Search Results

Search found 3496 results on 140 pages for 'reset'.

Page 61/140 | < Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >

  • Android. How do I keep a button displayed as PRESSED until the action created by that button is finished?

    - by user527405
    I have button_focused, button_pressed, and button_normal images. When I press the button, the button_pressed image is displayed and the action related to the button pressing begins. When I quit pressing the button, the action continues but the button returns to button_normal image being displayed. How can I set the button image being displayed to button_pressed during the entire action then reset to the button_normal image? Thank you for your time

    Read the article

  • How can I automatically refactor my classes to use the default namespace for the folder they're in?

    - by Daniel Schaffer
    I've been playing around with the structure of my project, and I'd like to reset the namespaces of my classes to what the default would be. That is, the default namespace for the project, plus each of the folders in the hierarchy. It's not as simple as just find + replace, since I've both added and renamed some folders, and files from some namespaces were split into multiple other namespaces. I'm using VS 2010.

    Read the article

  • sendmail can not relay from itself

    - by Bernie
    I am running 3 centos 5.2 servers and I have configured the server for forward all messages to root to be emailed to me via .forward rule. This is working fine on two of the servers but not on the third. I have also tried copying the mail config files from the backup server and placing them on the file server and restarting sendmail. I also removed and reinstalled sendmail via yum but the results are the same. I am not sure what the issue could be they are all standard centos installs. Here is an example from the backup server which is working and the fileserver which isn't I am also going to include the mail log. good from backup server [root@backup ]# sendmail -v [email protected] < test.mail [email protected]... Connecting to [127.0.0.1] via relay... 220 backup.localhost ESMTP Sendmail 8.13.8/8.13.8; Fri, 16 Oct 2009 10:23:50 -0700 >>> EHLO backup.localhost 250-backup.localhost Hello backup.localhost [127.0.0.1], pleased to meet you 250-ENHANCEDSTATUSCODES 250-PIPELINING 250-8BITMIME 250-SIZE 250-DSN 250-ETRN 250-DELIVERBY 250 HELP >>> MAIL From:<[email protected]> SIZE=73 250 2.1.0 <[email protected]>... Sender ok >>> RCPT To:<[email protected]> >>> DATA 250 2.1.5 <[email protected]>... Recipient ok 354 Enter mail, end with "." on a line by itself >>> . 250 2.0.0 n9GHNoGC020924 Message accepted for delivery [email protected]... Sent (n9GHNoGC020924 Message accepted for delivery) Closing connection to [127.0.0.1] >>> QUIT 221 2.0.0 backup.localhost closing connection bad from file server [root@fileserver bernie]# sendmail -v [email protected] < test.mail [email protected]... Connecting to [127.0.0.1] via relay... 220 fileserver.localhost ESMTP Sendmail 8.13.8/8.13.8; Fri, 16 Oct 2009 10:23:26 -0700 >>> EHLO fileserver.localhost 250-fileserver.localhost Hello fileserver.localhost [127.0.0.1], pleased to meet you 250 ENHANCEDSTATUSCODES >>> MAIL From:<[email protected]> 550 5.0.0 Access denied root... Using cached ESMTP connection to [127.0.0.1] via relay... >>> RSET 250 2.0.0 Reset state >>> MAIL From:<> 550 5.0.0 Access denied postmaster... Using cached ESMTP connection to [127.0.0.1] via relay... >>> RSET 250 2.0.0 Reset state >>> MAIL From:<> 550 5.0.0 Access denied Closing connection to [127.0.0.1] >>> QUIT 221 2.0.0 fileserver.localhost closing connection mail log Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDom028059: from=root, size=72, class=0, nrcpts=1, msgid=<[email protected]>, relay=root@localhost Oct 16 10:39:13 fileserver sendmail[28060]: n9GHdDwl028060: tcpwrappers (fileserver.localhost, 127.0.0.1) rejection Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDom028059: [email protected], ctladdr=root (0/0), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=30072, relay=[127.0.0.1] [127.0.0.1], dsn=5.0.0, stat=Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDom028059: n9GHdDon028059: DSN: Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDon028059: to=root, delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=31096, relay=[127.0.0.1], dsn=5.0.0, stat=Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDon028059: n9GHdDoo028059: return to sender: Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDoo028059: to=postmaster, delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=32120, relay=[127.0.0.1], dsn=5.0.0, stat=Service unavailable Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDon028059: Losing ./qfn9GHdDon028059: savemail panic Oct 16 10:39:13 fileserver sendmail[28059]: n9GHdDon028059: SYSERR(root): savemail: cannot save rejected email anywhere

    Read the article

  • PHP crashing (seg-fault) under mod_fcgi, apache

    - by Andras Gyomrey
    I've been programming a site using: Zend Framework 1.11.5 (complete MVC) PHP 5.3.6 Apache 2.2.19 CentOS 5.6 i686 virtuozzo on vps cPanel WHM 11.30.1 (build 4) Mysql 5.1.56-log Mysqli API 5.1.56 The issue started here http://stackoverflow.com/questions/6769515/php-programming-seg-fault. In brief, php is giving me random segmentation-faults. [Wed Jul 20 17:45:34 2011] [error] mod_fcgid: process /usr/local/cpanel/cgi-sys/php5(11562) exit(communication error), get unexpected signal 11 [Wed Jul 20 17:45:34 2011] [warn] [client 190.78.208.30] (104)Connection reset by peer: mod_fcgid: error reading data from FastCGI server [Wed Jul 20 17:45:34 2011] [error] [client 190.78.208.30] Premature end of script headers: index.php About extensions. When i compile php with "--enable-debug" flag, i have to disable this line: zend_extension="/usr/local/IonCube/ioncube_loader_lin_5.3.so" Otherwise, the server doesn't accept requests and i get a "The connection with the server was reset". It is possible that i have to disable eaccelerator too because of the same reason. I still don't get why apache gets running it some times and some others not: extension="eaccelerator.so" Anyway, after i get httpd running, seg-faults can occurr randomly. If i don't compile php with "--enable-debug" flag, i can get DETERMINISTICALLY a php crash: <?php class Admin_DbController extends Controller_BaseController { public function updateSqlDefinitionsAction() { $db = Zend_Registry::get('db'); $row = $db->fetchRow("SHOW CREATE TABLE 222AFI"); } } ?> BUT if i compile php with "--enable-debug" flag, it's really hard to get this error. I must add some complexity to make it crash. I have to be doing many paralell requests for a few seconds to get a crash: <?php class Admin_DbController extends Controller_BaseController { public function updateSqlDefinitionsAction() { $db = Zend_Registry::get('db'); $tableList = $db->listTables(); foreach ($tableList as $tableName){ $row = $db->fetchRow("SHOW CREATE TABLE " . $db->quoteIdentifier($tableName)); file_put_contents( DB_DEFINITIONS_PATH . '/' . $tableName . '.sql', $row['Create Table'] . ';' ); } } } ?> Please notice this is the same script, but creating DDL for all tables in database rather than for one. It seems that if php is heavy loaded (with extensions and me doing many paralell requests) it's when i get php to crash. About starting httpd with "-X": i've tried. The thing is, it is already hard to make php crash with --enable-debug. With "-X" option (which only enables one child process) i can't do parallel requests. So i haven't been able to create to proper debug backtrace: https://bugs.php.net/bugs-generating-backtrace.php My concrete question is, what do i do to get a coredump? root@GWT4 [~]# httpd -V Server version: Apache/2.2.19 (Unix) Server built: Jul 20 2011 19:18:58 Cpanel::Easy::Apache v3.4.2 rev9999 Server's Module Magic Number: 20051115:28 Server loaded: APR 1.4.5, APR-Util 1.3.12 Compiled using: APR 1.4.5, APR-Util 1.3.12 Architecture: 32-bit Server MPM: Prefork threaded: no forked: yes (variable process count) Server compiled with.... -D APACHE_MPM_DIR="server/mpm/prefork" -D APR_HAS_SENDFILE -D APR_HAS_MMAP -D APR_HAVE_IPV6 (IPv4-mapped addresses enabled) -D APR_USE_SYSVSEM_SERIALIZE -D APR_USE_PTHREAD_SERIALIZE -D SINGLE_LISTEN_UNSERIALIZED_ACCEPT -D APR_HAS_OTHER_CHILD -D AP_HAVE_RELIABLE_PIPED_LOGS -D DYNAMIC_MODULE_LIMIT=128 -D HTTPD_ROOT="/usr/local/apache" -D SUEXEC_BIN="/usr/local/apache/bin/suexec" -D DEFAULT_PIDLOG="logs/httpd.pid" -D DEFAULT_SCOREBOARD="logs/apache_runtime_status" -D DEFAULT_LOCKFILE="logs/accept.lock" -D DEFAULT_ERRORLOG="logs/error_log" -D AP_TYPES_CONFIG_FILE="conf/mime.types" -D SERVER_CONFIG_FILE="conf/httpd.conf"

    Read the article

  • How to export computers from Active Directory to XML using Powershell?

    - by CoDeRs
    I am trying to create a powershell scripts for Remote Desktop Connection Manager using the active directory module. My first thought was get a list of computers in AD and parse them out into XML format similar to the OU structure that is in AD. I have no problem with that, the below code will work just but not how I wanted. EG # here is a the array $OUs Americas/Canada/Canada Computers/Desktops Americas/Canada/Canada Computers/Laptops Americas/Canada/Canada Computers/Virtual Computers Americas/USA/USA Computers/Laptops Computers Disabled Accounts Domain Controllers EMEA/UK/UK Computers/Desktops EMEA/UK/UK Computers/Laptops Outside Sales and Service/Laptops Servers I wanted to have the basic XML structured like this Americas Canada Canada Computers Desktops Laptops Virtual Computers USA USA Computers Laptops Computers Disabled Accounts Domain Controllers EMEA UK UK Computers Desktops Laptops Outside Sales and Service Laptops Servers However if you run the below it does not nest the next string in the array it only restarts the from the beginning and duplicating Americas Canada Canada Computers Desktops Americas Canada Canada Computers Laptops Americas Canada Canada Computers Virtual Computers Americas USA USA Computers Laptops RDCMGenerator.ps1 #Importing Microsoft`s PowerShell-module for administering ActiveDirectory Import-Module ActiveDirectory #Initial variables $OUs = @() $RDCMVer = "2.2" $userName = "domain\username" $password = "Hashed Password+" $Path = "$env:temp\test.xml" $allComputers = Get-ADComputer -LDAPFilter "(OperatingSystem=*)" -Properties Name,Description,CanonicalName | Sort-Object CanonicalName | select Name,Description,CanonicalName $allOUObjects = $allComputers | Foreach {"$($_.CanonicalName)"} Function Initialize-XML{ ##<RDCMan schemaVersion="1"> $xmlWriter.WriteStartElement('RDCMan') $XmlWriter.WriteAttributeString('schemaVersion', '1') $xmlWriter.WriteElementString('version',$RDCMVer) $xmlWriter.WriteStartElement('file') $xmlWriter.WriteStartElement('properties') $xmlWriter.WriteElementString('name',$env:userdomain) $xmlWriter.WriteElementString('expanded','true') $xmlWriter.WriteElementString('comment','') $xmlWriter.WriteStartElement('logonCredentials') $XmlWriter.WriteAttributeString('inherit', 'None') $xmlWriter.WriteElementString('userName',$userName) $xmlWriter.WriteElementString('domain',$env:userdomain) $xmlWriter.WriteStartElement('password') $XmlWriter.WriteAttributeString('storeAsClearText', 'false') $XmlWriter.WriteRaw($password) $xmlWriter.WriteEndElement() $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('connectionSettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('gatewaySettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('remoteDesktop') $XmlWriter.WriteAttributeString('inherit', 'None') $xmlWriter.WriteElementString('size','1024 x 768') $xmlWriter.WriteElementString('sameSizeAsClientArea','True') $xmlWriter.WriteElementString('fullScreen','False') $xmlWriter.WriteElementString('colorDepth','32') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('localResources') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('securitySettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('displaySettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteEndElement() } Function Create-Group ($groupName){ #Start Group $xmlWriter.WriteStartElement('properties') $xmlWriter.WriteElementString('name',$groupName) $xmlWriter.WriteElementString('expanded','true') $xmlWriter.WriteElementString('comment','') $xmlWriter.WriteStartElement('logonCredentials') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('connectionSettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('gatewaySettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('remoteDesktop') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('localResources') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('securitySettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('displaySettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteEndElement() } Function Create-Server ($computerName, $computerDescription) { #Start Server $xmlWriter.WriteStartElement('server') $xmlWriter.WriteElementString('name',$computerName) $xmlWriter.WriteElementString('displayName',$computerDescription) $xmlWriter.WriteElementString('comment','') $xmlWriter.WriteStartElement('logonCredentials') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('connectionSettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('gatewaySettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('remoteDesktop') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('localResources') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('securitySettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteStartElement('displaySettings') $XmlWriter.WriteAttributeString('inherit', 'FromParent') $xmlWriter.WriteEndElement() $xmlWriter.WriteEndElement() #Stop Server } Function Close-XML { $xmlWriter.WriteEndElement() $xmlWriter.WriteEndElement() # finalize the document: $xmlWriter.Flush() $xmlWriter.Close() notepad $path } #Strip out Domain and Computer Name from CanonicalName foreach($OU in $allOUObjects){ $newSplit = $OU.split("/") $rebildOU = "" for($i=1; $i -le ($newSplit.count - 2); $i++){ $rebildOU += $newSplit[$i] + "/" } $OUs += $rebildOU.substring(0,($rebildOU.length - 1)) } #Remove Duplicate OU's $OUs = $OUs | select -uniq #$OUs # get an XMLTextWriter to create the XML $XmlWriter = New-Object System.XMl.XmlTextWriter($Path,$UTF8) # choose a pretty formatting: $xmlWriter.Formatting = 'Indented' $xmlWriter.Indentation = 1 $XmlWriter.IndentChar = "`t" # write the header $xmlWriter.WriteStartDocument() # # 'encoding', 'utf-8' How? # # set XSL statements #Initialize Pre-Defined XML Initialize-XML ######################################################### # Start Loop for each OU-Path that has a computer in it ######################################################### foreach ($OU in $OUs){ $totalGroupName = "" #Create / Reset Total OU-Path Completed $OU.split("/") | foreach { #Split the OU-Path into individual OU's $groupName = "$_" #Current OU $totalGroupName += $groupName + "/" #Total OU-Path Completed $xmlWriter.WriteStartElement('group') #Start new XML Group Create-Group $groupName #Call function to create XML Group ################################################ # Start Loop for each Computer in $allComputers ################################################ foreach($computer in $allComputers){ $computerOU = $computer.CanonicalName #Set the computers OU-Path $OUSplit = $computerOU.split("/") #Create the Split for the OU-Path $rebiltOU = "" #Create / Reset the stripped OU-Path for($i=1; $i -le ($OUSplit.count - 2); $i++){ #Start Loop for OU-Path to strip out the Domain and Computer Name $rebiltOU += $OUSplit[$i] + "/" #Rebuild the stripped OU-Path } if ($rebiltOU -eq $totalGroupName){ #Compare the Current OU-Path with the computers stripped OU-Path $computerName = $computer.Name #Set the computer name $computerDescription = $computerName + " - " + $computer.Description #Set the computer Description Create-Server $computerName $computerDescription #Call function to create XML Server } } } ################################################### # Start Loop to close out XML Groups created above ################################################### $totalGroupName.split("/") | foreach { #Split the if ($_ -ne "" ){ $xmlWriter.WriteEndElement() #End Group } } } Close-XML

    Read the article

  • Why is IIS Anonymous authentication being used with administrative UNC drive access?

    - by Mark Lindell
    My account is local administrator on my machine. If I try to browse to a non-existent drive letter on my own box using a UNC path name: \mymachine\x$ my account would get locked out. I would also get the following warning (Event ID 100, Type “Warning”) 5 times under the “System” group in Event Viewer on my box: The server was unable to logon the Windows NT account 'ourdomain\myaccount' due to the following error: Logon failure: unknown user name or bad password. I would also get the following warning 3 times: The server was unable to logon the Windows NT account 'ourdomain\myaccount' due to the following error: The referenced account is currently locked out and may not be logged on to. On the domain controller, Event ID 680 of type “Failure Audit” would appear 4 times under the “Security” group in Event Viewer: Logon attempt by: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0 Logon account: myaccount Followed by Event ID 644: User Account Locked Out: Target Account Name: myaccount Target Account ID: OURDOMAIN\myaccount Caller Machine Name: MYMACHINE Caller User Name: STAN$ Caller Domain: OURDOMAIN Caller Logon ID: (0x0,0x3E7) Followed by another 4 errors having Event ID 680. Strangely, every time I tried to browse to the UNC path I would be prompted for a user name and password, the above errors would be written to the log, and my account would be locked out. When I hit “Cancel” in response to the user name/password prompt, the following message box would display: Windows cannot find \mymachine\x$. Check the spelling and try again, or try searching for the item by clicking the Start button and then clicking Search. I checked with others in the group using XP and they only got the above message box when browsing to a “bad” drive letter on their box. No one else was prompted for a user name/password and then locked out. So, every time I tried to browse to the “bad” drive letter, behind the scenes XP was trying to login 8 times using bad credentials (or, at least a bad password as the login was correct), causing my account to get locked out on the 4th try. Interestingly, If I tried browsing to a “good” drive such as “c$” it would work fine. As a test, I tried logging on to my box as a different login and browsing the “bad” UNC path. Strangely, my “ourdomain\myaccount” account was getting locked out – not the one I was logged in as! I was totally confused as to why the credentials for the other login were being passed. After much Googling, I found a link referring to some IIS settings I was vaguely familiar with from the past but could not see how they would affect this issue. It was related to the IIS directory security setting “Anonymous access and authentication control” located under: Control Panel/Administrative Tools/Computer Management/Services and Applications/Internet Information Services/Web Sites/Default Web Site/Properties/Directory Security/Anonymous access and authentication control/Edit/Password I found no indication while scouring the Internet that this property was related to my UNC problem. But, I did notice that this property was set to my domain user name and password. And, my password did age recently but I had not reset the password accordingly for this property. Sure enough, keying in the new password corrected the problem. I was no longer prompted for a user name/password when browsing the UNC path and the account lock-outs ceased. Now, a couple of questions: Why would an IIS setting affect the browsing of a UNC path on a local box? Why had I not encountered this problem before? My password has aged several times and I’ve never encountered this problem. And, I can’t remember the last time I updated the “Anonymous access” IIS password it’s been so long. I’ve run the script after a password reset before and never had my account locked-out due to the UNC problem (the script accesses UNC paths as a normal part of its processing). Windows Update did install “Cumulative Security Update for Internet Explorer 7 for Windows XP (KB972260)” on my box on 7/29/2009. I wonder if this is responsible.

    Read the article

  • SharePoint Upgrade Global Nav Quirks?

    - by elorg
    We're working on a parallel install/upgrade of SharePoint. The client has WSS 2003 on some old hardware. We've installed MOSS 2007 in a medium farm environment. They want to use this as an opportunity to not just upgrade and use the new features, but to also better organize their content and categorize between different site collections. To accommodate, we've created a few site collections per their specifications in the new environment, and when we ran an upgrade test run we ran into a few .. quirks. We made a backup of the old content database, copied it over to the new environment and restored it as a new database. Created a new web app and attached the migrated data to do an in-place upgrade in this new "test" area. This seems pretty standard - no issues. We have to do a little bit of cleanup (e.g. reset pages to site definition, reset themes, and inherit the global nav / top link bar, etc.). Once that's done, we're using stsadm export/import to copy the individual sites over to their ultimate destinations in the various different site collections. So far so good. But then we ran into one particular site that has a link to an .aspx page in the top link bar in WSS 2003 that's not behaving properly after the upgrade. It's just a link to a "dashboard" .aspx page in a doc library - nothing special. It doesn't seem to matter what we do, or what order we do it (in the "test" web app, in the destination web app, or both). In the end, this ONE site will not allow us to create a link/tab in the global nav. It can inherit the global nav just fine. We can break the inheritance just fine. But if we want to manually add a link in the top link bar - we go through the steps that I've done 1,000x before and click OK - and the tab never appears. It doesn't matter if it's to a page within the site itself, or to Google. We can migrate over other sites into the same site collection and add a tab without issue. If we migrate this quirky site over to another site collection we run into the same issue. Yet, in the "test" web app that we're using to upgrade the data we can add a tab? If we add the tab before we export/import to the final destination, the tab is lost during the process? Has anyone run into anything like this? Any ideas? I've tried every combination of everything that I can think of and nothing works. Unless we can figure out how to get this to work, we're going to just add this tab to the global nav for the entire site collection and inherit it for this site (but that adds the link to all of the site that will inherit, which is both a pro & con for them).

    Read the article

  • Motion - can't get streaming working from a webcam

    - by Emmanuel Brunet
    I'm trying to record a video stream from my Tenvis IP camera with motion 3.2.12 on Debian 7.5. I used the standard debian package with sudo apt-get install motion Assume my DNS IP cam is webcam, user : admin, password : password /etc/motion/motion.conf Bellow are my configuration file settings : netcam_url http://webcam/videostream.cgi netcam_userpass admin:password target_dir /media/videos/log/motion # The mini-http server listens to this port for requests (default: 0 = disabled) webcam_port 1234 ffmpeg_cap_new on ffmpeg_video_codec mpeg4 output_motion off snapshot_interval 0 # Quality of the jpeg (in percent) images produced (default: 50) webcam_quality 50 # Output frames at 1 fps when no motion is detected and increase to the # rate given by webcam_maxrate when motion is detected (default: off) webcam_motion on # Maximum framerate for webcam streams (default: 1) webcam_maxrate 15 # Restrict webcam connections to localhost only (default: on) webcam_localhost on # Limits the number of images per connection (default: 0 = unlimited) # Number can be defined by multiplying actual webcam rate by desired number of seconds # Actual webcam rate is the smallest of the numbers framerate and webcam_maxrate webcam_limit 0 control_port 8080 control_authentication admin:password Issue #1 when I try display http:/localhost:1234 the browser looks frozen, no HTTP 404 received but it stills waiting for data it seems .. Issue #2 in the output directory motion writes a lot of jpeg snapshots althought I just want to have several video sequenced files. Log I run motion in interactive mode in a terminal, here is the ouput root@mercure:/etc/motion# motion -c motion-1.0.conf [0] Processing thread 0 - config file motion-1.0.conf [0] Motion 3.2.12 Started [0] ffmpeg LIBAVCODEC_BUILD 3482368 LIBAVFORMAT_BUILD 3478785 [0] Thread 1 is from motion-1.0.conf [0] motion-httpd/3.2.12 running, accepting connections [0] motion-httpd: waiting for data on port TCP 8080 [1] Thread 1 started [1] Resizing pre_capture buffer to 1 items [1] Started stream webcam server in port 1234 [1] avcodec_open - could not open codec: Operation now in progress [1] ffopen_open error creating (new) file [~/tmp/motion/01-20140603165303.avi]: Operation now in progress [1] File of type 1 saved to: ~/tmp/motion/01-20140603165303-01.jpg [1] Thread exiting [1] Calling vid_close() from motion_cleanup [1] vid_close: calling netcam_cleanup [1] netcam camera handler: finish set, exiting [0] Motion thread 1 restart [1] Thread 1 started [1] Resizing pre_capture buffer to 1 items [1] Started stream webcam server in port 1234 [1] avcodec_open - could not open codec: Resource temporarily unavailable [1] ffopen_open error creating (new) file [~/tmp/motion/01-20140603165329.avi]: Resource temporarily unavailable [1] File of type 1 saved to: ~/tmp/motion/01-20140603165329-00.jpg [1] Thread exiting [1] Calling vid_close() from motion_cleanup [1] vid_close: calling netcam_cleanup [1] netcam camera handler: finish set, exiting [0] Motion thread 1 restart [1] Thread 1 started [1] Resizing pre_capture buffer to 1 items [1] Started stream webcam server in port 1234 [1] avcodec_open - could not open codec: Connection reset by peer [1] ffopen_open error creating (new) file [~/tmp/motion/01-20140603165355.avi]: Connection reset by peer [1] File of type 1 saved to: ~/tmp/motion/01-20140603165355-06.jpg [1] Thread exiting [1] Calling vid_close() from motion_cleanup [1] vid_close: calling netcam_cleanup [0] httpd - Finishing [0] httpd Closing [0] httpd thread exit [1] netcam camera handler: finish set, exiting [0] Motion thread 1 restart [1] Thread 1 started [1] Resizing pre_capture buffer to 1 items [1] Started stream webcam server in port 1234 It doesn't find the codec ... avcodec_open - could not open codec: Operation now in progress I've changed fmpeg_video_codec from mpeg4 to swf the result is the same. When using flv format motion writes a lot of .jpg image but I can't see anything at http://localhost:1234 [1] File of type 1 saved to: ~/tmp/motion/01-20140603171035-00.jpg [1] File of type 1 saved to: ~/tmp/motion/01-20140603171035-01.jpg [1] File of type 1 saved to: ~/tmp/motion/01-20140603171035-02.jpg [1] File of type 1 saved to: ~/tmp/motion/01-20140603171035-03.jpg [1] File of type 1 saved to: ~/tmp/motion/01-20140603171035-04.jpg [1] File of type 1 saved to: ~/tmp/motion/01-20140603171035-05.jpg [1] File of type 1 saved to: ~/tmp/motion/01-20140603171035-06.jpg [1] File of type 1 saved to: ~/tmp/motion/01-20140603171036-00.jpg [1] File of type 1 saved to: ~/tmp/motion/01-20140603171036-01.jpg [1] File of type 1 saved to: ~/tmp/motion/01-20140603171036-02.jpg Any idea just to get the video stream recoded on my local disk ?

    Read the article

  • SmartOS reboots spontaneously

    - by Alex
    I run a SmartOS system on a Hetzner EX4S (Intel Core i7-2600, 32G RAM, 2x3Tb SATA HDD). There are six virtual machines on the host: [root@10-bf-48-7f-e7-03 ~]# vmadm list UUID TYPE RAM STATE ALIAS d2223467-bbe5-4b81-a9d1-439e9a66d43f KVM 512 running xxxx1 5f36358f-68fa-4351-b66f-830484b9a6ee KVM 1024 running xxxx2 d570e9ac-9eac-4e4f-8fda-2b1d721c8358 OS 1024 running xxxx3 ef88979e-fb7f-460c-bf56-905755e0a399 KVM 1024 running xxxx4 d8e06def-c9c9-4d17-b975-47dd4836f962 KVM 4096 running xxxx5 4b06fe88-db6e-4cf3-aadd-e1006ada7188 KVM 9216 running xxxx5 [root@10-bf-48-7f-e7-03 ~]# The host reboots several times a week with no crash dump in /var/crash and no messages in the /var/adm/messages log. Basically /var/adm/messages looks like there was a hard reset: 2012-11-23T08:54:43.210625+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T09:14:43.187589+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T09:34:43.165100+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T09:54:43.142065+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T10:14:43.119365+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T10:34:43.096351+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T10:54:43.073821+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T10:57:55.610954+00:00 10-bf-48-7f-e7-03 genunix: [ID 540533 kern.notice] #015SunOS Release 5.11 Version joyent_20121018T224723Z 64-bit 2012-11-23T10:57:55.610962+00:00 10-bf-48-7f-e7-03 genunix: [ID 299592 kern.notice] Copyright (c) 2010-2012, Joyent Inc. All rights reserved. 2012-11-23T10:57:55.610967+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: lgpg 2012-11-23T10:57:55.610971+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: tsc 2012-11-23T10:57:55.610974+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: msr 2012-11-23T10:57:55.610978+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: mtrr 2012-11-23T10:57:55.610981+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: pge 2012-11-23T10:57:55.610984+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: de 2012-11-23T10:57:55.610987+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: cmov 2012-11-23T10:57:55.610995+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: mmx 2012-11-23T10:57:55.611000+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: mca 2012-11-23T10:57:55.611004+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: pae 2012-11-23T10:57:55.611008+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: cv8 The problem is that sometimes the host loses the network interface on reboot so we need to perform a manual hardware reset to bring it back. We do not have physical or virtual access to the server console - no KVM, no iLO or anything like this. So, the only way to debug is to analyze crash dumps/log files. I am not a SmartOS/Solaris expert so I am not sure how to proceed. Is there any equivalent of Linux netconsole for SmartOS? Can I just redirect the console output to the network port somehow? Maybe I am missing something obvious and crash information is located somewhere else.

    Read the article

  • Router 2wire, Slackware desktop in DMZ mode, iptables policy aginst ping, but still pingable

    - by user135501
    I'm in DMZ mode, so I'm firewalling myself, stealthy all ok, but I get faulty test results from Shields Up that there are pings. Yesterday I couldn't make a connection to game servers work, because ping block was enabled (on the router). I disabled it, but this persists even due to my firewall. What is the connection between me and my router in DMZ mode (for my machine, there is bunch of others too behind router firewall)? When it allows router affecting if I'm pingable or not and if router has setting not blocking ping, rules in my iptables for this scenario do not work. Please ignore commented rules, I do uncomment them as I want. These two should do the job right? iptables -A INPUT -p icmp --icmp-type echo-request -j DROP echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all Here are my iptables: #!/bin/sh # Begin /bin/firewall-start # Insert connection-tracking modules (not needed if built into the kernel). #modprobe ip_tables #modprobe iptable_filter #modprobe ip_conntrack #modprobe ip_conntrack_ftp #modprobe ipt_state #modprobe ipt_LOG # allow local-only connections iptables -A INPUT -i lo -j ACCEPT # free output on any interface to any ip for any service # (equal to -P ACCEPT) iptables -A OUTPUT -j ACCEPT # permit answers on already established connections # and permit new connections related to established ones (eg active-ftp) iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT #Gamespy&NWN #iptables -A INPUT -p tcp -m tcp -m multiport --ports 5120:5129 -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 6667 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 28910 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 29900 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 29901 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p tcp -m tcp --dport 29920 --tcp-flags SYN,RST,ACK SYN -j ACCEPT #iptables -A INPUT -p udp -m udp -m multiport --ports 5120:5129 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 6500 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 27900 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 27901 -j ACCEPT #iptables -A INPUT -p udp -m udp --dport 29910 -j ACCEPT # Log everything else: What's Windows' latest exploitable vulnerability? iptables -A INPUT -j LOG --log-prefix "FIREWALL:INPUT" # set a sane policy: everything not accepted > /dev/null iptables -P INPUT DROP iptables -P FORWARD DROP iptables -P OUTPUT DROP iptables -A INPUT -p icmp --icmp-type echo-request -j DROP # be verbose on dynamic ip-addresses (not needed in case of static IP) echo 2 > /proc/sys/net/ipv4/ip_dynaddr # disable ExplicitCongestionNotification - too many routers are still # ignorant echo 0 > /proc/sys/net/ipv4/tcp_ecn #ping death echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all # If you are frequently accessing ftp-servers or enjoy chatting you might # notice certain delays because some implementations of these daemons have # the feature of querying an identd on your box for your username for # logging. Although there's really no harm in this, having an identd # running is not recommended because some implementations are known to be # vulnerable. # To avoid these delays you could reject the requests with a 'tcp-reset': #iptables -A INPUT -p tcp --dport 113 -j REJECT --reject-with tcp-reset #iptables -A OUTPUT -p tcp --sport 113 -m state --state RELATED -j ACCEPT # To log and drop invalid packets, mostly harmless packets that came in # after netfilter's timeout, sometimes scans: #iptables -I INPUT 1 -p tcp -m state --state INVALID -j LOG --log-prefix \ "FIREWALL:INVALID" #iptables -I INPUT 2 -p tcp -m state --state INVALID -j DROP # End /bin/firewall-start

    Read the article

  • Vista 64-bit, DISK BOOT FAILURE

    - by weka
    So I have this Acer Aspire AX3200-U3600A with Windows Vista (64-bit). Every night I turn it off and turn it back on in the morning. Around three weeks ago, I did a fresh factory reimage. Good as new. Then around two days ago, when I turned it on, I noticed it was running extremly slow. As in, it would often freeze up while I had multiple applications open when it usually never froze up. So I decided to restart my computer. Big mistake. My computer froze right after I clicked shut-down. I waited a while. Nothing. Waited some minutes. Nope. I decided to shut it down by pressing the power button. Here is where the problems begin. When I turned it back on, I saw the Windows logo and loading bar and then it loaded to black. I turned it off again forcefully by power button and then once more... then I got: AMD Data Change... Update New Data to DMI! then later the screen clears and I get: AHCI Option ROM BIOS Revision: 01.05.92 Date: 02-19-2008 Copyright (c) 2006-2008 Phoenix Technologies, LTD Port 01: Reset Port Error!! Port 02: then the screen clears again but this time, this loads from the bottom: Nvidia Boot Agent 249.0542 (copyright stuff... blah blah) PXE-E61: Media test failure, check cable. PXE-M0F: Exiting Nvidia Boot Agent DISK BOOT FAILURE, INSERT SYSTEM DISK AND PRESS ENTER. So I try to go into Safe Mode. Well, first of all it doesn't load as fast. After it loads disk.sys from windows/drivers, it will wait a while (2-3 mins) THEN load. However it loads the Acer eRecovery Management Tool. I have three options: Reset computer to factory default, Restore computer from user's backup, or Exit. However, the top two options are gray and disabled where as the Exit is in blue and definitely clickable. So obviously safe mode is not there... A strong thing to note: In the beginning when all of this started, I did a Boot Windows Normal from pressing f8 and I got to my desktop! It logged me in. I could see the icons on my files. However my desktop was extremely slow as in when I clicked on the Start menu, it would wait a while, then load up the menu with JUST the gradient, no text or icons... so as you can see... it saw my HDD? Also, before anyone says, I have NO USB plugged in. My mouse and keyboard are not USB inputs, I assure you. And this came without a recovery CD AND when I went in BIOS, to change the BOOT ORDER, I did NOT see a CD-ROM option. And when I tried pressing ALT+F10 to get into Acer eRecovery Management, the top two options were disabled as well. But sometimes on start-up, I get: Windows has encountered a problem communicating with a device connected to your computer. This error can be caused by unplugging a removable storage device such as an external USB drive while the device is in use, or by faulty hardware such as a hard drive or CD-ROM drive that is failing. Make sure any removeable storage is properly connected and then restart your computer. If you continue to receive this error message, contact the hardware manufacturer. Status: 0xc00000e9 Info: An unexpected I/O error has occured. Then I tried Last Known Good Configuration Settings, that gives me a BSOD. What should I do/

    Read the article

  • Unity completely broken after upgrade to 12.10?

    - by NlightNFotis
    I am facing a very frustrating issue with my computer right now. I successfully upgraded to Ubuntu 12.10 this afternoon, but after the upgrade, the graphical user interface seems completely broken. To be more specific, I can not get the Unity bar to appear on the right. I have tried many things, including (but not limited to) purging and then reinstalling the fglrx drivers, apt-get install --reinstall ubuntu-desktop, apt-get install --reinstall unity, tried to remove the Xorg and Compiz configurations, checked to see if the Ubuntu Unity wall was enabled (it was) in ccsm, all to no avail. Could someone help me troubleshoot and essentially fix this issue? NOTE: This is the output when I try to enable unity via a terminal: compiz (core) - Info: Loading plugin: core compiz (core) - Info: Starting plugin: core unity-panel-service: no process found compiz (core) - Info: Loading plugin: reset compiz (core) - Error: Failed to load plugin: reset compiz (core) - Info: Loading plugin: ccp compiz (core) - Info: Starting plugin: ccp compizconfig - Info: Backend : gsettings compizconfig - Info: Integration : true compizconfig - Info: Profile : unity compiz (core) - Info: Loading plugin: composite compiz (core) - Info: Starting plugin: composite compiz (core) - Info: Loading plugin: opengl X Error of failed request: BadRequest (invalid request code or no such operation) Major opcode of failed request: 153 (GLX) Minor opcode of failed request: 19 (X_GLXQueryServerString) Serial number of failed request: 22 Current serial number in output stream: 22 compiz (core) - Info: Unity is not supported by your hardware. Enabling software rendering instead (slow). compiz (core) - Info: Starting plugin: opengl Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 compiz (core) - Error: Plugin initScreen failed: opengl compiz (core) - Error: Failed to start plugin: opengl compiz (core) - Info: Unloading plugin: opengl compiz (core) - Info: Loading plugin: decor compiz (core) - Info: Starting plugin: decor compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available compiz (decor) - Warn: requested a pixmap type decoration when compositing isn't available Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 compiz (core) - Info: Loading plugin: imgpng compiz (core) - Info: Starting plugin: imgpng compiz (core) - Info: Loading plugin: vpswitch compiz (core) - Info: Starting plugin: vpswitch compiz (core) - Info: Loading plugin: resize compiz (core) - Info: Starting plugin: resize Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 compiz (core) - Info: Loading plugin: compiztoolbox compiz (core) - Info: Starting plugin: compiztoolbox compiz (core) - Error: Plugin 'opengl' not loaded. compiz (core) - Info: Loading plugin: move compiz (core) - Info: Starting plugin: move compiz (core) - Info: Loading plugin: gnomecompat compiz (core) - Info: Starting plugin: gnomecompat compiz (core) - Info: Loading plugin: mousepoll compiz (core) - Info: Starting plugin: mousepoll compiz (core) - Info: Loading plugin: wall compiz (core) - Info: Starting plugin: wall compiz (core) - Error: Plugin 'opengl' not loaded. compiz (core) - Error: Plugin init failed: wall compiz (core) - Error: Failed to start plugin: wall compiz (core) - Info: Unloading plugin: wall compiz (core) - Info: Loading plugin: regex compiz (core) - Info: Starting plugin: regex compiz (core) - Info: Loading plugin: snap compiz (core) - Info: Starting plugin: snap compiz (core) - Info: Loading plugin: unitymtgrabhandles compiz (core) - Info: Starting plugin: unitymtgrabhandles compiz (core) - Error: Plugin 'opengl' not loaded. compiz (core) - Error: Plugin init failed: unitymtgrabhandles compiz (core) - Error: Failed to start plugin: unitymtgrabhandles compiz (core) - Info: Unloading plugin: unitymtgrabhandles compiz (core) - Info: Loading plugin: place compiz (core) - Info: Starting plugin: place compiz (core) - Info: Loading plugin: grid compiz (core) - Info: Starting plugin: grid Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 compiz (core) - Info: Loading plugin: animation compiz (core) - Info: Starting plugin: animation compiz (core) - Error: Plugin 'opengl' not loaded. compiz (core) - Error: Plugin init failed: animation compiz (core) - Error: Failed to start plugin: animation compiz (core) - Info: Unloading plugin: animation compiz (core) - Info: Loading plugin: fade compiz (core) - Info: Starting plugin: fade compiz (core) - Error: Plugin 'opengl' not loaded. compiz (core) - Error: Plugin init failed: fade compiz (core) - Error: Failed to start plugin: fade compiz (core) - Info: Unloading plugin: fade compiz (core) - Info: Loading plugin: session compiz (core) - Info: Starting plugin: session compiz (core) - Info: Loading plugin: expo compiz (core) - Info: Starting plugin: expo compiz (core) - Error: Plugin 'opengl' not loaded. compiz (core) - Error: Plugin init failed: expo compiz (core) - Error: Failed to start plugin: expo compiz (core) - Info: Unloading plugin: expo compiz (core) - Info: Loading plugin: ezoom compiz (core) - Info: Starting plugin: ezoom compiz (core) - Error: Plugin 'opengl' not loaded. compiz (core) - Error: Plugin init failed: ezoom compiz (core) - Error: Failed to start plugin: ezoom compiz (core) - Info: Unloading plugin: ezoom compiz (core) - Info: Loading plugin: workarounds compiz (core) - Info: Starting plugin: workarounds compiz (core) - Error: Plugin 'opengl' not loaded. Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 compiz (core) - Info: Loading plugin: scale compiz (core) - Info: Starting plugin: scale compiz (core) - Error: Plugin 'opengl' not loaded. compiz (core) - Error: Plugin init failed: scale compiz (core) - Error: Failed to start plugin: scale compiz (core) - Info: Unloading plugin: scale Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Compiz (opengl) - Fatal: glXQueryExtensionsString is NULL for screen 0 Segmentation fault (core dumped)

    Read the article

  • Refreshing Your PC Won’t Help: Why Bloatware is Still a Problem on Windows 8

    - by Chris Hoffman
    Bloatware is still a big problem on new Windows 8 and 8.1 PCs. Some websites will tell you that you can easily get rid of manufacturer-installed bloatware with Windows 8′s Reset feature, but they’re generally wrong. This junk software often turns the process of powering on your new PC from what could be a delightful experience into a tedious slog, forcing you to spend hours cleaning up your new PC before you can enjoy it. Why Refreshing Your PC (Probably) Won’t Help Manufacturers install software along with Windows on their new PCs. In addition to hardware drivers that allow the PC’s hardware to work properly, they install more questionable things like trial antivirus software and other nagware. Much of this software runs at boot, cluttering the system tray and slowing down boot times, often dramatically. Software companies pay computer manufacturers to include this stuff. It’s installed to make the PC manufacturer money at the cost of making the Windows computer worse for actual users. Windows 8 includes “Refresh Your PC” and “Reset Your PC” features that allow Windows users to quickly get their computers back to a fresh state. It’s essentially a quick, streamlined way of reinstalling Windows.  If you install Windows 8 or 8.1 yourself, the Refresh operation will give your PC a clean Windows system without any additional third-party software. However, Microsoft allows computer manufacturers to customize their Refresh images. In other words, most computer manufacturers will build their drivers, bloatware, and other system customizations into the Refresh image. When you Refresh your computer, you’ll just get back to the factory-provided system complete with bloatware. It’s possible that some computer manufacturers aren’t building bloatware into their refresh images in this way. It’s also possible that, when Windows 8 came out, some computer manufacturer didn’t realize they could do this and that refreshing a new PC would strip the bloatware. However, on most Windows 8 and 8.1 PCs, you’ll probably see bloatware come back when you refresh your PC. It’s easy to understand how PC manufacturers do this. You can create your own Refresh images on Windows 8 and 8.1 with just a simple command, replacing Microsoft’s image with a customized one. Manufacturers can install their own refresh images in the same way. Microsoft doesn’t lock down the Refresh feature. Desktop Bloatware is Still Around, Even on Tablets! Not only is typical Windows desktop bloatware not gone, it has tagged along with Windows as it moves to new form factors. Every Windows tablet currently on the market — aside from Microsoft’s own Surface and Surface 2 tablets — runs on a standard Intel x86 chip. This means that every Windows 8 and 8.1 tablet you see in stores has a full desktop with the capability to run desktop software. Even if that tablet doesn’t come with a keyboard, it’s likely that the manufacturer has preinstalled bloatware on the tablet’s desktop. Yes, that means that your Windows tablet will be slower to boot and have less memory because junk and nagging software will be on its desktop and in its system tray. Microsoft considers tablets to be PCs, and PC manufacturers love installing their bloatware. If you pick up a Windows tablet, don’t be surprised if you have to deal with desktop bloatware on it. Microsoft Surfaces and Signature PCs Microsoft is now selling their own Surface PCs that they built themselves — they’re now a “devices and services” company after all, not a software company. One of the nice things about Microsoft’s Surface PCs is that they’re free of the typical bloatware. Microsoft won’t take money from Norton to include nagging software that worsens the experience. If you pick up a Surface device that provides Windows 8.1 and 8 as Microsoft intended it — or install a fresh Windows 8.1 or 8 system — you won’t see any bloatware. Microsoft is also continuing their Signature program. New PCs purchased from Microsoft’s official stores are considered “Signature PCs” and don’t have the typical bloatware. For example, the same laptop could be full of bloatware in a traditional computer store and clean, without the nasty bloatware when purchased from a Microsoft Store. Microsoft will also continue to charge you $99 if you want them to remove your computer’s bloatware for you — that’s the more questionable part of the Signature program. Windows 8 App Bloatware is an Improvement There’s a new type of bloatware on new Windows 8 systems, which is thankfully less harmful. This is bloatware in the form of included “Windows 8-style”, “Store-style”, or “Modern” apps in the new, tiled interface. For example, Amazon may pay a computer manufacturer to include the Amazon Kindle app from the Windows Store. (The manufacturer may also just receive a cut of book sales for including it. We’re not sure how the revenue sharing works — but it’s clear PC manufacturers are getting money from Amazon.) The manufacturer will then install the Amazon Kindle app from the Windows Store by default. This included software is technically some amount of clutter, but it doesn’t cause the problems older types of bloatware does. It won’t automatically load and delay your computer’s startup process, clutter your system tray, or take up memory while you’re using your computer. For this reason, a shift to including new-style apps as bloatware is a definite improvement over older styles of bloatware. Unfortunately, this type of bloatware has not replaced traditional desktop bloatware, and new Windows PCs will generally have both. Windows RT is Immune to Typical Bloatware, But… Microsoft’s Windows RT can’t run Microsoft desktop software, so it’s immune to traditional bloatware. Just as you can’t install your own desktop programs on it, the Windows RT device’s manufacturer can’t install their own desktop bloatware. While Windows RT could be an antidote to bloatware, this advantage comes at the cost of being able to install any type of desktop software at all. Windows RT has also seemingly failed — while a variety of manufacturers came out with their own Windows RT devices when Windows 8 was first released, they’ve all since been withdrawn from the market. Manufacturers who created Windows RT devices have criticized it in the media and stated they have no plans to produce any future Windows RT devices. The only Windows RT devices still on the market are Microsoft’s Surface (originally named Surface RT) and Surface 2. Nokia is also coming out with their own Windows RT tablet, but they’re in the process of being purchased by Microsoft. In other words, Windows RT just isn’t a factor when it comes to bloatware — you wouldn’t get a Windows RT device unless you purchased a Surface, but those wouldn’t come with bloatware anyway. Removing Bloatware or Reinstalling Windows 8.1 While bloatware is still a problem on new Windows systems and the Refresh option probably won’t help you, you can still eliminate bloatware in the traditional way. Bloatware can be uninstalled from the Windows Control Panel or with a dedicated removal tool like PC Decrapifier, which tries to automatically uninstall the junk for you. You can also do what Windows geeks have always tended to do with new computers — reinstall Windows 8 or 8.1 from scratch with installation media from Microsoft. You’ll get a clean Windows system and you can install only the hardware drivers and other software you need. Unfortunately, bloatware is still a big problem for Windows PCs. Windows 8 tries to do some things to address bloatware, but it ultimately comes up short. Most Windows PCs sold in most stores to most people will still have the typical bloatware slowing down the boot process, wasting memory, and adding clutter. Image Credit: LG on Flickr, Intel Free Press on Flickr, Wilson Hui on Flickr, Intel Free Press on Flickr, Vernon Chan on Flickr     

    Read the article

  • JMX Based Monitoring - Part Four - Business App Server Monitoring

    - by Anthony Shorten
    In the last blog entry I talked about the Oracle Utilities Application Framework V4 feature for monitoring and managing aspects of the Web Application Server using JMX. In this blog entry I am going to discuss a similar new feature that allows JMX to be used for management and monitoring the Oracle Utilities business application server component. This feature is primarily focussed on performance tracking of the product. In first release of Oracle Utilities Customer Care And Billing (V1.x I am talking about), we used to use Oracle Tuxedo as part of the architecture. In Oracle Utilities Application Framework V2.0 and above, we removed Tuxedo from the architecture. One of the features that some customers used within Tuxedo was the performance tracking ability. The idea was that you enabled performance logging on the individual Tuxedo servers and then used a utility named txrpt to produce a performance report. This report would list every service called, the number of times it was called and the average response time. When I worked a performance consultant, I used this report to identify badly performing services and also gauge the overall performance characteristics of a site. When Tuxedo was removed from the architecture this information was also lost. While you can get some information from access.log and some Mbeans supplied by the Web Application Server it was not at the same granularity as txrpt or as useful. I am happy to say we have not only reintroduced this facility in Oracle Utilities Application Framework but it is now accessible via JMX and also we have added more detail into the performance tracking. Most of this new design was working with customers around the world to make sure we introduced a new feature that not only satisfied their performance tracking needs but allowed for finer grained performance analysis. As with the Web Application Server, the Business Application Server JMX monitoring is enabled by specifying a JMX port number in RMI Port number for JMX Business and initial credentials in the JMX Enablement System User ID and JMX Enablement System Password configuration options. These options are available using the configureEnv[.sh] -a utility. These credentials are shared across the Web Application Server and Business Application Server for authorization purposes. Once this is information is supplied a number of configuration files are built (by the initialSetup[.sh] utility) to configure the facility: spl.properties - contains the JMX URL, the security configuration and the mbeans that are enabled. For example, on my demonstration machine: spl.runtime.management.rmi.port=6750 spl.runtime.management.connector.url.default=service:jmx:rmi:///jndi/rmi://localhost:6750/oracle/ouaf/ejbAppConnector jmx.remote.x.password.file=scripts/ouaf.jmx.password.file jmx.remote.x.access.file=scripts/ouaf.jmx.access.file ouaf.jmx.com.splwg.ejb.service.management.PerformanceStatistics=enabled ouaf.jmx.* files - contain the userid and password. The default configuration uses the JMX default configuration. You can use additional security features by altering the spl.properties file manually or using a custom template. For more security options see JMX Security for more details. Once it has been configured and the changes reflected in the product using the initialSetup[.sh] utility the JMX facility can be used. For illustrative purposes I will use jconsole but any JSR160 complaint browser or client can be used (with the appropriate configuration). Once you start jconsole (ensure that splenviron[.sh] is executed prior to execution to set the environment variables or for remote connection, ensure java is in your path and jconsole.jar in your classpath) you specify the URL in the spl.runtime.management.connnector.url.default entry. For example: You are then able to track performance of the product using the PerformanceStatistics Mbean. The attributes of the PerformanceStatistics Mbean are counts of each object type. This is where this facility differs from txrpt. The information that is collected includes the following: The Service Type is captured so you can filter the results in terms of the type of service. For maintenance type services you can even see the transaction type (ADD, CHANGE etc) so you can see the performance of updates against read transactions. The Minimum and Maximum are also collected to give you an idea of the spread of performance. The last call is recorded. The date, time and user of the last call are recorded to give you an idea of the timeliness of the data. The Mbean maintains a set of counters per Service Type to give you a summary of the types of transactions being executed. This gives you an overall picture of the types of transactions and volumes at your site. There are a number of interesting operations that can also be performed: reset - This resets the statistics back to zero. This is an important operation. For example, txrpt is restricted to collecting statistics per hour, which is ok for most people. But what if you wanted to be more granular? This operation allows to set the collection period to anything you wish. The statistics collected will represent values since the last restart or last reset. completeExecutionDump - This is the operation that produces a CSV in memory to allow extraction of the data. All the statistics are extracted (see the Server Administration Guide for a full list). This can be then loaded into a database, a tool or simply into your favourite spreadsheet for analysis. Here is an extract of an execution dump from my demonstration environment to give you an idea of the format: ServiceName, ServiceType, MinTime, MaxTime, Avg Time, # of Calls, Latest Time, Latest Date, Latest User ... CFLZLOUL, EXECUTE_LIST, 15.0, 64.0, 22.2, 10, 16.0, 2009-12-16::11-25-36-932, ASHORTEN CILBBLLP, READ, 106.0, 1184.0, 466.3333333333333, 6, 106.0, 2009-12-16::11-39-01-645, BOBAMA CILBBLLP, DELETE, 70.0, 146.0, 108.0, 2, 70.0, 2009-12-15::12-53-58-280, BPAYS CILBBLLP, ADD, 860.0, 4903.0, 2243.5, 8, 860.0, 2009-12-16::17-54-23-862, LELLISON CILBBLLP, CHANGE, 112.0, 3410.0, 815.1666666666666, 12, 112.0, 2009-12-16::11-40-01-103, ASHORTEN CILBCBAL, EXECUTE_LIST, 8.0, 84.0, 26.0, 22, 23.0, 2009-12-16::17-54-01-643, LJACKMAN InitializeUserInfoService, READ_SYSTEM, 49.0, 962.0, 70.83777777777777, 450, 63.0, 2010-02-25::11-21-21-667, ASHORTEN InitializeUserService, READ_SYSTEM, 130.0, 2835.0, 234.85777777777778, 450, 216.0, 2010-02-25::11-21-21-446, ASHORTEN MenuLoginService, READ_SYSTEM, 530.0, 1186.0, 703.3333333333334, 9, 530.0, 2009-12-16::16-39-31-172, ASHORTEN NavigationOptionDescriptionService, READ_SYSTEM, 2.0, 7.0, 4.0, 8, 2.0, 2009-12-21::09-46-46-892, ASHORTEN ... There are other operations and attributes available. Refer to the Server Administration Guide provided with your product to understand the full et of operations and attributes. This is one of the many features I am proud that we implemented as it allows flexible monitoring of the performance of the product.

    Read the article

  • Customize the Default Screensavers in Windows 7 and Vista

    - by Matthew Guay
    Windows 7 and Vista include a nice set of backgrounds, but unfortunately most of them aren’t configurable by default.  Thanks to a free app and some registry changes, however, you can make the default screensavers uniquely yours! Customize the default screensavers If you’ve ever pressed the Customize button on most of the default screensavers in Windows 7 and Vista, you were probably greeted with this message: A little digging in the registry shows that this isn’t fully correct.  The default screensavers in Vista and 7 do have options you can set, but they’re not obvious.  With the help of an app or some registry tips, you can easily customize the screensavers to be uniquely yours.  Here’s how you can do it with an app or in the registry. Customize Windows Screensavers with System Screensavers Tweaker Download the System Screensavers Tweaker (link below), and unzip the folder.  Run nt6srccfg.exe in the folder to tweak your screensavers.  This application lets you tweak the screensavers’ registry settings graphically, and it works great in all editions of Windows Vista and 7, including x64 versions. Change any of the settings you want in the screensaver tweaker, and click Apply. To preview the changes to your screensaver, open the Screen Saver settings window as normal by right-clicking on the desktop, and selecting Personalize. Click on the Screensaver button on the bottom right. Now, select your modified screensaver, and click Preview to see your changes. You can change a wide variety of settings for the Bubbles, Ribbons, and Mystify screensavers in Windows 7 and Vista, as well as the Aurora screensaver in Windows Vista.  The tweaks to the Bubbles screensaver are especially nice.  Here’s how the Bubbles look without transparency. And, by tweaking a little more, you get a screensaver that looks more like a screen full of marbles. Ribbons and Mystify each have less settings, but still can produce some unique effects.   How’s that for a brilliant screensaver? And, if you want to return your screensavers to their default settings, simply run the System Screensavers Tweaker and select Reset to defaults on any screensaver you wish to reset. Customize Windows Screensavers in the Registry If you prefer to roll up your sleeves and tweak Windows under-the-hood, then here’s how you can customize the screensavers yourself in the Registry.  Type regedit into the search box in the Start menu, browse to the key for each screensaver, and add or modify the DWORD values listed for that screensaver using the Decimal base. Please Note: Tweaking the Registry can be difficult, so if you’re unsure, just use the tweaking application above. Also, you’ll probably want to create a System Restore Point.   Bubbles To edit the Bubbles screensaver, browse to the following in regedit: HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\Screensavers\Bubbles Now, add or modify the following DWORD values to tweak the screensaver: MaterialGlass – enter 0 for solid or 1 for transparent bubbles Radius – enter a number between 1090000000 and 1130000000; the larger the number, the larger the bubbles’ radius ShowBubbles – enter 0 to show a black background or 1 to show the current desktop behind the bubbles ShowShadows – enter 0 for no shadow or 1 for shadows behind the bubbles SphereDensity – enter a number from 1000000000 to 2100000000; the higher the number, the more bubbles on the screen. TurbulenceNumOctaves – enter a number from 1 to 255; the higher the number, the faster the bubble colors will change. Ribbons To edit the Ribbons screensaver, browse to the following in regedit: HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\Screensavers\Ribbons Now, add or modify the following DWORD values to tweak the screensaver: Blur – enter 0 to prevent ribbons from fading, or 1 to have them fade away after a few moments. Numribbons – enter a number from 1 to 100; the higher the number, the more ribbons on the screen. RibbonWidth – enter a number from 1000000000 to 1080000000; the higher the number, the thicker the ribbons. Mystify To edit the Mystify screensaver, browse to the following in regedit: HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\Screensavers\Mystify Now, add or modify the following DWORD values to tweak the screensaver: Blur – enter 0 to prevent lines from fading, or 1 to have them fade away after a few moments. LineWidth – enter a number from 1000000000 to 1080000000; the higher the number, the wider the lines. NumLines – enter a number from 1 to 100; the higher the value, the more lines on the screen. Aurora – Windows Vista only To edit the Aurora screensaver in Windows Vista, browse to the following in regedit: HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\Screensavers\Aurora Now, add or modify the following DWORD values to tweak the screensaver: Amplitude – enter a value from 500000000 to 2000000000; the higher the value, the slower the motion. Brightness – enter a value from 1000000000 to 1050000000; the higher the value, the brighter the affect. NumLayers – enter a value from 1 to 15; the higher the value, the more aurora layers displayed. Speed – enter a value from 1000000000 to 2100000000; the higher the value, the faster the cycling. Conclusion Although the default screensavers are nice, they can be boring after awhile with their default settings.  But with these tweaks, you can create a variety of vibrant screensavers that should keep your desktop fresh and interesting. Link Download the System Screensavers Tweaker Similar Articles Productive Geek Tips Create Icons to Start the Screensaver on Windows 7 or VistaMake Your Windows XP Logon Screen Look Like Windows VistaSpeed up Windows Vista Start Menu Search By Limiting ResultsRoundup: 16 Tweaks to Windows Vista Look & FeelSet XP as the Default OS in a Windows Vista Dual-Boot Setup TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 NachoFoto Searches Images in Real-time Office 2010 Product Guides Google Maps Place marks – Pizza, Guns or Strip Clubs Monitor Applications With Kiwi LocPDF is a Visual PDF Search Tool Download Free iPad Wallpapers at iPad Decor

    Read the article

  • How can a code editor effectively hint at code nesting level - without using indentation?

    - by pgfearo
    I've written an XML text editor that provides 2 view options for the same XML text, one indented (virtually), the other left-justified. The motivation for the left-justified view is to help users 'see' the whitespace characters they're using for indentation of plain-text or XPath code without interference from indentation that is an automated side-effect of the XML context. I want to provide visual clues (in the non-editable part of the editor) for the left-justified mode that will help the user, but without getting too elaborate. I tried just using connecting lines, but that seemed too busy. The best I've come up with so far is shown in a mocked up screenshot of the editor below, but I'm seeking better/simpler alternatives (that don't require too much code). [Edit] Taking the heatmap idea (from: @jimp) I get this and 3 alternatives - labelled a, b and c: The following section describes the accepted answer as a proposal, bringing together ideas from a number of other answers and comments. As this question is now community wiki, please feel free to update this. NestView The name for this idea which provides a visual method to improve the readability of nested code without using indentation. Contour Lines The name for the differently shaded lines within the NestView The image above shows the NestView used to help visualise an XML snippet. Though XML is used for this illustration, any other code syntax that uses nesting could have been used for this illustration. An Overview: The contour lines are shaded (as in a heatmap) to convey nesting level The contour lines are angled to show when a nesting level is being either opened or closed. A contour line links the start of a nesting level to the corresponding end. The combined width of contour lines give a visual impression of nesting level, in addition to the heatmap. The width of the NestView may be manually resizable, but should not change as the code changes. Contour lines can either be compressed or truncated to keep acheive this. Blank lines are sometimes used code to break up text into more digestable chunks. Such lines could trigger special behaviour in the NestView. For example the heatmap could be reset or a background color contour line used, or both. One or more contour lines associated with the currently selected code can be highlighted. The contour line associated with the selected code level would be emphasized the most, but other contour lines could also 'light up' in addition to help highlight the containing nested group Different behaviors (such as code folding or code selection) can be associated with clicking/double-clicking on a Contour Line. Different parts of a contour line (leading, middle or trailing edge) may have different dynamic behaviors associated. Tooltips can be shown on a mouse hover event over a contour line The NestView is updated continously as the code is edited. Where nesting is not well-balanced assumptions can be made where the nesting level should end, but the associated temporary contour lines must be highlighted in some way as a warning. Drag and drop behaviors of Contour Lines can be supported. Behaviour may vary according to the part of the contour line being dragged. Features commonly found in the left margin such as line numbering and colour highlighting for errors and change state could overlay the NestView. Additional Functionality The proposal addresses a range of additional issues - many are outside the scope of the original question, but a useful side-effect. Visually linking the start and end of a nested region The contour lines connect the start and end of each nested level Highlighting the context of the currently selected line As code is selected, the associated nest-level in the NestView can be highlighted Differentiating between code regions at the same nesting level In the case of XML different hues could be used for different namespaces. Programming languages (such as c#) support named regions that could be used in a similar way. Dividing areas within a nesting area into different visual blocks Extra lines are often inserted into code to aid readability. Such empty lines could be used to reset the saturation level of the NestView's contour lines. Multi-Column Code View Code without indentation makes the use of a multi-column view more effective because word-wrap or horizontal scrolling is less likely to be required. In this view, once code has reach the bottom of one column, it flows into the next one: Usage beyond merely providing a visual aid As proposed in the overview, the NestView could provide a range of editing and selection features which would be broadly in line with what is expected from a TreeView control. The key difference is that a typical TreeView node has 2 parts: an expander and the node icon. A NestView contour line can have as many as 3 parts: an opener (sloping), a connector (vertical) and a close (sloping). On Indentation The NestView presented alongside non-indented code complements, but is unlikely to replace, the conventional indented code view. It's likely that any solutions adopting a NestView, will provide a method to switch seamlessly between indented and non-indented code views without affecting any of the code text itself - including whitespace characters. One technique for the indented view would be 'Virtual Formatting' - where a dynamic left-margin is used in lieu of tab or space characters. The same nesting-level data used to dynamically render the NestView could also used for the more conventional-looking indented view. Printing Indentation will be important for the readability of printed code. Here, the absence of tab/space characters and a dynamic left-margin means that the text can wrap at the right-margin and still maintain the integrity of the indented view. Line numbers can be used as visual markers that indicate where code is word-wrapped and also the exact position of indentation: Screen Real-Estate: Flat Vs Indented Addressing the question of whether the NestView uses up valuable screen real-estate: Contour lines work well with a width the same as the code editor's character width. A NestView width of 12 character widths can therefore accommodate 12 levels of nesting before contour lines are truncated/compressed. If an indented view uses 3 character-widths for each nesting level then space is saved until nesting reaches 4 levels of nesting, after this nesting level the flat view has a space-saving advantage that increases with each nesting level. Note: A minimum indentation of 4 character widths is often recommended for code, however XML often manages with less. Also, Virtual Formatting permits less indentation to be used because there's no risk of alignment issues A comparison of the 2 views is shown below: Based on the above, its probably fair to conclude that view style choice will be based on factors other than screen real-estate. The one exception is where screen space is at a premium, for example on a Netbook/Tablet or when multiple code windows are open. In these cases, the resizable NestView would seem to be a clear winner. Use Cases Examples of real-world examples where NestView may be a useful option: Where screen real-estate is at a premium a. On devices such as tablets, notepads and smartphones b. When showing code on websites c. When multiple code windows need to be visible on the desktop simultaneously Where consistent whitespace indentation of text within code is a priority For reviewing deeply nested code. For example where sub-languages (e.g. Linq in C# or XPath in XSLT) might cause high levels of nesting. Accessibility Resizing and color options must be provided to aid those with visual impairments, and also to suit environmental conditions and personal preferences: Compatability of edited code with other systems A solution incorporating a NestView option should ideally be capable of stripping leading tab and space characters (identified as only having a formatting role) from imported code. Then, once stripped, the code could be rendered neatly in both the left-justified and indented views without change. For many users relying on systems such as merging and diff tools that are not whitespace-aware this will be a major concern (if not a complete show-stopper). Other Works: Visualisation of Overlapping Markup Published research by Wendell Piez, dated from 2004, addresses the issue of the visualisation of overlapping markup, specifically LMNL. This includes SVG graphics with significant similarities to the NestView proposal, as such, they are acknowledged here. The visual differences are clear in the images (below), the key functional distinction is that NestView is intended only for well-nested XML or code, whereas Wendell Piez's graphics are designed to represent overlapped nesting. The graphics above were reproduced - with kind permission - from http://www.piez.org Sources: Towards Hermenutic Markup Half-steps toward LMNL

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Tailoring the Oracle Fusion Applications User Interface with Oracle Composer

    - by mvaughan
    By Killian Evers, Oracle Applications User Experience Changing the user interface (UI) is one of the most common modifications customers perform to Oracle Fusion Applications. Typically, customers add or remove a field based on their needs. Oracle makes the process of tailoring easier for customers, and reduces the burden for their IT staff, which you can read about on the Usable Apps website or in an earlier VoX post.This is the first in a series of posts that will talk about the tools that Oracle has provided for tailoring with its family of composers. These tools are designed for business systems analysts, and they allow employees other than IT staff to make changes in an upgrade-safe and patch-friendly manner. Let’s take a deep dive into one of these composers, the Oracle Composer. Oracle Composer allows business users to modify existing UIs after they have been deployed and are in use. It is an integral component of our SaaS offering. Using Oracle Composer, users can control:     •    Who sees the changes     •    When the changes are made     •    What changes are made Change for me, change for you, change for all of youOne of the most powerful aspects of Oracle Composer is its flexibility. Oracle uses Oracle Composer to make changes for a user or group of users – those who see the changes. A user of Oracle Fusion Applications can make changes to the user interface at runtime via Oracle Composer, and these changes will remain every time they log into the system. For example, they can rearrange certain objects on a page, add and remove designated content, and save queries.Business systems analysts can make changes to Oracle Fusion Application UIs for groups of users or all users. Oracle’s Fusion Middleware Metadata Services (MDS) stores these changes and retrieves them at runtime, merging customizations with the base metadata and revealing the final experience to the end user. A tailored application can have multiple customization layers, and some layers can be specific to certain Fusion Applications. Some examples of customization layers are: site, organization, country, or role. Customization layers are applied in a specific order of precedence on top of the base application metadata. This image illustrates how customization layers are applied.What time is it?Users make changes to UIs at design time, runtime, and design time at runtime. Design time changes are typically made by application developers using an integrated development environment, or IDE, such as Oracle JDeveloper. Once made, these changes are then deployed to managed servers by application administrators. Oracle Composer covers the other two areas: Runtime changes and design time at runtime changes. When we say users are making changes at runtime, we mean that the changes are made within the running application and take effect immediately in the running application. A prime example of this ability is users who make changes to their running application that only affect the UIs they see. What is new with Oracle Composer is the last area: Design time at runtime.  A business systems analyst can make changes to the UIs at runtime but does not have to make those changes immediately to the application. These changes are stored as metadata, separate from the base application definitions. Customizations made at runtime can be saved in a sandbox so that the changes can be isolated and validated before being published into an environment, without the need to redeploy the application. What can I do?Oracle Composer can be run in one of two modes. Depending on which mode is chosen, you may have different capabilities available for changing the UIs. The first mode is view mode, the most common default mode for most pages. This is the mode that is used for personalizations or user customizations. Users can access this mode via the Personalization link (see below) in the global region on Oracle Fusion Applications pages. In this mode, you can rearrange components on a page with drag-and-drop, collapse or expand components, add approved external content, and change the overall layout of a page. However, all of the changes made this way are exclusive to that particular user.The second mode, edit mode, is typically made available to select users with access privileges to edit page content. We call these folks business systems analysts. This mode is used to make UI changes for groups of users. Users with appropriate privileges can access the edit mode of Oracle Composer via the Administration menu (see below) in the global region on Oracle Fusion Applications pages. In edit mode, users can also add components, delete components, and edit component properties. While in edit mode in Oracle Composer, there are two views that assist the business systems analyst with making UI changes: Design View and Source View (see below). Design View, the default view, is a WYSIWYG rendering of the page and its content. The business systems analyst can perform these actions: Add content – including custom content like a portlet displaying news or stock quotes, or predefined content delivered from Oracle Fusion Applications (including ADF components and task flows) Rearrange content – performed via drag-and-drop on the page or by using the actions menu of a component or portlet to move content around Edit component properties and parameters – for specific components, control the visual properties such as text or display labels, or parameters such as RSS feeds Hide or show components – hidden components can be re-shown Delete components Change page layout – users can select from eight pre-defined layouts Edit page properties – create or edit a page’s parameters and display properties Reset page customizations – remove edits made to the page in the current layer and/or reset the page to a previous state. Detailed information on each of these capabilities and the additional actions not covered in the list above can be found in the Oracle® Fusion Middleware Developer's Guide for Oracle WebCenter.This image shows what the screen looks like in Design View.Source View, the second option in the edit mode of Oracle Composer, provides a WYSIWYG and a hierarchical rendering of page components in a component navigator. In Source View, users can access and modify properties of components that are not otherwise selectable in Design View. For example, many ADF Faces components can be edited only in Source View. Users can also edit components within a task flow. This image shows what the screen looks like in Source View.Detailed information on Source View can be found in the Oracle® Fusion Middleware Developer's Guide for Oracle WebCenter.Oracle Composer enables any application or portal to be customized or personalized after it has been deployed and is in use. It is designed to be extremely easy to use so that both business systems analysts and users can edit Oracle Fusion Applications pages with a few clicks of the mouse. Oracle Composer runs in all modern browsers and provides a rich, dynamic way to edit JSF application and portal pages.From the editor: The next post in this series about composers will be on Data Composer. You can also catch Killian speaking about extensibility at OpenWorld 2012 and in her Faces of Fusion video.

    Read the article

  • External usb 3.0 hard drive is not recognised when plugged into usb 3 port (ubuntu natty 64 bit).

    - by kimangroo
    I have an Iomega Prestige Portable External Hard Drive 1TB USB 3.0. It works fine on windows 7 as a usb 3.0 drive. It isn't detected on ubuntu natty 64bit, 2.6.38-8-generic. fdisk -l cannot see it at all: Disk /dev/sda: 500.1 GB, 500107862016 bytes 255 heads, 63 sectors/track, 60801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x1bed746b Device Boot Start End Blocks Id System /dev/sda1 1 1689 13560832 27 Unknown /dev/sda2 * 1689 1702 102400 7 HPFS/NTFS /dev/sda3 1702 19978 146805760 7 HPFS/NTFS /dev/sda4 19978 60802 327914497 5 Extended /dev/sda5 25555 60802 283120640 7 HPFS/NTFS /dev/sda6 19978 23909 31571968 83 Linux /dev/sda7 23909 25555 13218816 82 Linux swap / Solaris Partition table entries are not in disk order lsusb can see it: Bus 003 Device 003: ID 059b:0070 Iomega Corp. Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 002 Device 004: ID 05fe:0011 Chic Technology Corp. Browser Mouse Bus 002 Device 003: ID 0a12:0001 Cambridge Silicon Radio, Ltd Bluetooth Dongle (HCI mode) Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 001 Device 005: ID 0489:e00f Foxconn / Hon Hai Bus 001 Device 004: ID 0c45:64b5 Microdia Bus 001 Device 003: ID 08ff:168f AuthenTec, Inc. Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub And dmesg | grep -i xhci (I may have unplugged the drive and plugged it back in again after booting): [ 1.659060] pci 0000:04:00.0: xHCI HW did not halt within 2000 usec status = 0x0 [ 11.484971] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 [ 11.484997] xhci_hcd 0000:04:00.0: setting latency timer to 64 [ 11.485002] xhci_hcd 0000:04:00.0: xHCI Host Controller [ 11.485064] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 [ 11.636149] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 [ 11.636241] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X [ 11.636246] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X [ 11.636251] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X [ 11.636256] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X [ 11.636261] xhci_hcd 0000:04:00.0: irq 47 for MSI/MSI-X [ 11.639654] xHCI xhci_add_endpoint called for root hub [ 11.639655] xHCI xhci_check_bandwidth called for root hub [ 11.956366] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 2 [ 12.001073] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.007059] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.012932] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.018922] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.049139] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.056754] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.131607] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 12.179717] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 12.686876] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 12.687058] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 12.687152] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 43.330737] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 2 [ 43.422579] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 43.422658] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af00 [ 43.422665] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af40 [ 43.422671] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669af80 [ 43.422677] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff88014669afc0 [ 43.531159] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 125.160248] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.766466] usb 3-1: new SuperSpeed USB device using xhci_hcd and address 3 [ 903.807789] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.813530] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.819400] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.825104] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.855067] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862314] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 903.862597] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst [ 903.913211] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 904.424416] xhci_hcd 0000:04:00.0: WARN: babble error on endpoint [ 904.424599] xhci_hcd 0000:04:00.0: WARN Set TR Deq Ptr cmd invalid because of stream ID configuration [ 904.424700] xhci_hcd 0000:04:00.0: ERROR Transfer event for disabled endpoint or incorrect stream ring [ 935.139021] usb 3-1: reset SuperSpeed USB device using xhci_hcd and address 3 [ 935.226075] xhci_hcd 0000:04:00.0: WARN: short transfer on control ep [ 935.226140] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b00 [ 935.226148] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b40 [ 935.226153] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186b80 [ 935.226159] xhci_hcd 0000:04:00.0: xHCI xhci_drop_endpoint called with disabled ep ffff880148186bc0 [ 935.343339] xhci_hcd 0000:04:00.0: WARN no SS endpoint bMaxBurst I thought it might be that the firmware wasn't compatible with linux or something, but when booting a live image of partedmagic, (2.6.38.4-pmagic), the drive was detected fine, I could mount it and got usb 3.0 speeds (at least they double the speeds I got from plugging same drive in usb 2 ports). dmesg in partedmagic did say something about no SuperSpeed endpoint which was an error I saw in a previous dmesg of ubuntu: Jun 27 15:49:02 (none) user.info kernel: [ 2.978743] xhci_hcd 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 Jun 27 15:49:02 (none) user.debug kernel: [ 2.978771] xhci_hcd 0000:04:00.0: setting latency timer to 64 Jun 27 15:49:02 (none) user.info kernel: [ 2.978781] xhci_hcd 0000:04:00.0: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 2.978856] xhci_hcd 0000:04:00.0: new USB bus registered, assigned bus number 3 Jun 27 15:49:02 (none) user.info kernel: [ 3.089458] xhci_hcd 0000:04:00.0: irq 18, io mem 0xc5400000 Jun 27 15:49:02 (none) user.debug kernel: [ 3.089541] xhci_hcd 0000:04:00.0: irq 42 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089544] xhci_hcd 0000:04:00.0: irq 43 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089546] xhci_hcd 0000:04:00.0: irq 44 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089548] xhci_hcd 0000:04:00.0: irq 45 for MSI/MSI-X Jun 27 15:49:02 (none) user.debug kernel: [ 3.089550] xhci_hcd 0000:04:00.0: irq 46 for MSI/MSI-X Jun 27 15:49:02 (none) user.warn kernel: [ 3.092857] usb usb3: No SuperSpeed endpoint companion for config 1 interface 0 altsetting 0 ep 129: using minimum values Jun 27 15:49:02 (none) user.info kernel: [ 3.092864] usb usb3: New USB device found, idVendor=1d6b, idProduct=0003 Jun 27 15:49:02 (none) user.info kernel: [ 3.092866] usb usb3: New USB device strings: Mfr=3, Product=2, SerialNumber=1 Jun 27 15:49:02 (none) user.info kernel: [ 3.092867] usb usb3: Product: xHCI Host Controller Jun 27 15:49:02 (none) user.info kernel: [ 3.092869] usb usb3: Manufacturer: Linux 2.6.38.4-pmagic xhci_hcd Jun 27 15:49:02 (none) user.info kernel: [ 3.092870] usb usb3: SerialNumber: 0000:04:00.0 Jun 27 15:49:02 (none) user.debug kernel: [ 3.092961] xHCI xhci_add_endpoint called for root hub Jun 27 15:49:02 (none) user.debug kernel: [ 3.092963] xHCI xhci_check_bandwidth called for root hub Well I have no idea what's going wrong, and I haven't had much luck from google and the forums so far. A number of unanswered threads with people with similar error messages and problems only. Hopefully someone here can help or point me in the right direction?!

    Read the article

  • Library like ENet, but for TCP?

    - by Milo
    I'm not looking to use boost::asio, it is overly complex for my needs. I'm building a game that is cross platform, for desktop, iPhone and Android. I found a library called ENet which is pretty much what I need, but it uses UDP which does not seem to support encryption and a few other things. Given that the game is an event driven card game, TCP seems like the right fit. However, all I have found is WINSOCK / berkley sockets and bost::asio. Here is a sample client server application with ENet: #include <enet/enet.h> #include <stdlib.h> #include <string> #include <iostream> class Host { ENetAddress address; ENetHost * server; ENetHost* client; ENetEvent event; public: Host() :server(NULL) { enet_initialize(); setupServer(); } void setupServer() { if(server) { enet_host_destroy(server); server = NULL; } address.host = ENET_HOST_ANY; /* Bind the server to port 1234. */ address.port = 1721; server = enet_host_create (& address /* the address to bind the server host to */, 32 /* allow up to 32 clients and/or outgoing connections */, 2 /* allow up to 2 channels to be used, 0 and 1 */, 0 /* assume any amount of incoming bandwidth */, 0 /* assume any amount of outgoing bandwidth */); } void daLoop() { while(true) { /* Wait up to 1000 milliseconds for an event. */ while (enet_host_service (server, & event, 5000) > 0) { ENetPacket * packet; switch (event.type) { case ENET_EVENT_TYPE_CONNECT: printf ("A new client connected from %x:%u.\n", event.peer -> address.host, event.peer -> address.port); /* Store any relevant client information here. */ event.peer -> data = "Client information"; /* Create a reliable packet of size 7 containing "packet\0" */ packet = enet_packet_create ("packet", strlen ("packet") + 1, ENET_PACKET_FLAG_RELIABLE); /* Extend the packet so and append the string "foo", so it now */ /* contains "packetfoo\0" */ enet_packet_resize (packet, strlen ("packetfoo") + 1); strcpy ((char*)& packet -> data [strlen ("packet")], "foo"); /* Send the packet to the peer over channel id 0. */ /* One could also broadcast the packet by */ /* enet_host_broadcast (host, 0, packet); */ enet_peer_send (event.peer, 0, packet); /* One could just use enet_host_service() instead. */ enet_host_flush (server); break; case ENET_EVENT_TYPE_RECEIVE: printf ("A packet of length %u containing %s was received from %s on channel %u.\n", event.packet -> dataLength, event.packet -> data, event.peer -> data, event.channelID); /* Clean up the packet now that we're done using it. */ enet_packet_destroy (event.packet); break; case ENET_EVENT_TYPE_DISCONNECT: printf ("%s disconected.\n", event.peer -> data); /* Reset the peer's client information. */ event.peer -> data = NULL; } } } } ~Host() { if(server) { enet_host_destroy(server); server = NULL; } atexit (enet_deinitialize); } }; class Client { ENetAddress address; ENetEvent event; ENetPeer *peer; ENetHost* client; public: Client() :peer(NULL) { enet_initialize(); setupPeer(); } void setupPeer() { client = enet_host_create (NULL /* create a client host */, 1 /* only allow 1 outgoing connection */, 2 /* allow up 2 channels to be used, 0 and 1 */, 57600 / 8 /* 56K modem with 56 Kbps downstream bandwidth */, 14400 / 8 /* 56K modem with 14 Kbps upstream bandwidth */); if (client == NULL) { fprintf (stderr, "An error occurred while trying to create an ENet client host.\n"); exit (EXIT_FAILURE); } /* Connect to some.server.net:1234. */ enet_address_set_host (& address, "192.168.2.13"); address.port = 1721; /* Initiate the connection, allocating the two channels 0 and 1. */ peer = enet_host_connect (client, & address, 2, 0); if (peer == NULL) { fprintf (stderr, "No available peers for initiating an ENet connection.\n"); exit (EXIT_FAILURE); } /* Wait up to 5 seconds for the connection attempt to succeed. */ if (enet_host_service (client, & event, 20000) > 0 && event.type == ENET_EVENT_TYPE_CONNECT) { std::cout << "Connection to some.server.net:1234 succeeded." << std::endl; } else { /* Either the 5 seconds are up or a disconnect event was */ /* received. Reset the peer in the event the 5 seconds */ /* had run out without any significant event. */ enet_peer_reset (peer); puts ("Connection to some.server.net:1234 failed."); } } void daLoop() { ENetPacket* packet; /* Create a reliable packet of size 7 containing "packet\0" */ packet = enet_packet_create ("backet", strlen ("backet") + 1, ENET_PACKET_FLAG_RELIABLE); /* Extend the packet so and append the string "foo", so it now */ /* contains "packetfoo\0" */ enet_packet_resize (packet, strlen ("backetfoo") + 1); strcpy ((char*)& packet -> data [strlen ("backet")], "foo"); /* Send the packet to the peer over channel id 0. */ /* One could also broadcast the packet by */ /* enet_host_broadcast (host, 0, packet); */ enet_peer_send (event.peer, 0, packet); /* One could just use enet_host_service() instead. */ enet_host_flush (client); while(true) { /* Wait up to 1000 milliseconds for an event. */ while (enet_host_service (client, & event, 1000) > 0) { ENetPacket * packet; switch (event.type) { case ENET_EVENT_TYPE_RECEIVE: printf ("A packet of length %u containing %s was received from %s on channel %u.\n", event.packet -> dataLength, event.packet -> data, event.peer -> data, event.channelID); /* Clean up the packet now that we're done using it. */ enet_packet_destroy (event.packet); break; } } } } ~Client() { atexit (enet_deinitialize); } }; int main() { std::string a; std::cin >> a; if(a == "host") { Host host; host.daLoop(); } else { Client c; c.daLoop(); } return 0; } I looked at some socket tutorials and they seemed a bit too low level. I just need something that abstracts away the platform (eg, no WINSOCKS) and that has basic ability to keep track of connected clients and send them messages. Thanks

    Read the article

  • how to use serial port in UDK using windows DLL and DLLBind directive?

    - by Shayan Abbas
    I want to use serial port in UDK, For that purpose i use a windows DLL and DLLBind directive. I have a thread in windows DLL for serial port data recieve event. My problem is: this thread doesn't work properly. Please Help me. below is my code SerialPortDLL Code: // SerialPortDLL.cpp : Defines the exported functions for the DLL application. // #include "stdafx.h" #include "Cport.h" extern "C" { // This is an example of an exported variable //SERIALPORTDLL_API int nSerialPortDLL=0; // This is an example of an exported function. //SERIALPORTDLL_API int fnSerialPortDLL(void) //{ // return 42; //} CPort *sp; __declspec(dllexport) void Open(wchar_t* portName) { sp = new CPort(portName); //MessageBox(0,L"ha ha!!!",L"ha ha",0); //MessageBox(0,portName,L"ha ha",0); } __declspec(dllexport) void Close() { sp->Close(); MessageBox(0,L"ha ha!!!",L"ha ha",0); } __declspec(dllexport) wchar_t *GetData() { return sp->GetData(); } __declspec(dllexport) unsigned int GetDSR() { return sp->getDSR(); } __declspec(dllexport) unsigned int GetCTS() { return sp->getCTS(); } __declspec(dllexport) unsigned int GetRing() { return sp->getRing(); } } CPort class code: #include "stdafx.h" #include "CPort.h" #include "Serial.h" CSerial serial; HANDLE HandleOfThread; LONG lLastError = ERROR_SUCCESS; bool fContinue = true; HANDLE hevtOverlapped; HANDLE hevtStop; OVERLAPPED ov = {0}; //char szBuffer[101] = ""; wchar_t *szBuffer = L""; wchar_t *data = L""; DWORD WINAPI ThreadHandler( LPVOID lpParam ) { // Keep reading data, until an EOF (CTRL-Z) has been received do { MessageBox(0,L"ga ga!!!",L"ga ga",0); //Sleep(10); // Wait for an event lLastError = serial.WaitEvent(&ov); if (lLastError != ERROR_SUCCESS) { //LOG( " Unable to wait for a COM-port event" ); } // Setup array of handles in which we are interested HANDLE ahWait[2]; ahWait[0] = hevtOverlapped; ahWait[1] = hevtStop; // Wait until something happens switch (::WaitForMultipleObjects(sizeof(ahWait)/sizeof(*ahWait),ahWait,FALSE,INFINITE)) { case WAIT_OBJECT_0: { // Save event const CSerial::EEvent eEvent = serial.GetEventType(); // Handle break event if (eEvent & CSerial::EEventBreak) { //LOG( " ### BREAK received ###" ); } // Handle CTS event if (eEvent & CSerial::EEventCTS) { //LOG( " ### Clear to send %s ###", serial.GetCTS() ? "on":"off" ); } // Handle DSR event if (eEvent & CSerial::EEventDSR) { //LOG( " ### Data set ready %s ###", serial.GetDSR() ? "on":"off" ); } // Handle error event if (eEvent & CSerial::EEventError) { switch (serial.GetError()) { case CSerial::EErrorBreak: /*LOG( " Break condition" );*/ break; case CSerial::EErrorFrame: /*LOG( " Framing error" );*/ break; case CSerial::EErrorIOE: /*LOG( " IO device error" );*/ break; case CSerial::EErrorMode: /*LOG( " Unsupported mode" );*/ break; case CSerial::EErrorOverrun: /*LOG( " Buffer overrun" );*/ break; case CSerial::EErrorRxOver: /*LOG( " Input buffer overflow" );*/ break; case CSerial::EErrorParity: /*LOG( " Input parity error" );*/ break; case CSerial::EErrorTxFull: /*LOG( " Output buffer full" );*/ break; default: /*LOG( " Unknown" );*/ break; } } // Handle ring event if (eEvent & CSerial::EEventRing) { //LOG( " ### RING ###" ); } // Handle RLSD/CD event if (eEvent & CSerial::EEventRLSD) { //LOG( " ### RLSD/CD %s ###", serial.GetRLSD() ? "on" : "off" ); } // Handle data receive event if (eEvent & CSerial::EEventRecv) { // Read data, until there is nothing left DWORD dwBytesRead = 0; do { // Read data from the COM-port lLastError = serial.Read(szBuffer,33,&dwBytesRead); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to read from COM-port" ); } if( dwBytesRead == 33 && szBuffer[0]=='$' ) { // Finalize the data, so it is a valid string szBuffer[dwBytesRead] = '\0'; ////LOG( "\n%s\n", szBuffer ); data = szBuffer; } } while (dwBytesRead > 0); } } break; case WAIT_OBJECT_0+1: { // Set the continue bit to false, so we'll exit fContinue = false; } break; default: { // Something went wrong //LOG( "Error while calling WaitForMultipleObjects" ); } break; } } while (fContinue); MessageBox(0,L"kka kk!!!",L"kka ga",0); return 0; } CPort::CPort(wchar_t *portName) { // Attempt to open the serial port (COM2) //lLastError = serial.Open(_T(portName),0,0,true); lLastError = serial.Open(portName,0,0,true); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to open COM-port" ); } // Setup the serial port (115200,8N1, which is the default setting) lLastError = serial.Setup(CSerial::EBaud115200,CSerial::EData8,CSerial::EParNone,CSerial::EStop1); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port setting" ); } // Register only for the receive event lLastError = serial.SetMask(CSerial::EEventBreak | CSerial::EEventCTS | CSerial::EEventDSR | CSerial::EEventError | CSerial::EEventRing | CSerial::EEventRLSD | CSerial::EEventRecv); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port event mask" ); } // Use 'non-blocking' reads, because we don't know how many bytes // will be received. This is normally the most convenient mode // (and also the default mode for reading data). lLastError = serial.SetupReadTimeouts(CSerial::EReadTimeoutNonblocking); if (lLastError != ERROR_SUCCESS) { //LOG( "Unable to set COM-port read timeout" ); } // Create a handle for the overlapped operations hevtOverlapped = ::CreateEvent(0,TRUE,FALSE,0);; if (hevtOverlapped == 0) { //LOG( "Unable to create manual-reset event for overlapped I/O" ); } // Setup the overlapped structure ov.hEvent = hevtOverlapped; // Open the "STOP" handle hevtStop = ::CreateEvent(0,TRUE,FALSE,_T("Overlapped_Stop_Event")); if (hevtStop == 0) { //LOG( "Unable to create manual-reset event for stop event" ); } HandleOfThread = CreateThread( NULL, 0, ThreadHandler, 0, 0, NULL); } CPort::~CPort() { //fContinue = false; //CloseHandle( HandleOfThread ); //serial.Close(); } void CPort::Close() { fContinue = false; CloseHandle( HandleOfThread ); serial.Close(); } wchar_t *CPort::GetData() { return data; } bool CPort::getCTS() { return serial.GetCTS(); } bool CPort::getDSR() { return serial.GetDSR(); } bool CPort::getRing() { return serial.GetRing(); } Unreal Script Code: class MyPlayerController extends GamePlayerController DLLBind(SerialPortDLL); dllimport final function Open(string portName); dllimport final function Close(); dllimport final function string GetData();

    Read the article

  • Microphone not capturing sound on 12.04 Lenovo G580

    - by Yam Marcovic
    In both Skype and the Sound Recorder application, I am not capturing any audio from my built-in microphone. I'm not sure why. Otherwise, sound output is working well. I have tried running gstreamer-properties and setting the Default Input plugin to PulseAUdio as well (to match the output), and it didn't help. I have tried running alsamixer -V all and I only get 2 input-related entries: Capture(L R) which is on 100 and not muted (can't be either), and Analog Mic Boost which is on 20db. Extra info: Camera (video) is working well on Skype and Kamerka. Can you please help me get my microphone to work? lspci: 00:00.0 Host bridge: Intel Corporation Ivy Bridge DRAM Controller (rev 09) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort+ >SERR- <PERR- INTx- Latency: 0 Capabilities: <access denied> Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Ivy Bridge Graphics Controller (rev 09) (prog-if 00 [VGA controller]) Subsystem: Lenovo Device 3977 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 42 Region 0: Memory at e0000000 (64-bit, non-prefetchable) [size=4M] Region 2: Memory at d0000000 (64-bit, prefetchable) [size=256M] Region 4: I/O ports at 3000 [size=64] Expansion ROM at <unassigned> [disabled] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: i915 00:14.0 USB controller: Intel Corporation Panther Point USB xHCI Host Controller (rev 04) (prog-if 30 [XHCI]) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 41 Region 0: Memory at e0600000 (64-bit, non-prefetchable) [size=64K] Capabilities: <access denied> Kernel driver in use: xhci_hcd 00:16.0 Communication controller: Intel Corporation Panther Point MEI Controller #1 (rev 04) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 43 Region 0: Memory at e0614000 (64-bit, non-prefetchable) [size=16] Capabilities: <access denied> Kernel driver in use: mei Kernel modules: mei 00:1a.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #2 (rev 04) (prog-if 20 [EHCI]) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 16 Region 0: Memory at e0619000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1b.0 Audio device: Intel Corporation Panther Point High Definition Audio Controller (rev 04) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 44 Region 0: Memory at e0610000 (64-bit, non-prefetchable) [size=16K] Capabilities: <access denied> Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 1 (rev c4) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=01, subordinate=01, sec-latency=0 I/O behind bridge: 00002000-00002fff Memory behind bridge: e0500000-e05fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR- NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.1 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 2 (rev c4) (prog-if 00 [Normal decode]) Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Bus: primary=00, secondary=02, subordinate=02, sec-latency=0 Memory behind bridge: e0400000-e04fffff Secondary status: 66MHz- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- <SERR- <PERR- BridgeCtl: Parity- SERR- NoISA- VGA- MAbort- >Reset- FastB2B- PriDiscTmr- SecDiscTmr- DiscTmrStat- DiscTmrSERREn- Capabilities: <access denied> Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #1 (rev 04) (prog-if 20 [EHCI]) Subsystem: Lenovo Device 3977 Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 23 Region 0: Memory at e0618000 (32-bit, non-prefetchable) [size=1K] Capabilities: <access denied> Kernel driver in use: ehci_hcd 00:1f.0 ISA bridge: Intel Corporation Panther Point LPC Controller (rev 04) Subsystem: Lenovo Device 3977 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Capabilities: <access denied> Kernel modules: iTCO_wdt 00:1f.2 SATA controller: Intel Corporation Panther Point 6 port SATA Controller [AHCI mode] (rev 04) (prog-if 01 [AHCI 1.0]) Subsystem: Lenovo Device 3977 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz+ UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin B routed to IRQ 40 Region 0: I/O ports at 3088 [size=8] Region 1: I/O ports at 3094 [size=4] Region 2: I/O ports at 3080 [size=8] Region 3: I/O ports at 3090 [size=4] Region 4: I/O ports at 3060 [size=32] Region 5: Memory at e0617000 (32-bit, non-prefetchable) [size=2K] Capabilities: <access denied> Kernel driver in use: ahci 00:1f.3 SMBus: Intel Corporation Panther Point SMBus Controller (rev 04) Subsystem: Lenovo Device 3977 Control: I/O+ Mem+ BusMaster- SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap- 66MHz- UDF- FastB2B+ ParErr- DEVSEL=medium >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Interrupt: pin C routed to IRQ 10 Region 0: Memory at e0615000 (64-bit, non-prefetchable) [size=256] Region 4: I/O ports at 3040 [size=32] Kernel modules: i2c-i801 01:00.0 Ethernet controller: Atheros Communications Inc. AR8162 Fast Ethernet (rev 08) Subsystem: Lenovo Device 3979 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 11 Region 0: Memory at e0500000 (64-bit, non-prefetchable) [size=256K] Region 2: I/O ports at 2000 [size=128] Capabilities: <access denied> 02:00.0 Network controller: Atheros Communications Inc. AR9285 Wireless Network Adapter (PCI-Express) (rev 01) Subsystem: Lenovo Device 31a1 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0, Cache Line Size: 64 bytes Interrupt: pin A routed to IRQ 17 Region 0: Memory at e0400000 (64-bit, non-prefetchable) [size=64K] Capabilities: <access denied> Kernel driver in use: ath9k Kernel modules: ath9k aplay -l **** List of PLAYBACK Hardware Devices **** card 0: PCH [HDA Intel PCH], device 0: CONEXANT Analog [CONEXANT Analog] Subdevices: 1/1 Subdevice #0: subdevice #0 card 0: PCH [HDA Intel PCH], device 3: HDMI 0 [HDMI 0] Subdevices: 1/1 Subdevice #0: subdevice #0

    Read the article

  • Who could ask for more with LESS CSS? (Part 2 of 3&ndash;Setup)

    - by ToStringTheory
    Welcome to part two in my series covering the LESS CSS language.  In the first post, I covered the two major CSS precompiled languages - LESS and SASS to a small extent, iterating over some of the features that you could expect to find in them.  In this post, I will go a little further in depth into the setup and execution of using the LESS framework. Introduction It really doesn’t take too much to get LESS working in your project.  The basic workflow will be including the necessary translator in your project, defining bundles for the LESS files, add the necessary code to your layouts.cshtml file, and finally add in all your necessary styles to the LESS files!  Lets get started… New Project Just like all great experiments in Visual Studio, start up a File > New Project, and create a new MVC 4 Web Application.  The Base Package After you have the new project spun up, use the Nuget Package Manager to install the Bundle Transformer: LESS package. This will take care of installing the main translator that we will be using for LESS code (dotless which is another Nuget package), as well as the core framework for the Bundle Transformer library.  The installation will come up with some instructions in a readme file on how to modify your web.config to handle all your *.less requests through the Bundle Transformer, which passes the translating onto dotless. Where To Put These LESS Files?! This step isn’t really a requirement, however I find that I don’t like how ASP.Net MVC just has a content directory where they store CSS, content images, css images….  In my project, I went ahead and created a new directory just for styles – LESS files, CSS files, and images that are only referenced in LESS or CSS.  Ignore the MVC directory as this was my testbed for another project I was working on at the same time.  As you can see here, I have: A top level directory for images which contains only images used in a page A top level directory for scripts A top level directory for Styles A few directories for plugins I am using (Colrizr, JQueryUI, Farbtastic) Multiple *.less files for different functions (I’ll go over these in a minute) I find that this layout offers the best separation of content types.  Bring Out Your Bundles! The next thing that we need to do is add in the necessary code for the bundling of these LESS files.  Go ahead and open your BundleConfig.cs file, usually located in the /App_Start/ folder of the project.  As you will see in a minute, instead of using the method Microsoft does in the base MVC 4 project, I change things up a bit.  Define Constants The first thing I do is define constants for each of the virtual paths that will be used in the bundler: The main reason is that I hate magic strings in my program, so the fact that you first defined a virtual path in the BundleConfig file, and then used that path in the _Layout.cshtml file really irked me. Add Bundles to the BundleCollection Next, I am going to define the bundles for my styles in my AddStyleBundles method: That is all it takes to get all of my styles in play with LESS.  The CssTransformer and NullOrderer types come from the Bundle Transformer we grabbed earlier.  If we didn’t use that package, we would have to write our own function (not too hard, but why do it if it’s been done). I use the site.less file as my main hub for LESS - I will cover that more in the next section. Add Bundles To Layout.cshtml File With the constants in the BundleConfig file, instead of having to use the same magic string I defined for the bundle virtual path, I am able to do this: Notice here that besides the RenderSection magic strings (something I am working on in another side project), all of the bundles are now based on const strings.  If I need to change the virtual path, I only have to do it in one place.  Nifty! Get Started! We are now ready to roll!  As I said in the previous section, I use the site.less file as a central hub for my styles: As seen here, I have a reset.css file which is a simple CSS reset.  Next, I have created a file for managing all my color variables – colors.less: Here, you can see some of the standards I started to use, in this case for color variables.  I define all color variables with the @col prefix.  Currently, I am going for verbose variable names. The next file imported is my font.less file that defines the typeface information for the site: Simple enough.  A couple of imports for fonts from Google, and then declaring variables for use throughout LESS.  I also set up the heading sizes, margins, etc..  You can also see my current standardization for font declaration strings – @font. Next, I pull in a mixins.less file that I grabbed from the Twitter Bootstrap library that gives some useful parameterized mixins for use such as border-radius, gradient, box-shadow, etc… The common.less file is a file that just contains items that I will be defining that can be used across all my LESS files.  Kind of like my own mixins or font-helpers: Finally I have my layout.less file that contains all of my definitions for general site layout – width, main/sidebar widths, footer layout, etc: That’s it!  For the rest of my one off definitions/corrections, I am currently putting them into the site.less file beneath my original imports Note Probably my favorite side effect of using the LESS handler/translator while bundling is that it also does a CSS checkup when rendering…  See, when your web.config is set to debug, bundling will output the url to the direct less file, not the bundle, and the http handler intercepts the call, compiles the less, and returns the result.  If there is an error in your LESS code, the CSS file can be returned empty, or may have the error output as a comment on the first couple lines. If you have the web.config set to not debug, then if there is an error in your code, you will end up with the usual ASP.Net exception page (unless you catch the exception of course), with information regarding the failure of the conversion, such as brace mismatch, undefined variable, etc…  I find it nifty. Conclusion This is really just the beginning.  LESS is very powerful and exciting!  My next post will show an actual working example of why LESS is so powerful with its functions and variables…  At least I hope it will!  As for now, if you have any questions, comments, or suggestions on my current practice, I would love to hear them!  Feel free to drop a comment or shoot me an email using the contact page.  In the mean time, I plan on posting the final post in this series tomorrow or the day after, with my side project, as well as a whole base ASP.Net MVC4 templated project with LESS added in it so that you can check out the layout I have in this post.  Until next time…

    Read the article

< Previous Page | 57 58 59 60 61 62 63 64 65 66 67 68  | Next Page >