Search Results

Search found 1925 results on 77 pages for 'dense matrix'.

Page 60/77 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • Can anyone explain me the source code of python "import this"?

    - by byterussian
    If you open a Python interpreter, and type "import this", as you know, it prints: The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those! In the python source(Lib/this.py) this text is generated by a curios piece of code: s = """Gur Mra bs Clguba, ol Gvz Crgref Ornhgvshy vf orggre guna htyl. Rkcyvpvg vf orggre guna vzcyvpvg. Fvzcyr vf orggre guna pbzcyrk. Pbzcyrk vf orggre guna pbzcyvpngrq. Syng vf orggre guna arfgrq. Fcnefr vf orggre guna qrafr. Ernqnovyvgl pbhagf. Fcrpvny pnfrf nera'g fcrpvny rabhtu gb oernx gur ehyrf. Nygubhtu cenpgvpnyvgl orngf chevgl. Reebef fubhyq arire cnff fvyragyl. Hayrff rkcyvpvgyl fvyraprq. Va gur snpr bs nzovthvgl, ershfr gur grzcgngvba gb thrff. Gurer fubhyq or bar-- naq cersrenoyl bayl bar --boivbhf jnl gb qb vg. Nygubhtu gung jnl znl abg or boivbhf ng svefg hayrff lbh'er Qhgpu. Abj vf orggre guna arire. Nygubhtu arire vf bsgra orggre guna *evtug* abj. Vs gur vzcyrzragngvba vf uneq gb rkcynva, vg'f n onq vqrn. Vs gur vzcyrzragngvba vf rnfl gb rkcynva, vg znl or n tbbq vqrn. Anzrfcnprf ner bar ubaxvat terng vqrn -- yrg'f qb zber bs gubfr!""" d = {} for c in (65, 97): for i in range(26): d[chr(i+c)] = chr((i+13) % 26 + c) print "".join([d.get(c, c) for c in s])

    Read the article

  • Finding contained bordered regions from Excel imports.

    - by dmaruca
    I am importing massive amounts of data from Excel that have various table layouts. I have good enough table detection routines and merge cell handling, but I am running into a problem when it comes to dealing with borders. Namely performance. The bordered regions in some of these files have meaning. Data Setup: I am importing directly from Office Open XML using VB6 and MSXML. The data is parsed from the XML into a dictionary of cell data. This wonks wonderfully and is just as fast as using docmd.transferspreadsheet in Access, but returns much better results. Each cell contains a pointer to a style element which contains a pointer to a border element that defines the visibility and weight of each border (this is how the data is structured inside OpenXML, also). Challenge: What I'm trying to do is find every region that is enclosed inside borders, and create a list of cells that are inside that region. What I have done: I initially created a BFS(breadth first search) fill routine to find these areas. This works wonderfully and fast for "normal" sized spreadsheets, but gets way too slow for imports into the thousands of rows. One problem is that a border in Excel could be stored in the cell you are checking or the opposing border in the adjacent cell. That's ok, I can consolidate that data on import to reduce the number of checks needed. One thing I thought about doing is to create a separate graph that outlines the cells using the borders as my edges and using a graph algorithm to find regions that way, but I'm having trouble figuring out how to implement the algorithm. I've used Dijkstra in the past and thought I could do similar with this. So I can span out using no endpoint to search the entire graph, and if I encounter a closed node I know that I just found an enclosed region, but how can I know if the route I've found is the optimal one? I guess I could flag that to run a separate check for the found closed node to the previous node ignoring that one edge. This could work, but wouldn't be much better performance wise on dense graphs. Can anyone else suggest a better method? Thanks for taking the time to read this.

    Read the article

  • Oracle Data Mining a Star Schema: Telco Churn Case Study

    - by charlie.berger
    There is a complete and detailed Telco Churn case study "How to" Blog Series just posted by Ari Mozes, ODM Dev. Manager.  In it, Ari provides detailed guidance in how to leverage various strengths of Oracle Data Mining including the ability to: mine Star Schemas and join tables and views together to obtain a complete 360 degree view of a customer combine transactional data e.g. call record detail (CDR) data, etc. define complex data transformation, model build and model deploy analytical methodologies inside the Database  His blog is posted in a multi-part series.  Below are some opening excerpts for the first 3 blog entries.  This is an excellent resource for any novice to skilled data miner who wants to gain competitive advantage by mining their data inside the Oracle Database.  Many thanks Ari! Mining a Star Schema: Telco Churn Case Study (1 of 3) One of the strengths of Oracle Data Mining is the ability to mine star schemas with minimal effort.  Star schemas are commonly used in relational databases, and they often contain rich data with interesting patterns.  While dimension tables may contain interesting demographics, fact tables will often contain user behavior, such as phone usage or purchase patterns.  Both of these aspects - demographics and usage patterns - can provide insight into behavior.Churn is a critical problem in the telecommunications industry, and companies go to great lengths to reduce the churn of their customer base.  One case study1 describes a telecommunications scenario involving understanding, and identification of, churn, where the underlying data is present in a star schema.  That case study is a good example for demonstrating just how natural it is for Oracle Data Mining to analyze a star schema, so it will be used as the basis for this series of posts...... Mining a Star Schema: Telco Churn Case Study (2 of 3) This post will follow the transformation steps as described in the case study, but will use Oracle SQL as the means for preparing data.  Please see the previous post for background material, including links to the case study and to scripts that can be used to replicate the stages in these posts.1) Handling missing values for call data recordsThe CDR_T table records the number of phone minutes used by a customer per month and per call type (tariff).  For example, the table may contain one record corresponding to the number of peak (call type) minutes in January for a specific customer, and another record associated with international calls in March for the same customer.  This table is likely to be fairly dense (most type-month combinations for a given customer will be present) due to the coarse level of aggregation, but there may be some missing values.  Missing entries may occur for a number of reasons: the customer made no calls of a particular type in a particular month, the customer switched providers during the timeframe, or perhaps there is a data entry problem.  In the first situation, the correct interpretation of a missing entry would be to assume that the number of minutes for the type-month combination is zero.  In the other situations, it is not appropriate to assume zero, but rather derive some representative value to replace the missing entries.  The referenced case study takes the latter approach.  The data is segmented by customer and call type, and within a given customer-call type combination, an average number of minutes is computed and used as a replacement value.In SQL, we need to generate additional rows for the missing entries and populate those rows with appropriate values.  To generate the missing rows, Oracle's partition outer join feature is a perfect fit.  select cust_id, cdre.tariff, cdre.month, minsfrom cdr_t cdr partition by (cust_id) right outer join     (select distinct tariff, month from cdr_t) cdre     on (cdr.month = cdre.month and cdr.tariff = cdre.tariff);   ....... Mining a Star Schema: Telco Churn Case Study (3 of 3) Now that the "difficult" work is complete - preparing the data - we can move to building a predictive model to help identify and understand churn.The case study suggests that separate models be built for different customer segments (high, medium, low, and very low value customer groups).  To reduce the data to a single segment, a filter can be applied: create or replace view churn_data_high asselect * from churn_prep where value_band = 'HIGH'; It is simple to take a quick look at the predictive aspects of the data on a univariate basis.  While this does not capture the more complex multi-variate effects as would occur with the full-blown data mining algorithms, it can give a quick feel as to the predictive aspects of the data as well as validate the data preparation steps.  Oracle Data Mining includes a predictive analytics package which enables quick analysis. begin  dbms_predictive_analytics.explain(   'churn_data_high','churn_m6','expl_churn_tab'); end; /select * from expl_churn_tab where rank <= 5 order by rank; ATTRIBUTE_NAME       ATTRIBUTE_SUBNAME EXPLANATORY_VALUE RANK-------------------- ----------------- ----------------- ----------LOS_BAND                                      .069167052          1MINS_PER_TARIFF_MON  PEAK-5                   .034881648          2REV_PER_MON          REV-5                    .034527798          3DROPPED_CALLS                                 .028110322          4MINS_PER_TARIFF_MON  PEAK-4                   .024698149          5From the above results, it is clear that some predictors do contain information to help identify churn (explanatory value > 0).  The strongest uni-variate predictor of churn appears to be the customer's (binned) length of service.  The second strongest churn indicator appears to be the number of peak minutes used in the most recent month.  The subname column contains the interior piece of the DM_NESTED_NUMERICALS column described in the previous post.  By using the object relational approach, many related predictors are included within a single top-level column. .....   NOTE:  These are just EXCERPTS.  Click here to start reading the Oracle Data Mining a Star Schema: Telco Churn Case Study from the beginning.    

