Search Results

Search found 129 results on 6 pages for 'monad transformers'.

Page 6/6 | < Previous Page | 2 3 4 5 6 

  • Help with Design for Vacation Tracking System (C#/.NET/Access/WebServices/SOA/Excel) [closed]

    - by Aaronaught
    I have been tasked with developing a system for tracking our company's paid time-off (vacation, sick days, etc.) At the moment we are using an Excel spreadsheet on a shared network drive, and it works pretty well, but we are concerned that we won't be able to "trust" employees forever and sometimes we run into locking issues when two people try to open the spreadsheet at once. So we are trying to build something a little more robust. I would like some input on this design in terms of maintainability, scalability, extensibility, etc. It's a pretty simple workflow we need to represent right now: I started with a basic MS Access schema like this: Employees (EmpID int, EmpName varchar(50), AllowedDays int) Vacations (VacationID int, EmpID int, BeginDate datetime, EndDate datetime) But we don't want to spend a lot of time building a schema and database like this and have to change it later, so I think I am going to go with something that will be easier to expand through configuration. Right now the vacation table has this schema: Vacations (VacationID int, PropName varchar(50), PropValue varchar(50)) And the table will be populated with data like this: VacationID | PropName | PropValue -----------+--------------+------------------ 1 | EmpID | 4 1 | EmpName | James Jones 1 | Reason | Vacation 1 | BeginDate | 2/24/2010 1 | EndDate | 2/30/2010 1 | Destination | Spectate Swamp 2 | ... | ... I think this is a pretty good, extensible design, we can easily add new properties to the vacation like the destination or maybe approval status, etc. I wasn't too sure how to go about managing the database of valid properties, I thought of putting them in a separate PropNames table but it gets complicated to manage all the different data types and people say that you shouldn't put CLR type names into a SQL database, so I decided to use XML instead, here is the schema: <VacationProperties> <PropertyNames>EmpID,EmpName,Reason,BeginDate,EndDate,Destination</PropertyNames> <PropertyTypes>System.Int32,System.String,System.String,System.DateTime,System.DateTime,System.String</PropertyTypes> <PropertiesRequired>true,true,false,true,true,false</PropertiesRequired> </VacationProperties> I might need more fields than that, I'm not completely sure. I'm parsing the XML like this (would like some feedback on the parsing code): string xml = File.ReadAllText("properties.xml"); Match m = Regex.Match(xml, "<(PropertyNames)>(.*?)</PropertyNames>"; string[] pn = m.Value.Split(','); // do the same for PropertyTypes, PropertiesRequired Then I use the following code to persist configuration changes to the database: string sql = "DROP TABLE VacationProperties"; sql = sql + " CREATE TABLE VacationProperties "; sql = sql + "(PropertyName varchar(100), PropertyType varchar(100) "; sql = sql + "IsRequired varchar(100))"; for (int i = 0; i < pn.Length; i++) { sql = sql + " INSERT VacationProperties VALUES (" + pn[i] + "," + pt[i] + "," + pv[i] + ")"; } // GlobalConnection is a singleton new SqlCommand(sql, GlobalConnection.Instance).ExecuteReader(); So far so good, but after a few days of this I then realized that a lot of this was just a more specific kind of a generic workflow which could be further abstracted, and instead of writing all of this boilerplate plumbing code I could just come up with a workflow and plug it into a workflow engine like Windows Workflow Foundation and have the users configure it: In order to support routing these configurations throw the workflow system, it seemed natural to implement generic XML Web Services for this instead of just using an XML file as above. I've used this code to implement the Web Services: public class VacationConfigurationService : WebService { [WebMethod] public void UpdateConfiguration(string xml) { // Above code goes here } } Which was pretty easy, although I'm still working on a way to validate that XML against some kind of schema as there's no error-checking yet. I also created a few different services for other operations like VacationSubmissionService, VacationReportService, VacationDataService, VacationAuthenticationService, etc. The whole Service Oriented Architecture looks like this: And because the workflow itself might change, I have been working on a way to integrate the WF workflow system with MS Visio, which everybody at the office already knows how to use so they could make changes pretty easily. We have a diagram that looks like the following (it's kind of hard to read but the main items are Activities, Authenticators, Validators, Transformers, Processors, and Data Connections, they're all analogous to the services in the SOA diagram above). The requirements for this system are: (Note - I don't control these, they were given to me by management) Main workflow must interface with Excel spreadsheet, probably through VBA macros (to ease the transition to the new system) Alerts should integrate with MS Outlook, Lotus Notes, and SMS (text messages). We also want to interface it with the company Voice Mail system but that is not a "hard" requirement. Performance requirements: Must handle 250,000 Transactions Per Second Should be able to handle up to 20,000 employees (right now we have 3) 99.99% uptime ("four nines") expected Must be secure against outside hacking, but users cannot be required to enter a username/password. Platforms: Must support Windows XP/Vista/7, Linux, iPhone, Blackberry, DOS 2.0, VAX, IRIX, PDP-11, Apple IIc. Time to complete: 6 to 8 weeks. My questions are: Is this a good design for the system so far? Am I using all of the recommended best practices for these technologies? How do I integrate the Visio diagram above with the Windows Workflow Foundation to call the ConfigurationService and persist workflow changes? Am I missing any important components? Will this be extensible enough to support any scenario via end-user configuration? Will the system scale to the above performance requirements? Will we need any expensive hardware to run it? Are there any "gotchas" I should know about with respect to cross-platform compatibility? For example would it be difficult to convert this to an iPhone app? How long would you expect this to take? (We've dedicated 1 week for testing so I'm thinking maybe 5 weeks?) Many thanks for your advices, Aaron

    Read the article

  • Design for Vacation Tracking System

    - by Aaronaught
    I have been tasked with developing a system for tracking our company's paid time-off (vacation, sick days, etc.) At the moment we are using an Excel spreadsheet on a shared network drive, and it works pretty well, but we are concerned that we won't be able to "trust" employees forever and sometimes we run into locking issues when two people try to open the spreadsheet at once. So we are trying to build something a little more robust. I would like some input on this design in terms of maintainability, scalability, extensibility, etc. It's a pretty simple workflow we need to represent right now: I started with a basic MS Access schema like this: Employees (EmpID int, EmpName varchar(50), AllowedDays int) Vacations (VacationID int, EmpID int, BeginDate datetime, EndDate datetime) But we don't want to spend a lot of time building a schema and database like this and have to change it later, so I think I am going to go with something that will be easier to expand through configuration. Right now the vacation table has this schema: Vacations (VacationID int, PropName varchar(50), PropValue varchar(50)) And the table will be populated with data like this: VacationID | PropName | PropValue -----------+--------------+------------------ 1 | EmpID | 4 1 | EmpName | James Jones 1 | Reason | Vacation 1 | BeginDate | 2/24/2010 1 | EndDate | 2/30/2010 1 | Destination | Spectate Swamp 2 | ... | ... I think this is a pretty good, extensible design, we can easily add new properties to the vacation like the destination or maybe approval status, etc. I wasn't too sure how to go about managing the database of valid properties, I thought of putting them in a separate PropNames table but it gets complicated to manage all the different data types and people say that you shouldn't put CLR type names into a SQL database, so I decided to use XML instead, here is the schema: <VacationProperties> <PropertyNames>EmpID,EmpName,Reason,BeginDate,EndDate,Destination</PropertyNames> <PropertyTypes>System.Int32,System.String,System.String,System.DateTime,System.DateTime,System.String</PropertyTypes> <PropertiesRequired>true,true,false,true,true,false</PropertiesRequired> </VacationProperties> I might need more fields than that, I'm not completely sure. I'm parsing the XML like this (would like some feedback on the parsing code): string xml = File.ReadAllText("properties.xml"); Match m = Regex.Match(xml, "<(PropertyNames)>(.*?)</PropertyNames>"; string[] pn = m.Value.Split(','); // do the same for PropertyTypes, PropertiesRequired Then I use the following code to persist configuration changes to the database: string sql = "DROP TABLE VacationProperties"; sql = sql + " CREATE TABLE VacationProperties "; sql = sql + "(PropertyName varchar(100), PropertyType varchar(100) "; sql = sql + "IsRequired varchar(100))"; for (int i = 0; i < pn.Length; i++) { sql = sql + " INSERT VacationProperties VALUES (" + pn[i] + "," + pt[i] + "," + pv[i] + ")"; } // GlobalConnection is a singleton new SqlCommand(sql, GlobalConnection.Instance).ExecuteReader(); So far so good, but after a few days of this I then realized that a lot of this was just a more specific kind of a generic workflow which could be further abstracted, and instead of writing all of this boilerplate plumbing code I could just come up with a workflow and plug it into a workflow engine like Windows Workflow Foundation and have the users configure it: In order to support routing these configurations throw the workflow system, it seemed natural to implement generic XML Web Services for this instead of just using an XML file as above. I've used this code to implement the Web Services: public class VacationConfigurationService : WebService { [WebMethod] public void UpdateConfiguration(string xml) { // Above code goes here } } Which was pretty easy, although I'm still working on a way to validate that XML against some kind of schema as there's no error-checking yet. I also created a few different services for other operations like VacationSubmissionService, VacationReportService, VacationDataService, VacationAuthenticationService, etc. The whole Service Oriented Architecture looks like this: And because the workflow itself might change, I have been working on a way to integrate the WF workflow system with MS Visio, which everybody at the office already knows how to use so they could make changes pretty easily. We have a diagram that looks like the following (it's kind of hard to read but the main items are Activities, Authenticators, Validators, Transformers, Processors, and Data Connections, they're all analogous to the services in the SOA diagram above). The requirements for this system are: (Note - I don't control these, they were given to me by management) Main workflow must interface with Excel spreadsheet, probably through VBA macros (to ease the transition to the new system) Alerts should integrate with MS Outlook, Lotus Notes, and SMS (text messages). We also want to interface it with the company Voice Mail system but that is not a "hard" requirement. Performance requirements: Must handle 250,000 Transactions Per Second Should be able to handle up to 20,000 employees (right now we have 3) 99.99% uptime ("four nines") expected Must be secure against outside hacking, but users cannot be required to enter a username/password. Platforms: Must support Windows XP/Vista/7, Linux, iPhone, Blackberry, DOS 2.0, VAX, IRIX, PDP-11, Apple IIc. Time to complete: 6 to 8 weeks. My questions are: Is this a good design for the system so far? Am I using all of the recommended best practices for these technologies? How do I integrate the Visio diagram above with the Windows Workflow Foundation to call the ConfigurationService and persist workflow changes? Am I missing any important components? Will this be extensible enough to support any scenario via end-user configuration? Will the system scale to the above performance requirements? Will we need any expensive hardware to run it? Are there any "gotchas" I should know about with respect to cross-platform compatibility? For example would it be difficult to convert this to an iPhone app? How long would you expect this to take? (We've dedicated 1 week for testing so I'm thinking maybe 5 weeks?)

    Read the article

  • The Benefits of Smart Grid Business Software

    - by Sylvie MacKenzie, PMP
    Smart Grid Background What Are Smart Grids?Smart Grids use computer hardware and software, sensors, controls, and telecommunications equipment and services to: Link customers to information that helps them manage consumption and use electricity wisely. Enable customers to respond to utility notices in ways that help minimize the duration of overloads, bottlenecks, and outages. Provide utilities with information that helps them improve performance and control costs. What Is Driving Smart Grid Development? Environmental ImpactSmart Grid development is picking up speed because of the widespread interest in reducing the negative impact that energy use has on the environment. Smart Grids use technology to drive efficiencies in transmission, distribution, and consumption. As a result, utilities can serve customers’ power needs with fewer generating plants, fewer transmission and distribution assets,and lower overall generation. With the possible exception of wind farm sprawl, landscape preservation is one obvious benefit. And because most generation today results in greenhouse gas emissions, Smart Grids reduce air pollution and the potential for global climate change.Smart Grids also more easily accommodate the technical difficulties of integrating intermittent renewable resources like wind and solar into the grid, providing further greenhouse gas reductions. CostsThe ability to defer the cost of plant and grid expansion is a major benefit to both utilities and customers. Utilities do not need to use as many internal resources for traditional infrastructure project planning and management. Large T&D infrastructure expansion costs are not passed on to customers.Smart Grids will not eliminate capital expansion, of course. Transmission corridors to connect renewable generation with customers will require major near-term expenditures. Additionally, in the future, electricity to satisfy the needs of population growth and additional applications will exceed the capacity reductions available through the Smart Grid. At that point, expansion will resume—but with greater overall T&D efficiency based on demand response, load control, and many other Smart Grid technologies and business processes. Energy efficiency is a second area of Smart Grid cost saving of particular relevance to customers. The timely and detailed information Smart Grids provide encourages customers to limit waste, adopt energy-efficient building codes and standards, and invest in energy efficient appliances. Efficiency may or may not lower customer bills because customer efficiency savings may be offset by higher costs in generation fuels or carbon taxes. It is clear, however, that bills will be lower with efficiency than without it. Utility Operations Smart Grids can serve as the central focus of utility initiatives to improve business processes. Many utilities have long “wish lists” of projects and applications they would like to fund in order to improve customer service or ease staff’s burden of repetitious work, but they have difficulty cost-justifying the changes, especially in the short term. Adding Smart Grid benefits to the cost/benefit analysis frequently tips the scales in favor of the change and can also significantly reduce payback periods.Mobile workforce applications and asset management applications work together to deploy assets and then to maintain, repair, and replace them. Many additional benefits result—for instance, increased productivity and fuel savings from better routing. Similarly, customer portals that provide customers with near-real-time information can also encourage online payments, thus lowering billing costs. Utilities can and should include these cost and service improvements in the list of Smart Grid benefits. What Is Smart Grid Business Software? Smart Grid business software gathers data from a Smart Grid and uses it improve a utility’s business processes. Smart Grid business software also helps utilities provide relevant information to customers who can then use it to reduce their own consumption and improve their environmental profiles. Smart Grid Business Software Minimizes the Impact of Peak Demand Utilities must size their assets to accommodate their highest peak demand. The higher the peak rises above base demand: The more assets a utility must build that are used only for brief periods—an inefficient use of capital. The higher the utility’s risk profile rises given the uncertainties surrounding the time needed for permitting, building, and recouping costs. The higher the costs for utilities to purchase supply, because generators can charge more for contracts and spot supply during high-demand periods. Smart Grids enable a variety of programs that reduce peak demand, including: Time-of-use pricing and critical peak pricing—programs that charge customers more when they consume electricity during peak periods. Pilot projects indicate that these programs are successful in flattening peaks, thus ensuring better use of existing T&D and generation assets. Direct load control, which lets utilities reduce or eliminate electricity flow to customer equipment (such as air conditioners). Contracts govern the terms and conditions of these turn-offs. Indirect load control, which signals customers to reduce the use of on-premises equipment for contractually agreed-on time periods. Smart Grid business software enables utilities to impose penalties on customers who do not comply with their contracts. Smart Grids also help utilities manage peaks with existing assets by enabling: Real-time asset monitoring and control. In this application, advanced sensors safely enable dynamic capacity load limits, ensuring that all grid assets can be used to their maximum capacity during peak demand periods. Real-time asset monitoring and control applications also detect the location of excessive losses and pinpoint need for mitigation and asset replacements. As a result, utilities reduce outage risk and guard against excess capacity or “over-build”. Better peak demand analysis. As a result: Distribution planners can better size equipment (e.g. transformers) to avoid over-building. Operations engineers can identify and resolve bottlenecks and other inefficiencies that may cause or exacerbate peaks. As above, the result is a reduction in the tendency to over-build. Supply managers can more closely match procurement with delivery. As a result, they can fine-tune supply portfolios, reducing the tendency to over-contract for peak supply and reducing the need to resort to spot market purchases during high peaks. Smart Grids can help lower the cost of remaining peaks by: Standardizing interconnections for new distributed resources (such as electricity storage devices). Placing the interconnections where needed to support anticipated grid congestion. Smart Grid Business Software Lowers the Cost of Field Services By processing Smart Grid data through their business software, utilities can reduce such field costs as: Vegetation management. Smart Grids can pinpoint momentary interruptions and tree-caused outages. Spatial mash-up tools leverage GIS models of tree growth for targeted vegetation management. This reduces the cost of unnecessary tree trimming. Service vehicle fuel. Many utility service calls are “false alarms.” Checking meter status before dispatching crews prevents many unnecessary “truck rolls.” Similarly, crews use far less fuel when Smart Grid sensors can pinpoint a problem and mobile workforce applications can then route them directly to it. Smart Grid Business Software Ensures Regulatory Compliance Smart Grids can ensure compliance with private contracts and with regional, national, or international requirements by: Monitoring fulfillment of contract terms. Utilities can use one-hour interval meters to ensure that interruptible (“non-core”) customers actually reduce or eliminate deliveries as required. They can use the information to levy fines against contract violators. Monitoring regulations imposed on customers, such as maximum use during specific time periods. Using accurate time-stamped event history derived from intelligent devices distributed throughout the smart grid to monitor and report reliability statistics and risk compliance. Automating business processes and activities that ensure compliance with security and reliability measures (e.g. NERC-CIP 2-9). Grid Business Software Strengthens Utilities’ Connection to Customers While Reducing Customer Service Costs During outages, Smart Grid business software can: Identify outages more quickly. Software uses sensors to pinpoint outages and nested outage locations. They also permit utilities to ensure outage resolution at every meter location. Size outages more accurately, permitting utilities to dispatch crews that have the skills needed, in appropriate numbers. Provide updates on outage location and expected duration. This information helps call centers inform customers about the timing of service restoration. Smart Grids also facilitates display of outage maps for customer and public-service use. Smart Grids can significantly reduce the cost to: Connect and disconnect customers. Meters capable of remote disconnect can virtually eliminate the costs of field crews and vehicles previously required to change service from the old to the new residents of a metered property or disconnect customers for nonpayment. Resolve reports of voltage fluctuation. Smart Grids gather and report voltage and power quality data from meters and grid sensors, enabling utilities to pinpoint reported problems or resolve them before customers complain. Detect and resolve non-technical losses (e.g. theft). Smart Grids can identify illegal attempts to reconnect meters or to use electricity in supposedly vacant premises. They can also detect theft by comparing flows through delivery assets with billed consumption. Smart Grids also facilitate outreach to customers. By monitoring and analyzing consumption over time, utilities can: Identify customers with unusually high usage and contact them before they receive a bill. They can also suggest conservation techniques that might help to limit consumption. This can head off “high bill” complaints to the contact center. Note that such “high usage” or “additional charges apply because you are out of range” notices—frequently via text messaging—are already common among mobile phone providers. Help customers identify appropriate bill payment alternatives (budget billing, prepayment, etc.). Help customers find and reduce causes of over-consumption. There’s no waiting for bills in the mail before they even understand there is a problem. Utilities benefit not just through improved customer relations but also through limiting the size of bills from customers who might struggle to pay them. Where permitted, Smart Grids can open the doors to such new utility service offerings as: Monitoring properties. Landlords reduce costs of vacant properties when utilities notify them of unexpected energy or water consumption. Utilities can perform similar services for owners of vacation properties or the adult children of aging parents. Monitoring equipment. Power-use patterns can reveal a need for equipment maintenance. Smart Grids permit utilities to alert owners or managers to a need for maintenance or replacement. Facilitating home and small-business networks. Smart Grids can provide a gateway to equipment networks that automate control or let owners access equipment remotely. They also facilitate net metering, offering some utilities a path toward involvement in small-scale solar or wind generation. Prepayment plans that do not need special meters. Smart Grid Business Software Helps Customers Control Energy Costs There is no end to the ways Smart Grids help both small and large customers control energy costs. For instance: Multi-premises customers appreciate having all meters read on the same day so that they can more easily compare consumption at various sites. Customers in competitive regions can match their consumption profile (detailed via Smart Grid data) with specific offerings from competitive suppliers. Customers seeing inexplicable consumption patterns and power quality problems may investigate further. The result can be discovery of electrical problems that can be resolved through rewiring or maintenance—before more serious fires or accidents happen. Smart Grid Business Software Facilitates Use of Renewables Generation from wind and solar resources is a popular alternative to fossil fuel generation, which emits greenhouse gases. Wind and solar generation may also increase energy security in regions that currently import fossil fuel for use in generation. Utilities face many technical issues as they attempt to integrate intermittent resource generation into traditional grids, which traditionally handle only fully dispatchable generation. Smart Grid business software helps solves many of these issues by: Detecting sudden drops in production from renewables-generated electricity (wind and solar) and automatically triggering electricity storage and smart appliance response to compensate as needed. Supporting industry-standard distributed generation interconnection processes to reduce interconnection costs and avoid adding renewable supplies to locations already subject to grid congestion. Facilitating modeling and monitoring of locally generated supply from renewables and thus helping to maximize their use. Increasing the efficiency of “net metering” (through which utilities can use electricity generated by customers) by: Providing data for analysis. Integrating the production and consumption aspects of customer accounts. During non-peak periods, such techniques enable utilities to increase the percent of renewable generation in their supply mix. During peak periods, Smart Grid business software controls circuit reconfiguration to maximize available capacity. Conclusion Utility missions are changing. Yesterday, they focused on delivery of reasonably priced energy and water. Tomorrow, their missions will expand to encompass sustainable use and environmental improvement.Smart Grids are key to helping utilities achieve this expanded mission. But they come at a relatively high price. Utilities will need to invest heavily in new hardware, software, business process development, and staff training. Customer investments in home area networks and smart appliances will be large. Learning to change the energy and water consumption habits of a lifetime could ultimately prove even more formidable tasks.Smart Grid business software can ease the cost and difficulties inherent in a needed transition to a more flexible, reliable, responsive electricity grid. Justifying its implementation, however, requires a full understanding of the benefits it brings—benefits that can ultimately help customers, utilities, communities, and the world address global issues like energy security and climate change while minimizing costs and maximizing customer convenience. This white paper is available for download here. For further information about Oracle's Primavera Solutions for Utilities, please read our Utilities e-book.

    Read the article

  • Moving data files failing

    - by Miles Hayler
    Trying to migrate data from C: to D: via the SBS console is failing. The wizard starts running but drops out in the first few seconds. I'll post the full logs, but the important lines appear to be as follows: An exception of type 'Type: System.IO.FileNotFoundException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' has occurred. Message: The system cannot find the file specified. (Exception from HRESULT: 0x80070002) Stack: at TaskScheduler.TaskSchedulerClass.GetFolder(String Path) at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: GetServerBackupTaskStatus: fail to find the task --- ErrorCode:0 I've been googling for days with no luck. I have found that mscorlib is a component of .net, and I've discovered multiple instances of the file in %windir%, %windir%\winsxs, %windir%\Microsoft.net Anyone come across and fixed this one before? --------------------------------------------------------- [1516] 110315.190856.1105: Storage: Initializing...C:\Program Files\Windows Small Business Server\Bin\MoveData.exe [1516] 110315.190856.2875: Storage: Data Store to be moved: Exchange [1516] 110315.190856.5305: TaskScheduler: Exception System.IO.FileNotFoundException: [1516] 110315.190856.5605: Exception: --------------------------------------- An exception of type 'Type: System.IO.FileNotFoundException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' has occurred. Timestamp: 03/15/2011 19:08:56 Message: The system cannot find the file specified. (Exception from HRESULT: 0x80070002) Stack: at TaskScheduler.TaskSchedulerClass.GetFolder(String Path) at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) [1516] 110315.190856.5625: Storage: Exception Microsoft.WindowsServerSolutions.Common.WindowsTaskSchedulerException: [1516] 110315.190856.5635: Exception: --------------------------------------- [b]An exception of type 'Type: Microsoft.WindowsServerSolutions.Common.WindowsTaskSchedulerException, Common, Version=6.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' has occurred.[/b] Timestamp: 03/15/2011 19:08:56 Message: Failed to find the task path Stack: at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) at Microsoft.WindowsServerSolutions.Storage.Common.ServerBackupUtility.GetServerBackupTaskStatus() --------------------------------------- An exception of type 'Type: System.IO.FileNotFoundException, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' has occurred. Timestamp: 03/15/2011 19:08:56 Message: The system cannot find the file specified. (Exception from HRESULT: 0x80070002) Stack: at TaskScheduler.TaskSchedulerClass.GetFolder(String Path) at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) [1516] 110315.190856.5665: Storage: Error Retrieving Server Backup Task Status: ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: GetServerBackupTaskStatus: fail to find the task ---> ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Common.WindowsTaskSchedulerException: Failed to find the task path ---> System.IO.FileNotFoundException: The system cannot find the file specified. (Exception from HRESULT: 0x80070002) at TaskScheduler.TaskSchedulerClass.GetFolder(String Path) at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Common.WindowsTaskScheduler..ctor(String taskPath, String taskName) at Microsoft.WindowsServerSolutions.Storage.Common.ServerBackupUtility.GetServerBackupTaskStatus() --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Storage.Common.ServerBackupUtility.GetServerBackupTaskStatus() at Microsoft.WindowsServerSolutions.Storage.MoveData.Helper.get_ServerBackupTaskState() [1516] 110315.190857.6216: Storage: Backup Task State: Unknown [1516] 110315.190857.9347: Storage: Launching the Move Data Wizard! [1516] 110315.190857.9397: Wizard: Admin:QueryNextPage(null) = Storage.MoveDataWizard.GettingStartedPage [1516] 110315.190857.9417: Wizard: TOC Storage.MoveDataWizard.GettingStartedPage is on ExpectedPath [1516] 110315.190857.9577: Wizard: Storage.MoveDataWizard.GettingStartedPage entered [1516] 110315.190857.9657: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.GettingStartedPage) = Storage.MoveDataWizard.DiagnoseDataStorePage [1516] 110315.190857.9657: Wizard: TOC Storage.MoveDataWizard.DiagnoseDataStorePage is on ExpectedPath [1516] 110315.190857.9657: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.DiagnoseDataStorePage) = Storage.MoveDataWizard.NewDataStoreLocationPage [1516] 110315.190857.9657: Wizard: TOC Storage.MoveDataWizard.NewDataStoreLocationPage is on ExpectedPath [1516] 110315.190857.9657: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.NewDataStoreLocationPage) = null [1516] 110315.190857.9697: Wizard: ---------------------------------- [1516] 110315.190857.9697: Wizard: The pages visted: [1516] 110315.190857.9697: Wizard: Current Page := [TOC Storage.MoveDataWizard.GettingStartedPage] [1516] 110315.190857.9697: Wizard: [TOC] : TOC Storage.MoveDataWizard.DiagnoseDataStorePage [1516] 110315.190857.9697: Wizard: [TOC] : TOC Storage.MoveDataWizard.NewDataStoreLocationPage [1516] 110315.190857.9697: Wizard: Step 1 of 3 [1516] 110315.190907.0406: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.GettingStartedPage) = Storage.MoveDataWizard.DiagnoseDataStorePage [1516] 110315.190907.0416: Wizard: Storage.MoveDataWizard.GettingStartedPage exited with the button: Next [1516] 110315.190907.0416: WizardChainEngine Next Clicked: Going to page {0}.: Storage.MoveDataWizard.DiagnoseDataStorePage [1516] 110315.190907.0496: Wizard: Storage.MoveDataWizard.DiagnoseDataStorePage entered [1516] 110315.190907.0606: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.DiagnoseDataStorePage) = Storage.MoveDataWizard.NewDataStoreLocationPage [1516] 110315.190907.0606: Wizard: Admin:QueryNextPage(Storage.MoveDataWizard.NewDataStoreLocationPage) = null [1516] 110315.190907.0606: Wizard: ---------------------------------- [1516] 110315.190907.0606: Wizard: The pages visted: [1516] 110315.190907.0606: Wizard: [TOC] visited: TOC Storage.MoveDataWizard.GettingStartedPage [1516] 110315.190907.0606: Wizard: Current Page := [TOC Storage.MoveDataWizard.DiagnoseDataStorePage] [1516] 110315.190907.0616: Wizard: [TOC] : TOC Storage.MoveDataWizard.NewDataStoreLocationPage [1516] 110315.190907.0616: Wizard: Step 2 of 3 [19772] 110315.190907.0656: Storage: Starting System Diagnosis [19772] 110315.190907.0656: Storage: Getting Data Store Information [19772] 110315.190907.1086: Storage: Create the list of storage and DB directory path [19772] 110315.190907.1246: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks..ctor [19772] 110315.190907.1546: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks.Initialize [19772] 110315.190907.1596: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190907.1606: Messaging: Exchange install path: C:\Program Files\Microsoft\Exchange Server\bin [19772] 110315.190908.4157: Messaging: E12 Monad runspace created ID: Microsoft.PowerShell [19772] 110315.190908.4237: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190908.4287: Messaging: Executed management shell command: get-exchangeserver [19772] 110315.190910.2369: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190910.2369: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190910.5699: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks.GatherAdminInfo [19772] 110315.190910.5699: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190910.5719: Messaging: Executed management shell command: get-user -Identity "dmagroup.local\Administrator" [19772] 110315.190911.0870: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.0880: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.0880: Messaging: Executed management shell command: get-mailbox -Identity "d2ae2bf0-48a7-4ce9-9e72-bb3c765454ac" [19772] 110315.190911.1300: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.1310: Messaging: User Administrator is mail enabled and can use MessagingManagement to send mail. [19772] 110315.190911.1310: Messaging: Email address used for user: [email protected] [19772] 110315.190911.1440: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.1440: Messaging: Executed management shell command: get-group -Identity "Domain Admins" [19772] 110315.190911.1630: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.1640: Messaging: User Administrator is a member of Domain Admins and can use MessagingManagement to manage Exchange. [19772] 110315.190911.1640: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks.GatherAdminInfo [19772] 110315.190911.1640: Messaging: MessagingManagement enabled for Exchange management: True [19772] 110315.190911.1640: Messaging: MessagingManagement enabled for mail submission: True [19772] 110315.190911.1640: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingTasks.Initialize [19772] 110315.190911.1640: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Tasks.TaskMoveExchangeData.CreateDataStoreDriveList [19772] 110315.190911.1670: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190911.1670: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.1670: Messaging: Executed management shell command: get-storagegroup -Server "SERVER01" [19772] 110315.190911.2990: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.3070: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190911.3070: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.3070: Messaging: Executed management shell command: get-mailboxdatabase -Server "SERVER01" [19772] 110315.190911.4440: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.4520: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.Initialize [19772] 110315.190911.4520: Messaging: Begin Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.4520: Messaging: Executed management shell command: get-publicfolderdatabase -Server "SERVER01" [19772] 110315.190911.5240: Messaging: End Microsoft.WindowsServerSolutions.Messaging.Management.MessagingRunspace.StaticExecute [19772] 110315.190911.5510: Storage: Data Store Drive/s Details:Name=C:\,Size=12675712420 [19772] 110315.190911.5510: Storage: Data Store Size Details: Current Total Size=12675712420 Required Size=12675712420 [19772] 110315.190911.5510: Storage: MoveData Task can move the Data Store=True [19772] 110315.190911.8401: Storage: An error was encountered when performing system diagnosis : ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: WMI error occurred while accessing drive ---> System.Management.ManagementException: Not found at System.Management.ManagementException.ThrowWithExtendedInfo(ManagementStatus errorCode) at System.Management.ManagementObjectCollection.ManagementObjectEnumerator.MoveNext() at Microsoft.WindowsServerSolutions.Storage.Common.DriveUtil.IsDriveRemovable(String drive) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Storage.Common.DriveUtil.IsDriveRemovable(String drive) at Microsoft.WindowsServerSolutions.Storage.Common.DataStoreInfo.LoadAvailableDrives() at Microsoft.WindowsServerSolutions.Storage.Common.MoveDataUtil.CanMoveData(DataStoreInfo storeInfo, MoveDataError& error) at Microsoft.WindowsServerSolutions.Storage.MoveData.DiagnoseDataStorePagePresenter.DiagnoseDataStore(Object sender, DoWorkEventArgs args) [1516] 110315.190912.0331: Storage: An error occured during the execution: System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: Diagnosing the Data Store failed (see the inner exception) ---> ErrorCode:0 BaseException: Microsoft.WindowsServerSolutions.Storage.Common.StorageException: WMI error occurred while accessing drive ---> System.Management.ManagementException: Not found at System.Management.ManagementException.ThrowWithExtendedInfo(ManagementStatus errorCode) at System.Management.ManagementObjectCollection.ManagementObjectEnumerator.MoveNext() at Microsoft.WindowsServerSolutions.Storage.Common.DriveUtil.IsDriveRemovable(String drive) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Storage.Common.DriveUtil.IsDriveRemovable(String drive) at Microsoft.WindowsServerSolutions.Storage.Common.DataStoreInfo.LoadAvailableDrives() at Microsoft.WindowsServerSolutions.Storage.Common.MoveDataUtil.CanMoveData(DataStoreInfo storeInfo, MoveDataError& error) at Microsoft.WindowsServerSolutions.Storage.MoveData.DiagnoseDataStorePagePresenter.DiagnoseDataStore(Object sender, DoWorkEventArgs args) at System.ComponentModel.BackgroundWorker.WorkerThreadStart(Object argument) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Storage.MoveData.DiagnoseDataStorePagePresenter.backgroundWorker_RunWorkerCompleted(Object sender, RunWorkerCompletedEventArgs e) --- End of inner exception stack trace --- at System.RuntimeMethodHandle._InvokeMethodFast(Object target, Object[] arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeTypeHandle typeOwner) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Delegate.DynamicInvokeImpl(Object[] args) at System.Windows.Forms.Control.InvokeMarshaledCallbackDo(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbackHelper(Object obj) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Forms.Control.InvokeMarshaledCallback(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbacks() at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.WndProc(Message& m) at System.Windows.Forms.NativeWindow.DebuggableCallback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) at System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG& msg) at System.Windows.Forms.Application.ComponentManager.System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(Int32 dwComponentID, Int32 reason, Int32 pvLoopData) at System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at Microsoft.WindowsServerSolutions.Common.Wizards.Framework.WizardFrameView.Create() at Microsoft.WindowsServerSolutions.Common.Wizards.Framework.WizardChainEngine.Launch() at Microsoft.WindowsServerSolutions.Storage.MoveData.MainClass.LaunchMoveDataWizard() at Microsoft.WindowsServerSolutions.Storage.MoveData.MainClass.Main(String[] args)

    Read the article

< Previous Page | 2 3 4 5 6