Search Results

Search found 1507 results on 61 pages for 'coordinates'.

Page 61/61 | < Previous Page | 57 58 59 60 61 

  • Why is my simple recusive method's final return value always off by 1?

    - by FrankTheTank
    I'm attempting to create a text-based version of this game: http://www.cse.nd.edu/java/SameGame.html Here is the code I have so far: #include <iostream> #include <vector> #include <ctime> class Clickomania { public: Clickomania(); std::vector<std::vector<int> > board; int move(int, int); bool isSolved(); void print(); void pushDown(); bool isValid(); }; Clickomania::Clickomania() : board(12, std::vector<int>(8,0)) { srand((unsigned)time(0)); for(int i = 0; i < 12; i++) { for(int j = 0; j < 8; j++) { int color = (rand() % 3) + 1; board[i][j] = color; } } } void Clickomania::pushDown() { for(int i = 0; i < 8; i++) { for(int j = 0; j < 12; j++) { if (board[j][i] == 0) { for(int k = j; k > 0; k--) { board[k][i] = board[k-1][i]; } board[0][i] = 0; } } } } int Clickomania::move(int row, int col) { bool match = false; int totalMatches = 0; if (row > 12 || row < 0 || col > 8 || col < 0) { return 0; } int currentColor = board[row][col]; board[row][col] = 0; if ((row + 1) < 12) { if (board[row+1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row+1, col); } } if ((row - 1) >= 0) { if (board[row-1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row-1, col); } } if ((col + 1) < 8) { if (board[row][col+1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col+1); } } if ((col - 1) >= 0) { if (board[row][col-1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col-1); } } return totalMatches; } void Clickomania::print() { for(int i = 0; i < 12; i++) { for(int j = 0; j < 8; j++) { std::cout << board[i][j]; } std::cout << "\n"; } } int main() { Clickomania game; game.print(); int row; int col; std::cout << "Enter row: "; std::cin >> row; std::cout << "Enter col: "; std::cin >> col; int numDestroyed = game.move(row,col); game.print(); std::cout << "Destroyed: " << numDestroyed << "\n"; } The method that is giving me trouble is my "move" method. This method, given a pair of coordinates, should delete all the squares at that coordinate with the same number and likewise with all the squares with the same number connected to it. If you play the link I gave above you'll see how the deletion works on a click. int Clickomania::move(int row, int col) { bool match = false; int totalMatches = 0; if (row > 12 || row < 0 || col > 8 || col < 0) { return 0; } int currentColor = board[row][col]; board[row][col] = 0; if ((row + 1) < 12) { if (board[row+1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row+1, col); } } if ((row - 1) >= 0) { if (board[row-1][col] == currentColor) { match = true; totalMatches++; totalMatches += move(row-1, col); } } if ((col + 1) < 8) { if (board[row][col+1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col+1); } } if ((col - 1) >= 0) { if (board[row][col-1] == currentColor) { match = true; totalMatches++; totalMatches += move(row, col-1); } } return totalMatches; } My move() method above works fine, as in, it will delete the appropriate "blocks" and replace them with zeros. However, the number of destroyed (value returned) is always one off (too small). I believe this is because the first call of move() isn't being counted but I don't know how to differentiate between the first call or subsequent calls in that recursive method. How can I modify my move() method so it returns the correct number of destroyed blocks?

    Read the article

  • Get the current location of the Gps? Showing the default one

    - by Gagandeep
    Need help Urgent!!!!! Did changes with help but still unsuccessful... I have to request location updates, but I am unsuccessful in implementing that... i modified the code but need help so that i can see the current location. PLEASE look through my code and help please.. I am learning this and new to this concept and android.. any help would be appreciated here is my code: package com.GoogleMaps; import java.util.List; import com.google.android.maps.GeoPoint; import com.google.android.maps.MapActivity; import com.google.android.maps.MapController; import com.google.android.maps.MapView; import com.google.android.maps.Overlay; import android.content.Context; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.graphics.Canvas; import android.graphics.Paint; import android.graphics.Point; import android.graphics.drawable.Drawable; import android.location.Location; import android.location.LocationListener; import android.location.LocationManager; import android.os.Bundle; import android.widget.Toast; public class MapsActivity extends MapActivity { /** Called when the activity is first created. */ private MapView mapView; private LocationManager lm; private LocationListener ll; private MapController mc; GeoPoint p = null; Drawable defaultMarker = null; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); mapView = (MapView)findViewById(R.id.mapview); //show zoom in/out buttons mapView.setBuiltInZoomControls(true); //Standard view of the map(map/sat) mapView.setSatellite(false); // get zoom tool mapView.setBuiltInZoomControls(true); //get controller of the map for zooming in/out mc = mapView.getController(); // Zoom Level mc.setZoom(18); lm = (LocationManager)getSystemService(Context.LOCATION_SERVICE); ll = new MyLocationListener(); lm.requestLocationUpdates( LocationManager.GPS_PROVIDER, 0, 0, ll); //Get the current location in start-up lm = (LocationManager)getSystemService(Context.LOCATION_SERVICE); ll = new MyLocationListener(); lm.requestLocationUpdates( LocationManager.GPS_PROVIDER, 0, 0, ll); //Get the current location in start-up if (lm.getLastKnownLocation(LocationManager.GPS_PROVIDER) != null){ GeoPoint p = new GeoPoint( (int)(lm.getLastKnownLocation(LocationManager.GPS_PROVIDER).getLatitude()*1000000), (int)(lm.getLastKnownLocation(LocationManager.GPS_PROVIDER).getLongitude()*1000000)); mc.animateTo(p); } MyLocationOverlay myLocationOverlay = new MyLocationOverlay(); List<Overlay> list = mapView.getOverlays(); list.add(myLocationOverlay); } protected class MyLocationOverlay extends com.google.android.maps.Overlay { @Override public boolean draw(Canvas canvas, MapView mapView, boolean shadow, long when) { Paint paint = new Paint(); super.draw(canvas, mapView, shadow); GeoPoint p = null; // Converts lat/lng-Point to OUR coordinates on the screen. Point myScreenCoords = new Point(); mapView.getProjection().toPixels(p, myScreenCoords); paint.setStrokeWidth(1); paint.setARGB(255, 255, 255, 255); paint.setStyle(Paint.Style.STROKE); Bitmap bmp = BitmapFactory.decodeResource(getResources(), R.drawable.ic_launcher); canvas.drawBitmap(bmp, myScreenCoords.x, myScreenCoords.y, paint); canvas.drawText("I am here...", myScreenCoords.x, myScreenCoords.y, paint); return true; } } private class MyLocationListener implements LocationListener{ public void onLocationChanged(Location argLocation) { // TODO Auto-generated method stub p = new GeoPoint((int)(argLocation.getLatitude()*1000000), (int)(argLocation.getLongitude()*1000000)); Toast.makeText(getBaseContext(), "New location latitude [" +argLocation.getLatitude() + "] longitude [" + argLocation.getLongitude()+"]", Toast.LENGTH_SHORT).show(); mc.animateTo(p); mapView.invalidate(); // call this so UI of map was updated } public void onProviderDisabled(String provider) { // TODO Auto-generated method stub } public void onProviderEnabled(String provider) { // TODO Auto-generated method stub } public void onStatusChanged(String provider, int status, Bundle extras) { // TODO Auto-generated method stub } } protected boolean isRouteDisplayed() { return false; } } catlog: 11-29 17:40:42.699: D/dalvikvm(371): GC_FOR_MALLOC freed 6074 objects / 369952 bytes in 74ms 11-29 17:40:42.970: I/MapActivity(371): Handling network change notification:CONNECTED 11-29 17:40:42.980: E/MapActivity(371): Couldn't get connection factory client 11-29 17:40:43.190: D/AndroidRuntime(371): Shutting down VM 11-29 17:40:43.190: W/dalvikvm(371): threadid=1: thread exiting with uncaught exception (group=0x4001d800) 11-29 17:40:43.280: E/AndroidRuntime(371): FATAL EXCEPTION: main 11-29 17:40:43.280: E/AndroidRuntime(371): java.lang.NullPointerException 11-29 17:40:43.280: E/AndroidRuntime(371): at com.google.android.maps.PixelConverter.toPixels(PixelConverter.java:71) 11-29 17:40:43.280: E/AndroidRuntime(371): at com.google.android.maps.PixelConverter.toPixels(PixelConverter.java:61) 11-29 17:40:43.280: E/AndroidRuntime(371): at com.GoogleMaps.MapsActivity$MyLocationOverlay.draw(MapsActivity.java:106) 11-29 17:40:43.280: E/AndroidRuntime(371): at com.google.android.maps.OverlayBundle.draw(OverlayBundle.java:42) 11-29 17:40:43.280: E/AndroidRuntime(371): at com.google.android.maps.MapView.onDraw(MapView.java:494) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.View.draw(View.java:6740) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewGroup.drawChild(ViewGroup.java:1640) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1367) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewGroup.drawChild(ViewGroup.java:1638) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1367) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.View.draw(View.java:6743) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.widget.FrameLayout.draw(FrameLayout.java:352) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewGroup.drawChild(ViewGroup.java:1640) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1367) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewGroup.drawChild(ViewGroup.java:1638) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1367) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.View.draw(View.java:6743) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.widget.FrameLayout.draw(FrameLayout.java:352) 11-29 17:40:43.280: E/AndroidRuntime(371): at com.android.internal.policy.impl.PhoneWindow$DecorView.draw(PhoneWindow.java:1842) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewRoot.draw(ViewRoot.java:1407) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewRoot.performTraversals(ViewRoot.java:1163) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.view.ViewRoot.handleMessage(ViewRoot.java:1727) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.os.Handler.dispatchMessage(Handler.java:99) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.os.Looper.loop(Looper.java:123) 11-29 17:40:43.280: E/AndroidRuntime(371): at android.app.ActivityThread.main(ActivityThread.java:4627) 11-29 17:40:43.280: E/AndroidRuntime(371): at java.lang.reflect.Method.invokeNative(Native Method) 11-29 17:40:43.280: E/AndroidRuntime(371): at java.lang.reflect.Method.invoke(Method.java:521) 11-29 17:40:43.280: E/AndroidRuntime(371): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:868) 11-29 17:40:43.280: E/AndroidRuntime(371): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:626) 11-29 17:40:43.280: E/AndroidRuntime(371): at dalvik.system.NativeStart.main(Native Method) 11-29 17:40:45.779: D/dalvikvm(371): GC_FOR_MALLOC freed 5970 objects / 506624 bytes in 1179ms 11-29 17:40:45.779: I/dalvikvm-heap(371): Grow heap (frag case) to 3.147MB for 17858-byte allocation 11-29 17:40:45.870: D/dalvikvm(371): GC_FOR_MALLOC freed 56 objects / 2304 bytes in 92ms 11-29 17:40:45.960: D/dalvikvm(371): GC_EXPLICIT freed 3459 objects / 196432 bytes in 74ms 11-29 17:40:48.310: D/dalvikvm(371): GC_EXPLICIT freed 116 objects / 41448 bytes in 68ms 11-29 17:40:49.540: I/Process(371): Sending signal. PID: 371 SIG: 9

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Creating a thematic map

    - by jsharma
    This post describes how to create a simple thematic map, just a state population layer, with no underlying map tile layer. The map shows states color-coded by total population. The map is interactive with info-windows and can be panned and zoomed. The sample code demonstrates the following: Displaying an interactive vector layer with no background map tile layer (i.e. purpose and use of the Universe object) Using a dynamic (i.e. defined via the javascript client API) color bucket style Dynamically changing a layer's rendering style Specifying which attribute value to use in determining the bucket, and hence style, for a feature (FoI) The result is shown in the screenshot below. The states layer was defined, and stored in the user_sdo_themes view of the mvdemo schema, using MapBuilder. The underlying table is defined as SQL> desc states_32775  Name                                      Null?    Type ----------------------------------------- -------- ----------------------------  STATE                                              VARCHAR2(26)  STATE_ABRV                                         VARCHAR2(2) FIPSST                                             VARCHAR2(2) TOTPOP                                             NUMBER PCTSMPLD                                           NUMBER LANDSQMI                                           NUMBER POPPSQMI                                           NUMBER ... MEDHHINC NUMBER AVGHHINC NUMBER GEOM32775 MDSYS.SDO_GEOMETRY We'll use the TOTPOP column value in the advanced (color bucket) style for rendering the states layers. The predefined theme (US_STATES_BI) is defined as follows. SQL> select styling_rules from user_sdo_themes where name='US_STATES_BI'; STYLING_RULES -------------------------------------------------------------------------------- <?xml version="1.0" standalone="yes"?> <styling_rules highlight_style="C.CB_QUAL_8_CLASS_DARK2_1"> <hidden_info> <field column="STATE" name="Name"/> <field column="POPPSQMI" name="POPPSQMI"/> <field column="TOTPOP" name="TOTPOP"/> </hidden_info> <rule column="TOTPOP"> <features style="states_totpop"> </features> <label column="STATE_ABRV" style="T.BLUE_SERIF_10"> 1 </label> </rule> </styling_rules> SQL> The theme definition specifies that the state, poppsqmi, totpop, state_abrv, and geom columns will be queried from the states_32775 table. The state_abrv value will be used to label the state while the totpop value will be used to determine the color-fill from those defined in the states_totpop advanced style. The states_totpop style, which we will not use in our demo, is defined as shown below. SQL> select definition from user_sdo_styles where name='STATES_TOTPOP'; DEFINITION -------------------------------------------------------------------------------- <?xml version="1.0" ?> <AdvancedStyle> <BucketStyle> <Buckets default_style="C.S02_COUNTRY_AREA"> <RangedBucket seq="0" label="10K - 5M" low="10000" high="5000000" style="C.SEQ6_01" /> <RangedBucket seq="1" label="5M - 12M" low="5000001" high="1.2E7" style="C.SEQ6_02" /> <RangedBucket seq="2" label="12M - 20M" low="1.2000001E7" high="2.0E7" style="C.SEQ6_04" /> <RangedBucket seq="3" label="&gt; 20M" low="2.0000001E7" high="5.0E7" style="C.SEQ6_05" /> </Buckets> </BucketStyle> </AdvancedStyle> SQL> The demo defines additional advanced styles via the OM.style object and methods and uses those instead when rendering the states layer.   Now let's look at relevant snippets of code that defines the map extent and zoom levels (i.e. the OM.universe),  loads the states predefined vector layer (OM.layer), and sets up the advanced (color bucket) style. Defining the map extent and zoom levels. function initMap() {   //alert("Initialize map view");     // define the map extent and number of zoom levels.   // The Universe object is similar to the map tile layer configuration   // It defines the map extent, number of zoom levels, and spatial reference system   // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined   // The Universe must be defined when there is no underlying map tile layer.   // When there is a map tile layer then that defines the map extent, srid, and zoom levels.      var uni= new OM.universe.Universe(     {         srid : 32775,         bounds : new OM.geometry.Rectangle(                         -3280000, 170000, 2300000, 3200000, 32775),         numberOfZoomLevels: 8     }); The srid specifies the spatial reference system which is Equal-Area Projection (United States). SQL> select cs_name from cs_srs where srid=32775 ; CS_NAME --------------------------------------------------- Equal-Area Projection (United States) The bounds defines the map extent. It is a Rectangle defined using the lower-left and upper-right coordinates and srid. Loading and displaying the states layer This is done in the states() function. The full code is at the end of this post, however here's the snippet which defines the states VectorLayer.     // States is a predefined layer in user_sdo_themes     var  layer2 = new OM.layer.VectorLayer("vLayer2",     {         def:         {             type:OM.layer.VectorLayer.TYPE_PREDEFINED,             dataSource:"mvdemo",             theme:"us_states_bi",             url: baseURL,             loadOnDemand: false         },         boundingTheme:true      }); The first parameter is a layer name, the second is an object literal for a layer config. The config object has two attributes: the first is the layer definition, the second specifies whether the layer is a bounding one (i.e. used to determine the current map zoom and center such that the whole layer is displayed within the map window) or not. The layer config has the following attributes: type - specifies whether is a predefined one, a defined via a SQL query (JDBC), or in a json-format file (DATAPACK) theme - is the predefined theme's name url - is the location of the mapviewer server loadOnDemand - specifies whether to load all the features or just those that lie within the current map window and load additional ones as needed on a pan or zoom The code snippet below dynamically defines an advanced style and then uses it, instead of the 'states_totpop' style, when rendering the states layer. // override predefined rendering style with programmatic one    var theRenderingStyle =      createBucketColorStyle('YlBr5', colorSeries, 'States5', true);   // specify which attribute is used in determining the bucket (i.e. color) to use for the state   // It can be an array because the style could be a chart type (pie/bar)   // which requires multiple attribute columns     // Use the STATE.TOTPOP column (aka attribute) value here    layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); The style itself is defined in the createBucketColorStyle() function. Dynamically defining an advanced style The advanced style used here is a bucket color style, i.e. a color style is associated with each bucket. So first we define the colors and then the buckets.     numClasses = colorSeries[colorName].classes;    // create Color Styles    for (var i=0; i < numClasses; i++)    {         theStyles[i] = new OM.style.Color(                      {fill: colorSeries[colorName].fill[i],                        stroke:colorSeries[colorName].stroke[i],                       strokeOpacity: useGradient? 0.25 : 1                      });    }; numClasses is the number of buckets. The colorSeries array contains the color fill and stroke definitions and is: var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": {   classes:3,                  fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8],                  stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6]   }, "YlBl5": {   classes:5,                  fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494],                  stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85]   }, //multi-hue color scheme #11 YlBr.  "YlBr3": {classes:3,                  fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E],                  stroke:[0xE6DEA9, 0xE5B047, 0xC5360D]   }, "YlBr5": {classes:5,                  fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404],                  stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04]     }, etc. Next we create the bucket style.    bucketStyleDef = {       numClasses : colorSeries[colorName].classes, //      classification: 'custom',  //since we are supplying all the buckets //      buckets: theBuckets,       classification: 'logarithmic',  // use a logarithmic scale       styles: theStyles,       gradient:  useGradient? 'linear' : 'off' //      gradient:  useGradient? 'radial' : 'off'     };    theBucketStyle = new OM.style.BucketStyle(bucketStyleDef);    return theBucketStyle; A BucketStyle constructor takes a style definition as input. The style definition specifies the number of buckets (numClasses), a classification scheme (which can be equal-ranged, logarithmic scale, or custom), the styles for each bucket, whether to use a gradient effect, and optionally the buckets (required when using a custom classification scheme). The full source for the demo <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <title>Oracle Maps V2 Thematic Map Demo</title> <script src="http://localhost:8080/mapviewer/jslib/v2/oraclemapsv2.js" type="text/javascript"> </script> <script type="text/javascript"> //var $j = jQuery.noConflict(); var baseURL="http://localhost:8080/mapviewer"; // location of mapviewer OM.gv.proxyEnabled =false; // no mvproxy needed OM.gv.setResourcePath(baseURL+"/jslib/v2/images/"); // location of resources for UI elements like nav panel buttons var map = null; // the client mapviewer object var statesLayer = null, stateCountyLayer = null; // The vector layers for states and counties in a state var layerName="States"; // initial map center and zoom var mapCenterLon = -20000; var mapCenterLat = 1750000; var mapZoom = 2; var mpoint = new OM.geometry.Point(mapCenterLon,mapCenterLat,32775); var currentPalette = null, currentStyle=null; // set an onchange listener for the color palette select list // initialize the map // load and display the states layer $(document).ready( function() { $("#demo-htmlselect").change(function() { var theColorScheme = $(this).val(); useSelectedColorScheme(theColorScheme); }); initMap(); states(); } ); /** * color series from ColorBrewer site (http://colorbrewer2.org/). */ var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": { classes:3, fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8], stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6] }, "YlBl5": { classes:5, fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494], stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85] }, //multi-hue color scheme #11 YlBr. "YlBr3": {classes:3, fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E], stroke:[0xE6DEA9, 0xE5B047, 0xC5360D] }, "YlBr5": {classes:5, fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404], stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04] }, // single-hue color schemes (blues, greens, greys, oranges, reds, purples) "Purples5": {classes:5, fill:[0xf2f0f7, 0xcbc9e2, 0x9e9ac8, 0x756bb1, 0x54278f], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Blues5": {classes:5, fill:[0xEFF3FF, 0xbdd7e7, 0x68aed6, 0x3182bd, 0x18519C], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greens5": {classes:5, fill:[0xedf8e9, 0xbae4b3, 0x74c476, 0x31a354, 0x116d2c], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greys5": {classes:5, fill:[0xf7f7f7, 0xcccccc, 0x969696, 0x636363, 0x454545], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Oranges5": {classes:5, fill:[0xfeedde, 0xfdb385, 0xfd8d3c, 0xe6550d, 0xa63603], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Reds5": {classes:5, fill:[0xfee5d9, 0xfcae91, 0xfb6a4a, 0xde2d26, 0xa50f15], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] } }; function createBucketColorStyle( colorName, colorSeries, rangeName, useGradient) { var theBucketStyle; var bucketStyleDef; var theStyles = []; var theColors = []; var aBucket, aStyle, aColor, aRange; var numClasses ; numClasses = colorSeries[colorName].classes; // create Color Styles for (var i=0; i < numClasses; i++) { theStyles[i] = new OM.style.Color( {fill: colorSeries[colorName].fill[i], stroke:colorSeries[colorName].stroke[i], strokeOpacity: useGradient? 0.25 : 1 }); }; bucketStyleDef = { numClasses : colorSeries[colorName].classes, // classification: 'custom', //since we are supplying all the buckets // buckets: theBuckets, classification: 'logarithmic', // use a logarithmic scale styles: theStyles, gradient: useGradient? 'linear' : 'off' // gradient: useGradient? 'radial' : 'off' }; theBucketStyle = new OM.style.BucketStyle(bucketStyleDef); return theBucketStyle; } function initMap() { //alert("Initialize map view"); // define the map extent and number of zoom levels. // The Universe object is similar to the map tile layer configuration // It defines the map extent, number of zoom levels, and spatial reference system // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined // The Universe must be defined when there is no underlying map tile layer. // When there is a map tile layer then that defines the map extent, srid, and zoom levels. var uni= new OM.universe.Universe( { srid : 32775, bounds : new OM.geometry.Rectangle( -3280000, 170000, 2300000, 3200000, 32775), numberOfZoomLevels: 8 }); map = new OM.Map( document.getElementById('map'), { mapviewerURL: baseURL, universe:uni }) ; var navigationPanelBar = new OM.control.NavigationPanelBar(); map.addMapDecoration(navigationPanelBar); } // end initMap function states() { //alert("Load and display states"); layerName = "States"; if(statesLayer) { // states were already visible but the style may have changed // so set the style to the currently selected one var theData = $('#demo-htmlselect').val(); setStyle(theData); } else { // States is a predefined layer in user_sdo_themes var layer2 = new OM.layer.VectorLayer("vLayer2", { def: { type:OM.layer.VectorLayer.TYPE_PREDEFINED, dataSource:"mvdemo", theme:"us_states_bi", url: baseURL, loadOnDemand: false }, boundingTheme:true }); // add drop shadow effect and hover style var shadowFilter = new OM.visualfilter.DropShadow({opacity:0.5, color:"#000000", offset:6, radius:10}); var hoverStyle = new OM.style.Color( {stroke:"#838383", strokeThickness:2}); layer2.setHoverStyle(hoverStyle); layer2.setHoverVisualFilter(shadowFilter); layer2.enableFeatureHover(true); layer2.enableFeatureSelection(false); layer2.setLabelsVisible(true); // override predefined rendering style with programmatic one var theRenderingStyle = createBucketColorStyle('YlBr5', colorSeries, 'States5', true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state // It can be an array because the style could be a chart type (pie/bar) // which requires multiple attribute columns // Use the STATE.TOTPOP column (aka attribute) value here layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); currentPalette = "YlBr5"; var stLayerIdx = map.addLayer(layer2); //alert('State Layer Idx = ' + stLayerIdx); map.setMapCenter(mpoint); map.setMapZoomLevel(mapZoom) ; // display the map map.init() ; statesLayer=layer2; // add rt-click event listener to show counties for the state layer2.addListener(OM.event.MouseEvent.MOUSE_RIGHT_CLICK,stateRtClick); } // end if } // end states function setStyle(styleName) { // alert("Selected Style = " + styleName); // there may be a counties layer also displayed. // that wll have different bucket ranges so create // one style for states and one for counties var newRenderingStyle = null; if (layerName === "States") { if(/3/.test(styleName)) { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States3', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties3', false); } else { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States5', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties5', false); } statesLayer.setRenderingStyle(newRenderingStyle, ["TOTPOP"]); if (stateCountyLayer) stateCountyLayer.setRenderingStyle(currentStyle, ["TOTPOP"]); } } // end setStyle function stateRtClick(evt){ var foi = evt.feature; //alert('Rt-Click on State: ' + foi.attributes['_label_'] + // ' with pop ' + foi.attributes['TOTPOP']); // display another layer with counties info // layer may change on each rt-click so create and add each time. var countyByState = null ; // the _label_ attribute of a feature in this case is the state abbreviation // we will use that to query and get the counties for a state var sqlText = "select totpop,geom32775 from counties_32775_moved where state_abrv="+ "'"+foi.getAttributeValue('_label_')+"'"; // alert(sqlText); if (currentStyle === null) currentStyle = createBucketColorStyle('YlBr5', colorSeries, 'Counties5', false); /* try a simple style instead new OM.style.ColorStyle( { stroke: "#B8F4FF", fill: "#18E5F4", fillOpacity:0 } ); */ // remove existing layer if any if(stateCountyLayer) map.removeLayer(stateCountyLayer); countyByState = new OM.layer.VectorLayer("stCountyLayer", {def:{type:OM.layer.VectorLayer.TYPE_JDBC, dataSource:"mvdemo", sql:sqlText, url:baseURL}}); // url:baseURL}, // renderingStyle:currentStyle}); countyByState.setVisible(true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state countyByState.setRenderingStyle(currentStyle, ["TOTPOP"]); var ctLayerIdx = map.addLayer(countyByState); // alert('County Layer Idx = ' + ctLayerIdx); //map.addLayer(countyByState); stateCountyLayer = countyByState; } // end stateRtClick function useSelectedColorScheme(theColorScheme) { if(map) { // code to update renderStyle goes here //alert('will try to change render style'); setStyle(theColorScheme); } else { // do nothing } } </script> </head> <body bgcolor="#b4c5cc" style="height:100%;font-family:Arial,Helvetica,Verdana"> <h3 align="center">State population thematic map </h3> <div id="demo" style="position:absolute; left:68%; top:44px; width:28%; height:100%"> <HR/> <p/> Choose Color Scheme: <select id="demo-htmlselect"> <option value="YlBl3"> YellowBlue3</option> <option value="YlBr3"> YellowBrown3</option> <option value="YlBl5"> YellowBlue5</option> <option value="YlBr5" selected="selected"> YellowBrown5</option> <option value="Blues5"> Blues</option> <option value="Greens5"> Greens</option> <option value="Greys5"> Greys</option> <option value="Oranges5"> Oranges</option> <option value="Purples5"> Purples</option> <option value="Reds5"> Reds</option> </select> <p/> </div> <div id="map" style="position:absolute; left:10px; top:50px; width:65%; height:75%; background-color:#778f99"></div> <div style="position:absolute;top:85%; left:10px;width:98%" class="noprint"> <HR/> <p> Note: This demo uses HTML5 Canvas and requires IE9+, Firefox 10+, or Chrome. No map will show up in IE8 or earlier. </p> </div> </body> </html>

    Read the article

  • Marking Current Location on Map, Android

    - by deewangan
    Hi every one, i followed some tutorials to create an application that shows the current position of the user on the map with a marking. but for some reasons i can't get to work the marking part? the other parts works well, but whenever i add the marking code the application crashes. i hope someone could help me.here is the code: public class LocationActivity extends MapActivity { /** Called when the activity is first created. */ private MapView mapView; private LocationManager lm; private LocationListener ll; private MapController mc; GeoPoint p = null; Drawable defaultMarker = null; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); mapView = (MapView)findViewById(R.id.mapView); //show zoom in/out buttons mapView.setBuiltInZoomControls(true); //Standard view of the map(map/sat) mapView.setSatellite(false); //get controller of the map for zooming in/out mc = mapView.getController(); // Zoom Level mc.setZoom(18); MyLocationOverlay myLocationOverlay = new MyLocationOverlay(); List<Overlay> list = mapView.getOverlays(); list.add(myLocationOverlay); lm = (LocationManager)getSystemService(Context.LOCATION_SERVICE); ll = new MyLocationListener(); lm.requestLocationUpdates( LocationManager.GPS_PROVIDER, 0, 0, ll); //Get the current location in start-up GeoPoint initGeoPoint = new GeoPoint( (int)(lm.getLastKnownLocation( LocationManager.GPS_PROVIDER) .getLatitude()*1000000), (int)(lm.getLastKnownLocation( LocationManager.GPS_PROVIDER) .getLongitude()*1000000)); mc.animateTo(initGeoPoint); } protected class MyLocationOverlay extends com.google.android.maps.Overlay { @Override public boolean draw(Canvas canvas, MapView mapView, boolean shadow, long when) { Paint paint = new Paint(); super.draw(canvas, mapView, shadow); // Converts lat/lng-Point to OUR coordinates on the screen. Point myScreenCoords = new Point(); mapView.getProjection().toPixels(p, myScreenCoords); paint.setStrokeWidth(1); paint.setARGB(255, 255, 255, 255); paint.setStyle(Paint.Style.STROKE); Bitmap bmp = BitmapFactory.decodeResource(getResources(), R.drawable.push); canvas.drawBitmap(bmp, myScreenCoords.x, myScreenCoords.y, paint); canvas.drawText("I am here...", myScreenCoords.x, myScreenCoords.y, paint); return true; } } private class MyLocationListener implements LocationListener{ public void onLocationChanged(Location argLocation) { // TODO Auto-generated method stub GeoPoint myGeoPoint = new GeoPoint( (int)(argLocation.getLatitude()*1000000), (int)(argLocation.getLongitude()*1000000)); /* * it will show a message on * location change Toast.makeText(getBaseContext(), "New location latitude [" +argLocation.getLatitude() + "] longitude [" + argLocation.getLongitude()+"]", Toast.LENGTH_SHORT).show(); */ mc.animateTo(myGeoPoint); } public void onProviderDisabled(String provider) { // TODO Auto-generated method stub } public void onProviderEnabled(String provider) { // TODO Auto-generated method stub } public void onStatusChanged(String provider, int status, Bundle extras) { // TODO Auto-generated method stub } } protected boolean isRouteDisplayed() { return false; } } here is the logcat: 01-19 05:31:43.011: DEBUG/AndroidRuntime(759): >>>>>>>>>>>>>> AndroidRuntime START <<<<<<<<<<<<<< 01-19 05:31:43.011: DEBUG/AndroidRuntime(759): CheckJNI is ON 01-19 05:31:43.411: DEBUG/AndroidRuntime(759): --- registering native functions --- 01-19 05:31:43.431: INFO/jdwp(759): received file descriptor 19 from ADB 01-19 05:31:43.431: INFO/jdwp(759): Ignoring second debugger -- accepting and dropping 01-19 05:31:44.531: INFO/ActivityManager(583): Starting activity: Intent { flg=0x10000000 cmp=pro.googlemapp/.LocationActivity } 01-19 05:31:44.641: DEBUG/AndroidRuntime(759): Shutting down VM 01-19 05:31:44.641: DEBUG/dalvikvm(759): DestroyJavaVM waiting for non-daemon threads to exit 01-19 05:31:44.641: DEBUG/dalvikvm(759): DestroyJavaVM shutting VM down 01-19 05:31:44.641: DEBUG/dalvikvm(759): HeapWorker thread shutting down 01-19 05:31:44.651: DEBUG/dalvikvm(759): HeapWorker thread has shut down 01-19 05:31:44.651: DEBUG/jdwp(759): JDWP shutting down net... 01-19 05:31:44.651: DEBUG/jdwp(759): +++ peer disconnected 01-19 05:31:44.651: INFO/dalvikvm(759): Debugger has detached; object registry had 1 entries 01-19 05:31:44.661: DEBUG/dalvikvm(759): VM cleaning up 01-19 05:31:44.681: INFO/ActivityManager(583): Start proc pro.googlemapp for activity pro.googlemapp/.LocationActivity: pid=770 uid=10025 gids={3003} 01-19 05:31:44.761: DEBUG/dalvikvm(759): LinearAlloc 0x0 used 676436 of 4194304 (16%) 01-19 05:31:44.801: INFO/jdwp(770): received file descriptor 20 from ADB 01-19 05:31:44.822: INFO/dalvikvm(770): ignoring registerObject request in thread=3 01-19 05:31:44.851: INFO/jdwp(770): Ignoring second debugger -- accepting and dropping 01-19 05:31:44.851: ERROR/jdwp(770): Failed writing handshake bytes: Broken pipe (-1 of 14) 01-19 05:31:44.851: INFO/dalvikvm(770): Debugger has detached; object registry had 0 entries 01-19 05:31:45.320: ERROR/ActivityThread(770): Failed to find provider info for com.google.settings 01-19 05:31:45.320: ERROR/ActivityThread(770): Failed to find provider info for com.google.settings 01-19 05:31:45.340: ERROR/ActivityThread(770): Failed to find provider info for com.google.settings 01-19 05:31:45.781: DEBUG/LocationManager(770): Constructor: service = android.location.ILocationManager$Stub$Proxy@4379d9f0 01-19 05:31:45.791: WARN/GpsLocationProvider(583): Duplicate add listener for uid 10025 01-19 05:31:45.791: DEBUG/GpsLocationProvider(583): setMinTime 0 01-19 05:31:45.791: DEBUG/GpsLocationProvider(583): startNavigating 01-19 05:31:45.831: INFO/jdwp(770): received file descriptor 27 from ADB 01-19 05:31:46.001: INFO/MapActivity(770): Handling network change notification:CONNECTED 01-19 05:31:46.001: ERROR/MapActivity(770): Couldn't get connection factory client 01-19 05:31:46.451: DEBUG/dalvikvm(770): GC freed 4539 objects / 298952 bytes in 118ms 01-19 05:31:46.470: DEBUG/AndroidRuntime(770): Shutting down VM 01-19 05:31:46.470: WARN/dalvikvm(770): threadid=3: thread exiting with uncaught exception (group=0x4001aa28) 01-19 05:31:46.481: ERROR/AndroidRuntime(770): Uncaught handler: thread main exiting due to uncaught exception 01-19 05:31:46.541: ERROR/AndroidRuntime(770): java.lang.NullPointerException 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at com.google.android.maps.PixelConverter.toPixels(PixelConverter.java:58) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at com.google.android.maps.PixelConverter.toPixels(PixelConverter.java:48) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at pro.googlemapp.LocationActivity$MyLocationOverlay.draw(LocationActivity.java:101) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at com.google.android.maps.OverlayBundle.draw(OverlayBundle.java:42) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at com.google.android.maps.MapView.onDraw(MapView.java:476) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.View.draw(View.java:6274) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewGroup.drawChild(ViewGroup.java:1526) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1256) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewGroup.drawChild(ViewGroup.java:1524) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1256) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.View.draw(View.java:6277) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.widget.FrameLayout.draw(FrameLayout.java:352) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewGroup.drawChild(ViewGroup.java:1526) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1256) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewGroup.drawChild(ViewGroup.java:1524) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1256) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.View.draw(View.java:6277) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.widget.FrameLayout.draw(FrameLayout.java:352) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at com.android.internal.policy.impl.PhoneWindow$DecorView.draw(PhoneWindow.java:1883) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewRoot.draw(ViewRoot.java:1332) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewRoot.performTraversals(ViewRoot.java:1097) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.view.ViewRoot.handleMessage(ViewRoot.java:1613) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.os.Handler.dispatchMessage(Handler.java:99) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.os.Looper.loop(Looper.java:123) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at android.app.ActivityThread.main(ActivityThread.java:4203) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at java.lang.reflect.Method.invokeNative(Native Method) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at java.lang.reflect.Method.invoke(Method.java:521) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:791) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:549) 01-19 05:31:46.541: ERROR/AndroidRuntime(770): at dalvik.system.NativeStart.main(Native Method) 01-19 05:31:46.551: INFO/Process(583): Sending signal. PID: 770 SIG: 3 01-19 05:31:46.581: INFO/dalvikvm(770): threadid=7: reacting to signal 3 01-19 05:31:46.661: INFO/dalvikvm(770): Wrote stack trace to '/data/anr/traces.txt' 01-19 05:31:46.871: INFO/ARMAssembler(583): generated scanline__00000077:03515104_00000000_00000000 [ 27 ipp] (41 ins) at [0x2c69c8:0x2c6a6c] in 973448 ns 01-19 05:31:46.911: INFO/ARMAssembler(583): generated scanline__00000077:03515104_00001001_00000000 [ 64 ipp] (84 ins) at [0x2c6a70:0x2c6bc0] in 1985378 ns 01-19 05:31:49.881: INFO/Process(770): Sending signal. PID: 770 SIG: 9 01-19 05:31:49.931: INFO/ActivityManager(583): Process pro.googlemapp (pid 770) has died. 01-19 05:31:49.941: WARN/GpsLocationProvider(583): Unneeded remove listener for uid 1000 01-19 05:31:49.941: DEBUG/GpsLocationProvider(583): stopNavigating 01-19 05:31:49.951: INFO/WindowManager(583): WIN DEATH: Window{438891c0 pro.googlemapp/pro.googlemapp.LocationActivity paused=false} 01-19 05:31:50.111: WARN/UsageStats(583): Unexpected resume of com.android.launcher while already resumed in pro.googlemapp 01-19 05:31:50.200: WARN/InputManagerService(583): Got RemoteException sending setActive(false) notification to pid 770 uid 10025

    Read the article

  • Simple Physics Simulation in java not working.

    - by Static Void Main
    Dear experts, I wanted to implement ball physics and as i m newbie, i adapt the code in tutorial http://adam21.web.officelive.com/Documents/JavaPhysicsTutorial.pdf . i try to follow that as i much as i can, but i m not able to apply all physical phenomenon in code, can somebody please tell me, where i m mistaken or i m still doing some silly programming mistake. The balls are moving when i m not calling bounce method and i m unable to avail the bounce method and ball are moving towards left side instead of falling/ending on floor**, Can some body recommend me some better way or similar easy compact way to accomplish this task of applying physics on two ball or more balls with interactivity. here is code ; import java.awt.*; public class AdobeBall { protected int radius = 20; protected Color color; // ... Constants final static int DIAMETER = 40; // ... Instance variables private int m_x; // x and y coordinates upper left private int m_y; private double dx = 3.0; // delta x and y private double dy = 6.0; private double m_velocityX; // Pixels to move each time move() is called. private double m_velocityY; private int m_rightBound; // Maximum permissible x, y values. private int m_bottomBound; public AdobeBall(int x, int y, double velocityX, double velocityY, Color color1) { super(); m_x = x; m_y = y; m_velocityX = velocityX; m_velocityY = velocityY; color = color1; } public double getSpeed() { return Math.sqrt((m_x + m_velocityX - m_x) * (m_x + m_velocityX - m_x) + (m_y + m_velocityY - m_y) * (m_y + m_velocityY - m_y)); } public void setSpeed(double speed) { double currentSpeed = Math.sqrt(dx * dx + dy * dy); dx = dx * speed / currentSpeed; dy = dy * speed / currentSpeed; } public void setDirection(double direction) { m_velocityX = (int) (Math.cos(direction) * getSpeed()); m_velocityY = (int) (Math.sin(direction) * getSpeed()); } public double getDirection() { double h = ((m_x + dx - m_x) * (m_x + dx - m_x)) + ((m_y + dy - m_y) * (m_y + dy - m_y)); double a = (m_x + dx - m_x) / h; return a; } // ======================================================== setBounds public void setBounds(int width, int height) { m_rightBound = width - DIAMETER; m_bottomBound = height - DIAMETER; } // ============================================================== move public void move() { double gravAmount = 0.02; double gravDir = 90; // The direction for the gravity to be in. // ... Move the ball at the give velocity. m_x += m_velocityX; m_y += m_velocityY; // ... Bounce the ball off the walls if necessary. if (m_x < 0) { // If at or beyond left side m_x = 0; // Place against edge and m_velocityX = -m_velocityX; } else if (m_x > m_rightBound) { // If at or beyond right side m_x = m_rightBound; // Place against right edge. m_velocityX = -m_velocityX; } if (m_y < 0) { // if we're at top m_y = 0; m_velocityY = -m_velocityY; } else if (m_y > m_bottomBound) { // if we're at bottom m_y = m_bottomBound; m_velocityY = -m_velocityY; } // double speed = Math.sqrt((m_velocityX * m_velocityX) // + (m_velocityY * m_velocityY)); // ...Friction stuff double fricMax = 0.02; // You can use any number, preferably less than 1 double friction = getSpeed(); if (friction > fricMax) friction = fricMax; if (m_velocityX >= 0) { m_velocityX -= friction; } if (m_velocityX <= 0) { m_velocityX += friction; } if (m_velocityY >= 0) { m_velocityY -= friction; } if (m_velocityY <= 0) { m_velocityY += friction; } // ...Gravity stuff m_velocityX += Math.cos(gravDir) * gravAmount; m_velocityY += Math.sin(gravDir) * gravAmount; } public Color getColor() { return color; } public void setColor(Color newColor) { color = newColor; } // ============================================= getDiameter, getX, getY public int getDiameter() { return DIAMETER; } public double getRadius() { return radius; // radius should be a local variable in Ball. } public int getX() { return m_x; } public int getY() { return m_y; } } using adobeBall: import java.awt.*; import java.awt.event.*; import javax.swing.*; public class AdobeBallImplementation implements Runnable { private static final long serialVersionUID = 1L; private volatile boolean Play; private long mFrameDelay; private JFrame frame; private MyKeyListener pit; /** true means mouse was pressed in ball and still in panel. */ private boolean _canDrag = false; private static final int MAX_BALLS = 50; // max number allowed private int currentNumBalls = 2; // number currently active private AdobeBall[] ball = new AdobeBall[MAX_BALLS]; public AdobeBallImplementation(Color ballColor) { frame = new JFrame("simple gaming loop in java"); frame.setSize(400, 400); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); pit = new MyKeyListener(); pit.setPreferredSize(new Dimension(400, 400)); frame.setContentPane(pit); ball[0] = new AdobeBall(34, 150, 7, 2, Color.YELLOW); ball[1] = new AdobeBall(50, 50, 5, 3, Color.BLUE); frame.pack(); frame.setVisible(true); frame.setBackground(Color.white); start(); frame.addMouseListener(pit); frame.addMouseMotionListener(pit); } public void start() { Play = true; Thread t = new Thread(this); t.start(); } public void stop() { Play = false; } public void run() { while (Play == true) { // bounce(ball[0],ball[1]); runball(); pit.repaint(); try { Thread.sleep(mFrameDelay); } catch (InterruptedException ie) { stop(); } } } public void drawworld(Graphics g) { for (int i = 0; i < currentNumBalls; i++) { g.setColor(ball[i].getColor()); g.fillOval(ball[i].getX(), ball[i].getY(), 40, 40); } } public double pointDistance (double x1, double y1, double x2, double y2) { return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)); } public void runball() { while (Play == true) { try { for (int i = 0; i < currentNumBalls; i++) { for (int j = 0; j < currentNumBalls; j++) { if (pointDistance(ball[i].getX(), ball[i].getY(), ball[j].getX(), ball[j].getY()) < ball[i] .getRadius() + ball[j].getRadius() + 2) { // bounce(ball[i],ball[j]); ball[i].setBounds(pit.getWidth(), pit.getHeight()); ball[i].move(); pit.repaint(); } } } try { Thread.sleep(50); } catch (Exception e) { System.exit(0); } } catch (Exception e) { e.printStackTrace(); } } } public static double pointDirection(int x1, int y1, int x2, int y2) { double H = Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)); // The // hypotenuse double x = x2 - x1; // The opposite double y = y2 - y1; // The adjacent double angle = Math.acos(x / H); angle = angle * 57.2960285258; if (y < 0) { angle = 360 - angle; } return angle; } public static void bounce(AdobeBall b1, AdobeBall b2) { if (b2.getSpeed() == 0 && b1.getSpeed() == 0) { // Both balls are stopped. b1.setDirection(pointDirection(b1.getX(), b1.getY(), b2.getX(), b2 .getY())); b2.setDirection(pointDirection(b2.getX(), b2.getY(), b1.getX(), b1 .getY())); b1.setSpeed(1); b2.setSpeed(1); } else if (b2.getSpeed() == 0 && b1.getSpeed() != 0) { // B1 is moving. B2 is stationary. double angle = pointDirection(b1.getX(), b1.getY(), b2.getX(), b2 .getY()); b2.setSpeed(b1.getSpeed()); b2.setDirection(angle); b1.setDirection(angle - 90); } else if (b1.getSpeed() == 0 && b2.getSpeed() != 0) { // B1 is moving. B2 is stationary. double angle = pointDirection(b2.getX(), b2.getY(), b1.getX(), b1 .getY()); b1.setSpeed(b2.getSpeed()); b1.setDirection(angle); b2.setDirection(angle - 90); } else { // Both balls are moving. AdobeBall tmp = b1; double angle = pointDirection(b2.getX(), b2.getY(), b1.getX(), b1 .getY()); double origangle = b1.getDirection(); b1.setDirection(angle + origangle); angle = pointDirection(tmp.getX(), tmp.getY(), b2.getX(), b2.getY()); origangle = b2.getDirection(); b2.setDirection(angle + origangle); } } public static void main(String[] args) { javax.swing.SwingUtilities.invokeLater(new Runnable() { public void run() { new AdobeBallImplementation(Color.red); } }); } } *EDIT:*ok splitting the code using new approach for gravity from this forum: this code also not working the ball is not coming on floor: public void mymove() { m_x += m_velocityX; m_y += m_velocityY; if (m_y + m_bottomBound > 400) { m_velocityY *= -0.981; // setY(400 - m_bottomBound); m_y = 400 - m_bottomBound; } // ... Bounce the ball off the walls if necessary. if (m_x < 0) { // If at or beyond left side m_x = 0; // Place against edge and m_velocityX = -m_velocityX; } else if (m_x > m_rightBound) { // If at or beyond right side m_x = m_rightBound - 20; // Place against right edge. m_velocityX = -m_velocityX; } if (m_y < 0) { // if we're at top m_y = 1; m_velocityY = -m_velocityY; } else if (m_y > m_bottomBound) { // if we're at bottom m_y = m_bottomBound - 20; m_velocityY = -m_velocityY; } } thanks a lot for any correction and help. jibby

    Read the article

  • Fitting an Image to Screen on Rotation iPhone / iPad ?

    - by user356937
    I have been playing around with one of the iPhone examples from Apple' web site (ScrollViewSuite) . I am trying to tweak it a bit so that when I rotate the the iPad the image will fit into the screen in landscape mode vertical. I have been successful in getting the image to rotate, but the image is larger than the height of the landscape screen, so the bottom is below the screen. I would like to image to scale to the height of the landscape screen. I have been playing around with various autoSizingMask attributes without success. The imageView is called "zoomView" this is the actual image which loads into a scrollView called imageScrollView. I am trying to achieve the screen to rotate and look like this.... olsonvox.com/photos/correct.png However, this is what My screen is looking like. olsonvox.com/photos/incorrect.png I would really appreciate some advice or guidance. Below is the RootViewController.m for the project. Blade # import "RootViewController.h" #define ZOOM_VIEW_TAG 100 #define ZOOM_STEP 1.5 #define THUMB_HEIGHT 150 #define THUMB_V_PADDING 25 #define THUMB_H_PADDING 25 #define CREDIT_LABEL_HEIGHT 25 #define AUTOSCROLL_THRESHOLD 30 @interface RootViewController (ViewHandlingMethods) - (void)toggleThumbView; - (void)pickImageNamed:(NSString *)name; - (NSArray *)imageNames; - (void)createThumbScrollViewIfNecessary; - (void)createSlideUpViewIfNecessary; @end @interface RootViewController (AutoscrollingMethods) - (void)maybeAutoscrollForThumb:(ThumbImageView *)thumb; - (void)autoscrollTimerFired:(NSTimer *)timer; - (void)legalizeAutoscrollDistance; - (float)autoscrollDistanceForProximityToEdge:(float)proximity; @end @interface RootViewController (UtilityMethods) - (CGRect)zoomRectForScale:(float)scale withCenter:(CGPoint)center; @end @implementation RootViewController - (void)loadView { [super loadView]; imageScrollView = [[UIScrollView alloc] initWithFrame:[[self view]bounds]]; // this code makes the image resize to the width and height properly. imageScrollView.autoresizingMask = UIViewAutoresizingFlexibleHeight | UIViewAutoresizingFlexibleLeftMargin | UIViewAutoresizingFlexibleRightMargin| UIViewAutoresizingFlexibleBottomMargin| UIViewAutoresizingFlexibleBottomMargin; // TRY SETTNG CENTER HERE SOMEHOW&gt;.... [imageScrollView setBackgroundColor:[UIColor blackColor]]; [imageScrollView setDelegate:self]; [imageScrollView setBouncesZoom:YES]; [[self view] addSubview:imageScrollView]; [self toggleThumbView]; // intitializes with the first image. [self pickImageNamed:@"lookbook1"]; } - (void)dealloc { [imageScrollView release]; [slideUpView release]; [thumbScrollView release]; [super dealloc]; } #pragma mark UIScrollViewDelegate methods - (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView { UIView *view = nil; if (scrollView == imageScrollView) { view = [imageScrollView viewWithTag:ZOOM_VIEW_TAG]; } return view; } /************************************** NOTE **************************************/ /* The following delegate method works around a known bug in zoomToRect:animated: */ /* In the next release after 3.0 this workaround will no longer be necessary */ /**********************************************************************************/ - (void)scrollViewDidEndZooming:(UIScrollView *)scrollView withView:(UIView *)view atScale:(float)scale { [scrollView setZoomScale:scale+0.01 animated:NO]; [scrollView setZoomScale:scale animated:NO]; } #pragma mark TapDetectingImageViewDelegate methods - (void)tapDetectingImageView:(TapDetectingImageView *)view gotSingleTapAtPoint:(CGPoint)tapPoint { // Single tap shows or hides drawer of thumbnails. [self toggleThumbView]; } - (void)tapDetectingImageView:(TapDetectingImageView *)view gotDoubleTapAtPoint:(CGPoint)tapPoint { // double tap zooms in float newScale = [imageScrollView zoomScale] * ZOOM_STEP; CGRect zoomRect = [self zoomRectForScale:newScale withCenter:tapPoint]; [imageScrollView zoomToRect:zoomRect animated:YES]; } - (void)tapDetectingImageView:(TapDetectingImageView *)view gotTwoFingerTapAtPoint:(CGPoint)tapPoint { // two-finger tap zooms out float newScale = [imageScrollView zoomScale] / ZOOM_STEP; CGRect zoomRect = [self zoomRectForScale:newScale withCenter:tapPoint]; [imageScrollView zoomToRect:zoomRect animated:YES]; } #pragma mark ThumbImageViewDelegate methods - (void)thumbImageViewWasTapped:(ThumbImageView *)tiv { [self pickImageNamed:[tiv imageName]]; [self toggleThumbView]; } - (void)thumbImageViewStartedTracking:(ThumbImageView *)tiv { [thumbScrollView bringSubviewToFront:tiv]; } // CONTROLS DRAGGING AND DROPPING THUMBNAILS... - (void)thumbImageViewMoved:(ThumbImageView *)draggingThumb { // check if we've moved close enough to an edge to autoscroll, or far enough away to stop autoscrolling [self maybeAutoscrollForThumb:draggingThumb]; /* The rest of this method handles the reordering of thumbnails in the thumbScrollView. See */ /* ThumbImageView.h and ThumbImageView.m for more information about how this works. */ // we'll reorder only if the thumb is overlapping the scroll view if (CGRectIntersectsRect([draggingThumb frame], [thumbScrollView bounds])) { BOOL draggingRight = [draggingThumb frame].origin.x &gt; [draggingThumb home].origin.x ? YES : NO; /* we're going to shift over all the thumbs who live between the home of the moving thumb */ /* and the current touch location. A thumb counts as living in this area if the midpoint */ /* of its home is contained in the area. */ NSMutableArray *thumbsToShift = [[NSMutableArray alloc] init]; // get the touch location in the coordinate system of the scroll view CGPoint touchLocation = [draggingThumb convertPoint:[draggingThumb touchLocation] toView:thumbScrollView]; // calculate minimum and maximum boundaries of the affected area float minX = draggingRight ? CGRectGetMaxX([draggingThumb home]) : touchLocation.x; float maxX = draggingRight ? touchLocation.x : CGRectGetMinX([draggingThumb home]); // iterate through thumbnails and see which ones need to move over for (ThumbImageView *thumb in [thumbScrollView subviews]) { // skip the thumb being dragged if (thumb == draggingThumb) continue; // skip non-thumb subviews of the scroll view (such as the scroll indicators) if (! [thumb isMemberOfClass:[ThumbImageView class]]) continue; float thumbMidpoint = CGRectGetMidX([thumb home]); if (thumbMidpoint &gt;= minX &amp;&amp; thumbMidpoint &lt;= maxX) { [thumbsToShift addObject:thumb]; } } // shift over the other thumbs to make room for the dragging thumb. (if we're dragging right, they shift to the left) float otherThumbShift = ([draggingThumb home].size.width + THUMB_H_PADDING) * (draggingRight ? -1 : 1); // as we shift over the other thumbs, we'll calculate how much the dragging thumb's home is going to move float draggingThumbShift = 0.0; // send each of the shifting thumbs to its new home for (ThumbImageView *otherThumb in thumbsToShift) { CGRect home = [otherThumb home]; home.origin.x += otherThumbShift; [otherThumb setHome:home]; [otherThumb goHome]; draggingThumbShift += ([otherThumb frame].size.width + THUMB_H_PADDING) * (draggingRight ? 1 : -1); } // change the home of the dragging thumb, but don't send it there because it's still being dragged CGRect home = [draggingThumb home]; home.origin.x += draggingThumbShift; [draggingThumb setHome:home]; } } - (void)thumbImageViewStoppedTracking:(ThumbImageView *)tiv { // if the user lets go of the thumb image view, stop autoscrolling [autoscrollTimer invalidate]; autoscrollTimer = nil; } #pragma mark Autoscrolling methods - (void)maybeAutoscrollForThumb:(ThumbImageView *)thumb { autoscrollDistance = 0; // only autoscroll if the thumb is overlapping the thumbScrollView if (CGRectIntersectsRect([thumb frame], [thumbScrollView bounds])) { CGPoint touchLocation = [thumb convertPoint:[thumb touchLocation] toView:thumbScrollView]; float distanceFromLeftEdge = touchLocation.x - CGRectGetMinX([thumbScrollView bounds]); float distanceFromRightEdge = CGRectGetMaxX([thumbScrollView bounds]) - touchLocation.x; if (distanceFromLeftEdge &lt; AUTOSCROLL_THRESHOLD) { autoscrollDistance = [self autoscrollDistanceForProximityToEdge:distanceFromLeftEdge] * -1; // if scrolling left, distance is negative } else if (distanceFromRightEdge &lt; AUTOSCROLL_THRESHOLD) { autoscrollDistance = [self autoscrollDistanceForProximityToEdge:distanceFromRightEdge]; } } // if no autoscrolling, stop and clear timer if (autoscrollDistance == 0) { [autoscrollTimer invalidate]; autoscrollTimer = nil; } // otherwise create and start timer (if we don't already have a timer going) else if (autoscrollTimer == nil) { autoscrollTimer = [NSTimer scheduledTimerWithTimeInterval:(1.0 / 60.0) target:self selector:@selector(autoscrollTimerFired:) userInfo:thumb repeats:YES]; } } - (float)autoscrollDistanceForProximityToEdge:(float)proximity { // the scroll distance grows as the proximity to the edge decreases, so that moving the thumb // further over results in faster scrolling. return ceilf((AUTOSCROLL_THRESHOLD - proximity) / 5.0); } - (void)legalizeAutoscrollDistance { // makes sure the autoscroll distance won't result in scrolling past the content of the scroll view float minimumLegalDistance = [thumbScrollView contentOffset].x * -1; float maximumLegalDistance = [thumbScrollView contentSize].width - ([thumbScrollView frame].size.width + [thumbScrollView contentOffset].x); autoscrollDistance = MAX(autoscrollDistance, minimumLegalDistance); autoscrollDistance = MIN(autoscrollDistance, maximumLegalDistance); } - (void)autoscrollTimerFired:(NSTimer*)timer { [self legalizeAutoscrollDistance]; // autoscroll by changing content offset CGPoint contentOffset = [thumbScrollView contentOffset]; contentOffset.x += autoscrollDistance; [thumbScrollView setContentOffset:contentOffset]; // adjust thumb position so it appears to stay still ThumbImageView *thumb = (ThumbImageView *)[timer userInfo]; [thumb moveByOffset:CGPointMake(autoscrollDistance, 0)]; } #pragma mark View handling methods - (void)toggleThumbView { [self createSlideUpViewIfNecessary]; // no-op if slideUpView has already been created CGRect frame = [slideUpView frame]; if (thumbViewShowing) { frame.origin.y = 0; } else { frame.origin.y = -225; } [UIView beginAnimations:nil context:nil]; [UIView setAnimationDuration:0.3]; [slideUpView setFrame:frame]; [UIView commitAnimations]; thumbViewShowing = !thumbViewShowing; } - (void)pickImageNamed:(NSString *)name { // first remove previous image view, if any [[imageScrollView viewWithTag:ZOOM_VIEW_TAG] removeFromSuperview]; UIImage *image = [UIImage imageNamed:[NSString stringWithFormat:@"%@.jpg", name]]; TapDetectingImageView *zoomView = [[TapDetectingImageView alloc] initWithImage:image]; zoomView.autoresizingMask = UIViewAutoresizingFlexibleWidth ; [zoomView setDelegate:self]; [zoomView setTag:ZOOM_VIEW_TAG]; [imageScrollView addSubview:zoomView]; [imageScrollView setContentSize:[zoomView frame].size]; [zoomView release]; // choose minimum scale so image width fits screen float minScale = [imageScrollView frame].size.width / [zoomView frame].size.width; [imageScrollView setMinimumZoomScale:minScale]; [imageScrollView setZoomScale:minScale]; [imageScrollView setContentOffset:CGPointZero]; } - (NSArray *)imageNames { // the filenames are stored in a plist in the app bundle, so create array by reading this plist NSString *path = [[NSBundle mainBundle] pathForResource:@"Images" ofType:@"plist"]; NSData *plistData = [NSData dataWithContentsOfFile:path]; NSString *error; NSPropertyListFormat format; NSArray *imageNames = [NSPropertyListSerialization propertyListFromData:plistData mutabilityOption:NSPropertyListImmutable format:&amp;format errorDescription:&amp;error]; if (!imageNames) { NSLog(@"Failed to read image names. Error: %@", error); [error release]; } return imageNames; } - (void)createSlideUpViewIfNecessary { if (!slideUpView) { [self createThumbScrollViewIfNecessary]; CGRect bounds = [[self view] bounds]; float thumbHeight = [thumbScrollView frame].size.height; float labelHeight = CREDIT_LABEL_HEIGHT; // create label giving credit for images UILabel *creditLabel = [[UILabel alloc] initWithFrame:CGRectMake(0, thumbHeight, bounds.size.width, labelHeight)]; [creditLabel setBackgroundColor:[UIColor clearColor]]; [creditLabel setTextColor:[UIColor whiteColor]]; // [creditLabel setFont:[UIFont fontWithName:@"Helvetica" size:16]]; // [creditLabel setText:@"SAMPLE TEXT"]; [creditLabel setTextAlignment:UITextAlignmentCenter]; // create container view that will hold scroll view and label CGRect frame = CGRectMake(0.0, -225.00, bounds.size.width+256, thumbHeight + labelHeight); slideUpView.autoresizingMask = UIViewAutoresizingFlexibleWidth | UIViewAutoresizingFlexibleTopMargin; slideUpView = [[UIView alloc] initWithFrame:frame]; [slideUpView setBackgroundColor:[UIColor blackColor]]; [slideUpView setOpaque:NO]; [slideUpView setAlpha:.75]; [[self view] addSubview:slideUpView]; // add subviews to container view [slideUpView addSubview:thumbScrollView]; [slideUpView addSubview:creditLabel]; [creditLabel release]; } } - (void)createThumbScrollViewIfNecessary { if (!thumbScrollView) { float scrollViewHeight = THUMB_HEIGHT + THUMB_V_PADDING; float scrollViewWidth = [[self view] bounds].size.width; thumbScrollView = [[UIScrollView alloc] initWithFrame:CGRectMake(0, 0, scrollViewWidth, scrollViewHeight)]; [thumbScrollView setCanCancelContentTouches:NO]; [thumbScrollView setClipsToBounds:NO]; // now place all the thumb views as subviews of the scroll view // and in the course of doing so calculate the content width float xPosition = THUMB_H_PADDING; for (NSString *name in [self imageNames]) { UIImage *thumbImage = [UIImage imageNamed:[NSString stringWithFormat:@"%@_thumb.jpg", name]]; if (thumbImage) { ThumbImageView *thumbView = [[ThumbImageView alloc] initWithImage:thumbImage]; [thumbView setDelegate:self]; [thumbView setImageName:name]; CGRect frame = [thumbView frame]; frame.origin.y = THUMB_V_PADDING; frame.origin.x = xPosition; [thumbView setFrame:frame]; [thumbView setHome:frame]; [thumbScrollView addSubview:thumbView]; [thumbView release]; xPosition += (frame.size.width + THUMB_H_PADDING); } } [thumbScrollView setContentSize:CGSizeMake(xPosition, scrollViewHeight)]; } } #pragma mark Utility methods - (CGRect)zoomRectForScale:(float)scale withCenter:(CGPoint)center { CGRect zoomRect; // the zoom rect is in the content view's coordinates. // At a zoom scale of 1.0, it would be the size of the imageScrollView's bounds. // As the zoom scale decreases, so more content is visible, the size of the rect grows. zoomRect.size.height = [imageScrollView frame].size.height / scale; zoomRect.size.width = [imageScrollView frame].size.width / scale; // choose an origin so as to get the right center. zoomRect.origin.x = center.x - (zoomRect.size.width / 2.0); zoomRect.origin.y = center.y - (zoomRect.size.height / 2.0); return zoomRect; } #pragma mark - #pragma mark Rotation support // Ensure that the view controller supports rotation and that the split view can therefore show in both portrait and landscape. - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { return YES; } @end

    Read the article

< Previous Page | 57 58 59 60 61