    Read the article

  • CodePlex Daily Summary for Friday, May 28, 2010

    CodePlex Daily Summary for Friday, May 28, 2010New ProjectsBang: BangBox Office: Event Management for Community Theater Groups: Box Office is an event management web application to help theater groups manage & promote their shows. Manage performance schedules, sell tickets, ...CellsOnWeb: El espacio de las células del Programa Académico Microsoft en Argentina. CRM 4.0 Plugin Queue Item Counter: This is a crm 4.0 plugin to count queue items in each folder and display the number at the end of the name. For example, if the queue name is "Tes...Date Calculator: Date Calculator is a small desktop utility developed using Windows Forms .NET technology. This utility is analogous to the "Date calculation" modul...Enterprise Library Investigate: Enterprise Library Investigate ProjecteProject Management: Ứng dụng nền tảng web hỗ trợ quản lí và giám sát tiến độ dự án của tổ chức doanh nghiệp.Fiddler TreeView Panel Extension: Extension for Fiddler, to display the session information in a TreeView panel instead of the default ListBox, so it groups the information logicall...Git Source Control Provider: Git Source Control Provider is a Visual Studio Plug-in that integrates Git with Visual Studio.InspurProjects: Project on Inspur Co.Kryptonite: The Kryptonite project aims to improve development of websites based on the Kentico CMS. MLang .NET Wrapper: Detect the encoding of a text without BOM (Byte Order Mask) and choose the best Encoding for persistence or network transport of textMondaze: Proof of concept using Windows Azure.MultipointControls: A collection of controls that applied Windows Multipoint Mouse SDK. Windows Multipoint Mouse SDK enable app to have multiple mice interact simultan...Mundo De Bloques: "Mundo de bloques" makes it easier for analists to find the shortest way between two states in a problem using an heuristic function for Artificial...MyRPGtests: Just some tests :)OffInvoice Add-in for MS Office 2010: Project Description: The project it's based in the ability to extend funtionality in the Microsoft Office 2010 suite.OpenGraph .NET: A C# client for the Facebook Graph API. Supports desktop, web, ASP.NET MVC, and Silverlight connections and real-time updates. PLEASE NOTE: I dis...Portable Extensible Metadata (PEM) Data Annotation Generator: This project intends to help developers who uses PEM - Portable Extensible Metadata for Entity Framework generating Data Annotation information fro...Production and sale of plastic window systems: Automation company produces window design, production and sale of plastic window systems, management of sales contracts and their execution, print ...Renjian Storm (Renjian Image Viewer Uploader): Renjian Image Viewer UploaderShark Web Intelligence CMS: Shark Web Intelligence Inc. Content Management System.Shuffleboard Game for Windows Phone 7: This is a sample Shuffleboard game written in Silverlight for Windows Phone 7. It demonstrates physics, procedural animation, perspective transform...Silverlight Property Grid: Visual Studio Style PropertyGrid for Silverlight.SvnToTfs: Simple tool that migrates every Subversion revision toward Team Foundation Server 2010. It is developed in C# witn a WPF front-end.Tamias: Basic Cms Mvc Contrib Portable Area: The goal of this project is to have a easy-to-integrate basic cms for ASP.NET MVC applications based on MVC Contrib Portable Areas.TwitBy: TwitBy is a Twitter client for anyone who uses Twitter. It's easy to use and all of the major features are there. More features to come. H...Under Construction: A simple site that can be used as a splash for sites being upgraded or developed. UO Editor: The Owner & Organisation Editor makes it easy to view and edit the names of the registered owner and registered organization for your Windows OS. N...webform2010: this is the test projectWireless Network: ssWiX Toolset: The Windows Installer XML (WiX) is a toolset that builds Windows installation packages from XML source code. The toolset supports a command line en...Xna.Extend: A collection of easy to use Xna components for aiding a game programmer in developing thee next big thing. I plan on using the components from this...New ReleasesA Guide to Parallel Programming: Drop 4 - Guide Preface, Chapters 1 - 5, and code: This is Drop 4 with Guide Preface, Chapters 1 - 5, and References, and the accompanying code samples. This drop requires Visual Studio 2010 Beta 2 ...Ajax Toolkit for ASP.NET MVC: MAT 1.1: MAT 1.1Community Forums NNTP bridge: Community Forums NNTP Bridge V09: Release of the Community Forums NNTP Bridge to access the social and anwsers MS forums with a single, open source NNTP bridge. This release solves ...Community Forums NNTP bridge: Community Forums NNTP Bridge V10: Release of the Community Forums NNTP Bridge to access the social and anwsers MS forums with a single, open source NNTP bridge. This release has add...Community Forums NNTP bridge: Community Forums NNTP Bridge V11: Release of the Community Forums NNTP Bridge to access the social and anwsers MS forums with a single, open source NNTP bridge. This release has add...CSS 360 Planetary Calendar: Beta Release: =============================================================================== Beta Release Version: 0.2 Description: This is the beta release de...Date Calculator: DateCalculator v1.0: This is the first release and as far as I know this is a stable version.eComic: eComic 2010.0.0.4: Version 2010.0.0.4 Change LogFixed issues in the "Full Screen Control Panel" causing it to lack translucence Added loupe magnification control ...Expression Encoder Batch Processor: Runtime Application v0.2: New in this version: Added more error handling if files not exist. Added button/feature to quit after current encoding job. Added code to handl...Fiddler TreeView Panel Extension: FiddlerTreeViewPanel 0.7: Initial compiled version of the assembly, ready to use. Please refer to http://fiddlertreeviewpanel.codeplex.com/ for instructions and installation.Gardens Point LEX: Gardens Point LEX v1.1.4: The main distribution is a zip file. This contains the binary executable, documentation, source code and the examples. ChangesVersion 1.1.4 corre...Gardens Point Parser Generator: Gardens Point Parser Generator v1.4.1: Version 1.4.1 differs from version 1.4.0 only in containing a corrected version of a previously undocumented feature which allows the generation of...IsWiX: IsWiX 1.0.264.0: Build 1.0.264.0 - built against Fireworks 1.0.264.0. Adds support for autogenerating the SourceDir prepreprocessor variable and gives user choice t...Matrix: Matrix 0.5.2: Updated licenseMesopotamia Experiment: Mesopotamia 1.2.90: Release Notes - Ugraded to Microsoft Robotics Developer Studio 2008 R3 Bug Fixes - Fix to keep any sole organisms that penetrate to the next fitne...Microsoft Crm 4.0 Filtered Lookup: Microsoft Crm 4.0 Filtered Lookup: How to use: Allow passing custom querystring values: Create a DWORD registry key named [DisableParameterFilter] under [HKEY_LOCAL_MACHINE\SOFTWAR...MSBuild Extension Pack: May 2010: The MSBuild Extension Pack May 2010 release provides a collection of over 340 MSBuild tasks. A high level summary of what the tasks currently cover...MultiPoint Vote: MultiPointVote v.1: This accepts user inputs: number of participants, poll/survey title and the list of options A text file containing the items listed line per line...Mundo De Bloques: Mundo de Bloques, Release 1: "Mundo de bloques" makes it easier for analists to find the shortest way between two states in a problem using an heuristic function for Artificial...OffInvoice Add-in for MS Office 2010: OffInvoice for Office 2010 V1.0 Installer: Add-in for MS Word 2010 or MS Excel 2010 to allow the management (issuing, visualization and reception) of electronic invoices, based in the XML fo...OpenGraph .NET: 0.9.1 Beta: This is the first public release of OpenGraph .NET.patterns & practices: Composite WPF and Silverlight: Prism v2.2 - May 2010 Release: Composite Application Guidance for WPF and Silverlight - May 2010 Release (Prism V2.2) The Composite Application Guidance for WPF and Silverlight ...Portable Extensible Metadata (PEM) Data Annotation Generator: Release 49376: First release.Production and sale of plastic window systems: Yanuary 2009: NOTEBefore loading program, make sure you have installed MySQL and created DataBase that store in Source Code (look at below) Where Is The Source?...PROGRAMMABLE SOFTWARE DEVELOPMENT ENVIRONMENT: PROGRAMMABLE SOFTWARE DEVELOPMENT ENVIRONMENT--3.2: The current version of the Programmable Software Development Environment has the capability of reading an optional text file in each source develop...Rapidshare Episode Downloader: RED 0.8.6: - Fixed Edit form to actually save the data - Added Bypass Validation to enable future episodes - Added Search parameter to Edit form - Added refr...Renjian Storm (Renjian Image Viewer Uploader): Renjian Storm 0.6: 人间风暴 v0.6 稳定版sELedit: sELedit v1.1b: + Fixed: when export and import items to text files, there was a bug with "NULL" bytes in the unicode stringShake - C# Make: Shake v0.1.21: Changes: FileTask CopyDir method modified, see documentationSharePoint Labs: SPLab7001A-ENU-Level100: SPLab7001A-ENU-Level100 This SharePoint Lab will teach how to analyze and audit WSP files. WSP files are somewhere in a no man's land between ITPro...SharePoint Rsync List: 1.0.0.3: Fix spcontext dispose bug in menu try and run jobs only on central admin server mark a single file failure if file not copied don't delete destinat...Shuffleboard Game for Windows Phone 7: Shuffleboard 1.0.0.1: Source code, solution files, and assets.Software Is Hardwork: Sw. Is Hw. Lib. 3.0.0.x+04: Sw. Is Hw. Lib. 3.0.0.x+04SoulHackers Demon Unite(Chinese version): WPFClient pre alpha: can unite 2, 3 or more demons. can un-unite 1 demon to 2 demon (no triple un-unite yet).Team Deploy: Team Deploy 2010 R1: This is the initial release for Team Deploy 2010 for TFS Team Build 2010. All features from Team Build 2.x are functional in this version. Comple...Under Construction: Under Construction: All Files required to show under construction page. The Page will pull through the Domain name that the site is being run on this allows you to use...Unit Driven: Version 0.0.5: - Tests nested by namespace parts. - Run buttons properly disabled based on currently running tests. - Timeouts for async tests enabled.UO Editor: UO Editor v1.0: Initial ReleaseVCC: Latest build, v2.1.30527.0: Automatic drop of latest buildWeb Service Software Factory Contrib: Import WSDL 2010: Generate Service Contract models from existing WSDL documents for Web Service Software Factory 2010. Usage: Install the vsix and right click on a S...Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)patterns & practices – Enterprise LibraryMicrosoft SQL Server Community & SamplesPHPExcelASP.NETMost Active ProjectsAStar.netpatterns & practices – Enterprise LibraryGMap.NET - Great Maps for Windows Forms & PresentationSqlServerExtensionsBlogEngine.NETRawrpatterns & practices: Windows Azure Security GuidanceCodeReviewCustomer Portal Accelerator for Microsoft Dynamics CRMIonics Isapi Rewrite Filter

    Read the article

  • Oracle Expands Sun Blade Portfolio for Cloud and Highly Virtualized Environments

    - by Ferhat Hatay
    Oracle announced the expansion of Sun Blade Portfolio for cloud and highly virtualized environments that deliver powerful performance and simplified management as tightly integrated systems.  Along with the SPARC T3-1B blade server, Oracle VM blade cluster reference configuration and Oracle's optimized solution for Oracle WebLogic Suite, Oracle introduced the dual-node Sun Blade X6275 M2 server module with some impressive benchmark results.   Benchmarks on the Sun Blade X6275 M2 server module demonstrate the outstanding performance characteristics critical for running varied commercial applications used in cloud and highly virtualized environments.  These include best-in-class SPEC CPU2006 results with the Intel Xeon processor 5600 series, six Fluent world records and 1.8 times the price-performance of the IBM Power 755 running NAMD, a prominent bio-informatics workload.   Benchmarks for Sun Blade X6275 M2 server module  SPEC CPU2006  The Sun Blade X6275 M2 server module demonstrated best in class SPECint_rate2006 results for all published results using the Intel Xeon processor 5600 series, with a result of 679.  This result is 97% better than the HP BL460c G7 blade, 80% better than the IBM HS22V blade, and 79% better than the Dell M710 blade.  This result demonstrates the density advantage of the new Oracle's server module for space-constrained data centers.     Sun Blade X6275M2 (2 Nodes, Intel Xeon X5670 2.93GHz) - 679 SPECint_rate2006; HP ProLiant BL460c G7 (2.93 GHz, Intel Xeon X5670) - 347 SPECint_rate2006; IBM BladeCenter HS22V (Intel Xeon X5680)  - 377 SPECint_rate2006; Dell PowerEdge M710 (Intel Xeon X5680, 3.33 GHz) - 380 SPECint_rate2006.  SPEC, SPECint, SPECfp reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org as of 11/24/2010 and this report.    For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   Fluent The Sun Fire X6275 M2 server module produced world-record results on each of the six standard cases in the current "FLUENT 12" benchmark test suite at 8-, 12-, 24-, 32-, 64- and 96-core configurations. These results beat the most recent QLogic score with IBM DX 360 M series platforms and QLogic "Truescale" interconnects.  Results on sedan_4m test case on the Sun Blade X6275 M2 server module are 23% better than the HP C7000 system, and 20% better than the IBM DX 360 M2; Dell has not posted a result for this test case.  Results can be found at the FLUENT website.   ANSYS's FLUENT software solves fluid flow problems, and is based on a numerical technique called computational fluid dynamics (CFD), which is used in the automotive, aerospace, and consumer products industries. The FLUENT 12 benchmark test suite consists of seven models that are well suited for multi-node clustered environments and representative of modern engineering CFD clusters. Vendors benchmark their systems with the principal objective of providing comparative performance information for FLUENT software that, among other things, depends on compilers, optimization, interconnect, and the performance characteristics of the hardware.   FLUENT application performance is representative of other commercial applications that require memory and CPU resources to be available in a scalable cluster-ready format.  FLUENT benchmark has six conventional test cases (eddy_417k, turbo_500k, aircraft_2m, sedan_4m, truck_14m, truck_poly_14m) at various core counts.   All information on the FLUENT website (http://www.fluent.com) is Copyrighted1995-2010 by ANSYS Inc. Results as of November 24, 2010. For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   NAMD Results on the Sun Blade X6275 M2 server module running NAMD (a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems) show up to a 1.8X better price/performance than IBM's Power 7-based system.  For space-constrained environments, the ultra-dense Sun Blade X6275 M2 server module provides a 1.7X better price/performance per rack unit than IBM's system.     IBM Power 755 4-way Cluster (16U). Total price for cluster: $324,212. See IBM United States Hardware Announcement 110-008, dated February 9, 2010, pp. 4, 21 and 39-46.  Sun Blade X6275 M2 8-Blade Cluster (10U). Total price for cluster:  $193,939. Price/performance and performance/RU comparisons based on f1ATPase molecule test results. Sun Blade X6275 M2 cluster: $3,568/step/sec, 5.435 step/sec/RU. IBM Power 755 cluster: $6,355/step/sec, 3.189 step/sec/U. See http://www-03.ibm.com/systems/power/hardware/reports/system_perf.html. See http://www.ks.uiuc.edu/Research/namd/performance.html for more information, results as of 11/24/10.   For more specifics about these results, please go to see http://blogs.sun.com/BestPerf   Reverse Time Migration The Reverse Time Migration is heavily used in geophysical imaging and modeling for Oil & Gas Exploration.  The Sun Blade X6275 M2 server module showed up to a 40% performance improvement over the previous generation server module with super-linear scalability to 16 nodes for the 9-Point Stencil used in this Reverse Time Migration computational kernel.  The balanced combination of Oracle's Sun Storage 7410 system with the Sun Blade X6275 M2 server module cluster showed linear scalability for the total application throughput, including the I/O and MPI communication, to produce a final 3-D seismic depth imaged cube for interpretation. The final image write time from the Sun Blade X6275 M2 server module nodes to Oracle's Sun Storage 7410 system achieved 10GbE line speed of 1.25 GBytes/second or better performance. Between subsequent runs, the effects of I/O buffer caching on the Sun Blade X6275 M2 server module nodes and write optimized caching on the Sun Storage 7410 system gave up to 1.8 GBytes/second effective write performance. The performance results and characterization of this Reverse Time Migration benchmark could serve as a useful measure for many other I/O intensive commercial applications. 3D VTI Reverse Time Migration Seismic Depth Imaging, see http://blogs.sun.com/BestPerf/entry/3d_vti_reverse_time_migration for more information, results as of 11/14/2010.                            

    Read the article

  • Thread placement policies on NUMA systems - update

    - by Dave
    In a prior blog entry I noted that Solaris used a "maximum dispersal" placement policy to assign nascent threads to their initial processors. The general idea is that threads should be placed as far away from each other as possible in the resource topology in order to reduce resource contention between concurrently running threads. This policy assumes that resource contention -- pipelines, memory channel contention, destructive interference in the shared caches, etc -- will likely outweigh (a) any potential communication benefits we might achieve by packing our threads more densely onto a subset of the NUMA nodes, and (b) benefits of NUMA affinity between memory allocated by one thread and accessed by other threads. We want our threads spread widely over the system and not packed together. Conceptually, when placing a new thread, the kernel picks the least loaded node NUMA node (the node with lowest aggregate load average), and then the least loaded core on that node, etc. Furthermore, the kernel places threads onto resources -- sockets, cores, pipelines, etc -- without regard to the thread's process membership. That is, initial placement is process-agnostic. Keep reading, though. This description is incorrect. On Solaris 10 on a SPARC T5440 with 4 x T2+ NUMA nodes, if the system is otherwise unloaded and we launch a process that creates 20 compute-bound concurrent threads, then typically we'll see a perfect balance with 5 threads on each node. We see similar behavior on an 8-node x86 x4800 system, where each node has 8 cores and each core is 2-way hyperthreaded. So far so good; this behavior seems in agreement with the policy I described in the 1st paragraph. I recently tried the same experiment on a 4-node T4-4 running Solaris 11. Both the T5440 and T4-4 are 4-node systems that expose 256 logical thread contexts. To my surprise, all 20 threads were placed onto just one NUMA node while the other 3 nodes remained completely idle. I checked the usual suspects such as processor sets inadvertently left around by colleagues, processors left offline, and power management policies, but the system was configured normally. I then launched multiple concurrent instances of the process, and, interestingly, all the threads from the 1st process landed on one node, all the threads from the 2nd process landed on another node, and so on. This happened even if I interleaved thread creating between the processes, so I was relatively sure the effect didn't related to thread creation time, but rather that placement was a function of process membership. I this point I consulted the Solaris sources and talked with folks in the Solaris group. The new Solaris 11 behavior is intentional. The kernel is no longer using a simple maximum dispersal policy, and thread placement is process membership-aware. Now, even if other nodes are completely unloaded, the kernel will still try to pack new threads onto the home lgroup (socket) of the primordial thread until the load average of that node reaches 50%, after which it will pick the next least loaded node as the process's new favorite node for placement. On the T4-4 we have 64 logical thread contexts (strands) per socket (lgroup), so if we launch 48 concurrent threads we will find 32 placed on one node and 16 on some other node. If we launch 64 threads we'll find 32 and 32. That means we can end up with our threads clustered on a small subset of the nodes in a way that's quite different that what we've seen on Solaris 10. So we have a policy that allows process-aware packing but reverts to spreading threads onto other nodes if a node becomes too saturated. It turns out this policy was enabled in Solaris 10, but certain bugs suppressed the mixed packing/spreading behavior. There are configuration variables in /etc/system that allow us to dial the affinity between nascent threads and their primordial thread up and down: see lgrp_expand_proc_thresh, specifically. In the OpenSolaris source code the key routine is mpo_update_tunables(). This method reads the /etc/system variables and sets up some global variables that will subsequently be used by the dispatcher, which calls lgrp_choose() in lgrp.c to place nascent threads. Lgrp_expand_proc_thresh controls how loaded an lgroup must be before we'll consider homing a process's threads to another lgroup. Tune this value lower to have it spread your process's threads out more. To recap, the 'new' policy is as follows. Threads from the same process are packed onto a subset of the strands of a socket (50% for T-series). Once that socket reaches the 50% threshold the kernel then picks another preferred socket for that process. Threads from unrelated processes are spread across sockets. More precisely, different processes may have different preferred sockets (lgroups). Beware that I've simplified and elided details for the purposes of explication. The truth is in the code. Remarks: It's worth noting that initial thread placement is just that. If there's a gross imbalance between the load on different nodes then the kernel will migrate threads to achieve a better and more even distribution over the set of available nodes. Once a thread runs and gains some affinity for a node, however, it becomes "stickier" under the assumption that the thread has residual cache residency on that node, and that memory allocated by that thread resides on that node given the default "first-touch" page-level NUMA allocation policy. Exactly how the various policies interact and which have precedence under what circumstances could the topic of a future blog entry. The scheduler is work-conserving. The x4800 mentioned above is an interesting system. Each of the 8 sockets houses an Intel 7500-series processor. Each processor has 3 coherent QPI links and the system is arranged as a glueless 8-socket twisted ladder "mobius" topology. Nodes are either 1 or 2 hops distant over the QPI links. As an aside the mapping of logical CPUIDs to physical resources is rather interesting on Solaris/x4800. On SPARC/Solaris the CPUID layout is strictly geographic, with the highest order bits identifying the socket, the next lower bits identifying the core within that socket, following by the pipeline (if present) and finally the logical thread context ("strand") on the core. But on Solaris on the x4800 the CPUID layout is as follows. [6:6] identifies the hyperthread on a core; bits [5:3] identify the socket, or package in Intel terminology; bits [2:0] identify the core within a socket. Such low-level details should be of interest only if you're binding threads -- a bad idea, the kernel typically handles placement best -- or if you're writing NUMA-aware code that's aware of the ambient placement and makes decisions accordingly. Solaris introduced the so-called critical-threads mechanism, which is expressed by putting a thread into the FX scheduling class at priority 60. The critical-threads mechanism applies to placement on cores, not on sockets, however. That is, it's an intra-socket policy, not an inter-socket policy. Solaris 11 introduces the Power Aware Dispatcher (PAD) which packs threads instead of spreading them out in an attempt to be able to keep sockets or cores at lower power levels. Maximum dispersal may be good for performance but is anathema to power management. PAD is off by default, but power management polices constitute yet another confounding factor with respect to scheduling and dispatching. If your threads communicate heavily -- one thread reads cache lines last written by some other thread -- then the new dense packing policy may improve performance by reducing traffic on the coherent interconnect. On the other hand if your threads in your process communicate rarely, then it's possible the new packing policy might result on contention on shared computing resources. Unfortunately there's no simple litmus test that says whether packing or spreading is optimal in a given situation. The answer varies by system load, application, number of threads, and platform hardware characteristics. Currently we don't have the necessary tools and sensoria to decide at runtime, so we're reduced to an empirical approach where we run trials and try to decide on a placement policy. The situation is quite frustrating. Relatedly, it's often hard to determine just the right level of concurrency to optimize throughput. (Understanding constructive vs destructive interference in the shared caches would be a good start. We could augment the lines with a small tag field indicating which strand last installed or accessed a line. Given that, we could augment the CPU with performance counters for misses where a thread evicts a line it installed vs misses where a thread displaces a line installed by some other thread.)

    Read the article

  • How to maintain encapsulation with composition in C++?

    - by iFreilicht
    I am designing a class Master that is composed from multiple other classes, A, Base, C and D. These four classes have absolutely no use outside of Master and are meant to split up its functionality into manageable and logically divided packages. They also provide extensible functionality as in the case of Base, which can be inherited from by clients. But, how do I maintain encapsulation of Master with this design? So far, I've got two approaches, which are both far from perfect: 1. Replicate all accessors: Just write accessor-methods for all accessor-methods of all classes that Master is composed of. This leads to perfect encapsulation, because no implementation detail of Master is visible, but is extremely tedious and makes the class definition monstrous, which is exactly what the composition should prevent. Also, adding functionality to one of the composees (is that even a word?) would require to re-write all those methods in Master. An additional problem is that inheritors of Base could only alter, but not add functionality. 2. Use non-assignable, non-copyable member-accessors: Having a class accessor<T> that can not be copied, moved or assigned to, but overrides the operator-> to access an underlying shared_ptr, so that calls like Master->A()->niceFunction(); are made possible. My problem with this is that it kind of breaks encapsulation as I would now be unable to change my implementation of Master to use a different class for the functionality of niceFunction(). Still, it is the closest I've gotten without using the ugly first approach. It also fixes the inheritance issue quite nicely. A small side question would be if such a class already existed in std or boost. EDIT: Wall of code I will now post the code of the header files of the classes discussed. It may be a bit hard to understand, but I'll give my best in explaining all of it. 1. GameTree.h The foundation of it all. This basically is a doubly-linked tree, holding GameObject-instances, which we'll later get to. It also has it's own custom iterator GTIterator, but I left that out for brevity. WResult is an enum with the values SUCCESS and FAILED, but it's not really important. class GameTree { public: //Static methods for the root. Only one root is allowed to exist at a time! static void ConstructRoot(seed_type seed, unsigned int depth); inline static bool rootExists(){ return static_cast<bool>(rootObject_); } inline static weak_ptr<GameTree> root(){ return rootObject_; } //delta is in ms, this is used for velocity, collision and such void tick(unsigned int delta); //Interaction with the tree inline weak_ptr<GameTree> parent() const { return parent_; } inline unsigned int numChildren() const{ return static_cast<unsigned int>(children_.size()); } weak_ptr<GameTree> getChild(unsigned int index) const; template<typename GOType> weak_ptr<GameTree> addChild(seed_type seed, unsigned int depth = 9001){ GOType object{ new GOType(seed) }; return addChildObject(unique_ptr<GameTree>(new GameTree(std::move(object), depth))); } WResult moveTo(weak_ptr<GameTree> newParent); WResult erase(); //Iterators for for( : ) loop GTIterator& begin(){ return *(beginIter_ = std::move(make_unique<GTIterator>(children_.begin()))); } GTIterator& end(){ return *(endIter_ = std::move(make_unique<GTIterator>(children_.end()))); } //unloading should be used when objects are far away WResult unloadChildren(unsigned int newDepth = 0); WResult loadChildren(unsigned int newDepth = 1); inline const RenderObject& renderObject() const{ return gameObject_->renderObject(); } //Getter for the underlying GameObject (I have not tested the template version) weak_ptr<GameObject> gameObject(){ return gameObject_; } template<typename GOType> weak_ptr<GOType> gameObject(){ return dynamic_cast<weak_ptr<GOType>>(gameObject_); } weak_ptr<PhysicsObject> physicsObject() { return gameObject_->physicsObject(); } private: GameTree(const GameTree&); //copying is only allowed internally GameTree(shared_ptr<GameObject> object, unsigned int depth = 9001); //pointer to root static shared_ptr<GameTree> rootObject_; //internal management of a child weak_ptr<GameTree> addChildObject(shared_ptr<GameTree>); WResult removeChild(unsigned int index); //private members shared_ptr<GameObject> gameObject_; shared_ptr<GTIterator> beginIter_; shared_ptr<GTIterator> endIter_; //tree stuff vector<shared_ptr<GameTree>> children_; weak_ptr<GameTree> parent_; unsigned int selfIndex_; //used for deletion, this isn't necessary void initChildren(unsigned int depth); //constructs children }; 2. GameObject.h This is a bit hard to grasp, but GameObject basically works like this: When constructing a GameObject, you construct its basic attributes and a CResult-instance, which contains a vector<unique_ptr<Construction>>. The Construction-struct contains all information that is needed to construct a GameObject, which is a seed and a function-object that is applied at construction by a factory. This enables dynamic loading and unloading of GameObjects as done by GameTree. It also means that you have to define that factory if you inherit GameObject. This inheritance is also the reason why GameTree has a template-function gameObject<GOType>. GameObject can contain a RenderObject and a PhysicsObject, which we'll later get to. Anyway, here's the code. class GameObject; typedef unsigned long seed_type; //this declaration magic means that all GameObjectFactorys inherit from GameObjectFactory<GameObject> template<typename GOType> struct GameObjectFactory; template<> struct GameObjectFactory<GameObject>{ virtual unique_ptr<GameObject> construct(seed_type seed) const = 0; }; template<typename GOType> struct GameObjectFactory : GameObjectFactory<GameObject>{ GameObjectFactory() : GameObjectFactory<GameObject>(){} unique_ptr<GameObject> construct(seed_type seed) const{ return unique_ptr<GOType>(new GOType(seed)); } }; //same as with the factories. this is important for storing them in vectors template<typename GOType> struct Construction; template<> struct Construction<GameObject>{ virtual unique_ptr<GameObject> construct() const = 0; }; template<typename GOType> struct Construction : Construction<GameObject>{ Construction(seed_type seed, function<void(GOType*)> func = [](GOType* null){}) : Construction<GameObject>(), seed_(seed), func_(func) {} unique_ptr<GameObject> construct() const{ unique_ptr<GameObject> gameObject{ GOType::factory.construct(seed_) }; func_(dynamic_cast<GOType*>(gameObject.get())); return std::move(gameObject); } seed_type seed_; function<void(GOType*)> func_; }; typedef struct CResult { CResult() : constructions{} {} CResult(CResult && o) : constructions(std::move(o.constructions)) {} CResult& operator= (CResult& other){ if (this != &other){ for (unique_ptr<Construction<GameObject>>& child : other.constructions){ constructions.push_back(std::move(child)); } } return *this; } template<typename GOType> void push_back(seed_type seed, function<void(GOType*)> func = [](GOType* null){}){ constructions.push_back(make_unique<Construction<GOType>>(seed, func)); } vector<unique_ptr<Construction<GameObject>>> constructions; } CResult; //finally, the GameObject class GameObject { public: GameObject(seed_type seed); GameObject(const GameObject&); virtual void tick(unsigned int delta); inline Matrix4f trafoMatrix(){ return physicsObject_->transformationMatrix(); } //getter inline seed_type seed() const{ return seed_; } inline CResult& properties(){ return properties_; } inline const RenderObject& renderObject() const{ return *renderObject_; } inline weak_ptr<PhysicsObject> physicsObject() { return physicsObject_; } protected: virtual CResult construct_(seed_type seed) = 0; CResult properties_; shared_ptr<RenderObject> renderObject_; shared_ptr<PhysicsObject> physicsObject_; seed_type seed_; }; 3. PhysicsObject That's a bit easier. It is responsible for position, velocity and acceleration. It will also handle collisions in the future. It contains three Transformation objects, two of which are optional. I'm not going to include the accessors on the PhysicsObject class because I tried my first approach on it and it's just pure madness (way over 30 functions). Also missing: the named constructors that construct PhysicsObjects with different behaviour. class Transformation{ Vector3f translation_; Vector3f rotation_; Vector3f scaling_; public: Transformation() : translation_{ 0, 0, 0 }, rotation_{ 0, 0, 0 }, scaling_{ 1, 1, 1 } {}; Transformation(Vector3f translation, Vector3f rotation, Vector3f scaling); inline Vector3f translation(){ return translation_; } inline void translation(float x, float y, float z){ translation(Vector3f(x, y, z)); } inline void translation(Vector3f newTranslation){ translation_ = newTranslation; } inline void translate(float x, float y, float z){ translate(Vector3f(x, y, z)); } inline void translate(Vector3f summand){ translation_ += summand; } inline Vector3f rotation(){ return rotation_; } inline void rotation(float pitch, float yaw, float roll){ rotation(Vector3f(pitch, yaw, roll)); } inline void rotation(Vector3f newRotation){ rotation_ = newRotation; } inline void rotate(float pitch, float yaw, float roll){ rotate(Vector3f(pitch, yaw, roll)); } inline void rotate(Vector3f summand){ rotation_ += summand; } inline Vector3f scaling(){ return scaling_; } inline void scaling(float x, float y, float z){ scaling(Vector3f(x, y, z)); } inline void scaling(Vector3f newScaling){ scaling_ = newScaling; } inline void scale(float x, float y, float z){ scale(Vector3f(x, y, z)); } void scale(Vector3f factor){ scaling_(0) *= factor(0); scaling_(1) *= factor(1); scaling_(2) *= factor(2); } Matrix4f matrix(){ return WMatrix::Translation(translation_) * WMatrix::Rotation(rotation_) * WMatrix::Scale(scaling_); } }; class PhysicsObject; typedef void tickFunction(PhysicsObject& self, unsigned int delta); class PhysicsObject{ PhysicsObject(const Transformation& trafo) : transformation_(trafo), transformationVelocity_(nullptr), transformationAcceleration_(nullptr), tick_(nullptr) {} PhysicsObject(PhysicsObject&& other) : transformation_(other.transformation_), transformationVelocity_(std::move(other.transformationVelocity_)), transformationAcceleration_(std::move(other.transformationAcceleration_)), tick_(other.tick_) {} Transformation transformation_; unique_ptr<Transformation> transformationVelocity_; unique_ptr<Transformation> transformationAcceleration_; tickFunction* tick_; public: void tick(unsigned int delta){ tick_ ? tick_(*this, delta) : 0; } inline Matrix4f transformationMatrix(){ return transformation_.matrix(); } } 4. RenderObject RenderObject is a base class for different types of things that could be rendered, i.e. Meshes, Light Sources or Sprites. DISCLAIMER: I did not write this code, I'm working on this project with someone else. class RenderObject { public: RenderObject(float renderDistance); virtual ~RenderObject(); float renderDistance() const { return renderDistance_; } void setRenderDistance(float rD) { renderDistance_ = rD; } protected: float renderDistance_; }; struct NullRenderObject : public RenderObject{ NullRenderObject() : RenderObject(0.f){}; }; class Light : public RenderObject{ public: Light() : RenderObject(30.f){}; }; class Mesh : public RenderObject{ public: Mesh(unsigned int seed) : RenderObject(20.f) { meshID_ = 0; textureID_ = 0; if (seed == 1) meshID_ = Model::getMeshID("EM-208_heavy"); else meshID_ = Model::getMeshID("cube"); }; unsigned int getMeshID() const { return meshID_; } unsigned int getTextureID() const { return textureID_; } private: unsigned int meshID_; unsigned int textureID_; }; I guess this shows my issue quite nicely: You see a few accessors in GameObject which return weak_ptrs to access members of members, but that is not really what I want. Also please keep in mind that this is NOT, by any means, finished or production code! It is merely a prototype and there may be inconsistencies, unnecessary public parts of classes and such.

    Read the article

  • Using IIS Logs for Performance Testing with Visual Studio

    - by Tarun Arora
    In this blog post I’ll show you how you can play back the IIS Logs in Visual Studio to automatically generate the web performance tests. You can also download the sample solution I am demo-ing in the blog post. Introduction Performance testing is as important for new websites as it is for evolving websites. If you already have your website running in production you could mine the information available in IIS logs to analyse the dense zones (most used pages) and performance test those pages rather than wasting time testing & tuning the least used pages in your application. What are IIS Logs To help with server use and analysis, IIS is integrated with several types of log files. These log file formats provide information on a range of websites and specific statistics, including Internet Protocol (IP) addresses, user information and site visits as well as dates, times and queries. If you are using IIS 7 and above you will find the log files in the following directory C:\Interpub\Logs\ Walkthrough 1. Download and Install Log Parser from the Microsoft download Centre. You should see the LogParser.dll in the install folder, the default install location is C:\Program Files (x86)\Log Parser 2.2. LogParser.dll gives us a library to query the iis log files programmatically. By the way if you haven’t used Log Parser in the past, it is a is a powerful, versatile tool that provides universal query access to text-based data such as log files, XML files and CSV files, as well as key data sources on the Windows operating system such as the Event Log, the Registry, the file system, and Active Directory. More details… 2. Create a new test project in Visual Studio. Let’s call it IISLogsToWebPerfTestDemo.   3.  Delete the UnitTest1.cs class that gets created by default. Right click the solution and add a project of type class library, name it, IISLogsToWebPerfTestEngine. Delete the default class Program.cs that gets created with the project. 4. Under the IISLogsToWebPerfTestEngine project add a reference to Microsoft.VisualStudio.QualityTools.WebTestFramework – c:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies\Microsoft.VisualStudio.QualityTools.WebTestFramework.dll LogParser also called MSUtil - c:\users\tarora\documents\visual studio 2010\Projects\IisLogsToWebPerfTest\IisLogsToWebPerfTestEngine\obj\Debug\Interop.MSUtil.dll 5. Right click IISLogsToWebPerfTestEngine project and add a new classes – IISLogReader.cs The IISLogReader class queries the iis logs using the log parser. using System; using System.Collections.Generic; using System.Text; using MSUtil; using LogQuery = MSUtil.LogQueryClassClass; using IISLogInputFormat = MSUtil.COMIISW3CInputContextClassClass; using LogRecordSet = MSUtil.ILogRecordset; using Microsoft.VisualStudio.TestTools.WebTesting; using System.Diagnostics; namespace IisLogsToWebPerfTestEngine { // By making use of log parser it is possible to query the iis log using select queries public class IISLogReader { private string _iisLogPath; public IISLogReader(string iisLogPath) { _iisLogPath = iisLogPath; } public IEnumerable<WebTestRequest> GetRequests() { LogQuery logQuery = new LogQuery(); IISLogInputFormat iisInputFormat = new IISLogInputFormat(); // currently these columns give us suffient information to construct the web test requests string query = @"SELECT s-ip, s-port, cs-method, cs-uri-stem, cs-uri-query FROM " + _iisLogPath; LogRecordSet recordSet = logQuery.Execute(query, iisInputFormat); // Apply a bit of transformation while (!recordSet.atEnd()) { ILogRecord record = recordSet.getRecord(); if (record.getValueEx("cs-method").ToString() == "GET") { string server = record.getValueEx("s-ip").ToString(); string path = record.getValueEx("cs-uri-stem").ToString(); string querystring = record.getValueEx("cs-uri-query").ToString(); StringBuilder urlBuilder = new StringBuilder(); urlBuilder.Append("http://"); urlBuilder.Append(server); urlBuilder.Append(path); if (!String.IsNullOrEmpty(querystring)) { urlBuilder.Append("?"); urlBuilder.Append(querystring); } // You could make substitutions by introducing parameterized web tests. WebTestRequest request = new WebTestRequest(urlBuilder.ToString()); Debug.WriteLine(request.UrlWithQueryString); yield return request; } recordSet.moveNext(); } Console.WriteLine(" That's it! Closing the reader"); recordSet.close(); } } }   6. Connect the dots by adding the project reference ‘IisLogsToWebPerfTestEngine’ to ‘IisLogsToWebPerfTest’. Right click the ‘IisLogsToWebPerfTest’ project and add a new class ‘WebTest1Coded.cs’ The WebTest1Coded.cs inherits from the WebTest class. By overriding the GetRequestMethod we can inject the log files to the IISLogReader class which uses Log parser to query the log file and extract the web requests to generate the web test request which is yielded back for play back when the test is run. namespace IisLogsToWebPerfTest { using System; using System.Collections.Generic; using System.Text; using Microsoft.VisualStudio.TestTools.WebTesting; using Microsoft.VisualStudio.TestTools.WebTesting.Rules; using IisLogsToWebPerfTestEngine; // This class is a coded web performance test implementation, that simply passes // the path of the iis logs to the IisLogReader class which does the heavy // lifting of reading the contents of the log file and converting them to tests. // You could have multiple such classes that inherit from WebTest and implement // GetRequestEnumerator Method and pass differnt log files for different tests. public class WebTest1Coded : WebTest { public WebTest1Coded() { this.PreAuthenticate = true; } public override IEnumerator<WebTestRequest> GetRequestEnumerator() { // substitute the highlighted path with the path of the iis log file IISLogReader reader = new IISLogReader(@"C:\Demo\iisLog1.log"); foreach (WebTestRequest request in reader.GetRequests()) { yield return request; } } } }   7. Its time to fire the test off and see the iis log playback as a web performance test. From the Test menu choose Test View Window you should be able to see the WebTest1Coded test show up. Highlight the test and press Run selection (you can also debug the test in case you face any failures during test execution). 8. Optionally you can create a Load Test by keeping ‘WebTest1Coded’ as the base test. Conclusion You have just helped your testing team, you now have become the coolest developer in your organization! Jokes apart, log parser and web performance test together allow you to save a lot of time by not having to worry about what to test or even worrying about how to record the test. If you haven’t already, download the solution from here. You can take this to the next level by using LogParser to extract the log files as part of an end of day batch to a database. See the usage trends by user this solution over a longer term and have your tests consume the web requests now stored in the database to generate the web performance tests. If you like the post, don’t forget to share … Keep RocKiNg!

    Read the article

  • delete empty cell matlab

    - by AP
    I have a question : I am generating a excel file through matlab and i have empty cells in middle of it here is the code i am using to open a empty matrix newfile= cell(5,5); [newfile{:}]= deal(''); [newfile{:}]= deal(' '); I do some processing here then i write xlswrite .... now i output i get is file with some empty cells and some data. IS there a command by which i can delete the empty rows, without effecting the rows which have data? Another question : IS there a way to append onto this excel file i am writing. I run this file everyday and would like to add aumatically rather than me manually copying and pasting everyday. thanks

    Read the article

  • Frame Buffers wont work with pyglet.

    - by Matthew Mitchell
    I have this code: def setup_framebuffer(surface): #Create texture if not done already if surface.texture is None: create_texture(surface) #Render child to parent if surface.frame_buffer is None: surface.frame_buffer = glGenFramebuffersEXT(1) glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, surface.frame_buffer) glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, surface.texture, 0) glPushAttrib(GL_VIEWPORT_BIT) glViewport(0,0,surface._scale[0],surface._scale[1]) glMatrixMode(GL_PROJECTION) glLoadIdentity() #Load the projection matrix gluOrtho2D(0,surface._scale[0],0,surface._scale[1]) glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, surface.frame_buffer) for this despite the second parameter printing as 1 for a test I did, I get: glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, surface.frame_buffer) I only got this after implementing pyglet. GLUT is too limited. Thank you.

    Read the article

  • Error: (subscript) logical subscript too long

    - by frespider
    Can some one let me know why I am getting this error and how I can fix it? Here is the code What I am trying to do is remove the rows that associated 1's if the column of that one's less than 10 a0=rep(1,40) a=rep(0:1,20) b=c(rep(1,20),rep(0,20)) c0=c(rep(0,12),rep(1,28)) c1=c(rep(1,5),rep(0,35)) c2=c(rep(1,8),rep(0,32)) c3=c(rep(1,23),rep(0,17)) c4=c(rep(1,6),rep(0,34)) x=matrix(cbind(a0,a,b,c0,c1,c2,c3,c4),nrow=40,ncol=8) nam <- paste("V",2:9,sep="") colnames(x)<-nam dat <- cbind(y=rnorm(40,50,7),x) #=================================== toSum <- colSums(dat) Col <- Val <- NULL for(i in 1:length(toSum)){ if(toSum[i]<10){ Col <- c(Col,colnames(dat)[i]) Val <- c(Val,toSum[i])} } cs <- colSums(dat) < 10 indx <- dat[,which(cs)]==0 for(i in 1:dim(indx)[2]){ datnw <- dat[indx[,i],] dat <- datnw} datnw2 <- dat[, -which(cs)] Thanks

    Read the article

  • How to pass Multivalued parameters through URL in SSRS 2005

    - by Kali Charan Tripathi
    Hi All, I have main matrix report and I want to navigate my sub report from main report by Jump To URL:(Using below JavaScript function) method. ="javascript:void(window.open('http://localhost/ReportServer/Pages/ReportViewer.aspx?%2fKonsolidata_Data_Exporting_Project%2fEXPORT_REPORT_TEST&rs:Command=Render&RP_cntry="+Fields!STD_CTRY_NM.Value+"&RP_cll_typ_l1="+Join(Parameters!RP_cll_typ_l1.Value,",")+"'))" It is ok for the Single valued but giving exception for the multivalued Like An error has occurred during report processing. (rsProcessingAborted) Cannot read the next data row for the data set DS_GRID_DATA. (rsErrorReadingNextDataRow) Conversion failed when converting the nvarchar value '1,2,3,4' to data type int. Basically I have defined Parameters!RP_cll_typ_l1 as multivalued into my subreport as per ssrs multivalued parameter passing method. The value is going on sub report as '1,2,3,4' (not understandable by data set) It should be like as '1’,’2’,’3’,’4' or 1,2,3,4 How can I resolve this please help if any have solution? Thanks Kali Charan Tripathi(India) [email protected] [email protected]

    Read the article

  • OnVisualChildrenChanged in silverlight?

    - by user275561
    WPF has a method that you can override which is the OnVisualChildrenChanged so when Children are added or removed you know about them. However, it silverlight there is no such method. So how would I go implementing this? I am trying to create a BubbleBreaker type of game and so I have a class that extends the Canvas. The canvas will lay out those said bubbles in a matrix grid. When they pop I need to know to move the bubbles to the left.

    Read the article

  • OpenCV: How to copy CvSeq data into CvMat?

    - by Can Bal
    I have a CvSeq structure at hand, which is the output of an available OpenCV function. This holds 128 bytes of data in each of the sequence elements. I want to copy each of these 128-byte elements into rows of a CvMat structure to form a N-by-128 of type CV_32FC1. What would be the most efficient way to do this? I thought of using memcpy but I couldn't come up with a working solution. For the details, I want to calculate the SURF features in an image by cvExtractSURF() function, and copy the SURF descriptors into a matrix for passing it to the cvKMeans2().

    Read the article

  • Noise Estimation / Noise Measurement in Image

    - by Drazick
    Hello. I want to estimate the noise in an image. Let's assume the model of an Image + White Noise. Now I want to estimate the Noise Variance. My method is to calculate the Local Variance (3*3 up to 21*21 Blocks) of the image and then find areas where the Local Variance is fairly constant (By calculating the Local Variance of the Local Variance Matrix). I assume those areas are "Flat" hence the Variance is almost "Pure" noise. Yet I don't get constant results. Is there a better way? Thanks.

    Read the article

  • NDepend query methods/types in framework assembly being used by other assemblies/types

    - by icelava
    I am trying to determine which types or methods in a base framework assembly are being used by other assemblies in the application system. I cannot seem to find a straight-cut query to do that. What i have to do is first determine which assemblies are directly using the framework assembly, then manually list them in a second query SELECT TYPES FROM ASSEMBLIES "IBM.Data.DB2" WHERE IsDirectlyUsedBy "ASSEMBLY:FirstDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:SecondDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:ThirdDirectUsedByAssebmly" OR IsDirectlyUsedBy "ASSEMBLY:FourthDirectUsedByAssebmly" Is there a better/faster way to query for this? Additionally, the query results are focused on the matched types only. The Dependency graph or matrix exported only shows details of those. I do not know how to render a graph that shows those types or methods plus show the dependent types/methods from other assemblies that are consuming them?

    Read the article

  • Calculating determinant by hand

    - by ldigas
    Okey, this is only half programming, but let's see how you are on terms with manual calculations. I believe many of you did this on your university's while giving "linear systems" ... the problem is it's been so long I can't remember how to do it any more. I know quite a few algorithms for calculating determinants, and they all work fine ... for large systems, where one would never try to do it manually. Unfortunatelly, I'm soon going on an exam, where I do have to calculate it manually, up to the system of 5. So, I have a K(omega) matrix that looks like this: [2-(omega^2)*c -4 2 0 0] [-2 5-(omega^2)*c -4 1 0] [1 -4 6-(omega^2)*c -4 1] [0 1 -4 5-(omega^2)*c -2] [0 0 2 -4 2-(omega^2)*c] and I need all the omegas which satisfy the det[K(omega)]=0 criteria. What would be a good way to calculate it so it can be repeated in a manual process ?

    Read the article

  • OpenCL or OpenGL – which one to use?

    - by Malte Schledjewski
    My Problem involves a black and white image with a black area in the middle. I never worked with OpenGL or OpenCL before so I do not know which one to chose. I want to put some white circles over the area and check at the end whether the whole image is white. I will try many combinations so I want to use the GPU because of its parallelism. Should I use OpenGL and create the circle as a texture and put it on top of the image or should I write some OpenCL kernels which work on the pixel/entries in the matrix?

    Read the article

  • java cosine similarity problem

    - by agazerboy
    Hi again :) I developed some java program to calculate cosine similarity on the basis of TF*IDF. It worked very well. But there is one problem.... :( for example: If I have following two matrix and I want to calculate cosine similarity it does not work as rows are not same in length doc 1 1 2 3 4 5 6 doc 2 1 2 3 4 5 6 7 8 5 2 4 9 if rows and colums are same in length then my program works very well but it does not if rows and columns are not in same length. Any tips ???

    Read the article

  • delete pointer to 2d array c ++

    - by user1848054
    i have this pointer to 2d array of Robot class Robot ***rob; and this is here the code for the constructor !! and the program works fine !!! but now i am trying to build a destructor to delete this pointer !! and it keeps on crashing the program !! my question is , how to delete this pointer to 2d array of robots ? RobotsWorld::RobotsWorld(int x , int y) { X=x;Y=y; // returns the limitation of the matrix rob = new Robot**[x]; for(int i = 0; i < x; i++) { rob[i] = new Robot*[y]; for(int j = 0; j < y; j++) { rob[i][j] = NULL; } } }

    Read the article

  • Replace empty cells with logical 0's before cell2mat in MATLAB

    - by Doresoom
    I've got a cell array of empty cells and ones that I want to convert to a logical array, where the empty cells are zeros. When I use cell2mat, the empty cells are ignored, and I end up with a matrix of solely 1's, with no reference to the previous index they held. Is there a way to perform this operation without using loops? Example code: for n=1:5 %generate sample cell array mycellarray{n}=1; end mycellarray{2}=[] %remove one value for testing Things I've tried: mylogicalarray=logical(cell2mat(mycellarray)); which results in [1,1,1,1], not [1,0,1,1,1]. for n=1:length(mycellarray) if isempty(mycellarray{n}) mycellarray{n}=0; end end mylogicalarray=logical(cell2mat(mycellarray)); which works, but uses loops.

    Read the article

  • Typecast to an int in Octave/Matlab

    - by Leif Andersen
    I need to call the index of a matrix made using the linspace command, and based on somde data taken from an oscilloscope. Because of this, the data inputed is a double. However, I can't really call: Time[V0Found] where V0Found is something like 5.2 however, taking index 5 is close enough, so I need to drop the decimal. I used this equation to drop the decimal: V0FoundDec = V0Found - mod(V0Found,1) Time[V0FoundDec] However, eve though that drops the decimal, octave still complains about it. So, what can I do to typecast it to an int? Thank you.

    Read the article

  • Implementing PageRank using MapReduce

    - by Nick D.
    Hello, I'm trying to get my head around an issue with the theory of implementing the PageRank with MapReduce. I have the following simple scenario with three nodes: A B C. The adjacency matrix is here: A { B, C } B { A } The PageRank for B for example is equal to: (1-d)/N + d ( PR(A) / C(A) ) N = number of incoming links to B PR(A) = PageRank of incoming link A C(A) = number of outgoing links from page A I am fine with all the schematics and how the mapper and reducer would work but I cannot get my head around how at the time of calculation by the reducer, C(A) would be known. How will the reducer, when calculating the PageRank of B by aggregating the incoming links to B will know the number of outgoing links from each page. Does this require a lookup in some external data source?

    Read the article

  • Daubechies-4 Transform in MATLAB

    - by Myx
    Hello: I have a 4x4 matrix which I wish to decompose into 4 frequency bands (LL, HL, LH, HH where L=low, H=high) by using a one-level Daubechies-4 wavelet transform. As a result of the transform, each band should contain 2x2 coefficients. How can I do this in MATLAB? I know that MATLAB has dbaux and dbwavf functions. However, I'm not sure how to use them and I also don't have the wavelet toolbox. Any help is greatly appreciated. Thanks.

    Read the article

  • A definitive guide to Url Encoding in ASP .NET

    - by cbp
    I am starting to realise that there are about a bazillion different methods for encoding urls in .NET. I keep finding new ones. They all work slightly differently, but they all have essentially the same summary comments. Does anyone have a definitive matrix that shows the exact differences between the following methods: HttpUtility.UrlEncode HttpUtility.UrlPathEncode Server.UrlEncode Uri.EscapeUriString Uri.EscapeDataString ... are they any more? Also it would be good to match these up with use-cases e.g.: Urls in href attributes of a tags Urls to be displayed to the user in HTML Urls as querystring values (i.e. to be sent in GET requests) Urls to be sent in POST requests etc

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >