Search Results

Search found 318 results on 13 pages for 'serializer'.

Page 6/13 | < Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • Mongodb - how to deserialze when a property has an Interface return type

    - by Mark Kelly
    I'm attempting to avoid introducing any dependencies between my Data layer and client code that makes use of this layer, but am running into some problems when attempting to do this with Mongo (using the MongoRepository) MongoRepository shows examples where you create Types that reflect your data structure, and inherit Entity where required. Eg. [CollectionName("track")] public class Track : Entity { public string name { get; set; } public string hash { get; set; } public Artist artist { get; set; } public List<Publish> published {get; set;} public List<Occurence> occurence {get; set;} } In order to make use of these in my client code, I'd like to replace the Mongo-specific types with Interfaces, e.g: [CollectionName("track")] public class Track : Entity, ITrackEntity { public string name { get; set; } public string hash { get; set; } public IArtistEntity artist { get; set; } public List<IPublishEntity> published {get; set;} public List<IOccurenceEntity> occurence {get; set;} } However, the Mongo driver doesn't know how to treat these interfaces, and I understandably get the following error: An error occurred while deserializing the artist property of class sf.data.mongodb.entities.Track: No serializer found for type sf.data.IArtistEntity. --- MongoDB.Bson.BsonSerializationException: No serializer found for type sf.data.IArtistEntity. Does anyone have any suggestions about how I should approach this?

    Read the article

  • Has inheritance become bad?

    - by mafutrct
    Personally, I think inheritance is a great tool, that, when applied reasonably, can greatly simplify code. However, I seems to me that many modern tools dislike inheritance. Let's take a simple example: Serialize a class to XML. As soon as inheritance is involved, this can easily turn into a mess. Especially if you're trying to serialize a derived class using the base class serializer. Sure, we can work around that. Something like a KnownType attribute and stuff. Besides being an itch in your code that you have to remember to update every time you add a derived class, that fails, too, if you receive a class from outside your scope that was not known at compile time. (Okay, in some cases you can still work around that, for instance using the NetDataContract serializer in .NET. Surely a certain advancement.) In any case, the basic principle still exists: Serialization and inheritance don't mix well. Considering the huge list of programming strategies that became possible and even common in the past decade, I feel tempted to say that inheritance should be avoided in areas that relate to serialization (in particular remoting and databases). Does that make sense? Or am messing things up? How do you handle inheritance and serialization?

    Read the article

  • Is inheritance bad nowadays?

    - by mafutrct
    Personally, I think inheritance is a great tool, that, when applied reasonably, can greatly simplify code. However, I seems to me that many modern tools dislike inheritance. Let's take a simple example: Serialize a class to XML. As soon as inheritance is involved, this can easily turn into a mess. Especially if you're trying to serialize a derived class using the base class serializer. Sure, we can work around that. Something like a KnownType attribute and stuff. Besides being an itch in your code that you have to remember to update every time you add a derived class, that fails, too, if you receive a class from outside your scope that was not known at compile time. (Okay, in some cases you can still work around that, for instance using the NetDataContract serializer in .NET. Surely a certain advancement.) In any case, the basic principle still exists: Serialization and inheritance don't mix well. Considering the huge list of programming strategies that became possible and even common in the past decade, I feel tempted to say that inheritance should be avoided in areas that relate to serialization (in particular remoting and databases). Does that make sense? Or am messing things up? How do you handle inheritance and serialization?

    Read the article

  • CodePlex Daily Summary for Sunday, June 03, 2012

    CodePlex Daily Summary for Sunday, June 03, 2012Popular ReleasesLiveChat Starter Kit: LCSK v1.5.2: New features: Visitor location (City - Country) from geo-location Pass configuration via javascript for the chat box New visitor identification (no more using the IP address as visitor identification) To update from 1.5.1 Run the /src/1.5.2-sql-updates.txt SQL script to update your database tables. If you have it installed via NuGet, simply update your package and the file will be included so you can run the update script. New installation The easiest way to add LCSK to your app is by...Prime Factorization: Prime Factorization V2: Download the installation package and run it, to install prime factorization on your computer.DNN Content Localization Tools: CLTools v0.4 (Beta4): 3th Beta release for DNN 6.1 and obove Bug corrections : - Copy module work againNTemplates: NTemplates full source code and examples: This release includes the following changes: - NTemplates code. More enhacements and bug fixing. Nested scans seems to be working ok now. New event: ScanStart. Very usuful for calculating totals (see the example) - Examples. 2 new examples on nested scans. One of them very simple I did just for debugging. The other one is a report of invoices grouped by vendor, including totals calculations. Planned Roadmap: - Work on fixing performance bottlenecek: Try to compile the expression...ZXMAK2: Version 2.6.2.3: - add support for ZIP files created on UNIX system; - improve WAV support (fixed PCM24, FLOAT32; added PCM32, FLOAT64); - fix drag-n-drop on modal dialogs; - tape AutoPlay feature (thanks to Woody for algorithm).Net Code Samples: Full WCF Duplex Service Example: Full WCF Duplex Service ExampleKendo UI ASP.NET Sample Applications: Sample Applications (2012-06-01): Sample application(s) demonstrating the use of Kendo UI in ASP.NET applications.Better Explorer: Better Explorer Beta 1: Finally, the first Beta is here! There were a lot of changes, including: Translations into 10 different languages (the translations are not complete and will be updated soon) Conditional Select new tools for managing archives Folder Tools tab new search bar and Search Tab new image editing tools update function many bug fixes, stability fixes, and memory leak fixes other new features as well! Please check it out and if there are any problems, let us know. :) Also, do not forge...myManga: myManga v1.0.0.3: Will include MangaPanda as a default option. ChangeLog Updating from Previous Version: Extract contents of Release - myManga v1.0.0.3.zip to previous version's folder. Replaces: myManga.exe BakaBox.dll CoreMangaClasses.dll Manga.dll Plugins/MangaReader.manga.dll Plugins/MangaFox.manga.dll Plugins/MangaHere.manga.dll Plugins/MangaPanda.manga.dllPlayer Framework by Microsoft: Player Framework for Windows 8 Metro (Preview 3): Player Framework for HTML/JavaScript and XAML/C# Metro Style Applications. Additional DownloadsIIS Smooth Streaming Client SDK for Windows 8 Microsoft PlayReady Client SDK for Metro Style Apps Release notes:Support for Windows 8 Release Preview (released 5/31/12) Advertising support (VAST, MAST, VPAID, & clips) Miscellaneous improvements and bug fixesMicrosoft Ajax Minifier: Microsoft Ajax Minifier 4.54: Fix for issue #18161: pretty-printing CSS @media rule throws an exception due to mismatched Indent/Unindent pair.Silverlight Toolkit: Silverlight 5 Toolkit Source - May 2012: Source code for December 2011 Silverlight 5 Toolkit release.Windows 8 Metro RSS Reader: RSS Reader release 6: Changed background and foreground colors Used VariableSizeGrid layout to wrap blog posts with images Sort items with Images first, text-only last Enabled Caching to improve navigation between framesJson.NET: Json.NET 4.5 Release 6: New feature - Added IgnoreDataMemberAttribute support New feature - Added GetResolvedPropertyName to DefaultContractResolver New feature - Added CheckAdditionalContent to JsonSerializer Change - Metro build now always uses late bound reflection Change - JsonTextReader no longer returns no content after consecutive underlying content read failures Fix - Fixed bad JSON in an array with error handling creating an infinite loop Fix - Fixed deserializing objects with a non-default cons...DotNetNuke® Community Edition CMS: 06.02.00: Major Highlights Fixed issue in the Site Settings when single quotes were being treated as escape characters Fixed issue loading the Mobile Premium Data after upgrading from CE to PE Fixed errors logged when updating folder provider settings Fixed the order of the mobile device capabilities in the Site Redirection Management UI The User Profile page was completely rebuilt. We needed User Profiles to have multiple child pages. This would allow for the most flexibility by still f...????: ????2.0.1: 1、?????。WiX Toolset: WiX v3.6 RC: WiX v3.6 RC (3.6.2928.0) provides feature complete Burn with VS11 support. For more information see Rob's blog post about the release: http://robmensching.com/blog/posts/2012/5/28/WiX-v3.6-Release-Candidate-availableJavascript .NET: Javascript .NET v0.7: SetParameter() reverts to its old behaviour of allowing JavaScript code to add new properties to wrapped C# objects. The behavior added briefly in 0.6 (throws an exception) can be had via the new SetParameterOptions.RejectUnknownProperties. TerminateExecution now uses its isolate to terminate the correct context automatically. Added support for converting all C# integral types, decimal and enums to JavaScript numbers. (Previously only the common types were handled properly.) Bug fixe...Phalanger - The PHP Language Compiler for the .NET Framework: 3.0 (May 2012): Fixes: unserialize() of negative float numbers fix pcre possesive quantifiers and character class containing ()[] array deserilization when the array contains a reference to ISerializable parsing lambda function fix round() reimplemented as it is in PHP to avoid .NET rounding errors filesize bypass for FileInfo.Length bug in Mono New features: Time zones reimplemented, uses Windows/Linux databaseSharePoint Euro 2012 - UEFA European Football Predictor: havivi.euro2012.wsp (1.1): New fetures:Admin enable / disable match Hide/Show Euro 2012 SharePoint lists (3 lists) Installing SharePoint Euro 2012 PredictorSharePoint Euro 2012 Predictor has been developed as a SharePoint Sandbox solution to support SharePoint Online (Office 365) Download the solution havivi.euro2012.wsp from the download page: Downloads Upload this solution to your Site Collection via the solutions area. Click on Activate to make the web parts in the solution available for use in the Site C...New ProjectsAFS.PhonePusherConnectorVX: pusher for phone vxApache: this is the Apache project.Apple: this is the Apple project.CUARTOAZZJL: HURRA!!Designing Windows 8 Applications with C# and XAML: This project hosts the source code used in the example projects for the book, Designing Windows 8 Metro Applications with C# and XAML.Easy Internet: CyberWeb ist ein einfacher Webbrowser für PC Neulinge. Ideal für Leute, die noch keine PC-Erfahrung haben.Easy Outlook Backup: Beschreibung: Easy Outlook Backup ist ein Programm das alle Daten von Outlook sichert. Ideal für Leute, die noch keine PC-Erfahrung haben. Easy Realtime Start: Beschreibung: Easy Realtime Start ist ein Programm das einen Prozess in höchster Priorität startet. Und das ganz bequem Per drag & drop. Ideal für Leute, die aufwendige Programme starten müssen. (zB.: “Blender” Free 3D Designer)eStock: eStock ist ein Verwaltungstool für Elektroniker um Bauteile im "Lager" sowie Projekte zu verwalten. Es bietet eine Möglichkeit festzulegen, um welche Art von Bauteil es sich handelt und wo sich dieses im Lager bzw. Regal befindet. Die Projektverwaltung ermöglicht es, Bauteile einem Projekt hinzuzufügen und eine Bestellliste / Einkaufsliste von Bauteilen, die nicht mehr im Lager vorhanden sind, zu erstellen. FuTTY: FireEgl's PuTTY -- FuTTY! FuTTY is a fork of PuTTY and PuTTYTray.GeometryWorld: To Do...Google: this is the Google project.Google Advance Search: An easy way to create documents search at Google and read your emails and Much moregoogle maps viewer for dynamics crm 2011: Easy google maps viewer for dynamics CRM 2011GPS Status - (GPS tool für GPS-Dongles und Mäuse) - GPS-Empfänger: Mein Programm verbindet sich mit dem externen GPS über einen Com-Port und bietet verschiedene Tools.Harmony Text Editor: Harmony is a ridiculously simple text editor for code and poetry.Hi! Football: .Goal / Objective -> To help friends gather for enjoying watching football together. .How it works -> To basically choose your favorite team, choose one of the matches fetched for his team, our app will generate a list of popular restraunts, cafes where he can watch the chosen match, the user can select one of the generated locations around his area, and create an event inviting his friends to join him and he can also join other friends' events.Java: this is the Java project.LevelUp Serializer: LevelUp Serializer is a small and simple serialize library.It can help developer to serialize and deserialize data more convenient. Feature: - Ease of use - Supports almost all serializer, like Binary、Xml、Soap、Json、DataContract. - Support serialize to file、serialize to stream、deserialize from file、deserialize from stream. - Support Xml encryption. - Support accelerated through the XML the serialization assemble.LFormatConvert: ????Linux???????????????????????,??ffmpeg????Machine QA Manager: Machine QA Manager is intended to save and help trend results from radiation therapy equipment testing. The program will be made as generic as possible from a initial setup to enable it's use for other types of routine testing activities (for example factory equipment) but preconfigured templates for radiation therapy will be supplied for the convenience of people working in that domain.maven-asbuild-plugin: maven-asbuild-plugin incorporates the adobe flash/flex based artifacts like swc or swf into the maven methology.Midnight Peach - C# framework generator for LINQ: C# framework generator for LINQMiku???????: ????????,????????!?????????????,??????????。?????????????????!MIKU????????????,??!????????????、????。 This program used to detect music beat.You can listen to music while press button,and it can display the BPM of the song.Miku will wave to you.MyTestingStudy: my personal testing studyNameless Sprite Editor: Nameless Sprite Editor is a tool used to thoroughly edit the graphics in ALL Game Boy Advance games. [ UNDER CONSTRUCTION ]NeoModulus Business Rules Builder: A windows form application that allows non-programmers to build strict definitions of a business domain. Once the definition is complete the program will build out object oriented C# files and a .net DLL. My test business domain is the open SRD, basically Dungeons and Dragons 3.5 edition.NodeJs: this is the NodeJs projectNoSQL: this is the Nosql project.OmniKassa for NopCommerce: OmniKassa payment module plugin for nopCommerceOn-Line Therapy: testOpen School: This project is about to create an open platform for all the academic institutions, so that they can manage all of their work. Our efforts will be for every kind of institution who are currently struggling with different kind of systems in place which are not collaborating with each other. This project will provide a common platform to all these kind of systems and provide them a better solution which actually works. Oracle: this is the Oracle project.Orchard Web Services: RESTful web services to expose interaction with Orchard content management.Personal Social Network using asp.net mvc and mongodb: FirstRooster is a network platform that let user create their own social network of interest to connect and share with like minded people anywhere.peshop: E-Commerce application , separated by DAl,BLL and Presentation layersPHP: this is the PHP project.Prime Factorization: Factoring trinomials using the ac method can be made easier through the use of Prime Factorization. Prime Factorization is a program that can assist you in the factoring of numbers in Algebra, namely trinomials using the AC Method. It can also find all the factors of any number.PromedioNotas: El programa trata de promediar 3 nostas y mostrar y si pasaba de año o no por medio de un mensajeProyecto Tarea: Este proyecto esta hecho con el objetivo de aprender sobre TFSProyectotarea1: Sotfware de terminal aéreo de Guayaquil, donde se encuentran el nombre de las aerolíneas y las rutas de vuelo a nivel nacional.Python: this is the Python project.Ruby: this is the Ruby project.tedplay: tedplay is your media player of choice for playing Commodore 264 music format files similar to SIDplay. It is basically a stripped down Commodore plus/4 emulator without video output and peripherals based on the SDL build of the Commodore 264 family emulator YAPE. tedplay is released under version 2 of the GNU Generic Public License and can be built for both Windows and Unix or actually any platform that has a C++ compiler and SDL support.test1: This is a test projectwin-x264: A port of the x264-codebase into a VisualStudio-project. Compilation requires Intel-compiler and Yasm.XDA ROM Hub: Xperia 2011 line toolkit.znvicente_cuartoc: Poyecto Vicente Eduardo Zambrano Navarrete??Win7?????: ??????? *.theme ???????(??,??,??,???)。????VSB???*.msstyles??,????????,????????????????????????!????????????,?????????????。???,????????! ?????????,?????????,????????,??????!?????????????,?????????????????,?????????,???Aero??,??????~?????????????!??,?????????theme??,?????????,??????,????,??????。 This program used to create .theme file and the relevant documents (wallpaper, pointer, ICONS, sounds, etc.). As long as you use VSB ready . msstyles files, chosen the icon wallpaper, etc, an...

    Read the article

  • Bulk inserting best way to about it? + Helping me understand fully what I found so far

    - by chobo2
    Hi So I saw this post here and read it and it seems like bulk copy might be the way to go. http://stackoverflow.com/questions/682015/whats-the-best-way-to-bulk-database-inserts-from-c I still have some questions and want to know how things actually work. So I found 2 tutorials. http://www.codeproject.com/KB/cs/MultipleInsertsIn1dbTrip.aspx#_Toc196622241 http://www.codeproject.com/KB/linq/BulkOperations_LinqToSQL.aspx First way uses 2 ado.net 2.0 features. BulkInsert and BulkCopy. the second one uses linq to sql and OpenXML. This sort of appeals to me as I am using linq to sql already and prefer it over ado.net. However as one person pointed out in the posts what he just going around the issue at the cost of performance( nothing wrong with that in my opinion) First I will talk about the 2 ways in the first tutorial I am using VS2010 Express, .net 4.0, MVC 2.0, SQl Server 2005 Is ado.net 2.0 the most current version? Based on the technology I am using, is there some updates to what I am going to show that would improve it somehow? Is there any thing that these tutorial left out that I should know about? BulkInsert I am using this table for all the examples. CREATE TABLE [dbo].[TBL_TEST_TEST] ( ID INT IDENTITY(1,1) PRIMARY KEY, [NAME] [varchar](50) ) SP Code USE [Test] GO /****** Object: StoredProcedure [dbo].[sp_BatchInsert] Script Date: 05/19/2010 15:12:47 ******/ SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO ALTER PROCEDURE [dbo].[sp_BatchInsert] (@Name VARCHAR(50) ) AS BEGIN INSERT INTO TBL_TEST_TEST VALUES (@Name); END C# Code /// <summary> /// Another ado.net 2.0 way that uses a stored procedure to do a bulk insert. /// Seems slower then "BatchBulkCopy" way and it crashes when you try to insert 500,000 records in one go. /// http://www.codeproject.com/KB/cs/MultipleInsertsIn1dbTrip.aspx#_Toc196622241 /// </summary> private static void BatchInsert() { // Get the DataTable with Rows State as RowState.Added DataTable dtInsertRows = GetDataTable(); SqlConnection connection = new SqlConnection(connectionString); SqlCommand command = new SqlCommand("sp_BatchInsert", connection); command.CommandType = CommandType.StoredProcedure; command.UpdatedRowSource = UpdateRowSource.None; // Set the Parameter with appropriate Source Column Name command.Parameters.Add("@Name", SqlDbType.VarChar, 50, dtInsertRows.Columns[0].ColumnName); SqlDataAdapter adpt = new SqlDataAdapter(); adpt.InsertCommand = command; // Specify the number of records to be Inserted/Updated in one go. Default is 1. adpt.UpdateBatchSize = 1000; connection.Open(); int recordsInserted = adpt.Update(dtInsertRows); connection.Close(); } So first thing is the batch size. Why would you set a batch size to anything but the number of records you are sending? Like I am sending 500,000 records so I did a Batch size of 500,000. Next why does it crash when I do this? If I set it to 1000 for batch size it works just fine. System.Data.SqlClient.SqlException was unhandled Message="A transport-level error has occurred when sending the request to the server. (provider: Shared Memory Provider, error: 0 - No process is on the other end of the pipe.)" Source=".Net SqlClient Data Provider" ErrorCode=-2146232060 Class=20 LineNumber=0 Number=233 Server="" State=0 StackTrace: at System.Data.Common.DbDataAdapter.UpdatedRowStatusErrors(RowUpdatedEventArgs rowUpdatedEvent, BatchCommandInfo[] batchCommands, Int32 commandCount) at System.Data.Common.DbDataAdapter.UpdatedRowStatus(RowUpdatedEventArgs rowUpdatedEvent, BatchCommandInfo[] batchCommands, Int32 commandCount) at System.Data.Common.DbDataAdapter.Update(DataRow[] dataRows, DataTableMapping tableMapping) at System.Data.Common.DbDataAdapter.UpdateFromDataTable(DataTable dataTable, DataTableMapping tableMapping) at System.Data.Common.DbDataAdapter.Update(DataTable dataTable) at TestIQueryable.Program.BatchInsert() in C:\Users\a\Downloads\TestIQueryable\TestIQueryable\TestIQueryable\Program.cs:line 124 at TestIQueryable.Program.Main(String[] args) in C:\Users\a\Downloads\TestIQueryable\TestIQueryable\TestIQueryable\Program.cs:line 16 InnerException: Time it took to insert 500,000 records with insert batch size of 1000 took "2 mins and 54 seconds" Of course this is no official time I sat there with a stop watch( I am sure there are better ways but was too lazy to look what they where) So I find that kinda slow compared to all my other ones(expect the linq to sql insert one) and I am not really sure why. Next I looked at bulkcopy /// <summary> /// An ado.net 2.0 way to mass insert records. This seems to be the fastest. /// http://www.codeproject.com/KB/cs/MultipleInsertsIn1dbTrip.aspx#_Toc196622241 /// </summary> private static void BatchBulkCopy() { // Get the DataTable DataTable dtInsertRows = GetDataTable(); using (SqlBulkCopy sbc = new SqlBulkCopy(connectionString, SqlBulkCopyOptions.KeepIdentity)) { sbc.DestinationTableName = "TBL_TEST_TEST"; // Number of records to be processed in one go sbc.BatchSize = 500000; // Map the Source Column from DataTabel to the Destination Columns in SQL Server 2005 Person Table // sbc.ColumnMappings.Add("ID", "ID"); sbc.ColumnMappings.Add("NAME", "NAME"); // Number of records after which client has to be notified about its status sbc.NotifyAfter = dtInsertRows.Rows.Count; // Event that gets fired when NotifyAfter number of records are processed. sbc.SqlRowsCopied += new SqlRowsCopiedEventHandler(sbc_SqlRowsCopied); // Finally write to server sbc.WriteToServer(dtInsertRows); sbc.Close(); } } This one seemed to go really fast and did not even need a SP( can you use SP with bulk copy? If you can would it be better?) BatchCopy had no problem with a 500,000 batch size.So again why make it smaller then the number of records you want to send? I found that with BatchCopy and 500,000 batch size it took only 5 seconds to complete. I then tried with a batch size of 1,000 and it only took 8 seconds. So much faster then the bulkinsert one above. Now I tried the other tutorial. USE [Test] GO /****** Object: StoredProcedure [dbo].[spTEST_InsertXMLTEST_TEST] Script Date: 05/19/2010 15:39:03 ******/ SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO ALTER PROCEDURE [dbo].[spTEST_InsertXMLTEST_TEST](@UpdatedProdData nText) AS DECLARE @hDoc int exec sp_xml_preparedocument @hDoc OUTPUT,@UpdatedProdData INSERT INTO TBL_TEST_TEST(NAME) SELECT XMLProdTable.NAME FROM OPENXML(@hDoc, 'ArrayOfTBL_TEST_TEST/TBL_TEST_TEST', 2) WITH ( ID Int, NAME varchar(100) ) XMLProdTable EXEC sp_xml_removedocument @hDoc C# code. /// <summary> /// This is using linq to sql to make the table objects. /// It is then serailzed to to an xml document and sent to a stored proedure /// that then does a bulk insert(I think with OpenXML) /// http://www.codeproject.com/KB/linq/BulkOperations_LinqToSQL.aspx /// </summary> private static void LinqInsertXMLBatch() { using (TestDataContext db = new TestDataContext()) { TBL_TEST_TEST[] testRecords = new TBL_TEST_TEST[500000]; for (int count = 0; count < 500000; count++) { TBL_TEST_TEST testRecord = new TBL_TEST_TEST(); testRecord.NAME = "Name : " + count; testRecords[count] = testRecord; } StringBuilder sBuilder = new StringBuilder(); System.IO.StringWriter sWriter = new System.IO.StringWriter(sBuilder); XmlSerializer serializer = new XmlSerializer(typeof(TBL_TEST_TEST[])); serializer.Serialize(sWriter, testRecords); db.insertTestData(sBuilder.ToString()); } } So I like this because I get to use objects even though it is kinda redundant. I don't get how the SP works. Like I don't get the whole thing. I don't know if OPENXML has some batch insert under the hood but I do not even know how to take this example SP and change it to fit my tables since like I said I don't know what is going on. I also don't know what would happen if the object you have more tables in it. Like say I have a ProductName table what has a relationship to a Product table or something like that. In linq to sql you could get the product name object and make changes to the Product table in that same object. So I am not sure how to take that into account. I am not sure if I would have to do separate inserts or what. The time was pretty good for 500,000 records it took 52 seconds The last way of course was just using linq to do it all and it was pretty bad. /// <summary> /// This is using linq to sql to to insert lots of records. /// This way is slow as it uses no mass insert. /// Only tried to insert 50,000 records as I did not want to sit around till it did 500,000 records. /// http://www.codeproject.com/KB/linq/BulkOperations_LinqToSQL.aspx /// </summary> private static void LinqInsertAll() { using (TestDataContext db = new TestDataContext()) { db.CommandTimeout = 600; for (int count = 0; count < 50000; count++) { TBL_TEST_TEST testRecord = new TBL_TEST_TEST(); testRecord.NAME = "Name : " + count; db.TBL_TEST_TESTs.InsertOnSubmit(testRecord); } db.SubmitChanges(); } } I did only 50,000 records and that took over a minute to do. So I really narrowed it done to the linq to sql bulk insert way or bulk copy. I am just not sure how to do it when you have relationship for either way. I am not sure how they both stand up when doing updates instead of inserts as I have not gotten around to try it yet. I don't think I will ever need to insert/update more than 50,000 records at one type but at the same time I know I will have to do validation on records before inserting so that will slow it down and that sort of makes linq to sql nicer as your got objects especially if your first parsing data from a xml file before you insert into the database. Full C# code using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Xml.Serialization; using System.Data; using System.Data.SqlClient; namespace TestIQueryable { class Program { private static string connectionString = ""; static void Main(string[] args) { BatchInsert(); Console.WriteLine("done"); } /// <summary> /// This is using linq to sql to to insert lots of records. /// This way is slow as it uses no mass insert. /// Only tried to insert 50,000 records as I did not want to sit around till it did 500,000 records. /// http://www.codeproject.com/KB/linq/BulkOperations_LinqToSQL.aspx /// </summary> private static void LinqInsertAll() { using (TestDataContext db = new TestDataContext()) { db.CommandTimeout = 600; for (int count = 0; count < 50000; count++) { TBL_TEST_TEST testRecord = new TBL_TEST_TEST(); testRecord.NAME = "Name : " + count; db.TBL_TEST_TESTs.InsertOnSubmit(testRecord); } db.SubmitChanges(); } } /// <summary> /// This is using linq to sql to make the table objects. /// It is then serailzed to to an xml document and sent to a stored proedure /// that then does a bulk insert(I think with OpenXML) /// http://www.codeproject.com/KB/linq/BulkOperations_LinqToSQL.aspx /// </summary> private static void LinqInsertXMLBatch() { using (TestDataContext db = new TestDataContext()) { TBL_TEST_TEST[] testRecords = new TBL_TEST_TEST[500000]; for (int count = 0; count < 500000; count++) { TBL_TEST_TEST testRecord = new TBL_TEST_TEST(); testRecord.NAME = "Name : " + count; testRecords[count] = testRecord; } StringBuilder sBuilder = new StringBuilder(); System.IO.StringWriter sWriter = new System.IO.StringWriter(sBuilder); XmlSerializer serializer = new XmlSerializer(typeof(TBL_TEST_TEST[])); serializer.Serialize(sWriter, testRecords); db.insertTestData(sBuilder.ToString()); } } /// <summary> /// An ado.net 2.0 way to mass insert records. This seems to be the fastest. /// http://www.codeproject.com/KB/cs/MultipleInsertsIn1dbTrip.aspx#_Toc196622241 /// </summary> private static void BatchBulkCopy() { // Get the DataTable DataTable dtInsertRows = GetDataTable(); using (SqlBulkCopy sbc = new SqlBulkCopy(connectionString, SqlBulkCopyOptions.KeepIdentity)) { sbc.DestinationTableName = "TBL_TEST_TEST"; // Number of records to be processed in one go sbc.BatchSize = 500000; // Map the Source Column from DataTabel to the Destination Columns in SQL Server 2005 Person Table // sbc.ColumnMappings.Add("ID", "ID"); sbc.ColumnMappings.Add("NAME", "NAME"); // Number of records after which client has to be notified about its status sbc.NotifyAfter = dtInsertRows.Rows.Count; // Event that gets fired when NotifyAfter number of records are processed. sbc.SqlRowsCopied += new SqlRowsCopiedEventHandler(sbc_SqlRowsCopied); // Finally write to server sbc.WriteToServer(dtInsertRows); sbc.Close(); } } /// <summary> /// Another ado.net 2.0 way that uses a stored procedure to do a bulk insert. /// Seems slower then "BatchBulkCopy" way and it crashes when you try to insert 500,000 records in one go. /// http://www.codeproject.com/KB/cs/MultipleInsertsIn1dbTrip.aspx#_Toc196622241 /// </summary> private static void BatchInsert() { // Get the DataTable with Rows State as RowState.Added DataTable dtInsertRows = GetDataTable(); SqlConnection connection = new SqlConnection(connectionString); SqlCommand command = new SqlCommand("sp_BatchInsert", connection); command.CommandType = CommandType.StoredProcedure; command.UpdatedRowSource = UpdateRowSource.None; // Set the Parameter with appropriate Source Column Name command.Parameters.Add("@Name", SqlDbType.VarChar, 50, dtInsertRows.Columns[0].ColumnName); SqlDataAdapter adpt = new SqlDataAdapter(); adpt.InsertCommand = command; // Specify the number of records to be Inserted/Updated in one go. Default is 1. adpt.UpdateBatchSize = 500000; connection.Open(); int recordsInserted = adpt.Update(dtInsertRows); connection.Close(); } private static DataTable GetDataTable() { // You First need a DataTable and have all the insert values in it DataTable dtInsertRows = new DataTable(); dtInsertRows.Columns.Add("NAME"); for (int i = 0; i < 500000; i++) { DataRow drInsertRow = dtInsertRows.NewRow(); string name = "Name : " + i; drInsertRow["NAME"] = name; dtInsertRows.Rows.Add(drInsertRow); } return dtInsertRows; } static void sbc_SqlRowsCopied(object sender, SqlRowsCopiedEventArgs e) { Console.WriteLine("Number of records affected : " + e.RowsCopied.ToString()); } } }

