Search Results

Search found 3481 results on 140 pages for 'convex optimization'.

Page 60/140 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • How to index a date column with null values?

    - by Heinz Z.
    How should I index a date column when some rows has null values? We have to select rows between a date range and rows with null dates. We use Oracle 9.2 and higher. Options I found Using a bitmap index on the date column Using an index on date column and an index on a state field which value is 1 when the date is null Using an index on date column and an other granted not null column My thoughts to the options are: to 1: the table have to many different values to use an bitmap index to 2: I have to add an field only for this purpose and to change the query when I want to retrieve the null date rows to 3: locks tricky to add an field to an index which is not really needed What is the best practice for this case? Thanks in advance Some infos I have read: Oracle Date Index When does Oracle index null column values?

    Read the article

  • "Anagram solver" based on statistics rather than a dictionary/table?

    - by James M.
    My problem is conceptually similar to solving anagrams, except I can't just use a dictionary lookup. I am trying to find plausible words rather than real words. I have created an N-gram model (for now, N=2) based on the letters in a bunch of text. Now, given a random sequence of letters, I would like to permute them into the most likely sequence according to the transition probabilities. I thought I would need the Viterbi algorithm when I started this, but as I look deeper, the Viterbi algorithm optimizes a sequence of hidden random variables based on the observed output. I am trying to optimize the output sequence. Is there a well-known algorithm for this that I can read about? Or am I on the right track with Viterbi and I'm just not seeing how to apply it?

    Read the article

  • How to optimize an database suggestion engine

    - by Dimitar Vouldjeff
    Hi, I`m making an online engine for item-to-item recommending movies. I have made some researches and I think that the best way to implement that is using pearson correlation and make a table with item1, item2 and correlation fields, but the problem is that after each rate of item I have to regenerate the correlation for in the worst case N records (where N is the number of items). Another think that I read is the following article, but I haven`t thought a way to implement it. So what is your suggestion to optimize this process? Or any other suggestions? Thanks.

    Read the article

  • Data Access from single table in sql server 2005 is too slow

    - by Muhammad Kashif Nadeem
    Following is the script of table. Accessing data from this table is too slow. SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO CREATE TABLE [dbo].[Emails]( [id] [int] IDENTITY(1,1) NOT NULL, [datecreated] [datetime] NULL CONSTRAINT [DF_Emails_datecreated] DEFAULT (getdate()), [UID] [nvarchar](250) COLLATE Latin1_General_CI_AS NULL, [From] [nvarchar](100) COLLATE Latin1_General_CI_AS NULL, [To] [nvarchar](100) COLLATE Latin1_General_CI_AS NULL, [Subject] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [Body] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [HTML] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [AttachmentCount] [int] NULL, [Dated] [datetime] NULL ) ON [PRIMARY] Following query takes 50 seconds to fetch data. select id, datecreated, UID, [From], [To], Subject, AttachmentCount, Dated from emails If I include Body and Html in select then time is event worse. indexes are on: id unique clustered From Non unique non clustered To Non unique non clustered Tabls has currently 180000+ records. There might be 100,000 records each month so this will become more slow as time will pass. Does splitting data into two table will solve the problem? What other indexes should be there?

    Read the article

  • approximating log10[x^k0 + k1]

    - by Yale Zhang
    Greetings. I'm trying to approximate the function Log10[x^k0 + k1], where .21 < k0 < 21, 0 < k1 < ~2000, and x is integer < 2^14. k0 & k1 are constant. For practical purposes, you can assume k0 = 2.12, k1 = 2660. The desired accuracy is 5*10^-4 relative error. This function is virtually identical to Log[x], except near 0, where it differs a lot. I already have came up with a SIMD implementation that is ~1.15x faster than a simple lookup table, but would like to improve it if possible, which I think is very hard due to lack of efficient instructions. My SIMD implementation uses 16bit fixed point arithmetic to evaluate a 3rd degree polynomial (I use least squares fit). The polynomial uses different coefficients for different input ranges. There are 8 ranges, and range i spans (64)2^i to (64)2^(i + 1). The rational behind this is the derivatives of Log[x] drop rapidly with x, meaning a polynomial will fit it more accurately since polynomials are an exact fit for functions that have a derivative of 0 beyond a certain order. SIMD table lookups are done very efficiently with a single _mm_shuffle_epi8(). I use SSE's float to int conversion to get the exponent and significand used for the fixed point approximation. I also software pipelined the loop to get ~1.25x speedup, so further code optimizations are probably unlikely. What I'm asking is if there's a more efficient approximation at a higher level? For example: Can this function be decomposed into functions with a limited domain like log2((2^x) * significand) = x + log2(significand) hence eliminating the need to deal with different ranges (table lookups). The main problem I think is adding the k1 term kills all those nice log properties that we know and love, making it not possible. Or is it? Iterative method? don't think so because the Newton method for log[x] is already a complicated expression Exploiting locality of neighboring pixels? - if the range of the 8 inputs fall in the same approximation range, then I can look up a single coefficient, instead of looking up separate coefficients for each element. Thus, I can use this as a fast common case, and use a slower, general code path when it isn't. But for my data, the range needs to be ~2000 before this property hold 70% of the time, which doesn't seem to make this method competitive. Please, give me some opinion, especially if you're an applied mathematician, even if you say it can't be done. Thanks.

    Read the article

  • Nodes set of the same type with if-test. Make it less.

    - by Kalinin
    How to make the code more beautiful (compact)? <xsl:template match="part"> <table class="part"> <xsl:if test="name != ''"> <tr> <td>????????</td><td><xsl:value-of select="name"/></td> </tr> </xsl:if> <xsl:if test="model != ''"> <tr> <td>??????</td><td><xsl:value-of select="model"/></td> </tr> </xsl:if> <xsl:if test="year != ''"> <tr> <td>???</td><td><xsl:value-of select="year"/></td> </tr> </xsl:if> <xsl:if test="glass_type != ''"> <tr> <td>???</td><td><xsl:value-of select="glass_type"/></td> </tr> </xsl:if> <xsl:if test="scancode != ''"> <tr> <td>???????</td><td><xsl:value-of select="scancode"/></td> </tr> </xsl:if> <xsl:if test="eurocode != ''"> <tr> <td>???????</td><td><xsl:value-of select="eurocode"/></td> </tr> </xsl:if> <xsl:if test="coment != ''"> <tr> <td>???????????</td><td><xsl:value-of select="coment"/></td> </tr> </xsl:if> <xsl:if test="glass_size != ''"> <tr> <td>??????</td><td><xsl:value-of select="glass_size"/></td> </tr> </xsl:if> <xsl:if test="vendor != ''"> <tr> <td>?????????????</td><td><xsl:value-of select="vendor"/></td> </tr> </xsl:if> <xsl:if test="trademark != ''"> <tr> <td>???????? ?????</td><td><xsl:value-of select="trademark"/></td> </tr> </xsl:if> <xsl:if test="fprice != ''"> <tr> <td>????</td><td><xsl:value-of select="fprice"/></td> </tr> </xsl:if> </table> </xsl:template> Update: i wrote: <my:translations xmlns:my="my:my"> <w e="name" r="????????"/> <w e="model" r="??????"/> <w e="year" r="???"/> <w e="glass_type" r="???"/> <w e="scancode" r="???????"/> <w e="eurocode" r="???????"/> <w e="comment" r="???????????"/> <w e="glass_size" r="??????"/> <w e="vendor" r="?????????????"/> <w e="trademark" r="???????? ?????"/> <w e="fprice" r="????"/> </my:translations> <xsl:value-of select="//w/@r"/> And have no result from this code. Is it normal? And how can i get new element w?

    Read the article

  • unroll nested for loops in C++

    - by Hristo
    How would I unroll the following nested loops? for(k = begin; k != end; ++k) { for(j = 0; j < Emax; ++j) { for(i = 0; i < N; ++i) { if (j >= E[i]) continue; array[k] += foo(i, tr[k][i], ex[j][i]); } } } I tried the following, but my output isn't the same, and it should be: for(k = begin; k != end; ++k) { for(j = 0; j < Emax; ++j) { for(i = 0; i+4 < N; i+=4) { if (j >= E[i]) continue; array[k] += foo(i, tr[k][i], ex[j][i]); array[k] += foo(i+1, tr[k][i+1], ex[j][i+1]); array[k] += foo(i+2, tr[k][i+2], ex[j][i+2]); array[k] += foo(i+3, tr[k][i+3], ex[j][i+3]); } if (i < N) { for (; i < N; ++i) { if (j >= E[i]) continue; array[k] += foo(i, tr[k][i], ex[j][i]); } } } } I will be running this code in parallel using Intel's TBB so that it takes advantage of multiple cores. After this is finished running, another function prints out what is in array[] and right now, with my unrolling, the output isn't identical. Any help is appreciated. Thanks, Hristo

    Read the article

  • Is SQL DATEDIFF(year, ..., ...) an Expensive Computation?

    - by rlb.usa
    I'm trying to optimize up some horrendously complicated SQL queries because it takes too long to finish. In my queries, I have dynamically created SQL statements with lots of the same functions, so I created a temporary table where each function is only called once instead of many, many times - this cut my execution time by 3/4. So my question is, can I expect to see much of a difference if say, 1,000 datediff computations are narrowed to 100?

    Read the article

  • most efficient method of turning multiple 1D arrays into columns of a 2D array

    - by Ty W
    As I was writing a for loop earlier today, I thought that there must be a neater way of doing this... so I figured I'd ask. I looked briefly for a duplicate question but didn't see anything obvious. The Problem: Given N arrays of length M, turn them into a M-row by N-column 2D array Example: $id = [1,5,2,8,6] $name = [a,b,c,d,e] $result = [[1,a], [5,b], [2,c], [8,d], [6,e]] My Solution: Pretty straight forward and probably not optimal, but it does work: <?php // $row is returned from a DB query // $row['<var>'] is a comma separated string of values $categories = array(); $ids = explode(",", $row['ids']); $names = explode(",", $row['names']); $titles = explode(",", $row['titles']); for($i = 0; $i < count($ids); $i++) { $categories[] = array("id" => $ids[$i], "name" => $names[$i], "title" => $titles[$i]); } ?> note: I didn't put the name = value bit in the spec, but it'd be awesome if there was some way to keep that as well.

    Read the article

  • Will the compiler optimize escaping an inner loop?

    - by BCS
    The code I have looks like this (all uses of done shown): bool done = false; for(int i = 0; i < big; i++) { ... for(int j = 0; j < wow; j++) { ... if(foo(i,j)) { done = true; break; } ... } if(done) break; ... } will any compilers convert it to this: for(int i = 0; i < big; i++) { ... for(int j = 0; j < wow; j++) { ... if(foo(i,j)) goto __done; // same as a labeled break if we had it ... } ... } __done:;

    Read the article

  • Should not a tail-recursive function also be faster?

    - by Balint Erdi
    I have the following Clojure code to calculate a number with a certain "factorable" property. (what exactly the code does is secondary). (defn factor-9 ([] (let [digits (take 9 (iterate #(inc %) 1)) nums (map (fn [x] ,(Integer. (apply str x))) (permutations digits))] (some (fn [x] (and (factor-9 x) x)) nums))) ([n] (or (= 1 (count (str n))) (and (divisible-by-length n) (factor-9 (quot n 10)))))) Now, I'm into TCO and realize that Clojure can only provide tail-recursion if explicitly told so using the recur keyword. So I've rewritten the code to do that (replacing factor-9 with recur being the only difference): (defn factor-9 ([] (let [digits (take 9 (iterate #(inc %) 1)) nums (map (fn [x] ,(Integer. (apply str x))) (permutations digits))] (some (fn [x] (and (factor-9 x) x)) nums))) ([n] (or (= 1 (count (str n))) (and (divisible-by-length n) (recur (quot n 10)))))) To my knowledge, TCO has a double benefit. The first one is that it does not use the stack as heavily as a non tail-recursive call and thus does not blow it on larger recursions. The second, I think is that consequently it's faster since it can be converted to a loop. Now, I've made a very rough benchmark and have not seen any difference between the two implementations although. Am I wrong in my second assumption or does this have something to do with running on the JVM (which does not have automatic TCO) and recur using a trick to achieve it? Thank you.

    Read the article

  • When compiling programs to run inside a VM, what should march and mtune be set to?

    - by Russ
    With VMs being slave to whatever the host machine is providing, what compiler flags should be provided to gcc? I would normally think that -march=native would be what you would use when compiling for a dedicated box, but the fine detail that -march=native is going to as indicated in this article makes me extremely wary of using it. So... what to set -march and -mtune to inside a VM? For a specific example... My specific case right now is compiling python (and more) in a linux guest inside a KVM-based "cloud" host that I have no real control over the host hardware (aside from 'simple' stuff like CPU GHz m CPU count, and available RAM). Currently, cpuinfo tells me I've got an "AMD Opteron(tm) Processor 6176" but I honestly don't know (yet) if that is reliable and whether the guest can get moved around to different architectures on me to meet the host's infrastructure shuffling needs (sounds hairy/unlikely). All I can really guarantee is my OS, which is a 64-bit linux kernel where uname -m yields x86_64.

    Read the article

  • How to insert zeros between bits in a bitmap?

    - by anatolyg
    I have some performance-heavy code that performs bit manipulations. It can be reduced to the following well-defined problem: Given a 13-bit bitmap, construct a 26-bit bitmap that contains the original bits spaced at even positions. To illustrate: 0000000000000000000abcdefghijklm (input, 32 bits) 0000000a0b0c0d0e0f0g0h0i0j0k0l0m (output, 32 bits) I currently have it implemented in the following way in C: if (input & (1 << 12)) output |= 1 << 24; if (input & (1 << 11)) output |= 1 << 22; if (input & (1 << 10)) output |= 1 << 20; ... My compiler (MS Visual Studio) turned this into the following: test eax,1000h jne 0064F5EC or edx,1000000h ... (repeated 13 times with minor differences in constants) I wonder whether i can make it any faster. I would like to have my code written in C, but switching to assembly language is possible. Can i use some MMX/SSE instructions to process all bits at once? Maybe i can use multiplication? (multiply by 0x11111111 or some other magical constant) Would it be better to use condition-set instruction (SETcc) instead of conditional-jump instruction? If yes, how can i make the compiler produce such code for me? Any other idea how to make it faster? Any idea how to do the inverse bitmap transformation (i have to implement it too, bit it's less critical)?

    Read the article

  • MySQL subqueries

    - by swamprunner7
    Can we do this query without subqueries? SELECT login, post_n, (SELECT SUM(vote) FROM votes WHERE votes.post_n=posts.post_n)AS votes, (SELECT COUNT(comments.post_n) FROM comments WHERE comments.post_n=posts.post_n)AS comments_count FROM users, posts WHERE posts.id=users.id AND (visibility=2 OR visibility=3) ORDER BY date DESC LIMIT 0, 15 tables: Users: id, login Posts: post_n, id, visibility Votes: post_n, vote id — it`s user id, Users the main table.

    Read the article

  • Optimizing Vector elements swaps using CUDA

    - by Orion Nebula
    Hi all, Since I am new to cuda .. I need your kind help I have this long vector, for each group of 24 elements, I need to do the following: for the first 12 elements, the even numbered elements are multiplied by -1, for the second 12 elements, the odd numbered elements are multiplied by -1 then the following swap takes place: Graph: because I don't yet have enough points, I couldn't post the image so here it is: http://www.freeimagehosting.net/image.php?e4b88fb666.png I have written this piece of code, and wonder if you could help me further optimize it to solve for divergence or bank conflicts .. //subvector is a multiple of 24, Mds and Nds are shared memory _shared_ double Mds[subVector]; _shared_ double Nds[subVector]; int tx = threadIdx.x; int tx_mod = tx ^ 0x0001; int basex = __umul24(blockDim.x, blockIdx.x); Mds[tx] = M.elements[basex + tx]; __syncthreads(); // flip the signs if (tx < (tx/24)*24 + 12) { //if < 12 and even if ((tx & 0x0001)==0) Mds[tx] = -Mds[tx]; } else if (tx < (tx/24)*24 + 24) { //if >12 and < 24 and odd if ((tx & 0x0001)==1) Mds[tx] = -Mds[tx]; } __syncthreads(); if (tx < (tx/24)*24 + 6) { //for the first 6 elements .. swap with last six in the 24elements group (see graph) Nds[tx] = Mds[tx_mod + 18]; Mds [tx_mod + 18] = Mds [tx]; Mds[tx] = Nds[tx]; } else if (tx < (tx/24)*24 + 12) { // for the second 6 elements .. swp with next adjacent group (see graph) Nds[tx] = Mds[tx_mod + 6]; Mds [tx_mod + 6] = Mds [tx]; Mds[tx] = Nds[tx]; } __syncthreads(); Thanks in advance ..

    Read the article

  • Mysql - help me optimize this query (improved question)

    - by sandeepan-nath
    About the system: - There are tutors who create classes and packs - A tags based search approach is being followed.Tag relations are created when new tutors register and when tutors create packs (this makes tutors and packs searcheable). For details please check the section How tags work in this system? below. Following is the concerned query SELECT SUM(DISTINCT( t.tag LIKE "%Dictatorship%" )) AS key_1_total_matches, SUM(DISTINCT( t.tag LIKE "%democracy%" )) AS key_2_total_matches, COUNT(DISTINCT( od.id_od )) AS tutor_popularity, CASE WHEN ( IF(( wc.id_wc > 0 ), ( wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date > '2010-06-01 22:00:56' AND wccp.status = 1 AND ( wccp.country_code = 'IE' OR wccp.country_code IN ( 'INT' ) ) ), 0) ) THEN 1 ELSE 0 END AS 'classes_published', CASE WHEN ( IF(( lp.id_lp > 0 ), ( lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND ( lpcp.country_code = 'IE' OR lpcp.country_code IN ( 'INT' ) ) ), 0) ) THEN 1 ELSE 0 END AS 'packs_published', td . *, u . * FROM tutor_details AS td JOIN users AS u ON u.id_user = td.id_user LEFT JOIN learning_packs_tag_relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN learning_packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN learning_packs_categories AS lpc ON lpc.id_lp_cat = lp.id_lp_cat LEFT JOIN learning_packs_categories AS lpcp ON lpcp.id_lp_cat = lpc.id_parent LEFT JOIN learning_pack_content AS lpct ON ( lp.id_lp = lpct.id_lp ) LEFT JOIN webclasses_tag_relations AS wtagrels ON td.id_tutor = wtagrels.id_tutor LEFT JOIN webclasses AS wc ON wtagrels.id_wc = wc.id_wc LEFT JOIN learning_packs_categories AS wcc ON wcc.id_lp_cat = wc.id_wp_cat LEFT JOIN learning_packs_categories AS wccp ON wccp.id_lp_cat = wcc.id_parent LEFT JOIN order_details AS od ON td.id_tutor = od.id_author LEFT JOIN orders AS o ON od.id_order = o.id_order LEFT JOIN tutors_tag_relations AS ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN tags AS t ON ( t.id_tag = ttagrels.id_tag ) OR ( t.id_tag = lptagrels.id_tag ) OR ( t.id_tag = wtagrels.id_tag ) WHERE ( u.country = 'IE' OR u.country IN ( 'INT' ) ) AND CASE WHEN ( ( t.id_tag = lptagrels.id_tag ) AND ( lp.id_lp 0 ) ) THEN lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND ( lpcp.country_code = 'IE' OR lpcp.country_code IN ( 'INT' ) ) ELSE 1 END AND CASE WHEN ( ( t.id_tag = wtagrels.id_tag ) AND ( wc.id_wc 0 ) ) THEN wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND ( wccp.country_code = 'IE' OR wccp.country_code IN ( 'INT' ) ) ELSE 1 END AND CASE WHEN ( od.id_od 0 ) THEN od.id_author = td.id_tutor AND o.order_status = 'paid' AND CASE WHEN ( od.id_wc 0 ) THEN od.can_attend_class = 1 ELSE 1 END ELSE 1 END GROUP BY td.id_tutor HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 ORDER BY tutor_popularity DESC, u.surname ASC, u.name ASC LIMIT 0, 20 The problem The results returned by the above query are correct (AND logic working as per expectation), but the time taken by the query rises alarmingly for heavier data and for the current data I have it is like 25 seconds as against normal query timings of the order of 0.005 - 0.0002 seconds, which makes it totally unusable. It is possible that some of the delay is being caused because all the possible fields have not yet been indexed. The tag field of tags table is indexed. Is there something faulty with the query? What can be the reason behind 20+ seconds of execution time? How tags work in this system? When a tutor registers, tags are entered and tag relations are created with respect to tutor's details like name, surname etc. When a Tutors create packs, again tags are entered and tag relations are created with respect to pack's details like pack name, description etc. tag relations for tutors stored in tutors_tag_relations and those for packs stored in learning_packs_tag_relations. All individual tags are stored in tags table. The explain query output:- Please see this screenshot - http://www.test.examvillage.com/Explain_query.jpg

    Read the article

  • Is this implementation truely tail-recursive?

    - by CFP
    Hello everyone! I've come up with the following code to compute in a tail-recursive way the result of an expression such as 3 4 * 1 + cos 8 * (aka 8*cos(1+(3*4))) The code is in OCaml. I'm using a list refto emulate a stack. type token = Num of float | Fun of (float->float) | Op of (float->float->float);; let pop l = let top = (List.hd !l) in l := List.tl (!l); top;; let push x l = l := (x::!l);; let empty l = (l = []);; let pile = ref [];; let eval data = let stack = ref data in let rec _eval cont = match (pop stack) with | Num(n) -> cont n; | Fun(f) -> _eval (fun x -> cont (f x)); | Op(op) -> _eval (fun x -> cont (op x (_eval (fun y->y)))); in _eval (fun x->x) ;; eval [Fun(fun x -> x**2.); Op(fun x y -> x+.y); Num(1.); Num(3.)];; I've used continuations to ensure tail-recursion, but since my stack implements some sort of a tree, and therefore provides quite a bad interface to what should be handled as a disjoint union type, the call to my function to evaluate the left branch with an identity continuation somehow irks a little. Yet it's working perfectly, but I have the feeling than in calling the _eval (fun y->y) bit, there must be something wrong happening, since it doesn't seem that this call can replace the previous one in the stack structure... Am I misunderstanding something here? I mean, I understand that with only the first call to _eval there wouldn't be any problem optimizing the calls, but here it seems to me that evaluation the _eval (fun y->y) will require to be stacked up, and therefore will fill the stack, possibly leading to an overflow... Thanks!

    Read the article

  • Long-running Database Query

    - by JamesMLV
    I have a long-running SQL Server 2005 query that I have been hoping to optimize. When I look at the actual execution plan, it says a Clustered Index Seek has 66% of the cost. Execuation Plan Snippit: <RelOp AvgRowSize="31" EstimateCPU="0.0113754" EstimateIO="0.0609028" EstimateRebinds="0" EstimateRewinds="0" EstimateRows="10198.5" LogicalOp="Clustered Index Seek" NodeId="16" Parallel="false" PhysicalOp="Clustered Index Seek" EstimatedTotalSubtreeCost="0.0722782"> <OutputList> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="quoteDate" /> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="price" /> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="tenure" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="1067" ActualEndOfScans="1" ActualExecutions="1" /> </RunTimeInformation> <IndexScan Ordered="true" ScanDirection="FORWARD" ForcedIndex="false" NoExpandHint="false"> <DefinedValues> <DefinedValue> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="quoteDate" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="price" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="tenure" /> </DefinedValue> </DefinedValues> <Object Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Index="[_dta_index_Indices_14_320720195__K5_K2_K1_3]" Alias="[I]" /> <SeekPredicates> <SeekPredicate> <Prefix ScanType="EQ"> <RangeColumns> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="HedgeProduct" ComputedColumn="true" /> </RangeColumns> <RangeExpressions> <ScalarOperator ScalarString="(1)"> <Const ConstValue="(1)" /> </ScalarOperator> </RangeExpressions> </Prefix> <StartRange ScanType="GE"> <RangeColumns> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="tenure" /> </RangeColumns> <RangeExpressions> <ScalarOperator ScalarString="[@StartMonth]"> <Identifier> <ColumnReference Column="@StartMonth" /> </Identifier> </ScalarOperator> </RangeExpressions> </StartRange> <EndRange ScanType="LE"> <RangeColumns> <ColumnReference Database="[wf_1]" Schema="[dbo]" Table="[Indices]" Alias="[I]" Column="tenure" /> </RangeColumns> <RangeExpressions> <ScalarOperator ScalarString="[@EndMonth]"> <Identifier> <ColumnReference Column="@EndMonth" /> </Identifier> </ScalarOperator> </RangeExpressions> </EndRange> </SeekPredicate> </SeekPredicates> </IndexScan> </RelOp> From this, does anyone see an obvious problem that would be causing this to take so long? Here is the query: (SELECT quotedate, tenure, price, ActualVolume, HedgePortfolioValue, Price AS UnhedgedPrice, ((ActualVolume*Price - HedgePortfolioValue)/ActualVolume) AS HedgedPrice FROM ( SELECT [quoteDate] ,[price] , tenure ,isnull(wf_1.[Risks].[HedgePortValueAsOfDate2](1,tenureMonth,quotedate,price),0) as HedgePortfolioValue ,[TotalOperatingGasVolume] as ActualVolume FROM [wf_1].[dbo].[Indices] I inner join ( SELECT DISTINCT tenureMonth FROM [wf_1].[Risks].[KnowRiskTrades] WHERE HedgeProduct = 1 AND portfolio <> 'Natural Gas Hedge Transactions' ) B ON I.tenure=B.tenureMonth inner join ( SELECT [Month],[TotalOperatingGasVolume] FROM [wf_1].[Risks].[ActualGasVolumes] ) C ON C.[Month]=B.tenureMonth WHERE HedgeProduct = 1 AND quoteDate>=dateadd(day, -3*365, tenureMonth) AND quoteDate<=dateadd(day,-3,tenureMonth) )A )

    Read the article

  • Javascriptlibrary more efficient than Rickshaw for realtime visualizations

    - by dan kutz
    I want to visualize data as time-series graphs on mobile devices(tablets) and therefore stumbled upon rickshaw, which is based on D3. First I must say I was a little bit confused when I realized that realtime in web design is defined totally different to realtime in engineering which has fixed(and often very short) timeframes. Anyway my aim is to visualize the data as fast as possible, and on older tablets visualization with rickshaw is quite slow. Can anybody recommend another library, which may be more efficient in rendering? Or is there no way out and I have to go native? regards Dan.

    Read the article

  • Hierarchical Hibernate, how many queries are executed?

    - by ghost1
    So I've been dealing with a home brew DB framework that has some seriously flaws, the justification for use being that not using an ORM will save on the number of queries executed. If I'm selecting all possibile records from the top level of a joinable object hierarchy, how many separate calls to the DB will be made when using an ORM (such as Hibernate)? I feel like calling bullshit on this, as joinable entities should be brought down in one query , right? Am I missing something here? note: lazy initialization doesn't matter in this scenario as all records will be used.

    Read the article

  • How to store static content across branches in a single location in version control

    - by Shravan
    [Just a random thought] I have a pdf doc that is downloaded when the user clicks on 'help' on my website. Now, this is a pretty huge document and is saved in version control (SVN) and is thus copied for all branches that exist in SVN. This is static content and something that developers are not working on, and does not change often. Is there a more efficient way to store it (that would not hamper local deployments) that would make SVN checkouts and updates relatively faster. I know the benefit we get is not huge, this is something that came to my head none the less.

    Read the article

  • How to make Visual C++ 9 not emit code that is actually never called?

    - by sharptooth
    My native C++ COM component uses ATL. In DllRegisterServer() I call CComModule::RegisterServer(): STDAPI DllRegisterServer() { return _Module.RegisterServer(FALSE); // <<< notice FALSE here } FALSE is passed to indicate to not register the type library. ATL is available as sources, so I in fact compile the implementation of CComModule::RegisterServer(). Somewhere down the call stack there's an if statement: if( doRegisterTypeLibrary ) { //<< FALSE goes here // do some stuff, then call RegisterTypeLib() } The compiler sees all of the above code and so it can see that in fact the if condition is always false, yet when I inspect the linker progress messages I see that the reference to RegisterTypeLib() is still there, so the if statement is not eliminated. Can I make Visual C++ 9 perform better static analysis and actually see that some code is never called and not emit that code?

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >