Search Results

Search found 14169 results on 567 pages for 'parallel programming'.

Page 60/567 | < Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >

  • Storing a looong lookup table

    - by inquisitive
    Background The product i am working on has a very long lookup-table. the table contains static data and cannot be auto generated. there are about 500 rows and 10 columns. columns have mostly integers and strings. to complicate the matters, there are actually two such tables. every row in table-1 maps to zero-or-more rows in table-2. we use an SQLite database with two tables. the product installer places the SQLite file in the installation directory. the application is written in dot-net and we use ADO to load the data once on startup. now, the lookup table grows. in each release a month, we add about 10 new entries existing entries are adjusted. every release we fine tune existing entries. The problem a team of (10) developers work on the lookup table. Code goes in the SVN, but the little devil the SQLite does not. this prevents multiple developers to work on it. we do take regular backups of the file, but proper versioning is not possible. we never know who did the breaking change. the worse thing is we dont know if there is any change at all. diff'ing databases is tedious if not impossible. the tables are expected to grow quite large in years to come and we would need developers to work in parallel on it. the data is business critical. we need to be able to audit changes made to it. Question What would be a solution for the problems outlines above? one idea was to transform the whole thing to XML and treat it like just another source file. that way SVN can do the versioning and we can work in parallel. but the data shows relational behavior. with XML we loose the unique and foreign-key constraints. also we cant query it with sql like ease. any help here will be appreciated.

    Read the article

  • Integer Linear Programming Java: Multiple Open Source and Commercial tools are available. Which one

    - by Sandeep Jindal
    Hi, I need to use Integer Linear Programming API/Tool for my application. Though my application is in Java but I don’t mind calling an EXE (Tool) from Java providing input using file (MPS, etc). My search analysis is as follows: There are multiple Open Source and Commercial tools available to solve ILP Following I found and think are useful for my needs. 1. Gnu LP Kit(GLPK): I think this is the oldest and probably most stable and efficient 2. IP_Solve: Has good reviews about it. 3. JavaILP: Found this, but not much reviews about it 4. Apache Common-Math: Supports LP but not ILP, so ruled out. 5. Coin-OR Can you please suggest which one shall be the best in terms of stability, efficiency, acceptance, etc Regards Sandeep Jindal

    Read the article

  • How to make it easy for users to install my software? Does the programming language matter?

    - by lala
    I'm a beginner to intermediate programmer and I've learned some java and C#. I want to start thinking about making some simple programs that I can release to the world. Just some basic stuff like calendar software that will probably be free. Users want the install process to be quick and easy. To install a java program, I have to tell them to have java installed. To install a C# program, I have to tell them to have .NET installed. I'm worried this might put off some potential users who just want to double click an exe file, choose a directory and be pretty much done. So, I guess this is an either/or two part question: 1) Is there a programming language that makes it easier to set up an installer without requiring users to have other stuff installed? or: 2) Is there some way to set up an installer that checks the system to see if it has java/.NET/whatever, and then includes java/.Net/whatever in the installation if it's not already there?

    Read the article

  • What is the best software to capture full-screen 3h programming session in Windows?

    - by Hugo S Ferreira
    Hi, I'm planning a laboratorial experiment to assess behavior of groups when programming using some tools under study. For that, I'll need to capture their entire screen to disk. Mostly, what will be displayed is code, so I'm not to worried with image quality. However, it's paramount that the team is not able to stop the recording by accident, and the tool should be rebust enough to hold at least 3h of video. If possible, it would be nice for researchers in other rooms to "watch" the video as it is recording. Actually, this last requirement reminded me that I could use a VNC recording software, and install a VNC client in each laboratory computer. Anyway, what is your experience with this? Which software do you recommend? Thanks.

    Read the article

  • Do employers like to see (programming/computer science) blogs?

    - by incrediman
    I'm wondering if having a blog (with most posts concentrating on computer science/programming) would be a good idea with regards to getting a job. Would a potential employer like to see something like that? What about someone hiring a freelancer? I'd especially appreciate: Responses from people who hire programmers or computer scientists for full-time jobs. Responses from people who hire freelance programmers. Responses from people who have such such blogs and have felt their (either negative or positive) effects. Thanks! I felt this would probably be best marked as community wiki - please let me know if I was mistaken.

    Read the article

  • Does "Value Restriction" mean that there is no higher order functional programming?

    - by Sadache
    Does "Value Restriction" mean that there is no higher order functional programming? I have a problem that each time I try to do a bit of HOP I get caught by a VR error. Example: let simple (s:string)= fun rq->1 let oops= simple "" type 'a SimpleType= F of (int ->'a-> 'a) let get a = F(fun req -> id) let oops2= get "" and I would like to know whether it is a problem of a prticular implementation of VR or it is a general problem that has no solution in a mutable type-infered language that doesn't include mutation in the type system.

    Read the article

  • Some good websites to learn about JavaScript and programming architecture?

    - by Jack Roscoe
    I'm not sure if 'architecture' is the correct term, but I've been looking for some articles online which talk about programming design and more about how best to use languages such as JavaScript in a code design sense rather than the actual syntax itself. I have found many websites but a lot seem to be very out dated, and I'm not sure what developments have taken place with JavaScript over the years so do not know how old is too old. If anybody could suggest some great websites, or maybe specific articles you think would be useful, that would be highly appreciated. I am a beginner programmer currently using JavaScript with XML and of course HTML & CSS, and I'm currently trying to get further into and learn more about web development.

    Read the article

  • What programming language is used to design google algorithm?

    - by AKN
    It is known that google has best searching & indexing algorithm. The also have good relevancy. They are also quicker in getting down the latest results. All that's fine. What programming language (c, c++, java, etc...) & database (oracle, MySQL, etc...) they have used in achieving this. Since they have to manipulate with volume of data quickly and effectively. Though I'm not looking for their indepth architecture (if in case violates their company policies) an overview of all such things could be useful. Anybody please add you valuable suggestions and insight on this?

    Read the article

  • Are there any programming languages targeting PHP, besides haXe?

    - by stesch
    PHP doesn't get much love but is still a winner at easy deployment (for cheap hosting). Are there any programming languages (besides haXe) that target PHP? Writing applications in this language and then translating it into PHP, like some languages target C as an intermediate language? The Scheme implementation Chicken compiles into C. XOTcl converts Java code into Tcl code LINJ was(?) a tool to convert Lisp into nice looking Java code … + a lot of ways to produce JavaScript without touching JavaScript.

    Read the article

  • Does "Value Restriction" practically mean that there is no higher order functional programming?

    - by Sadache
    Does "Value Restriction" practically mean that there is no higher order functional programming? I have a problem that each time I try to do a bit of HOP I get caught by a VR error. Example: let simple (s:string)= fun rq->1 let oops= simple "" type 'a SimpleType= F of (int ->'a-> 'a) let get a = F(fun req -> id) let oops2= get "" and I would like to know whether it is a problem of a prticular implementation of VR or it is a general problem that has no solution in a mutable type-infered language that doesn't include mutation in the type system.

    Read the article

  • In the generic programming/TMP world what exactly is a model / a policy and a "concept" ?

    - by Hassan Syed
    I'd like to know the precise yet succinct definitions of these three concepts in one place. The quality of the answer should depend on the following two points. Show a simple code snippet to show how and what the concept/technique is used for. Be simple enough to understand so that a programmer without any exposure to this area can grasp it. Note: There are probably many correct answers since each concept has many different facets. If there are a lot of good answers I will eventually turn the question into CW and aggregate the answers. -- Post Accept Edit -- Boost has a nice article on generic programming concepts

    Read the article

  • What is the term(s) used to describe programming language syntax?

    - by Mr Roys
    Is there an exact/correct term to describe this difference between the syntax/constructs of programming langauges e.g VB6 with its (if ... else ... endif) and C# with its curly braces for conditional statements. I'm using VB6 syntax and C# as examples since I'm more familiar with their syntax. For example, Visual Basic 6's syntax uses a more verbose, natural language like structure. If (id = 0) Then id = MyObject.Add(Me) Else Call MyObject.Update(Me) End If while C# has more concise syntax like: if (id == 0) { id = MyObject.Add(this); } else { MyObject.Update(this); } Conciseness? Natural languageness? Or is there a more "scientific" word for describing syntax?

    Read the article

  • What tools do people use to make programming tutorial videos?

    - by Pure.Krome
    Hi folks, I'm wanting to make some yee-run-o-the-mill tutorial video's about some programming concepts and stuff i've been doing. Nothing special ... lots of peeps been doing it. What tools are people using to record and edit these videos? What resolutions / fonts / sizes do people generally use/set? The only tool I've had experience with is Camtasia - and i didn't mind it. But i've seen vid's (or live demo's) where people zoom in to code sections.. how do they do that? For final editing, do most people just do some simple power point presentation with some video snippets mashed in. cheers!

    Read the article

  • What programming language do you wear a suit for?

    - by Paul
    My company writes mostly .NET code, I work in a professional, 'business casual' environment. Both of these things seemed pretty ubiquitous across the corporate software world, however I recently visited a few companies that use PHP/Ruby and nearly all their devs had facial piercings/visible tattoos, etc. and their offices had no apparent dress code. This might sound funny, but it made me wonder, is there any correlation between specific technology and office culture? For example, have you ever had to wear a suit to a programming job, and if so what technology did you use?

    Read the article

  • How can Domain driven design be combined with aspect oriented programming?

    - by anthares
    I'm doing research and one point I want to cover is "What is the relationship between Domain-driven Design and Aspect oriented programming?" I know that a main principle in DDD is separation of concerns and I understand that. What I'm not really certain is, whether aspects in AOP acts like "sub domains" in our domain in DDD. Are these two concepts, basically the same thing. I mean, If I develop an application following AOP and DDD, at the end of the day will it be true that "a sub domain" == "an aspect". I will also appreciate any other opinions what is the common between AOP and DDD.

    Read the article

  • How to understand the functional programming code for converting IP string to a number?

    - by zfz
    In a python discusion, I saw a way to convert IP string to a integer in functional progamming way. Here is the Link . The function is implemented in a single line. def ipnumber(ip): return reduce(lambda sum, chunk: sum <<8 | chunk, map(int, ip.split("."))) However, I have few ideas of funcional programming. Could anybody explain the function in detail? I've some knowledg of "map" and "reduce". But I don't konw what "|" and "chunk" mean here? Thanks.

    Read the article

  • should a student be diversifying or mastering programming languages?

    - by Max Link
    As the question states, is it better if a student diversifies or explores when learning programming languages or should they focus only on 2-3 languages and really get to know them well? Example of what I mean by diversifying: Functional -> Scheme Procedural -> C Object Oriented -> Java Dynamic or scripting -> Python Other -> C++ I have a few breaks in between semesters sometimes (up to 3 months) and I'm thinking of either learning a new language or "master" those that I know right now. Which would benefit me in the future? I know some(about 3 months of self studying each) Java, C, and C++ already . If I'm not mistaken, where I live, the industry is heavy on Java, C++, and C#.

    Read the article

  • Changes in Language Punctuation [closed]

    - by Wes Miller
    More social curiosity than actual programming question... (I got shot for posting this on Stack Overflow. They sent me here. At least i hope here is where they meant.) Based on the few responses I got before the content police ran me off Stack Overflow, I should note that I am legally blind and neatness and consistency in programming are my best friends. A thousand years ago when I took my first programming class (Fortran 66) and a mere 500 years ago when I tokk my first C and C++ classes, there were some pretty standard punctuation practices across languages. I saw them in Basic (shudder), PL/1, PL/AS, Rexx even Pascal. Ok, APL2 is not part of this discussion. Each language has its own peculiar punctuation. Pascal's periods, Fortran's comma separated do loops, almost everybody else's semicolons. As I learned it, each language also has KEYWORDS (if, for, do, while, until, etc.) which are set off by whitespace (or the left margin) if, etc. Each language has function, subroutines of whatever they're called. Some built-in some user coded. They were set off by function_name( parameters );. As in sqrt( x ) or rand( y ); Lately, there seems to be a new set of punctuation rules. Especially in c++ where initializers get glued onto the end of variable declarations int x(0); or auto_ptr p(new gizmo); This usually, briefly fools me into thinking someone is declaring a function prototype or using a function as a integer. Then "if" and 'for' seems to have grown parens; if(true) for(;;), etc. Since when did keywords become functions. I realize some people think they ARE functions with iterators as parameters. But if "for" is a function, where did the arg separating commas go? And finally, functions seem to have shed their parens; sqrt (2) select (...) I know, I koow, loosening whitespace rules is good. Keep reading. Question: when did the old ways disappear and this new way come into vogue? Does anyone besides me find it irritating to read and that the information that the placement of punctuation used to convey is gone? I know full well that K&R put the { at the end of the "if" or "for" to save a byte here and there. Can't use that excuse here. Space as an excuse for loss of readability died as HDD space soared past 100 MiB. Your thoughts are solicited. If there is a good reason to do this, I'll gladly learn it and maybe in another 50 years I'll get used to it. Of course it's good that compilers recognize these (IMHO) typos and keep right on going, but just because you CAN code it that way doesn't mean you HAVE to, right?

    Read the article

  • What about parallelism across network using multiple PCs?

    - by MainMa
    Parallel computing is used more and more, and new framework features and shortcuts make it easier to use (for example Parallel extensions which are directly available in .NET 4). Now what about the parallelism across network? I mean, an abstraction of everything related to communications, creation of processes on remote machines, etc. Something like, in C#: NetworkParallel.ForEach(myEnumerable, () => { // Computing and/or access to web ressource or local network database here }); I understand that it is very different from the multi-core parallelism. The two most obvious differences would probably be: The fact that such parallel task will be limited to computing, without being able for example to use files stored locally (but why not a database?), or even to use local variables, because it would be rather two distinct applications than two threads of the same application, The very specific implementation, requiring not just a separate thread (which is quite easy), but spanning a process on different machines, then communicating with them over local network. Despite those differences, such parallelism is quite possible, even without speaking about distributed architecture. Do you think it will be implemented in a few years? Do you agree that it enables developers to easily develop extremely powerfull stuff with much less pain? Example: Think about a business application which extracts data from the database, transforms it, and displays statistics. Let's say this application takes ten seconds to load data, twenty seconds to transform data and ten seconds to build charts on a single machine in a company, using all the CPU, whereas ten other machines are used at 5% of CPU most of the time. In a such case, every action may be done in parallel, resulting in probably six to ten seconds for overall process instead of forty.

    Read the article

  • Parallelism in .NET – Part 9, Configuration in PLINQ and TPL

    - by Reed
    Parallel LINQ and the Task Parallel Library contain many options for configuration.  Although the default configuration options are often ideal, there are times when customizing the behavior is desirable.  Both frameworks provide full configuration support. When working with Data Parallelism, there is one primary configuration option we often need to control – the number of threads we want the system to use when parallelizing our routine.  By default, PLINQ and the TPL both use the ThreadPool to schedule tasks.  Given the major improvements in the ThreadPool in CLR 4, this default behavior is often ideal.  However, there are times that the default behavior is not appropriate.  For example, if you are working on multiple threads simultaneously, and want to schedule parallel operations from within both threads, you might want to consider restricting each parallel operation to using a subset of the processing cores of the system.  Not doing this might over-parallelize your routine, which leads to inefficiencies from having too many context switches. In the Task Parallel Library, configuration is handled via the ParallelOptions class.  All of the methods of the Parallel class have an overload which accepts a ParallelOptions argument. We configure the Parallel class by setting the ParallelOptions.MaxDegreeOfParallelism property.  For example, let’s revisit one of the simple data parallel examples from Part 2: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re looping through an image, and calling a method on each pixel in the image.  If this was being done on a separate thread, and we knew another thread within our system was going to be doing a similar operation, we likely would want to restrict this to using half of the cores on the system.  This could be accomplished easily by doing: var options = new ParallelOptions(); options.MaxDegreeOfParallelism = Math.Max(Environment.ProcessorCount / 2, 1); Parallel.For(0, pixelData.GetUpperBound(0), options, row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Now, we’re restricting this routine to using no more than half the cores in our system.  Note that I included a check to prevent a single core system from supplying zero; without this check, we’d potentially cause an exception.  I also did not hard code a specific value for the MaxDegreeOfParallelism property.  One of our goals when parallelizing a routine is allowing it to scale on better hardware.  Specifying a hard-coded value would contradict that goal. Parallel LINQ also supports configuration, and in fact, has quite a few more options for configuring the system.  The main configuration option we most often need is the same as our TPL option: we need to supply the maximum number of processing threads.  In PLINQ, this is done via a new extension method on ParallelQuery<T>: ParallelEnumerable.WithDegreeOfParallelism. Let’s revisit our declarative data parallelism sample from Part 6: double min = collection.AsParallel().Min(item => item.PerformComputation()); Here, we’re performing a computation on each element in the collection, and saving the minimum value of this operation.  If we wanted to restrict this to a limited number of threads, we would add our new extension method: int maxThreads = Math.Max(Environment.ProcessorCount / 2, 1); double min = collection .AsParallel() .WithDegreeOfParallelism(maxThreads) .Min(item => item.PerformComputation()); This automatically restricts the PLINQ query to half of the threads on the system. PLINQ provides some additional configuration options.  By default, PLINQ will occasionally revert to processing a query in parallel.  This occurs because many queries, if parallelized, typically actually cause an overall slowdown compared to a serial processing equivalent.  By analyzing the “shape” of the query, PLINQ often decides to run a query serially instead of in parallel.  This can occur for (taken from MSDN): Queries that contain a Select, indexed Where, indexed SelectMany, or ElementAt clause after an ordering or filtering operator that has removed or rearranged original indices. Queries that contain a Take, TakeWhile, Skip, SkipWhile operator and where indices in the source sequence are not in the original order. Queries that contain Zip or SequenceEquals, unless one of the data sources has an originally ordered index and the other data source is indexable (i.e. an array or IList(T)). Queries that contain Concat, unless it is applied to indexable data sources. Queries that contain Reverse, unless applied to an indexable data source. If the specific query follows these rules, PLINQ will run the query on a single thread.  However, none of these rules look at the specific work being done in the delegates, only at the “shape” of the query.  There are cases where running in parallel may still be beneficial, even if the shape is one where it typically parallelizes poorly.  In these cases, you can override the default behavior by using the WithExecutionMode extension method.  This would be done like so: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .Select(i => i.PerformComputation()) .Reverse(); Here, the default behavior would be to not parallelize the query unless collection implemented IList<T>.  We can force this to run in parallel by adding the WithExecutionMode extension method in the method chain. Finally, PLINQ has the ability to configure how results are returned.  When a query is filtering or selecting an input collection, the results will need to be streamed back into a single IEnumerable<T> result.  For example, the method above returns a new, reversed collection.  In this case, the processing of the collection will be done in parallel, but the results need to be streamed back to the caller serially, so they can be enumerated on a single thread. This streaming introduces overhead.  IEnumerable<T> isn’t designed with thread safety in mind, so the system needs to handle merging the parallel processes back into a single stream, which introduces synchronization issues.  There are two extremes of how this could be accomplished, but both extremes have disadvantages. The system could watch each thread, and whenever a thread produces a result, take that result and send it back to the caller.  This would mean that the calling thread would have access to the data as soon as data is available, which is the benefit of this approach.  However, it also means that every item is introducing synchronization overhead, since each item needs to be merged individually. On the other extreme, the system could wait until all of the results from all of the threads were ready, then push all of the results back to the calling thread in one shot.  The advantage here is that the least amount of synchronization is added to the system, which means the query will, on a whole, run the fastest.  However, the calling thread will have to wait for all elements to be processed, so this could introduce a long delay between when a parallel query begins and when results are returned. The default behavior in PLINQ is actually between these two extremes.  By default, PLINQ maintains an internal buffer, and chooses an optimal buffer size to maintain.  Query results are accumulated into the buffer, then returned in the IEnumerable<T> result in chunks.  This provides reasonably fast access to the results, as well as good overall throughput, in most scenarios. However, if we know the nature of our algorithm, we may decide we would prefer one of the other extremes.  This can be done by using the WithMergeOptions extension method.  For example, if we know that our PerformComputation() routine is very slow, but also variable in runtime, we may want to retrieve results as they are available, with no bufferring.  This can be done by changing our above routine to: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.NotBuffered) .Select(i => i.PerformComputation()) .Reverse(); On the other hand, if are already on a background thread, and we want to allow the system to maximize its speed, we might want to allow the system to fully buffer the results: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.FullyBuffered) .Select(i => i.PerformComputation()) .Reverse(); Notice, also, that you can specify multiple configuration options in a parallel query.  By chaining these extension methods together, we generate a query that will always run in parallel, and will always complete before making the results available in our IEnumerable<T>.

    Read the article

  • Parallelism in .NET – Part 2, Simple Imperative Data Parallelism

    - by Reed
    In my discussion of Decomposition of the problem space, I mentioned that Data Decomposition is often the simplest abstraction to use when trying to parallelize a routine.  If a problem can be decomposed based off the data, we will often want to use what MSDN refers to as Data Parallelism as our strategy for implementing our routine.  The Task Parallel Library in .NET 4 makes implementing Data Parallelism, for most cases, very simple. Data Parallelism is the main technique we use to parallelize a routine which can be decomposed based off data.  Data Parallelism refers to taking a single collection of data, and having a single operation be performed concurrently on elements in the collection.  One side note here: Data Parallelism is also sometimes referred to as the Loop Parallelism Pattern or Loop-level Parallelism.  In general, for this series, I will try to use the terminology used in the MSDN Documentation for the Task Parallel Library.  This should make it easier to investigate these topics in more detail. Once we’ve determined we have a problem that, potentially, can be decomposed based on data, implementation using Data Parallelism in the TPL is quite simple.  Let’s take our example from the Data Decomposition discussion – a simple contrast stretching filter.  Here, we have a collection of data (pixels), and we need to run a simple operation on each element of the pixel.  Once we know the minimum and maximum values, we most likely would have some simple code like the following: for (int row=0; row < pixelData.GetUpperBound(0); ++row) { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This simple routine loops through a two dimensional array of pixelData, and calls the AdjustContrast routine on each pixel. As I mentioned, when you’re decomposing a problem space, most iteration statements are potentially candidates for data decomposition.  Here, we’re using two for loops – one looping through rows in the image, and a second nested loop iterating through the columns.  We then perform one, independent operation on each element based on those loop positions. This is a prime candidate – we have no shared data, no dependencies on anything but the pixel which we want to change.  Since we’re using a for loop, we can easily parallelize this using the Parallel.For method in the TPL: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Here, by simply changing our first for loop to a call to Parallel.For, we can parallelize this portion of our routine.  Parallel.For works, as do many methods in the TPL, by creating a delegate and using it as an argument to a method.  In this case, our for loop iteration block becomes a delegate creating via a lambda expression.  This lets you write code that, superficially, looks similar to the familiar for loop, but functions quite differently at runtime. We could easily do this to our second for loop as well, but that may not be a good idea.  There is a balance to be struck when writing parallel code.  We want to have enough work items to keep all of our processors busy, but the more we partition our data, the more overhead we introduce.  In this case, we have an image of data – most likely hundreds of pixels in both dimensions.  By just parallelizing our first loop, each row of pixels can be run as a single task.  With hundreds of rows of data, we are providing fine enough granularity to keep all of our processors busy. If we parallelize both loops, we’re potentially creating millions of independent tasks.  This introduces extra overhead with no extra gain, and will actually reduce our overall performance.  This leads to my first guideline when writing parallel code: Partition your problem into enough tasks to keep each processor busy throughout the operation, but not more than necessary to keep each processor busy. Also note that I parallelized the outer loop.  I could have just as easily partitioned the inner loop.  However, partitioning the inner loop would have led to many more discrete work items, each with a smaller amount of work (operate on one pixel instead of one row of pixels).  My second guideline when writing parallel code reflects this: Partition your problem in a way to place the most work possible into each task. This typically means, in practice, that you will want to parallelize the routine at the “highest” point possible in the routine, typically the outermost loop.  If you’re looking at parallelizing methods which call other methods, you’ll want to try to partition your work high up in the stack – as you get into lower level methods, the performance impact of parallelizing your routines may not overcome the overhead introduced. Parallel.For works great for situations where we know the number of elements we’re going to process in advance.  If we’re iterating through an IList<T> or an array, this is a typical approach.  However, there are other iteration statements common in C#.  In many situations, we’ll use foreach instead of a for loop.  This can be more understandable and easier to read, but also has the advantage of working with collections which only implement IEnumerable<T>, where we do not know the number of elements involved in advance. As an example, lets take the following situation.  Say we have a collection of Customers, and we want to iterate through each customer, check some information about the customer, and if a certain case is met, send an email to the customer and update our instance to reflect this change.  Normally, this might look something like: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } } Here, we’re doing a fair amount of work for each customer in our collection, but we don’t know how many customers exist.  If we assume that theStore.GetLastContact(customer) and theStore.EmailCustomer(customer) are both side-effect free, thread safe operations, we could parallelize this using Parallel.ForEach: Parallel.ForEach(customers, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); Just like Parallel.For, we rework our loop into a method call accepting a delegate created via a lambda expression.  This keeps our new code very similar to our original iteration statement, however, this will now execute in parallel.  The same guidelines apply with Parallel.ForEach as with Parallel.For. The other iteration statements, do and while, do not have direct equivalents in the Task Parallel Library.  These, however, are very easy to implement using Parallel.ForEach and the yield keyword. Most applications can benefit from implementing some form of Data Parallelism.  Iterating through collections and performing “work” is a very common pattern in nearly every application.  When the problem can be decomposed by data, we often can parallelize the workload by merely changing foreach statements to Parallel.ForEach method calls, and for loops to Parallel.For method calls.  Any time your program operates on a collection, and does a set of work on each item in the collection where that work is not dependent on other information, you very likely have an opportunity to parallelize your routine.

    Read the article

  • Ruby Drag-n-Drop IDE and Ruby programming related

    - by RPK
    I am writing a small desktop GUI application using Ruby and Gtk2. I am using RubyMine 3 on Linux (Fedora). I created a simple class to create a Gtk Window but now I feel it takes more time to just keep adding code for a Button, Drop Down and TextBox etc. I need to write even more code if the DropDown needs to be populated at run-time. Is there any Ruby Gtk IDE which supports adding Controls with simple drag-n-drop? At least I can focus on the business logic instead of just defining position and sizes of controls. One more question. I subscribed to Ruby-Forum mailing list but it is often flooded with Spam. Which is the official Ruby forum? Recently NetBeans has withdrawn support for Ruby. Is it worth to learn Ruby seriously and use it in commercial environment or not?

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • What PC for programming? [on hold]

    - by James Jeffery
    I'm asking this here because I'm looking for some advice on a PC that will be suitable for my needs. I currently have mac's and have rarely used PC's apart from my Vaio laptop, which is on it's way out. I will be using the PC for C# and .NET development. I mainly develop desktop apps using a PC, but I will be doing some ASP.NET as I'm switching from PHP to ASP. The selection of PC's are on here: http://www.pcworld.co.uk/ I have £500, but if I can not spend all of that I'd be happy. I will be doing nothing on the computer apart from C# development (desktop and ASP). Any help would be much appreciated. My applications are not intensive. They are usually automation software for web scraping and marketing purposes.

    Read the article

  • Exam 70-480 Study Material: Programming in HTML5 with JavaScript and CSS3

    - by Stacy Vicknair
    Here’s a list of sources of information for the different elements that comprise the 70-480 exam: General Resources http://www.w3schools.com (As pointed out in David Pallmann’s blog some of this content is unverified, but it is a decent source of information. For more about when it isn’t decent, see http://www.w3fools.com ) http://www.bloggedbychris.com/2012/09/19/microsoft-exam-70-480-study-guide/ (A guy who did a lot of what I did already, sadly I found this halfway through finishing my resources list. This list is expertly put together so I would recommend checking it out.) http://davidpallmann.blogspot.com/2012/08/microsoft-certification-exam-70-480.html http://pluralsight.com/training/Courses (Yes, this isn’t free, but if you look at the course listing there is an entire section on HTML5, CSS3 and Javascript. You can always try the trial!)   Some of the links I put below will overlap with the other resources above, but I tried to find explanations that looked beneficial to me on links outside those already mentioned.   Test Breakdown Implement and Manipulate Document Structures and Objects (24%) Create the document structure. o This objective may include but is not limited to: structure the UI by using semantic markup, including for search engines and screen readers (Section, Article, Nav, Header, Footer, and Aside); create a layout container in HTML http://www.w3schools.com/html/html5_new_elements.asp   Write code that interacts with UI controls. o This objective may include but is not limited to: programmatically add and modify HTML elements; implement media controls; implement HTML5 canvas and SVG graphics http://www.w3schools.com/html/html5_canvas.asp http://www.w3schools.com/html/html5_svg.asp   Apply styling to HTML elements programmatically. o This objective may include but is not limited to: change the location of an element; apply a transform; show and hide elements   Implement HTML5 APIs. o This objective may include but is not limited to: implement storage APIs, AppCache API, and Geolocation API http://www.w3schools.com/html/html5_geolocation.asp http://www.w3schools.com/html/html5_webstorage.asp http://www.w3schools.com/html/html5_app_cache.asp   Establish the scope of objects and variables. o This objective may include but is not limited to: define the lifetime of variables; keep objects out of the global namespace; use the “this” keyword to reference an object that fired an event; scope variables locally and globally http://robertnyman.com/2008/10/09/explaining-javascript-scope-and-closures/ http://www.quirksmode.org/js/this.html   Create and implement objects and methods. o This objective may include but is not limited to: implement native objects; create custom objects and custom properties for native objects using prototypes and functions; inherit from an object; implement native methods and create custom methods http://www.javascriptkit.com/javatutors/object.shtml http://www.crockford.com/javascript/inheritance.html http://stackoverflow.com/questions/1635116/javascript-class-method-vs-class-prototype-method http://www.javascriptkit.com/javatutors/proto.shtml     Implement Program Flow (25%) Implement program flow. o This objective may include but is not limited to: iterate across collections and array items; manage program decisions by using switch statements, if/then, and operators; evaluate expressions http://www.javascriptkit.com/jsref/looping.shtml http://www.javascriptkit.com/javatutors/varshort.shtml http://www.javascriptkit.com/javatutors/switch.shtml   Raise and handle an event. o This objective may include but is not limited to: handle common events exposed by DOM (OnBlur, OnFocus, OnClick); declare and handle bubbled events; handle an event by using an anonymous function http://dev.w3.org/2006/webapi/DOM-Level-3-Events/html/DOM3-Events.html http://javascript.info/tutorial/bubbling-and-capturing   Implement exception handling. o This objective may include but is not limited to: set and respond to error codes; throw an exception; request for null checks; implement try-catch-finally blocks http://www.javascriptkit.com/javatutors/trycatch.shtml   Implement a callback. o This objective may include but is not limited to: receive messages from the HTML5 WebSocket API; use jQuery to make an AJAX call; wire up an event; implement a callback by using anonymous functions; handle the “this” pointer http://www.w3.org/TR/2011/WD-websockets-20110419/ http://www.html5rocks.com/en/tutorials/websockets/basics/ http://api.jquery.com/jQuery.ajax/   Create a web worker process. o This objective may include but is not limited to: start and stop a web worker; pass data to a web worker; configure timeouts and intervals on the web worker; register an event listener for the web worker; limitations of a web worker https://developer.mozilla.org/en-US/docs/DOM/Using_web_workers http://www.html5rocks.com/en/tutorials/workers/basics/   Access and Secure Data (26%) Validate user input by using HTML5 elements. o This objective may include but is not limited to: choose the appropriate controls based on requirements; implement HTML input types and content attributes (for example, required) to collect user input http://diveintohtml5.info/forms.html   Validate user input by using JavaScript. o This objective may include but is not limited to: evaluate a regular expression to validate the input format; validate that you are getting the right kind of data type by using built-in functions; prevent code injection http://www.regular-expressions.info/javascript.html http://msdn.microsoft.com/en-us/library/66ztdbe6(v=vs.94).aspx https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/typeof http://blog.stackoverflow.com/2008/06/safe-html-and-xss/ http://stackoverflow.com/questions/942011/how-to-prevent-javascript-injection-attacks-within-user-generated-html   Consume data. o This objective may include but is not limited to: consume JSON and XML data; retrieve data by using web services; load data or get data from other sources by using XMLHTTPRequest http://www.erichynds.com/jquery/working-with-xml-jquery-and-javascript/ http://www.webdevstuff.com/86/javascript-xmlhttprequest-object.html http://www.json.org/ http://stackoverflow.com/questions/4935632/how-to-parse-json-in-javascript   Serialize, deserialize, and transmit data. o This objective may include but is not limited to: binary data; text data (JSON, XML); implement the jQuery serialize method; Form.Submit; parse data; send data by using XMLHTTPRequest; sanitize input by using URI/form encoding http://api.jquery.com/serialize/ http://www.javascript-coder.com/javascript-form/javascript-form-submit.phtml http://stackoverflow.com/questions/327685/is-there-a-way-to-read-binary-data-into-javascript https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/encodeURI     Use CSS3 in Applications (25%) Style HTML text properties. o This objective may include but is not limited to: apply styles to text appearance (color, bold, italics); apply styles to text font (WOFF and @font-face, size); apply styles to text alignment, spacing, and indentation; apply styles to text hyphenation; apply styles for a text drop shadow http://www.w3schools.com/css/css_text.asp http://www.w3schools.com/css/css_font.asp http://nicewebtype.com/notes/2009/10/30/how-to-use-css-font-face/ http://webdesign.about.com/od/beginningcss/p/aacss5text.htm http://www.w3.org/TR/css3-text/ http://www.css3.info/preview/box-shadow/   Style HTML box properties. o This objective may include but is not limited to: apply styles to alter appearance attributes (size, border and rounding border corners, outline, padding, margin); apply styles to alter graphic effects (transparency, opacity, background image, gradients, shadow, clipping); apply styles to establish and change an element’s position (static, relative, absolute, fixed) http://net.tutsplus.com/tutorials/html-css-techniques/10-css3-properties-you-need-to-be-familiar-with/ http://www.w3schools.com/css/css_image_transparency.asp http://www.w3schools.com/cssref/pr_background-image.asp http://ie.microsoft.com/testdrive/graphics/cssgradientbackgroundmaker/default.html http://www.w3.org/TR/CSS21/visufx.html http://www.barelyfitz.com/screencast/html-training/css/positioning/ http://davidwalsh.name/css-fixed-position   Create a flexible content layout. o This objective may include but is not limited to: implement a layout using a flexible box model; implement a layout using multi-column; implement a layout using position floating and exclusions; implement a layout using grid alignment; implement a layout using regions, grouping, and nesting http://www.html5rocks.com/en/tutorials/flexbox/quick/ http://www.css3.info/preview/multi-column-layout/ http://msdn.microsoft.com/en-us/library/ie/hh673558(v=vs.85).aspx http://dev.w3.org/csswg/css3-grid-layout/ http://dev.w3.org/csswg/css3-regions/   Create an animated and adaptive UI. o This objective may include but is not limited to: animate objects by applying CSS transitions; apply 3-D and 2-D transformations; adjust UI based on media queries (device adaptations for output formats, displays, and representations); hide or disable controls http://www.bloggedbychris.com/2012/09/19/microsoft-exam-70-480-study-guide/   Find elements by using CSS selectors and jQuery. o This objective may include but is not limited to: choose the correct selector to reference an element; define element, style, and attribute selectors; find elements by using pseudo-elements and pseudo-classes (for example, :before, :first-line, :first-letter, :target, :lang, :checked, :first-child) http://www.bloggedbychris.com/2012/09/19/microsoft-exam-70-480-study-guide/   Structure a CSS file by using CSS selectors. o This objective may include but is not limited to: reference elements correctly; implement inheritance; override inheritance by using !important; style an element based on pseudo-elements and pseudo-classes (for example, :before, :first-line, :first-letter, :target, :lang, :checked, :first-child) http://www.bloggedbychris.com/2012/09/19/microsoft-exam-70-480-study-guide/   Technorati Tags: 70-480,CSS3,HTML5,HTML,CSS,JavaScript,Certification

    Read the article

< Previous Page | 56 57 58 59 60 61 62 63 64 65 66 67  | Next Page >