    Read the article

  • Finding the problem on a partially succeeded build

    - by Martin Hinshelwood
    Now that I have the Build failing because of a genuine bug and not just because of a test framework failure, lets see if we can trace through to finding why the first test in our new application failed. Lets look at the build and see if we can see why there is a red cross on it. First, lets open that build list. On Team Explorer Expand your Team Project Collection | Team Project and then Builds. Double click the offending build. Figure: Opening the Build list is a key way to see what the current state of your software is.   Figure: A test is failing, but we can now view the Test Results to find the problem      Figure: You can quite clearly see that the test has failed with “The device is not ready”. To me the “The Device is not ready” smacks of a System.IO exception, but it passed on my local computer, so why not on the build server? Its a FaultException so it is most likely coming from the Service and not the client, so lets take a look at the client method that the test is calling: bool IProfileService.SaveDefaultProjectFile(string strComputerName) { ProjectFile file = new ProjectFile() { ProjectFileName = strComputerName + "_" + System.DateTime.Now.ToString("yyyyMMddhhmmsss") + ".xml", ConnectionString = "persist security info=False; pooling=False; data source=(local); application name=SSW.SQLDeploy.vshost.exe; integrated security=SSPI; initial catalog=SSWSQLDeployNorthwindSample", DateCreated = System.DateTime.Now, DateUpdated = System.DateTime.Now, FolderPath = @"C:\Program Files\SSW SQL Deploy\SampleData\", IsComplete=false, Version = "1.3", NewDatabase = true, TimeOut = 5, TurnOnMSDE = false, Mode="AutomaticMode" }; string strFolderPath = "D:\\"; //LocalSettings.ProjectFileBasePath; string strFileName = strFolderPath + file.ProjectFileName; try { using (FileStream fs = new FileStream(strFileName, FileMode.Create)) { DataContractSerializer serializer = new DataContractSerializer(typeof(ProjectFile)); using (XmlDictionaryWriter writer = XmlDictionaryWriter.CreateTextWriter(fs)) { serializer.WriteObject(writer, file); } } } catch (Exception ex) { //TODO: Log the exception throw ex; return false; } return true; } Figure: You can see on lines 9 and 18 that there are calls being made to specific folders and disks. What is wrong with this code? What assumptions mistakes could the developer have made to make this look OK: That every install would be to “C:\Program Files\SSW SQL Deploy” That every computer would have a “D:\\” That checking in code at 6pm because the had to go home was a good idea. lets solve each of these problems: We are in a web service… lets store data within the web root. So we can call “Server.MapPath(“~/App_Data/SSW SQL Deploy\SampleData”) instead. Never reference an explicit path. If you need some storage for your application use IsolatedStorage. Shelve your code instead. What else could have been done? Code review before check-in – The developer should have shelved their code and asked another dev to look at it. Use Defensive programming – Make sure that any code that has the possibility of failing has checks. Any more options? Let me know and I will add them. What do we do? The correct things to do is to add a Bug to the backlog, but as this is probably going to be fixed in sprint, I will add it directly to the sprint backlog. Right click on the failing test Select “Create Work Item | Bug” Figure: Create an associated bug to add to the backlog. Set the values for the Bug making sure that it goes into the right sprint and Area. Make your steps to reproduce as explicit as possible, but “See test” is valid under these circumstances.   Figure: Add it to the correct Area and set the Iteration to the Area name or the Sprint if you think it will be fixed in Sprint and make sure you bring it up at the next Scrum Meeting. Note: make sure you leave the “Assigned To” field blank as in Scrum team members sign up for work, you do not give it to them. The developer who broke the test will most likely either sign up for the bug, or say that they are stuck and need help. Note: Visual Studio has taken care of associating the failing test with the Bug. Save… Technorati Tags: WCF,MSTest,MSBuild,Team Build 2010,Team Test 2010,Team Build,Team Test

    Read the article

  • Populate a WCF syndication podcast using MP3 ID3 metadata tags

    - by brian_ritchie
    In the last post, I showed how to create a podcast using WCF syndication.  A podcast is an RSS feed containing a list of audio files to which users can subscribe.  The podcast not only contains links to the audio files, but also metadata about each episode.  A cool approach to building the feed is reading this metadata from the ID3 tags on the MP3 files used for the podcast. One library to do this is TagLib-Sharp.  Here is some sample code: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: var taggedFile = TagLib.File.Create(f); 2: var fileInfo = new FileInfo(f); 3: var item = new iTunesPodcastItem() 4: { 5: title = taggedFile.Tag.Title, 6: size = fileInfo.Length, 7: url = feed.baseUrl + fileInfo.Name, 8: duration = taggedFile.Properties.Duration, 9: mediaType = feed.mediaType, 10: summary = taggedFile.Tag.Comment, 11: subTitle = taggedFile.Tag.FirstAlbumArtist, 12: id = fileInfo.Name 13: }; 14: if (!string.IsNullOrEmpty(taggedFile.Tag.Album)) 15: item.publishedDate = DateTimeOffset.Parse(taggedFile.Tag.Album); This reads the ID3 tags into an object for later use in creating the syndication feed.  When the MP3 is created, these tags are set...or they can be set after the fact using the Properties dialog in Windows Explorer.  The only "hack" is that there isn't an easily accessible tag for "subtitle" or "published date" so I used other tags in this example. Feel free to change this to meet your purposes.  You could remove the subtitle & use the file modified data for example. That takes care of the episodes, for the feed level settings we'll load those from an XML file: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: <?xml version="1.0" encoding="utf-8" ?> 2: <iTunesPodcastFeed 3: baseUrl ="" 4: title="" 5: subTitle="" 6: description="" 7: copyright="" 8: category="" 9: ownerName="" 10: ownerEmail="" 11: mediaType="audio/mp3" 12: mediaFiles="*.mp3" 13: imageUrl="" 14: link="" 15: /> Here is the full code put together. Read the feed XML file and deserialize it into an iTunesPodcastFeed classLoop over the files in a directory reading the ID3 tags from the audio files .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: public static iTunesPodcastFeed CreateFeedFromFiles(string podcastDirectory, string podcastFeedFile) 2: { 3: XmlSerializer serializer = new XmlSerializer(typeof(iTunesPodcastFeed)); 4: iTunesPodcastFeed feed; 5: using (var fs = File.OpenRead(Path.Combine(podcastDirectory, podcastFeedFile))) 6: { 7: feed = (iTunesPodcastFeed)serializer.Deserialize(fs); 8: } 9: foreach (var f in Directory.GetFiles(podcastDirectory, feed.mediaFiles)) 10: { 11: try 12: { 13: var taggedFile = TagLib.File.Create(f); 14: var fileInfo = new FileInfo(f); 15: var item = new iTunesPodcastItem() 16: { 17: title = taggedFile.Tag.Title, 18: size = fileInfo.Length, 19: url = feed.baseUrl + fileInfo.Name, 20: duration = taggedFile.Properties.Duration, 21: mediaType = feed.mediaType, 22: summary = taggedFile.Tag.Comment, 23: subTitle = taggedFile.Tag.FirstAlbumArtist, 24: id = fileInfo.Name 25: }; 26: if (!string.IsNullOrEmpty(taggedFile.Tag.Album)) 27: item.publishedDate = DateTimeOffset.Parse(taggedFile.Tag.Album); 28: feed.Items.Add(item); 29: } 30: catch 31: { 32: // ignore files that can't be accessed successfully 33: } 34: } 35: return feed; 36: } Usually putting a "try...catch" like this is bad, but in this case I'm just skipping over files that are locked while they are being uploaded to the web site.Here is the code from the last couple of posts.  

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Access Control Service: Handling Errors

    - by Your DisplayName here!
    Another common problem with external authentication is how to deal with sign in errors. In active federation like WS-Trust there are well defined SOAP faults to communicate problem to a client. But with web applications, the error information is typically generated and displayed on the external sign in page. The relying party does not know about the error, nor can it help the user in any way. The Access Control Service allows to post sign in errors to a specified page. You setup this page in the relying party registration. That means that whenever an error occurs in ACS, the error information gets packaged up as a JSON string and posted to the page specified. This way you get structued error information back into you application so you can display a friendlier error message or log the error. I added error page support to my ACS2 sample, which can be downloaded here. How to turn the JSON error into CLR types The JSON schema is reasonably simple, the following class turns the JSON into an object: [DataContract] public class AcsErrorResponse {     [DataMember(Name = "context", Order = 1)]     public string Context { get; set; }     [DataMember(Name = "httpReturnCode", Order = 2)]     public string HttpReturnCode { get; set; }     [DataMember(Name = "identityProvider", Order = 3)]        public string IdentityProvider { get; set; }     [DataMember(Name = "timeStamp", Order = 4)]     public string TimeStamp { get; set; }     [DataMember(Name = "traceId", Order = 5)]     public string TraceId { get; set; }     [DataMember(Name = "errors", Order = 6)]     public List<AcsError> Errors { get; set; }     public static AcsErrorResponse Read(string json)     {         var serializer = new DataContractJsonSerializer( typeof(AcsErrorResponse));         var response = serializer.ReadObject( new MemoryStream(Encoding.Default.GetBytes(json))) as AcsErrorResponse;         if (response != null)         {             return response;         }         else         {             throw new ArgumentException("json");         }     } } [DataContract] public class AcsError {     [DataMember(Name = "errorCode", Order = 1)]     public string Code { get; set; }             [DataMember(Name = "errorMessage", Order = 2)]     public string Message { get; set; } } Retrieving the error information You then need to provide a page that takes the POST and deserializes the information. My sample simply fills a view that shows all information. But that’s for diagnostic/sample purposes only. You shouldn’t show the real errors to your end users. public class SignInErrorController : Controller {     [HttpPost]     public ActionResult Index()     {         var errorDetails = Request.Form["ErrorDetails"];         var response = AcsErrorResponse.Read(errorDetails);         return View("SignInError", response);     } } Also keep in mind that the error page is an anonymous page and that you are taking external input. So all the usual input validation applies.

    Read the article

  • Deserializing JSON data to C# using JSON.NET

    - by Derek Utah
    I'm relatively new to working with C# and JSON data and am seeking guidance. I'm using C# 3.0, with .NET3.5SP1, and JSON.NET 3.5r6. I have a defined C# class that I need to populate from a JSON structure. However, not every JSON structure for an entry that is retrieved from the web service contains all possible attributes that are defined within the C# class. I've been being doing what seems to be the wrong, hard way and just picking out each value one by one from the JObject and transforming the string into the desired class property. JsonSerializer serializer = new JsonSerializer(); var o = (JObject)serializer.Deserialize(myjsondata); MyAccount.EmployeeID = (string)o["employeeid"][0]; What is the best way to deserialize a JSON structure into the C# class and handling possible missing data from the JSON source? My class is defined as: public class MyAccount { [JsonProperty(PropertyName = "username")] public string UserID { get; set; } [JsonProperty(PropertyName = "givenname")] public string GivenName { get; set; } [JsonProperty(PropertyName = "sn")] public string Surname { get; set; } [JsonProperty(PropertyName = "passwordexpired")] public DateTime PasswordExpire { get; set; } [JsonProperty(PropertyName = "primaryaffiliation")] public string PrimaryAffiliation { get; set; } [JsonProperty(PropertyName = "affiliation")] public string[] Affiliation { get; set; } [JsonProperty(PropertyName = "affiliationstatus")] public string AffiliationStatus { get; set; } [JsonProperty(PropertyName = "affiliationmodifytimestamp")] public DateTime AffiliationLastModified { get; set; } [JsonProperty(PropertyName = "employeeid")] public string EmployeeID { get; set; } [JsonProperty(PropertyName = "accountstatus")] public string AccountStatus { get; set; } [JsonProperty(PropertyName = "accountstatusexpiration")] public DateTime AccountStatusExpiration { get; set; } [JsonProperty(PropertyName = "accountstatusexpmaxdate")] public DateTime AccountStatusExpirationMaxDate { get; set; } [JsonProperty(PropertyName = "accountstatusmodifytimestamp")] public DateTime AccountStatusModified { get; set; } [JsonProperty(PropertyName = "accountstatusexpnotice")] public string AccountStatusExpNotice { get; set; } [JsonProperty(PropertyName = "accountstatusmodifiedby")] public Dictionary<DateTime, string> AccountStatusModifiedBy { get; set; } [JsonProperty(PropertyName = "entrycreatedate")] public DateTime EntryCreatedate { get; set; } [JsonProperty(PropertyName = "entrydeactivationdate")] public DateTime EntryDeactivationDate { get; set; } } And a sample of the JSON to parse is: { "givenname": [ "Robert" ], "passwordexpired": "20091031041550Z", "accountstatus": [ "active" ], "accountstatusexpiration": [ "20100612000000Z" ], "accountstatusexpmaxdate": [ "20110410000000Z" ], "accountstatusmodifiedby": { "20100214173242Z": "tdecker", "20100304003242Z": "jsmith", "20100324103242Z": "jsmith", "20100325000005Z": "rjones", "20100326210634Z": "jsmith", "20100326211130Z": "jsmith" }, "accountstatusmodifytimestamp": [ "20100312001213Z" ], "affiliation": [ "Employee", "Contractor", "Staff" ], "affiliationmodifytimestamp": [ "20100312001213Z" ], "affiliationstatus": [ "detached" ], "entrycreatedate": [ "20000922072747Z" ], "username": [ "rjohnson" ], "primaryaffiliation": [ "Staff" ], "employeeid": [ "999777666" ], "sn": [ "Johnson" ] }

    Read the article

  • Serializing a list of Key/Value pairs to XML

    - by Slauma
    I have a list of key/value pairs I'd like to store in and retrieve from a XML file. So this task is similar as described here. I am trying to follow the advice in the marked answer (using a KeyValuePair and a XmlSerializer) but I don't get it working. What I have so far is a "Settings" class ... public class Settings { public int simpleValue; public List<KeyValuePair<string, int>> list; } ... an instance of this class ... Settings aSettings = new Settings(); aSettings.simpleValue = 2; aSettings.list = new List<KeyValuePair<string, int>>(); aSettings.list.Add(new KeyValuePair<string, int>("m1", 1)); aSettings.list.Add(new KeyValuePair<string, int>("m2", 2)); ... and the following code to write that instance to a XML file: XmlSerializer serializer = new XmlSerializer(typeof(Settings)); TextWriter writer = new StreamWriter("c:\\testfile.xml"); serializer.Serialize(writer, aSettings); writer.Close(); The resulting file is: <?xml version="1.0" encoding="utf-8"?> <Settings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <simpleValue>2</simpleValue> <list> <KeyValuePairOfStringInt32 /> <KeyValuePairOfStringInt32 /> </list> </Settings> So neither key nor value of the pairs in my list are stored though the number of elements is correct. Obviously I am doing something basically wrong. My questions are: How can I store the key/value pairs of the list in the file? How can I change the default generated name "KeyValuePairOfStringInt32" of the elements in the list to some other name like "listElement" I'd like to have?

    Read the article

  • .NET XML Serialization without <?xml> root node

    - by Graphain
    Hi, I'm trying to generate XML like this: <?xml version="1.0"?> <!DOCTYPE APIRequest SYSTEM "https://url"> <APIRequest> <Head> <Key>123</Key> </Head> <ObjectClass> <Field>Value</Field </ObjectClass> </APIRequest> I have a class (ObjectClass) decorated with XMLSerialization attributes like this: [XmlRoot("ObjectClass")] public class ObjectClass { [XmlElement("Field")] public string Field { get; set; } } And my really hacky intuitive thought to just get this working is to do this when I serialize: ObjectClass inst = new ObjectClass(); XmlSerializer serializer = new XmlSerializer(inst.GetType(), ""); StringWriter w = new StringWriter(); w.WriteLine(@"<?xml version=""1.0""?>"); w.WriteLine("<!DOCTYPE APIRequest SYSTEM"); w.WriteLine(@"""https://url"">"); w.WriteLine("<APIRequest>"); w.WriteLine("<Head>"); w.WriteLine(@"<Field>Value</Field>"); w.WriteLine(@"</Head>"); XmlSerializerNamespaces ns = new XmlSerializerNamespaces(); ns.Add("", ""); serializer.Serialize(w, inst, ns); w.WriteLine("</APIRequest>"); However, this generates XML like this: <?xml version="1.0"?> <!DOCTYPE APIRequest SYSTEM "https://url"> <APIRequest> <Head> <Key>123</Key> </Head> <?xml version="1.0" encoding="utf-16"?> <ObjectClass> <Field>Value</Field> </ObjectClass> </APIRequest> i.e. the serialize statement is automatically adding a <?xml root element. I know I'm attacking this wrong so can someone point me in the right direction? As a note, I don't think it will make practical sense to just make an APIRequest class with an ObjectClass in it (because there are say 20 different types of ObjectClass that each needs this boilerplate around them) but correct me if I'm wrong.

    Read the article

  • DataContractSerializer and XSLT not Serializing Class Properties

    - by Russ Clark
    I've written a simple Employee class that I'm trying to serialize to an XDocument and then use XSLT to transform the document to a page that displays both the properties (Name and ID) from the Employee class, and an html form with 2 radio buttons (Approve and Reject) and a submit button. Here is the Employee class: [Serializable, DataContract(Namespace="XSLT_MVC.Controllers/")] public class Employee { [DataMember] public string Name { get; set; } [DataMember] public int ID { get; set; } public Employee() { } public Employee(string name, int id) { Name = name; ID = id; } public XDocument GetDoc() { XDocument doc = new XDocument(); var serializer = new DataContractSerializer(typeof(Employee)); using (var writer = doc.CreateWriter()) { serializer.WriteObject(writer, this); writer.Close(); } return doc; } } And here is the XSLT file: <?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" > <xsl:output method="html" indent="yes"/> <xsl:template match="/"> <html> <body> <xsl:value-of select="Employee/Name"/> <br /> <xsl:value-of select="Employee/ID"/> <br /> <form method="post" action="/Home/ProcessRequest?id={Employee/ID}"> <input id="Action" name="Action" type="radio" value="Approved"></input> Approved <br /> <input id="Action" name="Action" type="radio" value="Rejected"></input> Rejected <br /> <input type="submit" value="Submit"></input> </form> </body> </html> </xsl:template> </xsl:stylesheet> When I run this, all I get is the html form with the 2 radio buttons and the submit button, but not the properties from the Employee class. I saw a separate StackOverflow post that said I need to change the <xsl:template match="/"> to match on the namespace of my Employee class like this: <xsl:template match="/XSLT_MVC.Controllers"> but when I do that, now all I get are the Employee properties, and not the html form with the 2 radio buttons and the submit button. Does anyone know what needs to be done so that my transform will select and display both the Employee properties and the html form?

    Read the article

  • JSON serialization of Google App Engine models

    - by user111677
    I've been search for quite a while with no success. My project isn't using Django, is there a simple way to serialize App Engine models (google.appengine.ext.db.Model) into JSON or do I need to write my own serializer? My model class is fairly simple. For instance: class Photo(db.Model): filename = db.StringProperty() title = db.StringProperty() description = db.StringProperty(multiline=True) date_taken = db.DateTimeProperty() date_uploaded = db.DateTimeProperty(auto_now_add=True) album = db.ReferenceProperty(Album, collection_name='photo') Thanks in advance.

    Read the article

  • Json <-> Java serialization that works with GWT

    - by amartynov
    I am looking for a simple Json (de)serializer for Java that might work with GWT. I have googled a bit and found some solutions that either require annotate every member or define useless interfaces. Quite a boring. Why don't we have something really simple like class MyBean { ... } new GoodSerializer().makeString(new MyBean()); new GoodSerializer().makeObject("{ ... }", MyBean.class)

    Read the article

  • DataContractSerializer and XSLT

    - by Russ Clark
    I've got a simple Employee class that I'm trying to serialize to an XDocument and then use XSLT to transform the document to a page that displays both the properties (Name and ID) from the Employee class, and an html form with 2 radio buttons (Approve and Reject) and a submit button. Here is the Employee class: [Serializable, DataContract(Namespace="XSLT_MVC.Controllers/")] public class Employee { [DataMember] public string Name { get; set; } [DataMember] public int ID { get; set; } public Employee() { } public Employee(string name, int id) { Name = name; ID = id; } public XDocument GetDoc() { XDocument doc = new XDocument(); var serializer = new DataContractSerializer(typeof(Employee)); using (var writer = doc.CreateWriter()) { serializer.WriteObject(writer, this); writer.Close(); } return doc; } } And here is the XSLT file: <?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" > <xsl:output method="html" indent="yes"/> <xsl:template match="/"> <html> <body> <xsl:value-of select="Employee/Name"/> <br /> <xsl:value-of select="Employee/ID"/> <br /> <form method="post" action="/Home/ProcessRequest?id={Employee/ID}"> <input id="Action" name="Action" type="radio" value="Approved"></input> Approved <br /> <input id="Action" name="Action" type="radio" value="Rejected"></input> Rejected <br /> <input type="submit" value="Submit"></input> </form> </body> </html> </xsl:template> </xsl:stylesheet> When I run this, all I get is the html form with the 2 radio buttons and the submit button, but not the properties from the Employee class. I saw a separate StackOverflow post that said I need to change the <xsl:template match="/"> to match on the namespace of my Employee class like this: <xsl:template match="/XSLT_MVC.Controllers">, but when I do that, now all I get are the Employee properties, and not the html form with the 2 radio buttons and the submit button. Does anyone know what needs to be done so that my transform will select and display both the Employee properties and the html form?

    Read the article

  • Serialization of non-required fields in protobuf-net

    - by David Hedlund
    I have a working java client that is communicating with Google, through ProtoBuf serialized messages. I am currently trying to translate that client into C#. I have a .proto file where the parameter appId is an optional string. Its default value in the C# representation as generated by the protobuf-net library is an empty string, just as it is in the java representation of the same file. message AppsRequest { optional AppType appType = 1; optional string query = 2; optional string categoryId = 3; optional string appId = 4; optional bool withExtendedInfo = 6; } I find that when I explicitly set appId to "" in the java client, the client stops working (403 Bad Request from Google). When I explicitly set appId to null in the java client, everything works, but only because hasAppId is being set to false (I'm uncertain as to how that affects the serialization). In the C# client, I always get 403 responses. I don't see any logic behind the distinction between not setting a value, and setting the default value, that seems to make all the difference in the java client. Since the output is always a binary stream, I am not sure if the successful java messages are being serialized with an empty string, or not serialized at all. In the C# client, I've tried setting IsRequired to true on the ProtoMember attribute, to force them to serialize, and I've tried setting the default value to null, and explicitly set "", so I'm quite sure I've tried some configuration where the value is being serialized. I've also played around with ProtoBuf.ProtoIgnore and at some point, removing the appId parameter altogether, but I haven't been able to avoid the 403 errors in C#. I've tried manually copying the serialized string from java, and that resolved my issues, so I'm certain that the rest of the HTTP Request is working, and the error can be traced to the serialized object. My serialization is simply this: var clone = ProtoBuf.Serializer.DeepClone(request); MemoryStream ms = new MemoryStream(2000); ProtoBuf.Serializer.Serialize(ms, clone); var bytearr = ms.ToArray(); string encodedData = Convert.ToBase64String(bytearr); I'll admit to not being quite sure about what DeepClone does. I've tried both with and without it...

    Read the article

  • DataContractSerializer: preserve string member that happens to be raw xml?

    - by bwerks
    I'm a little inexperienced with the DataContract paradigm, and I'm running into a deserialization problem. I have a field that's a string, but it contains xml and it's not being deserialized correctly. I have a feeling that it's because the DCS is treating it as input to the serializer and not as an opaque string object. Is there some way to mark a DataMember in code to say "This thing is a string, don't treat its contents as xml" similar to XmlIgnore? Thanks!

    Read the article

  • How do I return clean JSON from a WCF Service?

    - by user208662
    I am trying to return some JSON from a WCF service. This service simply returns some content from my database. I can get the data. However, I am concerned about the format of my JSON. Currently, the JSON that gets returned is formatted like this: {"d":"[{\"Age\":35,\"FirstName\":\"Peyton\",\"LastName\":\"Manning\"},{\"Age\":31,\"FirstName\":\"Drew\",\"LastName\":\"Brees\"},{\"Age\":29,\"FirstName\":\"Tony\",\"LastName\":\"Romo\"}]"} In reality, I would like my JSON to be formatted as cleanly as possible. I believe (I may be incorrect), that the same collection of results, represented in clean JSON, should look like so: [{"Age":35,"FirstName":"Peyton","LastName":"Manning"},{"Age":31,"FirstName":"Drew","LastName":"Brees"},{"Age":29,"FirstName":"Tony","LastName":"Romo"}] I have no idea where the “d” is coming from. I also have no clue why the escape characters are being inserted. My entity looks like the following: [DataContract] public class Person { [DataMember] public string FirstName { get; set; } [DataMember] public string LastName { get; set; } [DataMember] public int Age { get; set; } public Person(string firstName, string lastName, int age) { this.FirstName = firstName; this.LastName = lastName; this.Age = age; } } The service that is responsible for returning the content is defined as: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class TestService { [OperationContract] [WebGet(ResponseFormat = WebMessageFormat.Json)] public string GetResults() { List<Person> results = new List<Person>(); results.Add(new Person("Peyton", "Manning", 35)); results.Add(new Person("Drew", "Brees", 31)); results.Add(new Person("Tony", "Romo", 29)); // Serialize the results as JSON DataContractJsonSerializer serializer = new DataContractJsonSerializer(results.GetType()); MemoryStream memoryStream = new MemoryStream(); serializer.WriteObject(memoryStream, results); // Return the results serialized as JSON string json = Encoding.Default.GetString(memoryStream.ToArray()); return json; } } How do I return “clean” JSON from a WCF service? Thank you!

    Read the article

  • Control serialization of GWT

    - by Phuong Nguyen de ManCity fan
    I want GWT to not serialize some fields of my object (which implements Serializable interface). Normally, transient keyword would be enough. However, I also need to put the object on memcache. The use of transient keyword would make the field not being stored on memcache also. Is there any GWT-specific technique to tell the serializer to not serialize a field?

    Read the article

  • In .NET Xml Serialization, is it possible to serialize a class with an enum property with different

    - by Lasse V. Karlsen
    I have a class, containing a list property, where the list contains objects that has an enum property. When I serialize this, it looks like this: <?xml version="1.0" encoding="ibm850"?> <test> <events> <test-event type="changing" /> <test-event type="changed" /> </events> </test> Is it possible, through attributes, or similar, to get the Xml to look like this? <?xml version="1.0" encoding="ibm850"?> <test> <events> <changing /> <changed /> </events> </test> Basically, use the property value of the enum as a way to determine the tag-name? Is using a class hierarchy (ie. creating subclasses instead of using the property value) the only way? Edit: After testing, it seems even a class-hierarchy won't actually work. If there is a way to structure the classes to get the output I want, even with sub-classes, that is also an acceptable answer. Here's a sample program that will output the above Xml (remember to hit Ctrl+F5 to run in Visual Studio, otherwise the program window will close immediately): using System; using System.Collections.Generic; using System.Xml.Serialization; namespace ConsoleApplication18 { public enum TestEventTypes { [XmlEnum("changing")] Changing, [XmlEnum("changed")] Changed } [XmlType("test-event")] public class TestEvent { [XmlAttribute("type")] public TestEventTypes Type { get; set; } } [XmlType("test")] public class Test { private List<TestEvent> _Events = new List<TestEvent>(); [XmlArray("events")] public List<TestEvent> Events { get { return _Events; } } } class Program { static void Main(string[] args) { Test test = new Test(); test.Events.Add(new TestEvent { Type = TestEventTypes.Changing }); test.Events.Add(new TestEvent { Type = TestEventTypes.Changed }); XmlSerializer serializer = new XmlSerializer(typeof(Test)); XmlSerializerNamespaces ns = new XmlSerializerNamespaces(); ns.Add("", ""); serializer.Serialize(Console.Out, test, ns); } } }

    Read the article

  • Serialize the @property methods in a Python class.

    - by ashchristopher
    Is there a way to have any @property definitions passed through to a json serializer when serializing a Django model class? example: class FooBar(object.Model) name = models.CharField(...) @property def foo(self): return "My name is %s" %self.name Want to serialize to: [{ 'name' : 'Test User', 'foo' : 'My name is Test User', },]

    Read the article

  • Deserialize JSON, sometimes value is an array, sometimes "" (blank string).

    - by karl.r
    I am trying to deserialize a field: "presenters":[{...},{...}] but some of the rows come back with only: "presenters":"" When the serializer gets to the row with that empty string I get: Error converting value "" to type 'System.Collections.Generic.List`1[DataPrototype.Model.Presenter]'. Am I right in thinking that I need a JsonConverter that will change the empty string into an empty List?

    Read the article

< Previous Page | 2 3 4 5 6 7 8 9 10 11 12 13  | Next Page >