Search Results

Search found 16473 results on 659 pages for 'game logic'.

Page 61/659 | < Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >

  • 2D Smooth Turning in a Tile-Based Game

    - by ApoorvaJ
    I am working on a 2D top-view grid-based game. A ball that rolls on the grid made up of different tiles. The tiles interact with the ball in a variety of ways. I am having difficulty cleanly implementing the turning tile. The image below represents a single tile in the grid, which turns the ball by a right angle. If the ball rolls in from the bottom, it smoothly changes direction and rolls to the right. If it rolls in from the right, it is turned smoothly to the bottom. If the ball rolls in from top or left, its trajectory remains unchanged by the tile. The tile shouldn't change the magnitude of the velocity of the ball - only change its direction. The ball has Velocity and Position vectors, and the tile has Position and Dimension vectors. I have already implemented this, but the code is messy and buggy. What is an elegant way to achieve this, preferably by modification of the ball's Velocity vector by a formula?

    Read the article

  • Help w/ iPad 1 performance for tile-based DOM Javascript game

    - by butr0s
    I've made a 2D tile-based game with DOM/Javascript. For each level, the map data is loaded and parsed, then lots of tiles ( elements) are drawn onto a larger "map" element. The map is inside of a container that hides overflow, so I can move the map element around by positioning it absolutely. Works a treat on desktop browsers, and my iPad 2. My problem is that performance is really bad on iPad 1. The performance hit is directly related to all the tile elements in my map, because when I remove or reduce the number of tiles drawn, performance improves. Optimizing my collision detection loop has no effect. My first thought was to batch groups of tiles into containers, then hide/show them based on proximity to the player, however this still causes a huge hiccup when the player moves and a new group of tiles is displayed (offscreen). Actually removing the out-of-sight elements from the DOM, then re-adding them as necessary is no faster. Anyone know of any tips that might speed up DOM performance here? My map is 1920 x 1920 pixels, so as far as I know should be within the WebKit texture limit on iOS 5/iPad. The map is being moved with CSS3 transforms, and I've picked all the other obvious low-hanging fruit.

    Read the article

  • How to prioritize related game entity components?

    - by Paul Manta
    I want to make a game where you have to run over a bunch of zombies with your car. When moving around, the zombies have a few things to take into consideration: When there's no player around they might just roam about randomly. And even when some other component dictates a specific direction, they should wobble to the left and right randomly (like drunk people). This implies a small, random, deviation in their movement. They should avoid static obstacles. When they see they are headed towards a wall, they should reorient themselves. They should avoid the car. They should try to predict where the car will be based on its velocity and try to move out of the way. When they can, they should try to get near the player. All these types of decisions they have to do seem like they should be implemented in different components. But how should I manage them? How can I give different components different weights that reflect the importance of each decision (in a given situation)? I would need some other component that acts as a manager, but do you have any tips on how I should implement it? Or maybe there's a better solution?...

    Read the article

  • Independent HTML5 Physics Game: Any Feedback? [closed]

    - by mndoftea
    I've been independently developing a physics-based HTML5 game. I haven't used any libraries or engines; all the code, including the physics, is my own. It is free for a while on the Chrome Web Store and I was hoping that I could get some feedback on it. You can get it for Chrome here: https://chrome.google.com/webstore/detail/dbnmkpcomailjochphnmfklofkmgenci. I know this is not a normal question, but I'm happy for answers to be abstracted/generalized for broader use. Im asking here because I don't know anyone else personally who does this stuff. Any thoughts, comments or ideas you might have would be greatly appreciated! The physics system is written in JavaScript and works by setting up the differential equations of motion (plus a few conditions) and evaluating them numerically using the Euler method. The graphics are done through the HTML5 canvas and the music is done through the audio element. (Said music is in the public domain by the way). You can see the code by going to VIewView Source in Chrome.

    Read the article

  • Draw "vision cone" / targetting element onto game world

    - by gkimsey
    I'm wanting to indicate various things using a "pie slice" sort of shape as below. Similar to vision cones in stealth game minimaps, or targetting indicators in RTS type games for frontal area attacks. Something generic enough to be used for both would be ideal. I need to be able to procedurally (and efficiently) change things like the slice width and length, color, transparency, position in the world, etc. For my particular situation, there's no concern with elevation, funky terrain, or really any third axis at all as far as this element is concerned. I have two first inclinations on how to accomplish this: 1) Manually generate the vertices for a main triangle, (possibly two, superimposed to get the border effect), a handful more to approximate the arc at the end, and roll it into a mesh. 2) Use some sort of 2D drawing library to create a circle and mask it off at the right angles, render to texture, and use that. For reference, I have some experience with Ogre3D, but I'm not attached to it as this is a mostly academic pursuit at the moment. Other technologies that might be better at accomplishing this are more than welcome. Finally, I'm kind of curious about how to do a "flashlight" or similar 3D effect that could produce the same result, but on all surfaces in the lit area.

    Read the article

  • Checking validation of entries in a Sudoku game written in Java

    - by Mico0
    I'm building a simple Sudoku game in Java which is based on a matrix (an array[9][9]) and I need to validate my board state according to these rules: all rows have 1-9 digits all columns have 1-9 digits. each 3x3 grid has 1-9 digits. This function should be efficient as possible for example if first case is not valid I believe there's no need to check other cases and so on (correct me if I'm wrong). When I tried doing this I had a conflict. Should I do one large for loop and inside check columns and row (in two other loops) or should I do each test separately and verify every case by it's own? (Please don't suggest too advanced solutions with other class/object helpers.) This is what I thought about: Main validating function (which I want pretty clean): public boolean testBoard() { boolean isBoardValid = false; if (validRows()) { if (validColumns()) { if (validCube()) { isBoardValid = true; } } } return isBoardValid; } Different methods to do the specific test such as: private boolean validRows() { int rowsDigitsCount = 0; for (int num = 1; num <= 9; num++) { boolean foundDigit = false; for (int row = 0; (row < board.length) && (!foundDigit); row++) { for (int col = 0; col < board[row].length; col++) { if (board[row][col] == num) { rowsDigitsCount++; foundDigit = true; break; } } } } return rowsDigitsCount == 9 ? true : false; } I don't know if I should keep doing tests separately because it looks like I'm duplicating my code.

    Read the article

  • Predictive firing (in a tile-based game)

    - by n00bster
    I have a (turn-based) tile-based game, in which you can shoot at entities. You can move around with mouse and keyboard, it's all tile-based, except that bullets move "freely". I've got it all working just fine except that when I move, and the creatures shoot towards the player, they shoot towards the previous tiles.. resulting in ugly looking "miss hits" or lag. I think I need to implement some kind of predictive firing based on the bullet speed and the distance, but I don't quite know how to implement such a thing... Here's a simplified snip of my firing code. class Weapon { public void fire(int x, int y) { ... ... ... Creature owner = getOwner(); Tile targetTile = Zone.getTileAt(x, y); float dist = Vector.distance(owner.getCenterPosition(), targetTile.getCenterPosition()); Bullet b = new Bullet(); b.setPosition(owner.getCenterPosition()); // Take dist into account in the duration to get constant speed regardless of distance float duration = dist / 600f; // Moves the bullet to the centre of the target tile in the given amount of time (in seconds) b.moveTo(targetTile.getCenterPosition(), duration); // This is what I'm after // Vector v = predict the position // b.moveTo(v, duration); Zone.add(bullet); // Now the bullet gets "ticked" and moveTo will be implemented } } Movement of creatures is as simple as setting the position variable. If you need more information, just ask.

    Read the article

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • Can anyone explain this impossible bit of PHP logic?

    - by user268208
    I'm attempting to debug a simple PHP script. Essentially, there's a variable which is defined with: $variable = ($_GET['variable'] == 'true') ? TRUE : FALSE; Then, in the view file, the following code is meant to display a box if $variable == TRUE: <? if ($variable == true) { ?> <p class="box">You have imported a new plan.</p> <? } ?> Now, even when that $variable, as shown by var_dump($variable); == FALSE, that HTML is printed between the if { } tags. To me, this defies logic. I simply can't figure out this problem out. Furthermore, this code works fine on many PHP4 and PHP5 installations except for one particular server running PHP5.2. Any possible suggestions? Leads? I'm pulling out my hair trying to figure this one out. Thank you.

    Read the article

  • Accept keyboard input when game is not in focus?

    - by Corey Ogburn
    I want to be able to control the game via keyboard while the game does not have focus... How can I do this in XNA? EDIT: I bought a tablet. I want to write a separate app to overly the screen with controls that will send keyboard input to the game. Although, it's not sending the input DIRECT to the game, it's using the method discussed in this SO question: http://stackoverflow.com/questions/6446085/emulate-held-down-key-on-keyboard To my understanding, my test app is working the way it should be but the game is not responding to this input. I originally thought that Keyboard.GetState() would get the state regardless that the game is not in focus, but that doesn't appear to be the case.

    Read the article

  • Why is permadeath essential to a roguelike design?

    - by Gregory Weir
    Roguelikes and roguelike-likes (Spelunky, The Binding of Isaac) tend to share a number of game design elements: Procedurally generated worlds Character growth by way of new abilities and powers Permanent death I can understand why starting with permadeath as a premise would lead you to the other ideas: if you're going to be starting over a lot, you'll want variety in your experiences. But why do the first two elements imply a permadeath approach?

    Read the article

  • Constant game speed independent of variable FPS in OpenGL with GLUT?

    - by Nazgulled
    I've been reading Koen Witters detailed article about different game loop solutions but I'm having some problems implementing the last one with GLUT, which is the recommended one. After reading a couple of articles, tutorials and code from other people on how to achieve a constant game speed, I think that what I currently have implemented (I'll post the code below) is what Koen Witters called Game Speed dependent on Variable FPS, the second on his article. First, through my searching experience, there's a couple of people that probably have the knowledge to help out on this but don't know what GLUT is and I'm going to try and explain (feel free to correct me) the relevant functions for my problem of this OpenGL toolkit. Skip this section if you know what GLUT is and how to play with it. GLUT Toolkit: GLUT is an OpenGL toolkit and helps with common tasks in OpenGL. The glutDisplayFunc(renderScene) takes a pointer to a renderScene() function callback, which will be responsible for rendering everything. The renderScene() function will only be called once after the callback registration. The glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0) takes the number of milliseconds to pass before calling the callback processAnimationTimer(). The last argument is just a value to pass to the timer callback. The processAnimationTimer() will not be called each TIMER_MILLISECONDS but just once. The glutPostRedisplay() function requests GLUT to render a new frame so we need call this every time we change something in the scene. The glutIdleFunc(renderScene) could be used to register a callback to renderScene() (this does not make glutDisplayFunc() irrelevant) but this function should be avoided because the idle callback is continuously called when events are not being received, increasing the CPU load. The glutGet(GLUT_ELAPSED_TIME) function returns the number of milliseconds since glutInit was called (or first call to glutGet(GLUT_ELAPSED_TIME)). That's the timer we have with GLUT. I know there are better alternatives for high resolution timers, but let's keep with this one for now. I think this is enough information on how GLUT renders frames so people that didn't know about it could also pitch in this question to try and help if they fell like it. Current Implementation: Now, I'm not sure I have correctly implemented the second solution proposed by Koen, Game Speed dependent on Variable FPS. The relevant code for that goes like this: #define TICKS_PER_SECOND 30 #define MOVEMENT_SPEED 2.0f const int TIMER_MILLISECONDS = 1000 / TICKS_PER_SECOND; int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void processAnimationTimer(int value) { // setups the timer to be called again glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Requests to render a new frame (this will call my renderScene() once) glutPostRedisplay(); } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) // Setup the timer to be called one first time glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Read the current time since glutInit was called currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } This implementation doesn't fell right. It works in the sense that helps the game speed to be constant dependent on the FPS. So that moving from point A to point B takes the same time no matter the high/low framerate. However, I believe I'm limiting the game framerate with this approach. Each frame will only be rendered when the time callback is called, that means the framerate will be roughly around TICKS_PER_SECOND frames per second. This doesn't feel right, you shouldn't limit your powerful hardware, it's wrong. It's my understanding though, that I still need to calculate the elapsedTime. Just because I'm telling GLUT to call the timer callback every TIMER_MILLISECONDS, it doesn't mean it will always do that on time. I'm not sure how can I fix this and to be completely honest, I have no idea what is the game loop in GLUT, you know, the while( game_is_running ) loop in Koen's article. But it's my understanding that GLUT is event-driven and that game loop starts when I call glutMainLoop() (which never returns), yes? I thought I could register an idle callback with glutIdleFunc() and use that as replacement of glutTimerFunc(), only rendering when necessary (instead of all the time as usual) but when I tested this with an empty callback (like void gameLoop() {}) and it was basically doing nothing, only a black screen, the CPU spiked to 25% and remained there until I killed the game and it went back to normal. So I don't think that's the path to follow. Using glutTimerFunc() is definitely not a good approach to perform all movements/animations based on that, as I'm limiting my game to a constant FPS, not cool. Or maybe I'm using it wrong and my implementation is not right? How exactly can I have a constant game speed with variable FPS? More exactly, how do I correctly implement Koen's Constant Game Speed with Maximum FPS solution (the fourth one on his article) with GLUT? Maybe this is not possible at all with GLUT? If not, what are my alternatives? What is the best approach to this problem (constant game speed) with GLUT? I originally posted this question on Stack Overflow before being pointed out about this site. The following is a different approach I tried after creating the question in SO, so I'm posting it here too. Another Approach: I've been experimenting and here's what I was able to achieve now. Instead of calculating the elapsed time on a timed function (which limits my game's framerate) I'm now doing it in renderScene(). Whenever changes to the scene happen I call glutPostRedisplay() (ie: camera moving, some object animation, etc...) which will make a call to renderScene(). I can use the elapsed time in this function to move my camera for instance. My code has now turned into this: int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void renderScene(void) { (...) // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Setup the camera position and looking point SceneCamera.LookAt(); // All drawing code goes inside this function drawCompleteScene(); glutSwapBuffers(); /* Redraw the frame ONLY if the user is moving the camera (similar code will be needed to redraw the frame for other events) */ if(!IsTupleEmpty(cameraDirection)) { glutPostRedisplay(); } } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } Conclusion, it's working, or so it seems. If I don't move the camera, the CPU usage is low, nothing is being rendered (for testing purposes I only have a grid extending for 4000.0f, while zFar is set to 1000.0f). When I start moving the camera the scene starts redrawing itself. If I keep pressing the move keys, the CPU usage will increase; this is normal behavior. It drops back when I stop moving. Unless I'm missing something, it seems like a good approach for now. I did find this interesting article on iDevGames and this implementation is probably affected by the problem described on that article. What's your thoughts on that? Please note that I'm just doing this for fun, I have no intentions of creating some game to distribute or something like that, not in the near future at least. If I did, I would probably go with something else besides GLUT. But since I'm using GLUT, and other than the problem described on iDevGames, do you think this latest implementation is sufficient for GLUT? The only real issue I can think of right now is that I'll need to keep calling glutPostRedisplay() every time the scene changes something and keep calling it until there's nothing new to redraw. A little complexity added to the code for a better cause, I think. What do you think?

    Read the article

  • Objective C - Aggro with Images

    - by Will
    I have three UIImageViews. enemy1, enemy1AggroBox and mainSprite. What I want to do is when mainSprite and enemy1AggroBox interect, I want enemy1 to start moving towards mainSprite. Basically creating aggro for a game. if(CGRectIntersectsRect(mainSprite.frame, enemy1AggroBox.frame)){ //Code here// } My plan would be to call this method in viewDidLoad. I'm not using any sort of framework like cocos2d or OpenGLES. If you need to see any more code just ask.

    Read the article

  • Game-a-Week One Completed

    - by Matt Christian
    Last night I finished my Game-a-Week One and felt and extreme sense of accomplishment with what I finished in a single week. I removed all traces of the JigLibX code since it wasn't working properly due to my implementation and got my collision working thanks to some BoundingSpheres and Riemer's tutorials.  However, since the characters are Corndogs a rectangle bounding box would have made more sense although the bullets are only able to move forward currently. While developing it in a week was a challenge, developing it in a week while maintaining proper coding standards and clean, reusable code was damn near impossible.  It's possible my next step will be to either refactor it or move onto Game-a-Week Two. I will post a link to the game ZIP in the future.

    Read the article

  • What is the best way to generate income from mobile games?

    - by Thomas
    As the title states, what is the best way to get income from mobile games? (taking into consideration that creating the games only costs a lot of time and the games are relatively simple) As I see it, there are multiple ways of getting money from mobile games, Selling them for a fixed price (seems like a high threshold for potential buyers) In-game purchases (I can imagine this only works for several types of games, I don't see this working well for monopoly unless you like really fancy hotels ;) Ingame advertisements / sponsorships Which way will most likely bring the most profit?

    Read the article

  • Grab sound of a SDL game with ffmpeg/avconv

    - by Peregring-lk
    I'm trying to make a screencast of a SDL game which I developed some years ago, with the following command: sleep 5 && avconv -f x11grab -s 1366x768 -r 25 -i :0.0 -same_quant screen_cast.mkv (in this 5 seconds of sleep, I open the game). But the generated video (screen_cast.mkv) doesn't capture audio. I use for my game the SDL_Mixer library, with default configuration (22050 for frequency, AUDIO_S16SYS for format, and 2 channels). What's the problem? (with options -f alsa -i pulse it doesn't work either).

    Read the article

  • efficient collision detection - tile based html5/javascript game

    - by Tom Burman
    Im building a basic rpg game and onto collisions/pickups etc now. Its tile based and im using html5 and javascript. i use a 2d array to create my tilemap. Im currently using a switch statement for whatever key has been pressed to move the player, inside the switch statement. I have if statements to stop the player going off the edge of the map and viewport and also if they player is about to land on a tile with tileID 3 then the player stops. Here is the statement: canvas.addEventListener('keydown', function(e) { console.log(e); var key = null; switch (e.which) { case 37: // Left if (playerX > 0) { playerX--; } if(board[playerX][playerY] == 3){ playerX++; } break; case 38: // Up if (playerY > 0) playerY--; if(board[playerX][playerY] == 3){ playerY++; } break; case 39: // Right if (playerX < worldWidth) { playerX++; } if(board[playerX][playerY] == 3){ playerX--; } break; case 40: // Down if (playerY < worldHeight) playerY++; if(board[playerX][playerY] == 3){ playerY--; } break; } viewX = playerX - Math.floor(0.5 * viewWidth); if (viewX < 0) viewX = 0; if (viewX+viewWidth > worldWidth) viewX = worldWidth - viewWidth; viewY = playerY - Math.floor(0.5 * viewHeight); if (viewY < 0) viewY = 0; if (viewY+viewHeight > worldHeight) viewY = worldHeight - viewHeight; }, false); My question is, is there a more efficient way of handling collisions, then loads of if statements for each key? The reason i ask is because i plan on having many items that the player will need to be able to pickup or not walk through like walls cliffs etc. Thanks for your time and help Tom

    Read the article

  • How much server bandwidth does an average RTS game require per month?

    - by Nat Weiss
    My friend and I are going to write a multiplayer, multiplatform RTS game and are currently analyzing the costs of going with a client-server architecture. The game will have a small map with mostly characters, not buildings (think of DotA or League of Legends). The authoritative game logic will run on the server and message packet sizes will be highly optimized. We'd like to know approximately how much server bandwidth our proposed RTS game would use on a monthly basis, considering these theoretical constants: 100 concurrent users maximum 8 players maximum per game 10 ticks per second Bonus: If you can tell us approximately how much server RAM this kind of game would use that would also help a great deal. Thanks in advance.

    Read the article

  • What is the best degree Computer Engineering or Software Engineering?

    - by Samourainite
    I'm interested in getting into the gaming industry, but i'm unsure as to whether which degree would help me the most. I also do not have any prior programming knowledge(apart from some basic html). So, do you guys have any opinion on which degree i should pick? please don't mention anything about game development or games programming degrees. You may also compare the 2 degrees with Computer Science degree.

    Read the article

  • How important is a single-player mode in a 2-player game?

    - by Davy8
    So say you have a 2 player game, taking Chess as an example (except it's an original game with no ready-to-go AI available). Let's say there's also a social-aspect to the meta-game, so let's say it's a Chess game on Facebook where you can challenge your friends. How important is it to have a single-player mode, knowing that an AI will need to be created (I've done minimax AI for tic tac toe, but nothing too sophisticated)? Is it important enough that it should be in the initial launch of the game? Can it wait for a future iteration (knowing that being hosted on the web means the game can be updated at any time)?

    Read the article

  • How do you prevent inflation in a virtual economy?

    - by Tetrad
    With your typical MMORPG, players can usually farm the world for raw materials essentially forever. Monsters/mineral veins/etc are usually on some respawn timer so, other than time, there really isn't a good way to limit the amount of new currency entering the system. So that really only leaves money sinks to try to take money out of the system. What are some strategies to prevent inflation of the in-game currency?

    Read the article

  • Help with Strategy-game AI

    - by f20k
    Hi, I am developing a strategy-game AI (think: Final Fantasy Tactics), and I am having trouble coming up for the design of the AI. My main problem is determining which is the optimal thing for it to do. First let me describe the priority of what action I would like the AI to take: Kill nearest player unit Fulfill primary directive (kill all player units, kill target unit, survive for x turns) Heal ally unit / cast buffer Now the AI can do the following in its turn: Move - {Attack / Ability / Item} (either attack or ability or item) {Attack / Ability / Item} - Move Move closer (if targets not in range) {Attack / Ability / Item} (if move not available) Notes Abilities have various ranges / effects / costs / effects. Each ai unit has maybe 5-10 abilities to choose from. The AI will prioritize killing over safety unless its directive is to survive for x turns. It also doesn't care about ability cost much. While a player may want to save a big spell for later, the AI will most likely use it asap. Movement is on a (hex) grid num of player units: 3-6 num of ai units: 3-7 or more. Probably max 10. AI and player take turns controlling ONE unit, instead of all at the same time. Platform is Android (if program doesnt respond after some time, there will be a popup saying to Force Quit or Wait - which looks really bad!). Now comes the questions: The best ability to use would obviously be the one that hits the most targets for the most damage. But since each ability has different ranges, I won't know if they are in range without exploring each possible place I can move to. One solution would be to go through each possible places to move to, determine the optimal attack at that location - which gives me a list of optimal moves for each location. Then choose the optimal out of the list and execute it. But this will take a lot of CPU time. Is there a better solution? My current idea is to move as close as possible towards the closest, largest group of people, and determine the optimal attack/ability from there. I think this would be a lot less work for the CPU and still allow for wide-range attacks. Its sub-optimal but the AI will still seem 'smart'. Other notes/questions: Am I over-thinking/over-complicating it? Better solution? I am open to all sorts of suggestions I have taken a look at the spell-casting question, but it doesn't take into account the movement - so perhaps use that algo for each possible move location? The top answer mentioned it wasn't great for area-of-effect and group fights - so maybe requires more tweaking? Please, if you mention a graph/tree, let me know basically how to use it. E.g. Node means ability, level corresponds to damage, then search for the deepest node.

    Read the article

  • I want to learn to program in SDL C++where do i start? I want to learn only what i need to to start making 2d games [on hold]

    - by user2644399
    Lazyfoo of Lazyfoo.net of the SDL 2d tutorial wrote that in order for me to start game programming in SDL, I need to know these concepts well; Operators, Controls, Loops, Functions, Structures, Arrays, References, Pointers, Classes, Objects how to use a template and Bitwise and/or. I want to know the fastest way to learn as much as I need of basic c++ that would allow me to make 2d games. Thanks in advance.

    Read the article

  • Turn Your Browser Pane into a Game of Katamari Damacy

    - by Jason Fitzpatrick
    If you’re a fan of Katamari Damacy, a quirky and fun Japanese puzzle game made popular on the PlayStation, you’ll love this Javas script hack that turns your browser pane and its contents into a giant HTML-collecting game of Katamari Damacy. Katamari Damacy, for the unfamiliar, is a addictive game based on the premise that a galactic prince is on a mission to rebuild stars, constellations, and moons accidentally destroyed by his father. You roll around and collect objects (making yourself an increasingly larger ball in the process). This script hack puts a ball on your web browser pane (works best in Chrome) that you can roll around collecting elements from the web page. At first you can only grab links but as you grow you can grab increasingly large objects like photo elements off the page. It doesn’t have the sophisticated graphics of the Playstation version, of course, nor the detailed back story, but it’s a clever little hack that is sure to delight fans of Katamari Damacy. Katamari Hack [KatHack] Internet Explorer 9 Released: Here’s What You Need To KnowHTG Explains: How Does Email Work?How To Make a Youtube Video Into an Animated GIF

    Read the article

  • How to create a use case diagram for board game played on PC

    - by user970696
    I'm struggling with a task as I was given to practice UML and use cases. The problem is that I should model computer version of a board game so I am unsure about a few things. obviously it does not matter if you play against the PC or another player, the actions are the same. The game is simply like tic tac toe. E.g. Actor Player ---(Place a diamond)-----include----(Check for a row)---include--(Swap players) But the game is played on the PC, so is Check for row really a use case? And the same with Swap players? Because the system would do that. On the other hand, if it was not, how could I continue?

    Read the article

< Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >