float scale; in vec3 in_Position; in vec3 in_Normal; in vec2 in_TexCoord; smooth out vec3 pass_Normal; smooth out vec3 pass_Position; smooth out vec2 TexCoord; smooth out vec4 lightspace_Position; void main(void){ pass_Normal = NormalMatrix * in_Normal; pass_Position = (ModelViewMatrix * vec4(scale * in_Position, 1.0)).xyz; lightspace_Position = lightMVP * vec4(scale * in_Position, 1.0); TexCoord = in_TexCoord; gl_Position = MVPMatrix * vec4(scale * in_Position, 1.0); } And my fragment shader, #version 150 core struct Light{ vec3 direction; }; uniform Light light; uniform sampler2D inSampler; uniform sampler2D inShadowMap; smooth in vec3 pass_Normal; smooth in vec3 pass_Position; smooth in vec2 TexCoord; smooth in vec4 lightspace_Position; out vec4 out_Color; float CalcShadowFactor(vec4 lightspace_Position){ vec3 ProjectionCoords = lightspace_Position.xyz / lightspace_Position.w; vec2 UVCoords; UVCoords.x = 0.5 * ProjectionCoords.x + 0.5; UVCoords.y = 0.5 * ProjectionCoords.y + 0.5; float Depth = texture(inShadowMap, UVCoords).x; if(Depth < (ProjectionCoords.z + 0.001)) return 0.5; else return 1.0; } void main(void){ vec3 Normal = normalize(pass_Normal); vec3 light_Direction = -normalize(light.direction); vec3 camera_Direction = normalize(-pass_Position); vec3 half_vector = normalize(camera_Direction + light_Direction); float diffuse = max(0.2, dot(Normal, light_Direction)); vec3 temp_Color = diffuse * vec3(1.0); float specular = max( 0.0, dot( Normal, half_vector) ); float shadowFactor = CalcShadowFactor(lightspace_Position); if(diffuse != 0 && shadowFactor > 0.5){ float fspecular = pow(specular, 128.0); temp_Color += fspecular; } out_Color = vec4(shadowFactor * texture(inSampler, TexCoord).xyz * temp_Color, 1.0); } One of the problems is self shadowing as you can see in the picture, the crate has its own shadow cast on itself. What I have tried is enabling polygon offset (i.e. glEnable(POLYGON_OFFSET_FILL), glPolygonOffset(GLfloat, GLfloat) ) but it didn't change much. As you see in the fragment shader, I have put a static offset value of 0.001 but I have to change the value depending on the distance of the light to get more desirable effects , which not very handy. I also tried using front face culling when I render to the framebuffer, that didn't change much too. The other problem is that pixels outside the Light's view frustum get shaded. The only object that is supposed to be able to cast shadows is the crate. I guess I should pick more appropriate projection and view matrices, but I'm not sure how to do that. What are some common practices, should I pick an orthographic projection? From googling around a bit, I understand that these issues are not that trivial. Does anyone have any easy to implement solutions to these problems. Could you give me some additional tips? Please ask me if you need more information on my code. Here is a comparison with and without shadow mapping of a close-up of the crate. The self-shadowing is more visible.

    Read the article

  • Camera lookAt target changes when rotating parent node

    - by Michael IV
    have the following issue.I have a camera with lookAt method which works fine.I have a parent node to which I parent the camera.If I rotate the parent node while keeping the camera lookAt the target , the camera lookAt changes too.That is nor what I want to achieve.I need it to work like in Adobe AE when you parent camera to a null object:when null object is rotated the camera starts orbiting around the target while still looking at the target.What I do currently is multiplying parent's model matrix with camera model matrix which is calculated from lookAt() method.I am sure I need to decompose (or recompose ) one of the matrices before multiplying them .Parent model or camera model ? Anyone here can show the right way doing it ? UPDATE: The parent is just a node .The child is the camera.The parented camera in AfterEffects works like this: If you rotate the parent node while camera looks at the target , the camera actually starts orbiting around the target based on the parent rotation.In my case the parent rotation changes also Camera's lookAt direction which IS NOT what I want.Hope now it is clear .

    Read the article

  • Making XNA Play Nice With 3DS Max, Boundiing Spheres

    - by Jason R. Mick
    I'm using 3DS Max 2010 with the KW x-porter plugin, which outputs a .X file (just downloaded the very latest version). Been getting some odd results: http://www.picvalley.net/u/2930/2265240220441812321333990933PAStFeSONWQslOrMQC5q.PNG Looks like the culling is screwed up. Note, that models I make in Milkshape don't seem to be having these problems. I've also tried to export an FBX file from 3DS Max 2010 and have been getting similar results. What are your suggestions in terms of exporting *.3DS models to a workable XNA form? What tools do you use?. To be clear, the model in question has none of these defects when viewed from similar angles in 3DS Max 2010. http://www.picvalley.net/u/2563/151728957814855401111333991302mSvEJ03Zv22GwHFgIhiV.PNG Any ideas on this oddity would also be appreciated! Edit 1 -- Add'l issue Forgot to mention, that the model otherwise seems alright, but that rotation seems to double -- in other words, when I scroll my camera view left to right, the model (whose draw I give the camera for the view and perspective matrices w/ BasicEffect seems to rotate twice as much as models I draw natively in XNA

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >