Search Results

Search found 5127 results on 206 pages for 'mscorwks dll'.

Page 61/206 | < Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >

  • NUnit-console 2.5.4 not capable of running multiple assemblies?

    - by Per Salmi
    I am having problems running tests with the command line NUnit test runner. I am using version 2.5.4 with .NET 4 on an x64 machine. Using the following line results in a failure "Could not load file or assembly 'bar' or one of its dependencies. The system cannot find the file specified." nunit-console-x86 foo.dll bar.dll /framework=4.0.30319 If I reverse the dll file names it complains about not finding 'foo' instead... It works if I run them separately like: nunit-console-x86 foo.dll /framework=4.0.30319 Also the tests of the second file works if I run: nunit-console-x86 bar.dll /framework=4.0.30319 Before upgrading our projects to 4.0 we used NUnit 2.5.2 and the same command line tool options and at that point the runner worked well with multiple assemblies. It seems like the ability to run tests on multiple files at the same time is broken... Anyone that can see the same behavior or does it work indicating that my environment is somehow broken? /Per

    Read the article

  • GC.AddMemoryPressure

    - by Steve Sheldon
    I am writing an application in C# that makes use of a 3rd party COM DLL, this dll creates a lot of resources (like bitmaps, video, data structures) in unmanaged memory. While digging around I came across the following call for the Garbage Collector: GC.AddMemoryPressure(long long bytesAllocated) It is documented in MSDN here: http://msdn.microsoft.com/en-us/library/system.gc.addmemorypressure.aspx This sounds like something I should be calling since this external dll is createing a lot of resources the CLR is unaware of. I guess I have two questions... How do I know how much memory pressure to add when the dll is 3rd party and it's not possible for me to know exactly how much memory this dll is allocating. How important is it to do this?

    Read the article

  • Is there a suggested solution structure for ASP.NET MVC Production Apps

    - by Eoin Campbell
    In general, I don't like to keep code (BaseClasses or DataAccess Code) in the App_Code directory of an ASP.NET Site. I'll usually pull this stuff out into a MySite.BusinessLogic & MySite.DataAccess DLL's respectively. I'm wondering should I be doing the same for ASP.NET MVC. Would it be better to Organise the solution something along the lines of MySite.Common - DLL - (Basic Functionality built on .NET System Dlls) MySite.DAL - DLL - (DataAccessLayer & DBML Files) MySite.Models - DLL - (MVC Models e.g. Repository Classes) MySite.Controllers - DLL (MVC Controllers which use Models) MySite - ASP.NET MVC Site. Or am I missing something... presumably, I'll lose some of the nice (Add View, Go To Controller, context menu items that have been added)

    Read the article

  • How do I free SQLServerCE's COM instance from the current running process?

    - by David Thornley
    It's been a while since I touched COM so be nice ;) This is under WindowsCE 5.0 with SQLServerCE 2.0. After calling this to load SQLServerCE 2.0 : - IDBInitialize *pIDBInitialize = NULL; CoCreateInstance(CLSID_SQLSERVERCE_2_0, NULL, CLSCTX_INPROC_SERVER, IID_IDBInitialize, (void**)&pIDBInitialize); Module load occurs for SSCE20.dll which obviously loads the SQLServerCE engine into the process space. What I don't understand is if I do this immediately after :- pIDBInitialize->Release(); I don't see a dll module unload, so that SSCE20.dll (and friends) are still loaded into my process. Now I tried CoFreeUnusedLibraries() which I figure forces COM to purge any unused libraries, but it doesn't seem to do the trick. At runtime I want to be able to completely unload the SQLServerCE 2.0 dll from the process to streamline an upgrade to 3.5SP1. I suspect this has something to do with the shared dll model that Microsoft use under WindowsCE... but, I might be wrong :) Thanks in advance, David.

    Read the article

  • Installing Wordpress - constant PHP/MySQL extension appears missing

    - by Driss Zouak
    I've got Win2003 w/IIS6, PHP 5 and MySQL installed. I can confirm PHP is installed correctly because I have a testMe.php that runs properly. When I run the Wordpress setup, I get informed that Your PHP installation appears to be missing the MySQL extension which is required by WordPress. But in my PHP.ini in the DYNAMIC EXTENSIONS section I have extension=php_mysql.dll extension=php_mysqli.dll I verified that mysql.dll and libmysql.dll are both in my PHP directory. I copied my libmysql.dll to the C:\Windows\System32 directory. When I try to run the initial setup for WordPress, I get this answer. I've Googled setting this up, and everything comes down to the above. I'm missing something, but none of the instructions that I've found online seem to cover whatever that is.

    Read the article

  • Can anyone get this project to work? (EasyHook)

    - by Tom
    Hi, i'm trying to 'load' the following project into visual studio 2010 but im getting errors about dynamic link libraries not being found. I have manually referenced them but it doesnt like them. The project is: http://www.codeproject.com/KB/DLL/EasyHook64.aspx 2nd link down (EasyHook_2.5_Beta_Source_Code), and the project im wishing to load is EasyHook_2.5_Beta_Source_Code\Examples\ProcessMonitor The two dlls plus 1 executable i need are found in the first link (EasyHook 2.5 beta binaries) and named EasyHook.dll, EasyHook32.dll and EasyHook32svc.exe I've been trying to do this all night but i wonder whether its because im using VS2010 and .NET 4.0?? I'd be so appreciative if someone could have a go themselves just to see if its my setup or they get errors to. The error i get is: Unable to load DLL 'EasyHook32.dll': The specified module could not be found. (Exception from HRESULT: 0x8007007E)

    Read the article

  • How to be sure that my MVC project is runting on the correct version after upgrade to vs2010?

    - by Stephane
    I just installed visual studio 2010 and upgraded my MVC project (which was running on MVC RC2 in visual studio 2008). visual studio 2010 updated every project file to target the framework 4.0. But the system.web.dll is pointing to C:\Program Files (x86)\Microsoft ASP.NET\ASP.NET MVC 2\Assemblies\System.Web.Mvc.dll in VS2010 object browser, I have every dll showing up in multiple versions as expected (3.5.0.0 and 4.0.0.0) except for the System.Web.Mvc dll which doesn't show any version and points to the path I mentioned above. Isn't this namespace point to the Framework folder like the System.Web namespace? C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework.NETFramework\v4.0\System.Web.dll

    Read the article

  • GC.AddMemoryPressure in C#

    - by ssheldon
    I am writing an application in C# that makes use of a 3rd party COM DLL, this dll creates a lot of resources (like bitmaps, video, data structures) in unmanaged memory. While digging around I came across the following call for the Garbage Collector: GC.AddMemoryPressure(long long bytesAllocated) It is documented in MSDN here: http://msdn.microsoft.com/en-us/library/system.gc.addmemorypressure.aspx This sounds like something I should be calling since this external dll is createing a lot of resources the CLR is unaware of. I guess I have two questions... How do I know how much memory pressure to add when the dll is 3rd party and it's not possible for me to know exactly how much memory this dll is allocating. How important is it to do this?

    Read the article

  • Writing an ASP.Net Web based TFS Client

    - by Glav
    So one of the things I needed to do was write an ASP.Net MVC based application for our senior execs to manage a set of arbitrary attributes against stories, bugs etc to be able to attribute whether the item was related to Research and Development, and if so, what kind. We are using TFS Azure and don’t have the option of custom templates. I have decided on using a string based field within the template that is not very visible and which we don’t use to write a small set of custom which will determine the research and development association. However, this string munging on the field is not very user friendly so we need a simple tool that can display attributes against items in a simple dropdown list or something similar. Enter a custom web app that accesses our TFS items in Azure (Note: We are also using Visual Studio 2012) Now TFS Azure uses your Live ID and it is not really possible to easily do this in a server based app where no interaction is available. Even if you capture the Live ID credentials yourself and try to submit them to TFS Azure, it wont work. Bottom line is that it is not straightforward nor obvious what you have to do. In fact, it is a real pain to find and there are some answers out there which don’t appear to be answers at all given they didn’t work in my scenario. So for anyone else who wants to do this, here is a simple breakdown on what you have to do: Go here and get the “TFS Service Credential Viewer”. Install it, run it and connect to your TFS instance in azure and create a service account. Note the username and password exactly as it presents it to you. This is the magic identity that will allow unattended, programmatic access. Without this step, don’t bother trying to do anything else. In your MVC app, reference the following assemblies from “C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\ReferenceAssemblies\v2.0”: Microsoft.TeamFoundation.Client.dll Microsoft.TeamFoundation.Common.dll Microsoft.TeamFoundation.VersionControl.Client.dll Microsoft.TeamFoundation.VersionControl.Common.dll Microsoft.TeamFoundation.WorkItemTracking.Client.DataStoreLoader.dll Microsoft.TeamFoundation.WorkItemTracking.Client.dll Microsoft.TeamFoundation.WorkItemTracking.Common.dll If hosting this in Internet Information Server, for the application pool this app runs under, you will need to enable 32 Bit support. You also have to allow the TFS client assemblies to store a cache of files on your system. If you don’t do this, you will authenticate fine, but then get an exception saying that it is unable to access the cache at some directory path when you query work items. You can set this up by adding the following to your web.config, in the <appSettings> element as shown below: <appSettings> <!-- Add reference to TFS Client Cache --> <add key="WorkItemTrackingCacheRoot" value="C:\windows\temp" /> </appSettings> With all that in place, you can write the following code: var token = new Microsoft.TeamFoundation.Client.SimpleWebTokenCredential("{you-service-account-name", "{your-service-acct-password}"); var clientCreds = new Microsoft.TeamFoundation.Client.TfsClientCredentials(token); var currentCollection = new TfsTeamProjectCollection(new Uri(“https://{yourdomain}.visualstudio.com/defaultcollection”), clientCreds); TfsConfigurationServercurrentCollection.EnsureAuthenticated(); In the above code, not the URL contains the “defaultcollection” at the end of the URL. Obviously replace {yourdomain} with whatever is defined for your TFS in Azure instance. In addition, make sure the service user account and password that was generated in the first step is substituted in here. Note: If something is not right, the “EnsureAuthenticated()” call will throw an exception with the message being you are not authorised. If you forget the “defaultcollection” on the URL, it will still fail but with a message saying you are not authorised. That is, a similar but different exception message. And that is it. You can then query the collection using something like: var service = currentCollection.GetService<WorkItemStore>(); var proj = service.Projects[0]; var allQueries = proj.StoredQueries; for (int qcnt = 0; qcnt < allQueries.Count; qcnt++) {     var query = allQueries[qcnt];     var queryDesc = string.format(“Query found named: {0}”,query.Name); } You get the idea. If you search around, you will find references to the ServiceIdentityCredentialProvider which is referenced in this article. I had no luck with this method and it all looked too hard since it required an extra KB article and other magic sauce. So I hope that helps. This article certainly would have helped me save a boat load of time and frustration.

    Read the article

  • How to be sure that my MVC project is running on the correct version after upgrade to vs2010?

    - by Stephane
    I just installed visual studio 2010 and upgraded my MVC project (which was running on MVC RC2 in visual studio 2008). visual studio 2010 updated every project file to target the framework 4.0. But the system.web.dll is pointing to C:\Program Files (x86)\Microsoft ASP.NET\ASP.NET MVC 2\Assemblies\System.Web.Mvc.dll in VS2010 object browser, I have every dll showing up in multiple versions as expected (3.5.0.0 and 4.0.0.0) except for the System.Web.Mvc dll which doesn't show any version and points to the path I mentioned above. Isn't this namespace point to the Framework folder like the System.Web namespace? C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework.NETFramework\v4.0\System.Web.dll

    Read the article

  • Sharing a connection string

    - by coure06
    hi, I am developing a class library (C#) that i will use it for my different projects (later). My class library dll will use the connection string /data context of the project which will reference my new dll. How can i do it? Lets say i have a class Library Project named "CLP", and a website project "WP". I can add reference to CLP.dll file but how i will pass a connection string/data context object to that dll? as CLP.dll will access db based on the connection string of the "WP". Not sure my problem is clear or not!

    Read the article

  • msvcrt: memory usage goes wild, but not under debugger

    - by al_miro
    I have a C++ code compiled with Intel compiler, 32bit, in MS VC6 mode, so using either msvcrt.dll or msvcrtd.dll. The process makes heavy memory allocation and deallocation. I monitor the memory usage with WMI and look at VirtualSize and WorkingSetSize. with debug runtime (msvcrtd.dll): virtual constant 1.7GB, working constant 1.2GB with non-debug runtime (msvcrt.dll): virtual raising 1.7-- 2.1GB, working raising 1.2-1.4GB with non-debug runtime but under debugger (windbg): virtual constant 1.7GB, working constant At 2.1 GB virtual the process is crashing (as expected). But why would the virtual usage increase only with (non-debug) msvcrt.dll and only if not under debugger? In all cases compilation flags are identical, only runtime libs are different.

    Read the article

  • .NET Security Part 4

    - by Simon Cooper
    Finally, in this series, I am going to cover some of the security issues that can trip you up when using sandboxed appdomains. DISCLAIMER: I am not a security expert, and this is by no means an exhaustive list. If you actually are writing security-critical code, then get a proper security audit of your code by a professional. The examples below are just illustrations of the sort of things that can go wrong. 1. AppDomainSetup.ApplicationBase The most obvious one is the issue covered in the MSDN documentation on creating a sandbox, in step 3 – the sandboxed appdomain has the same ApplicationBase as the controlling appdomain. So let’s explore what happens when they are the same, and an exception is thrown. In the sandboxed assembly, Sandboxed.dll (IPlugin is an interface in a partially-trusted assembly, with a single MethodToDoThings on it): public class UntrustedPlugin : MarshalByRefObject, IPlugin { // implements IPlugin.MethodToDoThings() public void MethodToDoThings() { throw new EvilException(); } } [Serializable] internal class EvilException : Exception { public override string ToString() { // show we have read access to C:\Windows // read the first 5 directories Console.WriteLine("Pwned! Mwuahahah!"); foreach (var d in Directory.EnumerateDirectories(@"C:\Windows").Take(5)) { Console.WriteLine(d.FullName); } return base.ToString(); } } And in the controlling assembly: // what can possibly go wrong? AppDomainSetup appDomainSetup = new AppDomainSetup { ApplicationBase = AppDomain.CurrentDomain.SetupInformation.ApplicationBase } // only grant permissions to execute // and to read the application base, nothing else PermissionSet restrictedPerms = new PermissionSet(PermissionState.None); restrictedPerms.AddPermission( new SecurityPermission(SecurityPermissionFlag.Execution)); restrictedPerms.AddPermission( new FileIOPermission(FileIOPermissionAccess.Read, appDomainSetup.ApplicationBase); restrictedPerms.AddPermission( new FileIOPermission(FileIOPermissionAccess.pathDiscovery, appDomainSetup.ApplicationBase); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain("Sandbox", null, appDomainSetup, restrictedPerms); // execute UntrustedPlugin in the sandbox // don't crash the application if the sandbox throws an exception IPlugin o = (IPlugin)sandbox.CreateInstanceFromAndUnwrap("Sandboxed.dll", "UntrustedPlugin"); try { o.MethodToDoThings() } catch (Exception e) { Console.WriteLine(e.ToString()); } And the result? Oops. We’ve allowed a class that should be sandboxed to execute code with fully-trusted permissions! How did this happen? Well, the key is the exact meaning of the ApplicationBase property: The application base directory is where the assembly manager begins probing for assemblies. When EvilException is thrown, it propagates from the sandboxed appdomain into the controlling assembly’s appdomain (as it’s marked as Serializable). When the exception is deserialized, the CLR finds and loads the sandboxed dll into the fully-trusted appdomain. Since the controlling appdomain’s ApplicationBase directory contains the sandboxed assembly, the CLR finds and loads the assembly into a full-trust appdomain, and the evil code is executed. So the problem isn’t exactly that the sandboxed appdomain’s ApplicationBase is the same as the controlling appdomain’s, it’s that the sandboxed dll was in such a place that the controlling appdomain could find it as part of the standard assembly resolution mechanism. The sandbox then forced the assembly to load in the controlling appdomain by throwing a serializable exception that propagated outside the sandbox. The easiest fix for this is to keep the sandbox ApplicationBase well away from the ApplicationBase of the controlling appdomain, and don’t allow the sandbox permissions to access the controlling appdomain’s ApplicationBase directory. If you do this, then the sandboxed assembly can’t be accidentally loaded into the fully-trusted appdomain, and the code can’t be executed. If the plugin does try to induce the controlling appdomain to load an assembly it shouldn’t, a SerializationException will be thrown when it tries to load the assembly to deserialize the exception, and no damage will be done. 2. Loading the sandboxed dll into the application appdomain As an extension of the previous point, you shouldn’t directly reference types or methods in the sandboxed dll from your application code. That loads the assembly into the fully-trusted appdomain, and from there code in the assembly could be executed. Instead, pull out methods you want the sandboxed dll to have into an interface or class in a partially-trusted assembly you control, and execute methods via that instead (similar to the example above with the IPlugin interface). If you need to have a look at the assembly before executing it in the sandbox, either examine the assembly using reflection from within the sandbox, or load the assembly into the Reflection-only context in the application’s appdomain. The code in assemblies in the reflection-only context can’t be executed, it can only be reflected upon, thus protecting your appdomain from malicious code. 3. Incorrectly asserting permissions You should only assert permissions when you are absolutely sure they’re safe. For example, this method allows a caller read-access to any file they call this method with, including your documents, any network shares, the C:\Windows directory, etc: [SecuritySafeCritical] public static string GetFileText(string filePath) { new FileIOPermission(FileIOPermissionAccess.Read, filePath).Assert(); return File.ReadAllText(filePath); } Be careful when asserting permissions, and ensure you’re not providing a loophole sandboxed dlls can use to gain access to things they shouldn’t be able to. Conclusion Hopefully, that’s given you an idea of some of the ways it’s possible to get past the .NET security system. As I said before, this post is not exhaustive, and you certainly shouldn’t base any security-critical applications on the contents of this blog post. What this series should help with is understanding the possibilities of the security system, and what all the security attributes and classes mean and what they are used for, if you were to use the security system in the future.

    Read the article

  • visual studio 2008 linker error

    - by ravi
    In visual studio 2008, I have created a static dll called test_static.dll. I am trying to call this from one application. I have included this dll in source files folder and the header file related to it in headers folder. When i am running the application I am getting following liking error. Please give me a solution. error LNK2019: unresolved external symbol "struct morph_output * __cdecl morpho_data(struct morph_input *)" (?morpho_data@@YAPAUmorph_output@@PAUmorph_input@@@Z) referenced in function _wmain 1D:\test_app\Debug\test_app.exe : fatal error LNK1120: 1 unresolved externals 1Build log was saved at "file://d:\test_app\test_app\Debug\BuildLog.htm" Here test_app is application that is using static dll. and morpho_data is the dll function which is taking input as structure and returning another structure.

    Read the article

  • Silverlight binaries what are .ni.dlls?

    - by BrettRobi
    In browsing around the Silverlight installation directory I see a number of framework DLLs as expected. But I also see a separate DLL with the same name but with .ni inserted between the dll name and extension. For example there is a System.dll and System.ni.dll. There appears to be a sister .ni dll for almost all of the system dlls. Looking at the quickly in Reflector they appear to include the same content, but are much bigger in binary size. Just out of curiosity, can anyone explain what these are?

    Read the article

  • DllImport Based on OS Platform

    - by Ngu Soon Hui
    I have a mixture of unmanaged code ( backend) and managed code ( front end), as such, I would need to call the unmanaged code from my managed code, using interop techniques and DllImport attribute. Now, I've compiled two versions of unmanaged code, for both 32 and 64 bit OS; they are named service32.dll and service64.dll respectively. So, in my .Net code, I would have to do a DllImport for both dlls: [DllImport(@"service32.dll")] //for 32 bit OS invocation public static void SimpleFunction(); [DllImport(@"service64.dll")] //for 64 bit OS invocation public static void SimpleFunction(); And call them depending on which platform my application is running on. The issue now is that for every unmanaged function, I have to declared it twice, one for 32 bit OS and one for 64 bit OS. This is a duplication of work, and everytime I change the signature of an unmanaged function, I have to modified it in two places. Is there anyway that I can change the argument in DllImport so that the correct dll will be invoked automagically, depending on the platform?

    Read the article

  • Connecting Delphi to P/Invoke and .net

    - by lexdean
    The Delphi complier often uses a *.Dll when a special delivery of code info is required to the complier/editor:- example bourland.dll is the memory manager for the Delphi complier, as I remember. And their are many other *.dll's that Embarcoo keep secret that do other things. Is their anything you know that is public information on this subject .net's un managed code could be declared in a *.pas file as a decelerations but the only way to communicate it out is calling *.dll's like P/Invoke I have ilasm.exe and ildasm.exe and a decomplier into Delphi asm code now but still getting around to learn how to use them all yet. I do not have any reference material/editorials on P/invoke at all as I cannot find anything With that I will have a good concrete plan to make a good result I do not know what *.DLL's are in P/Invoke. Do you have any documentation. I do not have any reference material/editorials on ADO.net. The Dlls that are called and any referqance matrial I could use. Best regards, J Lex Dean.

    Read the article

  • Calling C# from ColdFusion

    - by stomcavage
    I've written a .dll in C# to change the permissions on a folder. I also wrote an .exe to test the .dll and it successfully changes the permissions. Now I'm trying to call the .dll from ColdFusion, but I'm getting an error about System/Security/IPermission not being found. I'm assuming this is an interface in C# that ColdFusion can't find in any of the available assemblies on my system. I've added the System.Security assembly to my References in the C# project. Is there something else I need to do to make sure ColdFusion can find the interface? Here's how I'm using the .dll: <cfobject type="dotnet" name="permObj" assembly="#pathToDLLs#CoursePortal.dll" class="CoursePortal.Permissions"> <cfset permObj.revokePermissions(dir, username)>

    Read the article

  • .Net Designer assemblies, C++\C# error

    - by greggorob64
    I'm working on an designer-heavy application (using Visual C++ 2.0, but a C# solution should still be relevant). My setup is this: I have a UserControl named "Host" I'm attempting a UserControl named "Child" Child contains a property to a class whose type is defined in a different dll entirely, named "mytools.dll" Child works just fine in the designer. However, when I go to drag "child" onto "host" from the designer, I get the following error: Failed to create component 'Child'. The error message follows: 'System.io.filenotfoundexception: could not load file or assembly MyTools, Version XXXXXX, Culture=neutral ..... {unhelpful callstack} If I comment out the property in "child" that points to the class in mytools.dll, everything designs just peachy. I have the property marked with "Browsable(false), and DesignerSerializable(hidden), and it does not help. Is there a way for me to explicitly say "Don't load this dll, you won't need it in design time", or some way for me to force a dll to load from the designer programmatically? Thanks!

    Read the article

  • Install Python 2.6 without using installer on Win32

    - by prosseek
    I need to run a python script on a machine that doesn't have python installed. What I did was as follows. Copy python.exe, python26.dll, msvcr90.dll and Microsoft.VC90.CRT.manifest zip all the directory in LIBs directory as the python26.zip copy all the necessary dll/pyd file inside the DLL directory. It seems to work, but when I change the python26.zip to the other name such as pythonlib.zip. It cannot find the python library anymore. Q1 : What's the magic behind the python26.zip name? The python automatically finds a library inside a python26.zip but not with different name? Q2 : If I have python26.zip at the same directory where python.exe/python26.dll is, I don't need to add path sys.path.append(THE PATH TO python26.zip). Is it correct?

    Read the article

  • Any testing suggestions on replace a 3rd-party production?

    - by Nano HE
    It's a complex 3rd-party DLL. Phase 1 for My project already finished. I need find a good way to integrate testing with both my DLLs and 3rd-party DLL. Now I need to replace the 3rd-party DLL with some of my my small DLLs step by step. All the interface member are same names. How to disable some of the 3rd-party DLL reference and enable related my small DLL? Thank you.

    Read the article

  • Microsoft.Practices.ObjectBuilder

    - by nishant
    I have installed the application on the client's server. Here's the issue though.. The client's server is running on medium trust. With medium trust godaddy does not give persmissions to certain files. If you go to the following URL : http://helpingyougethired.com/Introduction.aspx you will see the error : Could not load file or assembly 'Microsoft.Practices.ObjectBuilder. If I delete the "Microsoft.Practices.ObjectBuilder.dll" and "Microsoft.Practices.ObjectBuilder.xml", the pages load. But when I try to save the form, I get some error related to this dll. So I need to find an alternative for this dll. I cannot use this DLL. my save, delete, select process is depend on this dll plz provide any solution if u have. thanks in advance

    Read the article

  • Common files in output directories in a C# program

    - by Net Citizen
    My VS2008 solution has the following setup. Program1 Program2 Common.dll (used and referenced by both Program1 and Program2) In debug mode I like to set my output directory to Program Files\Productname, because some code will get the exe path for various reasons. My problem is that Program1 when compiled, will give an error that it could not copy Common.dll if Program2 is started. And vise versa. The annoyance here is that I don't even make changes to Common.dll that often, but 100% of the time it will try to copy it, not only when there are changes. I end up having to close all programs, and then build and then start them. So my question is, how can I only have VS2008 copy the Common.dll if there are changes inside the Common.dll project?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Fake ISAPI Handler to serve static files with extention that are rewritted by url rewriter

    - by developerit
    Introduction I often map html extention to the asp.net dll in order to use url rewritter with .html extentions. Recently, in the new version of www.nouvelair.ca, we renamed all urls to end with .html. This works great, but failed when we used FCK Editor. Static html files would not get serve because we mapped the html extension to the .NET Framework. We can we do to to use .html extension with our rewritter but still want to use IIS behavior with static html files. Analysis I thought that this could be resolve with a simple HTTP handler. We would map urls of static files in our rewriter to this handler that would read the static file and serve it, just as IIS would do. Implementation This is how I coded the class. Note that this may not be bullet proof. I only tested it once and I am sure that the logic behind IIS is more complicated that this. If you find errors or think of possible improvements, let me know. Imports System.Web Imports System.Web.Services ' Author: Nicolas Brassard ' For: Solutions Nitriques inc. http://www.nitriques.com ' Date Created: April 18, 2009 ' Last Modified: April 18, 2009 ' License: CPOL (http://www.codeproject.com/info/cpol10.aspx) ' Files: ISAPIDotNetHandler.ashx ' ISAPIDotNetHandler.ashx.vb ' Class: ISAPIDotNetHandler ' Description: Fake ISAPI handler to serve static files. ' Usefull when you want to serve static file that has a rewrited extention. ' Example: It often map html extention to the asp.net dll in order to use url rewritter with .html. ' If you want to still serve static html file, add a rewritter rule to redirect html files to this handler Public Class ISAPIDotNetHandler Implements System.Web.IHttpHandler Sub ProcessRequest(ByVal context As HttpContext) Implements IHttpHandler.ProcessRequest ' Since we are doing the job IIS normally does with html files, ' we set the content type to match html. ' You may want to customize this with your own logic, if you want to serve ' txt or xml or any other text file context.Response.ContentType = "text/html" ' We begin a try here. Any error that occurs will result in a 404 Page Not Found error. ' We replicate the behavior of IIS when it doesn't find the correspoding file. Try ' Declare a local variable containing the value of the query string Dim uri As String = context.Request("fileUri") ' If the value in the query string is null, ' throw an error to generate a 404 If String.IsNullOrEmpty(uri) Then Throw New ApplicationException("No fileUri") End If ' If the value in the query string doesn't end with .html, then block the acces ' This is a HUGE security hole since it could permit full read access to .aspx, .config, etc. If Not uri.ToLower.EndsWith(".html") Then ' throw an error to generate a 404 Throw New ApplicationException("Extention not allowed") End If ' Map the file on the server. ' If the file doesn't exists on the server, it will throw an exception and generate a 404. Dim fullPath As String = context.Server.MapPath(uri) ' Read the actual file Dim stream As IO.StreamReader = FileIO.FileSystem.OpenTextFileReader(fullPath) ' Write the file into the response context.Response.Output.Write(stream.ReadToEnd) ' Close and Dipose the stream stream.Close() stream.Dispose() stream = Nothing Catch ex As Exception ' Set the Status Code of the response context.Response.StatusCode = 404 'Page not found ' For testing and bebugging only ! This may cause a security leak ' context.Response.Output.Write(ex.Message) Finally ' In all cases, flush and end the response context.Response.Flush() context.Response.End() End Try End Sub ' Automaticly generated by Visual Studio ReadOnly Property IsReusable() As Boolean Implements IHttpHandler.IsReusable Get Return False End Get End Property End Class Conclusion As you see, with our static files map to this handler using query string (ex.: /ISAPIDotNetHandler.ashx?fileUri=index.html) you will have the same behavior as if you ask for the uri /index.html. Finally, test this only in IIS with the html extension map to aspnet_isapi.dll. Url rewritting will work in Casini (Internal Web Server shipped with Visual Studio) but it’s not the same as with IIS since EVERY request is handle by .NET. Versions First release

    Read the article

< Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >