Search Results

Search found 1531 results on 62 pages for 'gwt mvp'.

Page 62/62 | < Previous Page | 58 59 60 61 62 

  • Guidance: A Branching strategy for Scrum Teams

    - by Martin Hinshelwood
    Having a good branching strategy will save your bacon, or at least your code. Be careful when deviating from your branching strategy because if you do, you may be worse off than when you started! This is one possible branching strategy for Scrum teams and I will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even assess your Scrum knowledge by having a go at the Scrum Open Assessment. You can also read SSW’s Rules to Better Scrum using TFS which have been developed during our own Scrum implementations. Acknowledgements Bill Heys – Bill offered some good feedback on this post and helped soften the language. Note: Bill is a VS ALM Ranger and co-wrote the Branching Guidance for TFS 2010 Willy-Peter Schaub – Willy-Peter is an ex Visual Studio ALM MVP turned blue badge and has been involved in most of the guidance including the Branching Guidance for TFS 2010 Chris Birmele – Chris wrote some of the early TFS Branching and Merging Guidance. Dr Paul Neumeyer, Ph.D Parallel Processes, ScrumMaster and SSW Solution Architect – Paul wanted to have feature branches coming from the release branch as well. We agreed that this is really a spin-off that needs own project, backlog, budget and Team. Scenario: A product is developed RTM 1.0 is released and gets great sales.  Extra features are demanded but the new version will have double to price to pay to recover costs, work is approved by the guys with budget and a few sprints later RTM 2.0 is released.  Sales a very low due to the pricing strategy. There are lots of clients on RTM 1.0 calling out for patches. As I keep getting Reverse Integration and Forward Integration mixed up and Bill keeps slapping my wrists I thought I should have a reminder: You still seemed to use reverse and/or forward integration in the wrong context. I would recommend reviewing your document at the end to ensure that it agrees with the common understanding of these terms merge (forward integration) from parent to child (same direction as the branch), and merge  (reverse integration) from child to parent (the reverse direction of the branch). - one of my many slaps on the wrist from Bill Heys.   As I mentioned previously we are using a single feature branching strategy in our current project. The single biggest mistake developers make is developing against the “Main” or “Trunk” line. This ultimately leads to messy code as things are added and never finished. Your only alternative is to NEVER check in unless your code is 100%, but this does not work in practice, even with a single developer. Your ADD will kick in and your half-finished code will be finished enough to pass the build and the tests. You do use builds don’t you? Sadly, this is a very common scenario and I have had people argue that branching merely adds complexity. Then again I have seen the other side of the universe ... branching  structures from he... We should somehow convince everyone that there is a happy between no-branching and too-much-branching. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   A key benefit of branching for development is to isolate changes from the stable Main branch. Branching adds sanity more than it adds complexity. We do try to stress in our guidance that it is important to justify a branch, by doing a cost benefit analysis. The primary cost is the effort to do merges and resolve conflicts. A key benefit is that you have a stable code base in Main and accept changes into Main only after they pass quality gates, etc. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft The second biggest mistake developers make is branching anything other than the WHOLE “Main” line. If you branch parts of your code and not others it gets out of sync and can make integration a nightmare. You should have your Source, Assets, Build scripts deployment scripts and dependencies inside the “Main” folder and branch the whole thing. Some departments within MSFT even go as far as to add the environments used to develop the product in there as well; although I would not recommend that unless you have a massive SQL cluster to house your source code. We tried the “add environment” back in South-Africa and while it was “phenomenal”, especially when having to switch between environments, the disk storage and processing requirements killed us. We opted for virtualization to skin this cat of keeping a ready-to-go environment handy. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   I think people often think that you should have separate branches for separate environments (e.g. Dev, Test, Integration Test, QA, etc.). I prefer to think of deploying to environments (such as from Main to QA) rather than branching for QA). - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   You can read about SSW’s Rules to better Source Control for some additional information on what Source Control to use and how to use it. There are also a number of branching Anti-Patterns that should be avoided at all costs: You know you are on the wrong track if you experience one or more of the following symptoms in your development environment: Merge Paranoia—avoiding merging at all cost, usually because of a fear of the consequences. Merge Mania—spending too much time merging software assets instead of developing them. Big Bang Merge—deferring branch merging to the end of the development effort and attempting to merge all branches simultaneously. Never-Ending Merge—continuous merging activity because there is always more to merge. Wrong-Way Merge—merging a software asset version with an earlier version. Branch Mania—creating many branches for no apparent reason. Cascading Branches—branching but never merging back to the main line. Mysterious Branches—branching for no apparent reason. Temporary Branches—branching for changing reasons, so the branch becomes a permanent temporary workspace. Volatile Branches—branching with unstable software assets shared by other branches or merged into another branch. Note   Branches are volatile most of the time while they exist as independent branches. That is the point of having them. The difference is that you should not share or merge branches while they are in an unstable state. Development Freeze—stopping all development activities while branching, merging, and building new base lines. Berlin Wall—using branches to divide the development team members, instead of dividing the work they are performing. -Branching and Merging Primer by Chris Birmele - Developer Tools Technical Specialist at Microsoft Pty Ltd in Australia   In fact, this can result in a merge exercise no-one wants to be involved in, merging hundreds of thousands of change sets and trying to get a consolidated build. Again, we need to find a happy medium. - Willy-Peter Schaub on Merge Paranoia Merge conflicts are generally the result of making changes to the same file in both the target and source branch. If you create merge conflicts, you will eventually need to resolve them. Often the resolution is manual. Merging more frequently allows you to resolve these conflicts close to when they happen, making the resolution clearer. Waiting weeks or months to resolve them, the Big Bang approach, means you are more likely to resolve conflicts incorrectly. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Main line, this is where your stable code lives and where any build has known entities, always passes and has a happy test that passes as well? Many development projects consist of, a single “Main” line of source and artifacts. This is good; at least there is source control . There are however a couple of issues that need to be considered. What happens if: you and your team are working on a new set of features and the customer wants a change to his current version? you are working on two features and the customer decides to abandon one of them? you have two teams working on different feature sets and their changes start interfering with each other? I just use labels instead of branches? That's a lot of “what if’s”, but there is a simple way of preventing this. Branching… In TFS, labels are not immutable. This does not mean they are not useful. But labels do not provide a very good development isolation mechanism. Branching allows separate code sets to evolve separately (e.g. Current with hotfixes, and vNext with new development). I don’t see how labels work here. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Creating a single feature branch means you can isolate the development work on that branch.   Its standard practice for large projects with lots of developers to use Feature branching and you can check the Branching Guidance for the latest recommendations from the Visual Studio ALM Rangers for other methods. In the diagram above you can see my recommendation for branching when using Scrum development with TFS 2010. It consists of a single Sprint branch to contain all the changes for the current sprint. The main branch has the permissions changes so contributors to the project can only Branch and Merge with “Main”. This will prevent accidental check-ins or checkouts of the “Main” line that would contaminate the code. The developers continue to develop on sprint one until the completion of the sprint. Note: In the real world, starting a new Greenfield project, this process starts at Sprint 2 as at the start of Sprint 1 you would have artifacts in version control and no need for isolation.   Figure: Once the sprint is complete the Sprint 1 code can then be merged back into the Main line. There are always good practices to follow, and one is to always do a Forward Integration from Main into Sprint 1 before you do a Reverse Integration from Sprint 1 back into Main. In this case it may seem superfluous, but this builds good muscle memory into your developer’s work ethic and means that no bad habits are learned that would interfere with additional Scrum Teams being added to the Product. The process of completing your sprint development: The Team completes their work according to their definition of done. Merge from “Main” into “Sprint1” (Forward Integration) Stabilize your code with any changes coming from other Scrum Teams working on the same product. If you have one Scrum Team this should be quick, but there may have been bug fixes in the Release branches. (we will talk about release branches later) Merge from “Sprint1” into “Main” to commit your changes. (Reverse Integration) Check-in Delete the Sprint1 branch Note: The Sprint 1 branch is no longer required as its useful life has been concluded. Check-in Done But you are not yet done with the Sprint. The goal in Scrum is to have a “potentially shippable product” at the end of every Sprint, and we do not have that yet, we only have finished code.   Figure: With Sprint 1 merged you can create a Release branch and run your final packaging and testing In 99% of all projects I have been involved in or watched, a “shippable product” only happens towards the end of the overall lifecycle, especially when sprints are short. The in-between releases are great demonstration releases, but not shippable. Perhaps it comes from my 80’s brain washing that we only ship when we reach the agreed quality and business feature bar. - Willy-Peter Schaub, VS ALM Ranger, Microsoft Although you should have been testing and packaging your code all the way through your Sprint 1 development, preferably using an automated process, you still need to test and package with stable unchanging code. This is where you do what at SSW we call a “Test Please”. This is first an internal test of the product to make sure it meets the needs of the customer and you generally use a resource external to your Team. Then a “Test Please” is conducted with the Product Owner to make sure he is happy with the output. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: If you find a deviation from the expected result you fix it on the Release branch. If during your final testing or your “Test Please” you find there are issues or bugs then you should fix them on the release branch. If you can’t fix them within the time box of your Sprint, then you will need to create a Bug and put it onto the backlog for prioritization by the Product owner. Make sure you leave plenty of time between your merge from the development branch to find and fix any problems that are uncovered. This process is commonly called Stabilization and should always be conducted once you have completed all of your User Stories and integrated all of your branches. Even once you have stabilized and released, you should not delete the release branch as you would with the Sprint branch. It has a usefulness for servicing that may extend well beyond the limited life you expect of it. Note: Don't get forced by the business into adding features into a Release branch instead that indicates the unspoken requirement is that they are asking for a product spin-off. In this case you can create a new Team Project and branch from the required Release branch to create a new Main branch for that product. And you create a whole new backlog to work from.   Figure: When the Team decides it is happy with the product you can create a RTM branch. Once you have fixed all the bugs you can, and added any you can’t to the Product Backlog, and you Team is happy with the result you can create a Release. This would consist of doing the final Build and Packaging it up ready for your Sprint Review meeting. You would then create a read-only branch that represents the code you “shipped”. This is really an Audit trail branch that is optional, but is good practice. You could use a Label, but Labels are not Auditable and if a dispute was raised by the customer you can produce a verifiable version of the source code for an independent party to check. Rare I know, but you do not want to be at the wrong end of a legal battle. Like the Release branch the RTM branch should never be deleted, or only deleted according to your companies legal policy, which in the UK is usually 7 years.   Figure: If you have made any changes in the Release you will need to merge back up to Main in order to finalise the changes. Nothing is really ever done until it is in Main. The same rules apply when merging any fixes in the Release branch back into Main and you should do a reverse merge before a forward merge, again for the muscle memory more than necessity at this stage. Your Sprint is now nearly complete, and you can have a Sprint Review meeting knowing that you have made every effort and taken every precaution to protect your customer’s investment. Note: In order to really achieve protection for both you and your client you would add Automated Builds, Automated Tests, Automated Acceptance tests, Acceptance test tracking, Unit Tests, Load tests, Web test and all the other good engineering practices that help produce reliable software.     Figure: After the Sprint Planning meeting the process begins again. Where the Sprint Review and Retrospective meetings mark the end of the Sprint, the Sprint Planning meeting marks the beginning. After you have completed your Sprint Planning and you know what you are trying to achieve in Sprint 2 you can create your new Branch to develop in. How do we handle a bug(s) in production that can’t wait? Although in Scrum the only work done should be on the backlog there should be a little buffer added to the Sprint Planning for contingencies. One of these contingencies is a bug in the current release that can’t wait for the Sprint to finish. But how do you handle that? Willy-Peter Schaub asked an excellent question on the release activities: In reality Sprint 2 starts when sprint 1 ends + weekend. Should we not cater for a possible parallelism between Sprint 2 and the release activities of sprint 1? It would introduce FI’s from main to sprint 2, I guess. Your “Figure: Merging print 2 back into Main.” covers, what I tend to believe to be reality in most cases. - Willy-Peter Schaub, VS ALM Ranger, Microsoft I agree, and if you have a single Scrum team then your resources are limited. The Scrum Team is responsible for packaging and release, so at least one run at stabilization, package and release should be included in the Sprint time box. If more are needed on the current production release during the Sprint 2 time box then resource needs to be pulled from Sprint 2. The Product Owner and the Team have four choices (in order of disruption/cost): Backlog: Add the bug to the backlog and fix it in the next Sprint Buffer Time: Use any buffer time included in the current Sprint to fix the bug quickly Make time: Remove a Story from the current Sprint that is of equal value to the time lost fixing the bug(s) and releasing. Note: The Team must agree that it can still meet the Sprint Goal. Cancel Sprint: Cancel the sprint and concentrate all resource on fixing the bug(s) Note: This can be a very costly if the current sprint has already had a lot of work completed as it will be lost. The choice will depend on the complexity and severity of the bug(s) and both the Product Owner and the Team need to agree. In this case we will go with option #2 or #3 as they are uncomplicated but severe bugs. Figure: Real world issue where a bug needs fixed in the current release. If the bug(s) is urgent enough then then your only option is to fix it in place. You can edit the release branch to find and fix the bug, hopefully creating a test so it can’t happen again. Follow the prior process and conduct an internal and customer “Test Please” before releasing. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: After you have fixed the bug you need to ship again. You then need to again create an RTM branch to hold the version of the code you released in escrow.   Figure: Main is now out of sync with your Release. We now need to get these new changes back up into the Main branch. Do a reverse and then forward merge again to get the new code into Main. But what about the branch, are developers not working on Sprint 2? Does Sprint 2 now have changes that are not in Main and Main now have changes that are not in Sprint 2? Well, yes… and this is part of the hit you take doing branching. But would this scenario even have been possible without branching?   Figure: Getting the changes in Main into Sprint 2 is very important. The Team now needs to do a Forward Integration merge into their Sprint and resolve any conflicts that occur. Maybe the bug has already been fixed in Sprint 2, maybe the bug no longer exists! This needs to be identified and resolved by the developers before they continue to get further out of Sync with Main. Note: Avoid the “Big bang merge” at all costs.   Figure: Merging Sprint 2 back into Main, the Forward Integration, and R0 terminates. Sprint 2 now merges (Reverse Integration) back into Main following the procedures we have already established.   Figure: The logical conclusion. This then allows the creation of the next release. By now you should be getting the big picture and hopefully you learned something useful from this post. I know I have enjoyed writing it as I find these exploratory posts coupled with real world experience really help harden my understanding.  Branching is a tool; it is not a silver bullet. Don’t over use it, and avoid “Anti-Patterns” where possible. Although the diagram above looks complicated I hope showing you how it is formed simplifies it as much as possible.   Technorati Tags: Branching,Scrum,VS ALM,TFS 2010,VS2010

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • Spring transactions not committing

    - by Clinton Bosch
    I am struggling to get my spring managed transactions to commit, could someone please spot what I have done wrong. All my tables are mysql InnonDB tables. My RemoteServiceServlet (GWT) is as follows: public class TrainTrackServiceImpl extends RemoteServiceServlet implements TrainTrackService { @Autowired private DAO dao; @Override public void init(ServletConfig config) throws ServletException { super.init(config); WebApplicationContext ctx = WebApplicationContextUtils.getRequiredWebApplicationContext(config.getServletContext()); AutowireCapableBeanFactory beanFactory = ctx.getAutowireCapableBeanFactory(); beanFactory.autowireBean(this); } @Transactional(propagation= Propagation.REQUIRED, rollbackFor=Exception.class) public UserDTO createUser(String firstName, String lastName, String idNumber, String cellPhone, String email, int merchantId) { User user = new User(); user.setFirstName(firstName); user.setLastName(lastName); user.setIdNumber(idNumber); user.setCellphone(cellPhone); user.setEmail(email); user.setDateCreated(new Date()); Merchant merchant = (Merchant) dao.find(Merchant.class, merchantId); if (merchant != null) { user.setMerchant(merchant); } // Save the user. dao.saveOrUpdate(user); UserDTO dto = new UserDTO(); dto.id = user.getId(); dto.firstName = user.getFirstName(); dto.lastName = user.getLastName(); return dto; } The DAO is as follows: public class DAO extends HibernateDaoSupport { private String adminUsername; private String adminPassword; private String godUsername; private String godPassword; public String getAdminUsername() { return adminUsername; } public void setAdminUsername(String adminUsername) { this.adminUsername = adminUsername; } public String getAdminPassword() { return adminPassword; } public void setAdminPassword(String adminPassword) { this.adminPassword = adminPassword; } public String getGodUsername() { return godUsername; } public void setGodUsername(String godUsername) { this.godUsername = godUsername; } public String getGodPassword() { return godPassword; } public void setGodPassword(String godPassword) { this.godPassword = godPassword; } public void saveOrUpdate(ModelObject obj) { getHibernateTemplate().saveOrUpdate(obj); } And my applicationContext.xml is as follows: <context:annotation-config/> <context:component-scan base-package="za.co.xxx.traintrack.server"/> <!-- Application properties --> <bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <property name="locations"> <list> <value>file:${user.dir}/@propertiesFile@</value> </list> </property> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean"> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">${connection.dialect}</prop> <prop key="hibernate.connection.username">${connection.username}</prop> <prop key="hibernate.connection.password">${connection.password}</prop> <prop key="hibernate.connection.url">${connection.url}</prop> <prop key="hibernate.connection.driver_class">${connection.driver.class}</prop> <prop key="hibernate.show_sql">${show.sql}</prop> <prop key="hibernate.hbm2ddl.auto">update</prop> <prop key="hibernate.c3p0.min_size">5</prop> <prop key="hibernate.c3p0.max_size">20</prop> <prop key="hibernate.c3p0.timeout">300</prop> <prop key="hibernate.c3p0.max_statements">50</prop> <prop key="hibernate.c3p0.idle_test_period">60</prop> </props> </property> <property name="annotatedClasses"> <list> <value>za.co.xxx.traintrack.server.model.Answer</value> <value>za.co.xxx.traintrack.server.model.Company</value> <value>za.co.xxx.traintrack.server.model.CompanyRegion</value> <value>za.co.xxx.traintrack.server.model.Merchant</value> <value>za.co.xxx.traintrack.server.model.Module</value> <value>za.co.xxx.traintrack.server.model.Question</value> <value>za.co.xxx.traintrack.server.model.User</value> <value>za.co.xxx.traintrack.server.model.CompletedModule</value> </list> </property> </bean> <bean id="dao" class="za.co.xxx.traintrack.server.DAO"> <property name="sessionFactory" ref="sessionFactory"/> <property name="adminUsername" value="${admin.user.name}"/> <property name="adminPassword" value="${admin.user.password}"/> <property name="godUsername" value="${god.user.name}"/> <property name="godPassword" value="${god.user.password}"/> </bean> <bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory"> <ref local="sessionFactory"/> </property> </bean> <!-- enable the configuration of transactional behavior based on annotations --> <tx:annotation-driven transaction-manager="transactionManager"/> If I change the sessionFactory property to be autoCommit=true then my object does get persisited. <prop key="hibernate.connection.autocommit">true</prop>

    Read the article

  • OpenGL 3.x Assimp trouble implementing phong shading (normals?)

    - by Defcronyke
    I'm having trouble getting phong shading to look right. I'm pretty sure there's something wrong with either my OpenGL calls, or the way I'm loading my normals, but I guess it could be something else since 3D graphics and Assimp are both still very new to me. When trying to load .obj/.mtl files, the problems I'm seeing are: The models seem to be lit too intensely (less phong-style and more completely washed out, too bright). Faces that are lit seem to be lit equally all over (with the exception of a specular highlight showing only when the light source position is moved to be practically right on top of the model) Because of problems 1 and 2, spheres look very wrong: picture of sphere And things with larger faces look (less-noticeably) wrong too: picture of cube I could be wrong, but to me this doesn't look like proper phong shading. Here's the code that I think might be relevant (I can post more if necessary): file: assimpRenderer.cpp #include "assimpRenderer.hpp" namespace def { assimpRenderer::assimpRenderer(std::string modelFilename, float modelScale) { initSFML(); initOpenGL(); if (assImport(modelFilename)) // if modelFile loaded successfully { initScene(); mainLoop(modelScale); shutdownScene(); } shutdownOpenGL(); shutdownSFML(); } assimpRenderer::~assimpRenderer() { } void assimpRenderer::initSFML() { windowWidth = 800; windowHeight = 600; settings.majorVersion = 3; settings.minorVersion = 3; app = NULL; shader = NULL; app = new sf::Window(sf::VideoMode(windowWidth,windowHeight,32), "OpenGL 3.x Window", sf::Style::Default, settings); app->setFramerateLimit(240); app->setActive(); return; } void assimpRenderer::shutdownSFML() { delete app; return; } void assimpRenderer::initOpenGL() { GLenum err = glewInit(); if (GLEW_OK != err) { /* Problem: glewInit failed, something is seriously wrong. */ std::cerr << "Error: " << glewGetErrorString(err) << std::endl; } // check the OpenGL context version that's currently in use int glVersion[2] = {-1, -1}; glGetIntegerv(GL_MAJOR_VERSION, &glVersion[0]); // get the OpenGL Major version glGetIntegerv(GL_MINOR_VERSION, &glVersion[1]); // get the OpenGL Minor version std::cout << "Using OpenGL Version: " << glVersion[0] << "." << glVersion[1] << std::endl; return; } void assimpRenderer::shutdownOpenGL() { return; } void assimpRenderer::initScene() { // allocate heap space for VAOs, VBOs, and IBOs vaoID = new GLuint[scene->mNumMeshes]; vboID = new GLuint[scene->mNumMeshes*2]; iboID = new GLuint[scene->mNumMeshes]; glClearColor(0.4f, 0.6f, 0.9f, 0.0f); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glEnable(GL_CULL_FACE); shader = new Shader("shader.vert", "shader.frag"); projectionMatrix = glm::perspective(60.0f, (float)windowWidth / (float)windowHeight, 0.1f, 100.0f); rot = 0.0f; rotSpeed = 50.0f; faceIndex = 0; colorArrayA = NULL; colorArrayD = NULL; colorArrayS = NULL; normalArray = NULL; genVAOs(); return; } void assimpRenderer::shutdownScene() { delete [] iboID; delete [] vboID; delete [] vaoID; delete shader; } void assimpRenderer::renderScene(float modelScale) { sf::Time elapsedTime = clock.getElapsedTime(); clock.restart(); if (rot > 360.0f) rot = 0.0f; rot += rotSpeed * elapsedTime.asSeconds(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); viewMatrix = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, -3.0f, -10.0f)); // move back a bit modelMatrix = glm::scale(glm::mat4(1.0f), glm::vec3(modelScale)); // scale model modelMatrix = glm::rotate(modelMatrix, rot, glm::vec3(0, 1, 0)); //modelMatrix = glm::rotate(modelMatrix, 25.0f, glm::vec3(0, 1, 0)); glm::vec3 lightPosition( 0.0f, -100.0f, 0.0f ); float lightPositionArray[3]; lightPositionArray[0] = lightPosition[0]; lightPositionArray[1] = lightPosition[1]; lightPositionArray[2] = lightPosition[2]; shader->bind(); int projectionMatrixLocation = glGetUniformLocation(shader->id(), "projectionMatrix"); int viewMatrixLocation = glGetUniformLocation(shader->id(), "viewMatrix"); int modelMatrixLocation = glGetUniformLocation(shader->id(), "modelMatrix"); int ambientLocation = glGetUniformLocation(shader->id(), "ambientColor"); int diffuseLocation = glGetUniformLocation(shader->id(), "diffuseColor"); int specularLocation = glGetUniformLocation(shader->id(), "specularColor"); int lightPositionLocation = glGetUniformLocation(shader->id(), "lightPosition"); int normalMatrixLocation = glGetUniformLocation(shader->id(), "normalMatrix"); glUniformMatrix4fv(projectionMatrixLocation, 1, GL_FALSE, &projectionMatrix[0][0]); glUniformMatrix4fv(viewMatrixLocation, 1, GL_FALSE, &viewMatrix[0][0]); glUniformMatrix4fv(modelMatrixLocation, 1, GL_FALSE, &modelMatrix[0][0]); glUniform3fv(lightPositionLocation, 1, lightPositionArray); for (unsigned int i = 0; i < scene->mNumMeshes; i++) { colorArrayA = new float[3]; colorArrayD = new float[3]; colorArrayS = new float[3]; material = scene->mMaterials[scene->mNumMaterials-1]; normalArray = new float[scene->mMeshes[i]->mNumVertices * 3]; unsigned int normalIndex = 0; for (unsigned int j = 0; j < scene->mMeshes[i]->mNumVertices * 3; j+=3, normalIndex++) { normalArray[j] = scene->mMeshes[i]->mNormals[normalIndex].x; // x normalArray[j+1] = scene->mMeshes[i]->mNormals[normalIndex].y; // y normalArray[j+2] = scene->mMeshes[i]->mNormals[normalIndex].z; // z } normalIndex = 0; glUniformMatrix3fv(normalMatrixLocation, 1, GL_FALSE, normalArray); aiColor3D ambient(0.0f, 0.0f, 0.0f); material->Get(AI_MATKEY_COLOR_AMBIENT, ambient); aiColor3D diffuse(0.0f, 0.0f, 0.0f); material->Get(AI_MATKEY_COLOR_DIFFUSE, diffuse); aiColor3D specular(0.0f, 0.0f, 0.0f); material->Get(AI_MATKEY_COLOR_SPECULAR, specular); colorArrayA[0] = ambient.r; colorArrayA[1] = ambient.g; colorArrayA[2] = ambient.b; colorArrayD[0] = diffuse.r; colorArrayD[1] = diffuse.g; colorArrayD[2] = diffuse.b; colorArrayS[0] = specular.r; colorArrayS[1] = specular.g; colorArrayS[2] = specular.b; // bind color for each mesh glUniform3fv(ambientLocation, 1, colorArrayA); glUniform3fv(diffuseLocation, 1, colorArrayD); glUniform3fv(specularLocation, 1, colorArrayS); // render all meshes glBindVertexArray(vaoID[i]); // bind our VAO glDrawElements(GL_TRIANGLES, scene->mMeshes[i]->mNumFaces*3, GL_UNSIGNED_INT, 0); glBindVertexArray(0); // unbind our VAO delete [] normalArray; delete [] colorArrayA; delete [] colorArrayD; delete [] colorArrayS; } shader->unbind(); app->display(); return; } void assimpRenderer::handleEvents() { sf::Event event; while (app->pollEvent(event)) { if (event.type == sf::Event::Closed) { app->close(); } if ((event.type == sf::Event::KeyPressed) && (event.key.code == sf::Keyboard::Escape)) { app->close(); } if (event.type == sf::Event::Resized) { glViewport(0, 0, event.size.width, event.size.height); } } return; } void assimpRenderer::mainLoop(float modelScale) { while (app->isOpen()) { renderScene(modelScale); handleEvents(); } } bool assimpRenderer::assImport(const std::string& pFile) { // read the file with some example postprocessing scene = importer.ReadFile(pFile, aiProcess_CalcTangentSpace | aiProcess_Triangulate | aiProcess_JoinIdenticalVertices | aiProcess_SortByPType); // if the import failed, report it if (!scene) { std::cerr << "Error: " << importer.GetErrorString() << std::endl; return false; } return true; } void assimpRenderer::genVAOs() { int vboIndex = 0; for (unsigned int i = 0; i < scene->mNumMeshes; i++, vboIndex+=2) { mesh = scene->mMeshes[i]; indexArray = new unsigned int[mesh->mNumFaces * sizeof(unsigned int) * 3]; // convert assimp faces format to array faceIndex = 0; for (unsigned int t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace* face = &mesh->mFaces[t]; std::memcpy(&indexArray[faceIndex], face->mIndices, sizeof(float) * 3); faceIndex += 3; } // generate VAO glGenVertexArrays(1, &vaoID[i]); glBindVertexArray(vaoID[i]); // generate IBO for faces glGenBuffers(1, &iboID[i]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, iboID[i]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(GLuint) * mesh->mNumFaces * 3, indexArray, GL_STATIC_DRAW); // generate VBO for vertices if (mesh->HasPositions()) { glGenBuffers(1, &vboID[vboIndex]); glBindBuffer(GL_ARRAY_BUFFER, vboID[vboIndex]); glBufferData(GL_ARRAY_BUFFER, mesh->mNumVertices * sizeof(GLfloat) * 3, mesh->mVertices, GL_STATIC_DRAW); glEnableVertexAttribArray((GLuint)0); glVertexAttribPointer((GLuint)0, 3, GL_FLOAT, GL_FALSE, 0, 0); } // generate VBO for normals if (mesh->HasNormals()) { normalArray = new float[scene->mMeshes[i]->mNumVertices * 3]; unsigned int normalIndex = 0; for (unsigned int j = 0; j < scene->mMeshes[i]->mNumVertices * 3; j+=3, normalIndex++) { normalArray[j] = scene->mMeshes[i]->mNormals[normalIndex].x; // x normalArray[j+1] = scene->mMeshes[i]->mNormals[normalIndex].y; // y normalArray[j+2] = scene->mMeshes[i]->mNormals[normalIndex].z; // z } normalIndex = 0; glGenBuffers(1, &vboID[vboIndex+1]); glBindBuffer(GL_ARRAY_BUFFER, vboID[vboIndex+1]); glBufferData(GL_ARRAY_BUFFER, mesh->mNumVertices * sizeof(GLfloat) * 3, normalArray, GL_STATIC_DRAW); glEnableVertexAttribArray((GLuint)1); glVertexAttribPointer((GLuint)1, 3, GL_FLOAT, GL_FALSE, 0, 0); delete [] normalArray; } // tex coord stuff goes here // unbind buffers glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); delete [] indexArray; } vboIndex = 0; return; } } file: shader.vert #version 150 core in vec3 in_Position; in vec3 in_Normal; uniform mat4 projectionMatrix; uniform mat4 viewMatrix; uniform mat4 modelMatrix; uniform vec3 lightPosition; uniform mat3 normalMatrix; smooth out vec3 vVaryingNormal; smooth out vec3 vVaryingLightDir; void main() { // derive MVP and MV matrices mat4 modelViewProjectionMatrix = projectionMatrix * viewMatrix * modelMatrix; mat4 modelViewMatrix = viewMatrix * modelMatrix; // get surface normal in eye coordinates vVaryingNormal = normalMatrix * in_Normal; // get vertex position in eye coordinates vec4 vPosition4 = modelViewMatrix * vec4(in_Position, 1.0); vec3 vPosition3 = vPosition4.xyz / vPosition4.w; // get vector to light source vVaryingLightDir = normalize(lightPosition - vPosition3); // Set the position of the current vertex gl_Position = modelViewProjectionMatrix * vec4(in_Position, 1.0); } file: shader.frag #version 150 core out vec4 out_Color; uniform vec3 ambientColor; uniform vec3 diffuseColor; uniform vec3 specularColor; smooth in vec3 vVaryingNormal; smooth in vec3 vVaryingLightDir; void main() { // dot product gives us diffuse intensity float diff = max(0.0, dot(normalize(vVaryingNormal), normalize(vVaryingLightDir))); // multiply intensity by diffuse color, force alpha to 1.0 out_Color = vec4(diff * diffuseColor, 1.0); // add in ambient light out_Color += vec4(ambientColor, 1.0); // specular light vec3 vReflection = normalize(reflect(-normalize(vVaryingLightDir), normalize(vVaryingNormal))); float spec = max(0.0, dot(normalize(vVaryingNormal), vReflection)); if (diff != 0) { float fSpec = pow(spec, 128.0); // Set the output color of our current pixel out_Color.rgb += vec3(fSpec, fSpec, fSpec); } } I know it's a lot to look through, but I'm putting most of the code up so as not to assume where the problem is. Thanks in advance to anyone who has some time to help me pinpoint the problem(s)! I've been trying to sort it out for two days now and I'm not getting anywhere on my own.

    Read the article

  • JBOSS 7.1 started hanging after 6 months of deployment

    - by PVR
    My application is been live from 6 months. The application is host on jboss 7.1 server. From last few days I am finding numerous problem of hanging of jboss server. Though I restart the jboss server again, it does not invoke. I need to restart the server machine itself. Can anyone please let me know what could be the cause of these problems and the workable resolutions or any suggestion ? Kindly dont degrade the question as I am facing a lot problems due to this hanging issue. Also for the information, the application is based on Java, GWT, Hibernate 3. Please find the standalone.xml file in case if it helps. <extensions> <extension module="org.jboss.as.clustering.infinispan"/> <extension module="org.jboss.as.configadmin"/> <extension module="org.jboss.as.connector"/> <extension module="org.jboss.as.deployment-scanner"/> <extension module="org.jboss.as.ee"/> <extension module="org.jboss.as.ejb3"/> <extension module="org.jboss.as.jaxrs"/> <extension module="org.jboss.as.jdr"/> <extension module="org.jboss.as.jmx"/> <extension module="org.jboss.as.jpa"/> <extension module="org.jboss.as.logging"/> <extension module="org.jboss.as.mail"/> <extension module="org.jboss.as.naming"/> <extension module="org.jboss.as.osgi"/> <extension module="org.jboss.as.pojo"/> <extension module="org.jboss.as.remoting"/> <extension module="org.jboss.as.sar"/> <extension module="org.jboss.as.security"/> <extension module="org.jboss.as.threads"/> <extension module="org.jboss.as.transactions"/> <extension module="org.jboss.as.web"/> <extension module="org.jboss.as.webservices"/> <extension module="org.jboss.as.weld"/> </extensions> <system-properties> <property name="org.apache.coyote.http11.Http11Protocol.COMPRESSION" value="on"/> <property name="org.apache.coyote.http11.Http11Protocol.COMPRESSION_MIME_TYPES" value="text/javascript,text/css,text/html,text/xml,text/json"/> </system-properties> <management> <security-realms> <security-realm name="ManagementRealm"> <authentication> <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/> </authentication> </security-realm> <security-realm name="ApplicationRealm"> <authentication> <properties path="application-users.properties" relative-to="jboss.server.config.dir"/> </authentication> </security-realm> </security-realms> <management-interfaces> <native-interface security-realm="ManagementRealm"> <socket-binding native="management-native"/> </native-interface> <http-interface security-realm="ManagementRealm"> <socket-binding http="management-http"/> </http-interface> </management-interfaces> </management> <profile> <subsystem xmlns="urn:jboss:domain:logging:1.1"> <console-handler name="CONSOLE"> <level name="INFO"/> <formatter> <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/> </formatter> </console-handler> <periodic-rotating-file-handler name="FILE"> <formatter> <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/> </formatter> <file relative-to="jboss.server.log.dir" path="server.log"/> <suffix value=".yyyy-MM-dd"/> <append value="true"/> </periodic-rotating-file-handler> <logger category="com.arjuna"> <level name="WARN"/> </logger> <logger category="org.apache.tomcat.util.modeler"> <level name="WARN"/> </logger> <logger category="sun.rmi"> <level name="WARN"/> </logger> <logger category="jacorb"> <level name="WARN"/> </logger> <logger category="jacorb.config"> <level name="ERROR"/> </logger> <root-logger> <level name="INFO"/> <handlers> <handler name="CONSOLE"/> <handler name="FILE"/> </handlers> </root-logger> </subsystem> <subsystem xmlns="urn:jboss:domain:configadmin:1.0"/> <subsystem xmlns="urn:jboss:domain:datasources:1.0"> <datasources> <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS" enabled="true" use-java-context="true"> <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url> <driver>h2</driver> <security> <user-name>sa</user-name> <password>sa</password> </security> </datasource> <drivers> <driver name="h2" module="com.h2database.h2"> <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class> </driver> </drivers> </datasources> </subsystem> <subsystem xmlns="urn:jboss:domain:deployment-scanner:1.1"> <deployment-scanner path="deployments" relative-to="jboss.server.base.dir" scan-interval="5000"/> </subsystem> <subsystem xmlns="urn:jboss:domain:ee:1.0"/> <subsystem xmlns="urn:jboss:domain:ejb3:1.2"> <session-bean> <stateless> <bean-instance-pool-ref pool-name="slsb-strict-max-pool"/> </stateless> <stateful default-access-timeout="5000" cache-ref="simple"/> <singleton default-access-timeout="5000"/> </session-bean> <pools> <bean-instance-pools> <strict-max-pool name="slsb-strict-max-pool" max-pool-size="20" instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/> <strict-max-pool name="mdb-strict-max-pool" max-pool-size="20" instance-acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/> </bean-instance-pools> </pools> <caches> <cache name="simple" aliases="NoPassivationCache"/> <cache name="passivating" passivation-store-ref="file" aliases="SimpleStatefulCache"/> </caches> <passivation-stores> <file-passivation-store name="file"/> </passivation-stores> <async thread-pool-name="default"/> <timer-service thread-pool-name="default"> <data-store path="timer-service-data" relative-to="jboss.server.data.dir"/> </timer-service> <remote connector-ref="remoting-connector" thread-pool-name="default"/> <thread-pools> <thread-pool name="default"> <max-threads count="10"/> <keepalive-time time="100" unit="milliseconds"/> </thread-pool> </thread-pools> </subsystem> <subsystem xmlns="urn:jboss:domain:infinispan:1.2" default-cache-container="hibernate"> <cache-container name="hibernate" default-cache="local-query"> <local-cache name="entity"> <transaction mode="NON_XA"/> <eviction strategy="LRU" max-entries="10000"/> <expiration max-idle="100000"/> </local-cache> <local-cache name="local-query"> <transaction mode="NONE"/> <eviction strategy="LRU" max-entries="10000"/> <expiration max-idle="100000"/> </local-cache> <local-cache name="timestamps"> <transaction mode="NONE"/> <eviction strategy="NONE"/> </local-cache> </cache-container> </subsystem> <subsystem xmlns="urn:jboss:domain:jaxrs:1.0"/> <subsystem xmlns="urn:jboss:domain:jca:1.1"> <archive-validation enabled="true" fail-on-error="true" fail-on-warn="false"/> <bean-validation enabled="true"/> <default-workmanager> <short-running-threads> <core-threads count="50"/> <queue-length count="50"/> <max-threads count="50"/> <keepalive-time time="10" unit="seconds"/> </short-running-threads> <long-running-threads> <core-threads count="50"/> <queue-length count="50"/> <max-threads count="50"/> <keepalive-time time="100" unit="seconds"/> </long-running-threads> </default-workmanager> <cached-connection-manager/> </subsystem> <subsystem xmlns="urn:jboss:domain:jdr:1.0"/> <subsystem xmlns="urn:jboss:domain:jmx:1.1"> <show-model value="true"/> <remoting-connector/> </subsystem> <subsystem xmlns="urn:jboss:domain:jpa:1.0"> <jpa default-datasource=""/> </subsystem> <subsystem xmlns="urn:jboss:domain:mail:1.0"> <mail-session jndi-name="java:jboss/mail/Default"> <smtp-server outbound-socket-binding-ref="mail-smtp"/> </mail-session> </subsystem> <subsystem xmlns="urn:jboss:domain:naming:1.1"/> <subsystem xmlns="urn:jboss:domain:osgi:1.2" activation="lazy"> <properties> <property name="org.osgi.framework.startlevel.beginning"> 1 </property> </properties> <capabilities> <capability name="javax.servlet.api:v25"/> <capability name="javax.transaction.api"/> <capability name="org.apache.felix.log" startlevel="1"/> <capability name="org.jboss.osgi.logging" startlevel="1"/> <capability name="org.apache.felix.configadmin" startlevel="1"/> <capability name="org.jboss.as.osgi.configadmin" startlevel="1"/> </capabilities> </subsystem> <subsystem xmlns="urn:jboss:domain:pojo:1.0"/> <subsystem xmlns="urn:jboss:domain:remoting:1.1"> <connector name="remoting-connector" socket-binding="remoting" security-realm="ApplicationRealm"/> </subsystem> <subsystem xmlns="urn:jboss:domain:resource-adapters:1.0"/> <subsystem xmlns="urn:jboss:domain:sar:1.0"/> <subsystem xmlns="urn:jboss:domain:security:1.1"> <security-domains> <security-domain name="other" cache-type="default"> <authentication> <login-module code="Remoting" flag="optional"> <module-option name="password-stacking" value="useFirstPass"/> </login-module> <login-module code="RealmUsersRoles" flag="required"> <module-option name="usersProperties" value="${jboss.server.config.dir}/application-users.properties"/> <module-option name="rolesProperties" value="${jboss.server.config.dir}/application-roles.properties"/> <module-option name="realm" value="ApplicationRealm"/> <module-option name="password-stacking" value="useFirstPass"/> </login-module> </authentication> </security-domain> <security-domain name="jboss-web-policy" cache-type="default"> <authorization> <policy-module code="Delegating" flag="required"/> </authorization> </security-domain> <security-domain name="jboss-ejb-policy" cache-type="default"> <authorization> <policy-module code="Delegating" flag="required"/> </authorization> </security-domain> </security-domains> </subsystem> <subsystem xmlns="urn:jboss:domain:threads:1.1"/> <subsystem xmlns="urn:jboss:domain:transactions:1.1"> <core-environment> <process-id> <uuid/> </process-id> </core-environment> <recovery-environment socket-binding="txn-recovery-environment" status-socket-binding="txn-status-manager"/> <coordinator-environment default-timeout="300"/> </subsystem> <subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-host" native="false"> <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/> <virtual-server name="default-host" enable-welcome-root="false"> <alias name="localhost"/> <alias name="nextenders.com"/> </virtual-server> </subsystem> <subsystem xmlns="urn:jboss:domain:webservices:1.1"> <modify-wsdl-address>true</modify-wsdl-address> <wsdl-host>${jboss.bind.address:127.0.0.1}</wsdl-host> <endpoint-config name="Standard-Endpoint-Config"/> <endpoint-config name="Recording-Endpoint-Config"> <pre-handler-chain name="recording-handlers" protocol-bindings="##SOAP11_HTTP ##SOAP11_HTTP_MTOM ##SOAP12_HTTP ##SOAP12_HTTP_MTOM"> <handler name="RecordingHandler" class="org.jboss.ws.common.invocation.RecordingServerHandler"/> </pre-handler-chain> </endpoint-config> </subsystem> <subsystem xmlns="urn:jboss:domain:weld:1.0"/> </profile> <interfaces> <interface name="management"> <inet-address value="${jboss.bind.address.management:127.0.0.1}"/> </interface> <interface name="public"> <inet-address value="${jboss.bind.address:127.0.0.1}"/> </interface> <interface name="unsecure"> <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}"/> </interface> </interfaces> <socket-binding-group name="standard-sockets" default-interface="public" port-offset="${jboss.socket.binding.port-offset:0}"> <socket-binding name="management-native" interface="management" port="${jboss.management.native.port:9999}"/> <socket-binding name="management-http" interface="management" port="${jboss.management.http.port:9990}"/> <socket-binding name="management-https" interface="management" port="${jboss.management.https.port:9443}"/> <socket-binding name="ajp" port="8009"/> <socket-binding name="http" port="80"/> <socket-binding name="https" port="443"/> <socket-binding name="osgi-http" interface="management" port="8090"/> <socket-binding name="remoting" port="4447"/> <socket-binding name="txn-recovery-environment" port="4712"/> <socket-binding name="txn-status-manager" port="4713"/> <outbound-socket-binding name="mail-smtp"> <remote-destination host="localhost" port="25"/> </outbound-socket-binding> </socket-binding-group>

    Read the article

< Previous Page | 58 59 60 61 62