Search Results

Search found 5463 results on 219 pages for 'runtime'.

Page 63/219 | < Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >

  • WCF – interchangeable data-contract types

    - by nmarun
    In a WSDL based environment, unlike a CLR-world, we pass around the ‘state’ of an object and not the reference of an object. Well firstly, what does ‘state’ mean and does this also mean that we can send a struct where a class is expected (or vice-versa) as long as their ‘state’ is one and the same? Let’s see. So I have an operation contract defined as below: 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract] 5: Employee SaveEmployee(Employee employee); 6: } 7:  8: [ServiceBehavior] 9: public class LearnWcfService : ILearnWcfServiceExtend 10: { 11: public Employee SaveEmployee(Employee employee) 12: { 13: employee.EmployeeId = 123; 14: return employee; 15: } 16: } Quite simplistic operation there (which translates to ‘absolutely no business value’). Now, the data contract Employee mentioned above is a struct. 1: public struct Employee 2: { 3: public int EmployeeId { get; set; } 4:  5: public string FName { get; set; } 6: } After compilation and consumption of this service, my proxy (in the Reference.cs file) looks like below (I’ve ignored the rest of the details just to avoid unwanted confusion): 1: public partial struct Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged I call the service with the code below: 1: private static void CallWcfService() 2: { 3: Employee employee = new Employee { FName = "A" }; 4: Console.WriteLine("IsValueType: {0}", employee.GetType().IsValueType); 5: Console.WriteLine("IsClass: {0}", employee.GetType().IsClass); 6: Console.WriteLine("Before calling the service: {0} - {1}", employee.EmployeeId, employee.FName); 7: employee = LearnWcfServiceClient.SaveEmployee(employee); 8: Console.WriteLine("Return from the service: {0} - {1}", employee.EmployeeId, employee.FName); 9: } The output is: I now change my Employee type from a struct to a class in the proxy class and run the application: 1: public partial class Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged { The output this time is: The state of an object implies towards its composition, the properties and the values of these properties and not based on whether it is a reference type (class) or a value type (struct). And as shown above, we’re actually passing an object by its state and not by reference. Continuing on the same topic of ‘type-interchangeability’, WCF treats two data contracts as equivalent if they have the same ‘wire-representation’. We can do so using the DataContract and DataMember attributes’ Name property. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: public int Id { get; set; } 6:  7: [DataMember] 8: public string FirstName { get; set; } 9: } 10:  11: [DataContract(Name="Person")] 12: public class Employee 13: { 14: [DataMember(Name = "Id")] 15: public int EmployeeId { get; set; } 16:  17: [DataMember(Name="FirstName")] 18: public string FName { get; set; } 19: } I’ve created two data contracts with the exact same wire-representation. Just remember that the names and the types of data members need to match to be considered equivalent. The question then arises as to what gets generated in the proxy class. Despite us declaring two data contracts (Person and Employee), only one gets emitted – Person. This is because we’re saying that the Employee type has the same wire-representation as the Person type. Also that the signature of the SaveEmployee operation gets changed on the proxy side: 1: [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")] 2: [System.ServiceModel.ServiceContractAttribute(ConfigurationName="ServiceProxy.ILearnWcfServiceExtend")] 3: public interface ILearnWcfServiceExtend 4: { 5: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployee", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployeeResponse")] 6: ClientApplication.ServiceProxy.Person SaveEmployee(ClientApplication.ServiceProxy.Person employee); 7: } But, on the service side, the SaveEmployee still accepts and returns an Employee data contract. 1: [ServiceBehavior] 2: public class LearnWcfService : ILearnWcfServiceExtend 3: { 4: public Employee SaveEmployee(Employee employee) 5: { 6: employee.EmployeeId = 123; 7: return employee; 8: } 9: } Despite all these changes, our output remains the same as the last one: This is type-interchangeability at work! Here’s one more thing to ponder about. Our Person type is a struct and Employee type is a class. Then how is it that the Person type got emitted as a ‘class’ in the proxy? It’s worth mentioning that WSDL describes a type called Employee and does not say whether it is a class or a struct (see the SOAP message below): 1: <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2: xmlns:tem="http://tempuri.org/" 3: xmlns:ser="http://schemas.datacontract.org/2004/07/ServiceApplication"> 4: <soapenv:Header/> 5: <soapenv:Body> 6: <tem:SaveEmployee> 7: <!--Optional:--> 8: <tem:employee> 9: <!--Optional:--> 10: <ser:EmployeeId>?</ser:EmployeeId> 11: <!--Optional:--> 12: <ser:FName>?</ser:FName> 13: </tem:employee> 14: </tem:SaveEmployee> 15: </soapenv:Body> 16: </soapenv:Envelope> There are some differences between how ‘Add Service Reference’ and the svcutil.exe generate the proxy class, but turns out both do some kind of reflection and determine the type of the data contract and emit the code accordingly. So since the Employee type is a class, the proxy ‘Person’ type gets generated as a class. In fact, reflecting on svcutil.exe application, you’ll see that there are a couple of places wherein a flag actually determines a type as a class or a struct. One example is in the ExportISerializableDataContract method in the System.Runtime.Serialization.CodeExporter class. Seems like these flags have a say in deciding whether the type gets emitted as a struct or a class. This behavior is different if you use the WSDL tool though. WSDL tool does not do any kind of reflection of the data contract / serialized type, it emits the type as a class by default. You can check this using the two command lines below:   Note to self: Remember ‘state’ and type-interchangeability when traversing through the WSDL planet!

    Read the article

  • create record in LOV's Popup's

    - by raghu.yadav
    In this post we see ways to present create record options in LOV's popup's.Referring the doc http://download.oracle.com/docs/cd/E12839_01/web.1111/b31973/af_lov.htmwhat doc says about create action: The popup dialog from within an inputListOfValues component or the optional search popup dialog in the inputComboboxListOfValues component also provides the ability to create a new record. For the inputListOfValues component, when the createPopupId attribute is set on the component, a toolbar component with a commandToolbarButton is displayed with a create icon. At runtime, a commandToolbarButton component appears in the LOV popup dialog,

    Read the article

  • Speed-start your Linux App: Using DB2 and the DB2 Control Center

    This article guides you through setting up and using IBM DB2 7.2 with the Command Line Processor. You'll also learn to use the graphical Control Center, which helps you explore and control your databases, and the graphical Command Center, which helps you generate SQL queries. Other topics covered include Java runtime environment setup, useful Linux utility functions, and bash profile customization.

    Read the article

  • Build Open JDK 7 on Mac OSX (TOTD #172)

    - by arungupta
    The complete requirements, pre-requisites, and steps to build OpenJDK 7 port on Mac OSX are described here. The steps are very clearly explained and here are the exact ones I followed on my MacBook Pro 10.7.2: Confirm the version of pre-installed Java as: > java -versionjava version "1.6.0_26"Java(TM) SE Runtime Environment (build 1.6.0_26-b03-383-11A511c)Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02-383, mixed mode) Download and install Mercurial from mercurial.berkwood.com (zip bundle for 10.7 is here). It gets installed in the /usr/local/bin directory. Get the source code as (commands highlighted in bold): hg clone http://hg.openjdk.java.net/macosx-port/macosx-port destination directory: macosx-port requesting all changes adding changesets adding manifests adding file changes added 437 changesets with 364 changes to 33 files updating to branch default 31 files updated, 0 files merged, 0 files removed, 0 files unresolved cd macosx-port chmod 7555 get_source.sh ./get_source.sh # Repos:  corba jaxp jaxws langtools jdk hotspot Starting on corba Starting on jaxp Starting on jaxws Starting on langtools Starting on jdk Starting on hotspot # hg clone http://hg.openjdk.java.net/macosx-port/macosx-port/corba corba requesting all changes adding changesets adding manifests adding file changes added 396 changesets with 3275 changes to 1379 files . . . # exit code 0 # cd ./corba && hg pull -u pulling from http://hg.openjdk.java.net/macosx-port/macosx-port/corba searching for changes no changes found # exit code 0 # cd ./jaxp && hg pull -u pulling from http://hg.openjdk.java.net/macosx-port/macosx-port/jaxp searching for changes no changes found # exit code 0 Install Xcode from the App Store. Include /Developer/usr/bin in PATH. Note: JDK 1.6.0_26 ame pre-installed on my laptop and I installed Xode after that. The compilation went fine and there was no need to re-install the Java for Mac OS X as mentioned in the original steps. Build the code as: make ALLOW_DOWNLOADS=true SA_APPLE_BOOT_JAVA=true ALWAYS_PASS_TEST_GAMMA=true ALT_BOOTDIR=`/usr/libexec/java_home -v 1.6` HOTSPOT_BUILD_JOBS=`sysctl -n hw.ncpu` The final output is shown as: >>>Finished making images @ Sat Nov 19 00:59:04 WET 2011 ... >>>Finished making images @ Sat Nov 19 00:59:04 WET 2011 ...############################################################################# Leaving jdk for target(s) sanity all docs images ################################################################################## Build time 00:17:42 jdk for target(s) sanity all docs images ############################################################################### Build times ##########Target all_product_buildStart 2011-11-19 00:32:40End 2011-11-19 00:59:0400:01:46 corba00:04:07 hotspot00:00:51 jaxp00:01:21 jaxws00:17:42 jdk00:00:37 langtools00:26:24 TOTAL######################### Change the directory and verify the version: >cd build/macosx-universal/j2sdk-image/1.7.0.jdk/Contents/Home/bin >./java -version openjdk version "1.7.0-internal" OpenJDK Runtime Environment (build 1.7.0-internal-arungup_2011_11_19_00_32-b00) OpenJDK 64-Bit Server VM (build 21.0-b17, mixed mode) Now go fix some bugs, file new bugs, or discuss at the macosx-port-dev mailing list.

    Read the article

  • Gnome Do not Launching

    - by PyRulez
    When I try running gnome do, I get this. chris@Chris-Ubuntu-Laptop:~$ gnome-do pgrep: invalid user name: -u and it is not writable Trying sudo: chris@Chris-Ubuntu-Laptop:~$ sudo gnome-do [NetworkService] Could not initialize Network Manager dbus: Unable to open the session message bus. [Error 17:54:30.122] [SystemService] Could not initialize dbus: Unable to open the session message bus. (Do:2401): Wnck-CRITICAL **: wnck_set_client_type got called multiple times. (Do:2401): libdo-WARNING **: Binding '<Super>space' failed! [Error 17:54:30.649] [AbstractKeyBindingService] Key "" is already mapped. Tomboy.NotesItemSource "Tomboy Notes" encountered an error in UpdateItems: System.TypeInitializationException: An exception was thrown by the type initializer for Tomboy.TomboyDBus ---> System.Exception: Unable to open the session message bus. ---> System.ArgumentNullException: Argument cannot be null. Parameter name: address at NDesk.DBus.Bus.Open (System.String address) [0x00000] in <filename unknown>:0 at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 at Tomboy.TomboyDBus..cctor () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at Tomboy.NotesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Firefox.PlacesItemSource "Firefox Places" encountered an error in UpdateItems: System.InvalidCastException: Cannot cast from source type to destination type. at Mono.Data.Sqlite.SqliteDataReader.VerifyType (Int32 i, DbType typ) [0x00000] in <filename unknown>:0 at Mono.Data.Sqlite.SqliteDataReader.GetString (Int32 i) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource+<LoadPlaceItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem].AddEnumerable (IEnumerable`1 enumerable) [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem]..ctor (IEnumerable`1 collection) [0x00000] in <filename unknown>:0 at System.Linq.Enumerable.ToArray[PlaceItem] (IEnumerable`1 source) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Do.Universe.Linux.GNOMESpecialLocationsItemSource "GNOME Special Locations" encountered an error in UpdateItems: System.IO.FileNotFoundException: Could not find file "/root/.gtk-bookmarks". File name: '/root/.gtk-bookmarks' at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share, Int32 bufferSize, Boolean anonymous, FileOptions options) [0x00000] in <filename unknown>:0 at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.FileStream:.ctor (string,System.IO.FileMode,System.IO.FileAccess,System.IO.FileShare) at System.IO.File.OpenRead (System.String path) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path, System.Text.Encoding encoding, Boolean detectEncodingFromByteOrderMarks, Int32 bufferSize) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.StreamReader:.ctor (string) at Do.Universe.Linux.GNOMESpecialLocationsItemSource+<ReadBookmarkItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at Do.Universe.Linux.GNOMESpecialLocationsItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . ^[^\Full thread dump: "<unnamed thread>" tid=0x0xb7570700 this=0x0x56f18 thread handle 0x403 state : not waiting owns () at (wrapper managed-to-native) Mono.Unix.Native.Syscall.read (int,intptr,ulong) <0xffffffff> at Mono.Unix.Native.Syscall.read (int,void*,ulong) <0x00023> at Mono.Unix.UnixStream.Read (byte[],int,int) <0x0008b> at NDesk.DBus.Connection.ReadMessage () <0x0003c> at NDesk.DBus.Connection.Iterate () <0x0001b> at NDesk.DBus.BusG/<Init>c__AnonStorey0.<>m__0 (intptr,NDesk.GLib.IOCondition,intptr) <0x00033> at (wrapper native-to-managed) NDesk.DBus.BusG/<Init>c__AnonStorey0.<>m__0 (intptr,NDesk.GLib.IOCondition,intptr) <0xffffffff> at (wrapper managed-to-native) Gtk.Clipboard.gtk_clipboard_wait_is_text_available (intptr) <0xffffffff> at Gtk.Clipboard.WaitIsTextAvailable () <0x00017> at Do.Universe.SelectedTextItem.UpdateSelection (object,System.EventArgs) <0x00027> at Do.Platform.AbstractApplicationService.OnSummoned () <0x00025> at Do.Platform.ApplicationService.<ApplicationService>m__31 (object,System.EventArgs) <0x00013> at Do.Core.Controller.OnSummoned () <0x00025> at Do.Core.Controller.Summon () <0x00027> at Do.Do.Main (string[]) <0x001eb> at (wrapper runtime-invoke) <Module>.runtime_invoke_void_object (object,intptr,intptr,intptr) <0xffffffff> "<unnamed thread>" tid=0x0xb2c81b40 this=0x0x194150 thread handle 0x412 state : interrupted state owns () at (wrapper managed-to-native) System.IO.InotifyWatcher.ReadFromFD (intptr,byte[],intptr) <0xffffffff> at System.IO.InotifyWatcher.Monitor () <0x0005f> at System.Threading.Thread.StartInternal () <0x00057> at (wrapper runtime-invoke) object.runtime_invoke_void__this__ (object,intptr,intptr,intptr) <0xffffffff> "Universe Update Dispatcher" tid=0x0xb29ffb40 this=0x0x569d8 thread handle 0x41b state : interrupted state owns () at (wrapper managed-to-native) System.Threading.WaitHandle.WaitOne_internal (System.Threading.WaitHandle,intptr,int,bool) <0xffffffff> at System.Threading.WaitHandle.WaitOne (System.TimeSpan,bool) <0x00133> at System.Threading.WaitHandle.WaitOne (System.TimeSpan) <0x00022> at Do.Core.UniverseManager.UniverseUpdateLoop () <0x0007a> at System.Threading.Thread.StartInternal () <0x00057> at (wrapper runtime-invoke) object.runtime_invoke_void__this__ (object,intptr,intptr,intptr) <0xffffffff> Tomboy.NotesItemSource "Tomboy Notes" encountered an error in UpdateItems: System.TypeInitializationException: An exception was thrown by the type initializer for Tomboy.TomboyDBus ---> System.Exception: Unable to open the session message bus. ---> System.ArgumentNullException: Argument cannot be null. Parameter name: address at NDesk.DBus.Bus.Open (System.String address) [0x00000] in <filename unknown>:0 at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 at Tomboy.TomboyDBus..cctor () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at Tomboy.NotesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Firefox.PlacesItemSource "Firefox Places" encountered an error in UpdateItems: System.InvalidCastException: Cannot cast from source type to destination type. at Mono.Data.Sqlite.SqliteDataReader.VerifyType (Int32 i, DbType typ) [0x00000] in <filename unknown>:0 at Mono.Data.Sqlite.SqliteDataReader.GetString (Int32 i) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource+<LoadPlaceItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem].AddEnumerable (IEnumerable`1 enumerable) [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem]..ctor (IEnumerable`1 collection) [0x00000] in <filename unknown>:0 at System.Linq.Enumerable.ToArray[PlaceItem] (IEnumerable`1 source) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Do.Universe.Linux.GNOMESpecialLocationsItemSource "GNOME Special Locations" encountered an error in UpdateItems: System.IO.FileNotFoundException: Could not find file "/root/.gtk-bookmarks". File name: '/root/.gtk-bookmarks' at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share, Int32 bufferSize, Boolean anonymous, FileOptions options) [0x00000] in <filename unknown>:0 at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.FileStream:.ctor (string,System.IO.FileMode,System.IO.FileAccess,System.IO.FileShare) at System.IO.File.OpenRead (System.String path) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path, System.Text.Encoding encoding, Boolean detectEncodingFromByteOrderMarks, Int32 bufferSize) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.StreamReader:.ctor (string) at Do.Universe.Linux.GNOMESpecialLocationsItemSource+<ReadBookmarkItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at Do.Universe.Linux.GNOMESpecialLocationsItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . It stops when I try my key combination, ctrl-alt-. It does not pop up though.

    Read the article

  • Certificate Revocation checking affecting system performance [migrated]

    - by Colm Clarke
    I have a .NET 3.5 desktop application that had been showing periodic slow downs in functionality whenever the test machine it was on was out of the office. I managed to replicate the error on a machine in the office without an internet connection, but it was only when i used ANTS performance profiler that i got a clearer picture of what was going on. In ANTS I saw a "Waiting for synchronization" taking up to 16 seconds that corresponded to the delay I could see in the application when NHibernate tried to load the System.Data.SqlServerCE.dll assembly. If I tried the action again immediately it would work with no delay but if I left it for 5 minutes then it would be slow to load again the next time I tried it. From my research so far it appears to be because the SqlServerCE dll is signed and so the system is trying to connect to get the certificate revocation lists and timing out. Disabling the "Automatically detect settings" setting in the Internet Options LAN settings makes the problem go away, as does disabling the "Check for publishers certificate revocation". But the admins where this application will be deployed are not going to be happy with the idea of disabling certificate checking on a per machine or per user basis so I really need to get the application level disabling of the CRL check working. There is the well documented bug in .net 2.0 which describes this behaviour, and offers a possible fix with a config file element. <?xml version="1.0" encoding="utf-8"?> <configuration> <runtime> <generatePublisherEvidence enabled="false"/> </runtime> </configuration> This is NOT working for me however even though I am using .net 3.5. The SQLServerCE dll is being loaded dynamically by NHibernate and I wonder if the fact that it's dynamic could somehow be why the setting isn't working, but I don't know how I could check that. Can anyone offer suggestions as to why the config setting might not work? Or is there another way I could disable the check at the application level, perhaps a CAS policy setting that I can use to set an exception for the application when it's installed? Or is there something I can change in the application to up the trust level or something like that? I have also tried using to no advantage ServicePointManager.CheckCertificateRevocationList = false; http://rusanu.com/2009/07/24/fix-slow-application-startup-due-to-code-sign-validation/ I have also tried those registry settings out and unfortunately they didn't help. The dlls that appear to be the cause of the hold up are native SQL Server CE dlls, and looking at the stack traces in ProcMon mscorwks.dll doesn't appear to be involved even though the checks on crypto and cert registry keys are being done under the .NET application. It's definitely still something to do with publisher certificate checking because unticking "Check for publisher revocation certificate" still works but something odd is going on.

    Read the article

  • Parent Objects

    - by Ali Bahrami
    Support for Parent Objects was added in Solaris 11 Update 1. The following material is adapted from the PSARC arc case, and the Solaris Linker and Libraries Manual. A "plugin" is a shared object, usually loaded via dlopen(), that is used by a program in order to allow the end user to add functionality to the program. Examples of plugins include those used by web browsers (flash, acrobat, etc), as well as mdb and elfedit modules. The object that loads the plugin at runtime is called the "parent object". Unlike most object dependencies, the parent is not identified by name, but by its status as the object doing the load. Historically, building a good plugin is has been more complicated than it should be: A parent and its plugin usually share a 2-way dependency: The plugin provides one or more routines for the parent to call, and the parent supplies support routines for use by the plugin for things like memory allocation and error reporting. It is a best practice to build all objects, including plugins, with the -z defs option, in order to ensure that the object specifies all of its dependencies, and is self contained. However: The parent is usually an executable, which cannot be linked to via the usual library mechanisms provided by the link editor. Even if the parent is a shared object, which could be a normal library dependency to the plugin, it may be desirable to build plugins that can be used by more than one parent, in which case embedding a dependency NEEDED entry for one of the parents is undesirable. The usual way to build a high quality plugin with -z defs uses a special mapfile provided by the parent. This mapfile defines the parent routines, specifying the PARENT attribute (see example below). This works, but is inconvenient, and error prone. The symbol table in the parent already describes what it makes available to plugins — ideally the plugin would obtain that information directly rather than from a separate mapfile. The new -z parent option to ld allows a plugin to link to the parent and access the parent symbol table. This differs from a typical dependency: No NEEDED record is created. The relationship is recorded as a logical connection to the parent, rather than as an explicit object name However, it operates in the same manner as any other dependency in terms of making symbols available to the plugin. When the -z parent option is used, the link-editor records the basename of the parent object in the dynamic section, using the new tag DT_SUNW_PARENT. This is an informational tag, which is not used by the runtime linker to locate the parent, but which is available for diagnostic purposes. The ld(1) manpage documentation for the -z parent option is: -z parent=object Specifies a "parent object", which can be an executable or shared object, against which to link the output object. This option is typically used when creating "plugin" shared objects intended to be loaded by an executable at runtime via the dlopen() function. The symbol table from the parent object is used to satisfy references from the plugin object. The use of the -z parent option makes symbols from the object calling dlopen() available to the plugin. Example For this example, we use a main program, and a plugin. The parent provides a function named parent_callback() for the plugin to call. The plugin provides a function named plugin_func() to the parent: % cat main.c #include <stdio.h> #include <dlfcn.h> #include <link.h> void parent_callback(void) { printf("plugin_func() has called parent_callback()\n"); } int main(int argc, char **argv) { typedef void plugin_func_t(void); void *hdl; plugin_func_t *plugin_func; if (argc != 2) { fprintf(stderr, "usage: main plugin\n"); return (1); } if ((hdl = dlopen(argv[1], RTLD_LAZY)) == NULL) { fprintf(stderr, "unable to load plugin: %s\n", dlerror()); return (1); } plugin_func = (plugin_func_t *) dlsym(hdl, "plugin_func"); if (plugin_func == NULL) { fprintf(stderr, "unable to find plugin_func: %s\n", dlerror()); return (1); } (*plugin_func)(); return (0); } % cat plugin.c #include <stdio.h> extern void parent_callback(void); void plugin_func(void) { printf("parent has called plugin_func() from plugin.so\n"); parent_callback(); } Building this in the traditional manner, without -zdefs: % cc -o main main.c % cc -G -o plugin.so plugin.c % ./main ./plugin.so parent has called plugin_func() from plugin.so plugin_func() has called parent_callback() As noted above, when building any shared object, the -z defs option is recommended, in order to ensure that the object is self contained and specifies all of its dependencies. However, the use of -z defs prevents the plugin object from linking due to the unsatisfied symbol from the parent object: % cc -zdefs -G -o plugin.so plugin.c Undefined first referenced symbol in file parent_callback plugin.o ld: fatal: symbol referencing errors. No output written to plugin.so A mapfile can be used to specify to ld that the parent_callback symbol is supplied by the parent object. % cat plugin.mapfile $mapfile_version 2 SYMBOL_SCOPE { global: parent_callback { FLAGS = PARENT }; }; % cc -zdefs -Mplugin.mapfile -G -o plugin.so plugin.c However, the -z parent option to ld is the most direct solution to this problem, allowing the plugin to actually link against the parent object, and obtain the available symbols from it. An added benefit of using -z parent instead of a mapfile, is that the name of the parent object is recorded in the dynamic section of the plugin, and can be displayed by the file utility: % cc -zdefs -zparent=main -G -o plugin.so plugin.c % elfdump -d plugin.so | grep PARENT [0] SUNW_PARENT 0xcc main % file plugin.so plugin.so: ELF 32-bit LSB dynamic lib 80386 Version 1, parent main, dynamically linked, not stripped % ./main ./plugin.so parent has called plugin_func() from plugin.so plugin_func() has called parent_callback() We can also observe this in elfedit plugins on Solaris systems running Solaris 11 Update 1 or newer: % file /usr/lib/elfedit/dyn.so /usr/lib/elfedit/dyn.so: ELF 32-bit LSB dynamic lib 80386 Version 1, parent elfedit, dynamically linked, not stripped, no debugging information available Related Other Work The GNU ld has an option named --just-symbols that can be used in a similar manner: --just-symbols=filename Read symbol names and their addresses from filename, but do not relocate it or include it in the output. This allows your output file to refer symbolically to absolute locations of memory defined in other programs. You may use this option more than once. -z parent is a higher level operation aimed specifically at simplifying the construction of high quality plugins. Although it employs the same operation, it differs from --just symbols in 2 significant ways: There can only be one parent. The parent is recorded in the created object, and can be displayed by 'file', or other similar tools.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • System.Data.SQLite

    - by csharp-source.net
    System.Data.SQLite is an enhanced version of the original SQLite database engine. It is a complete drop-in replacement for the original sqlite3.dll (you can even rename it to sqlite3.dll). It has no linker dependency on the .NET runtime so it can be distributed independently of .NET, yet embedded in the binary is a complete ADO.NET 2.0 provider for full managed development.

    Read the article

  • Webcast: The ART of Migrating and Modernizing IBM Mainframe Applications

    - by todd.little
    Tuxedo provides an excellent platform to migrate mainframe applications to distributed systems. As the only distributed transaction processing monitor that offers quality of service comparable or better than mainframe systems, Tuxedo allows customers to migrate their existing mainframe based applications to a platform with a much lower total cost of ownership. Please join us on Thursday April 29 at 10:00am Pacific Time for this exciting webcast covering the new Oracle Tuxedo Application Runtime for CICS and Batch 11g. Find out how easy it is to migrate your CICS and mainframe batch applications to Tuxedo.

    Read the article

  • Sqlite &amp; Entity Framework 4

    - by Dane Morgridge
    I have been working on a few client app projects in my spare time that need to persist small amounts of data and have been looking for an easy to use embedded database.  I really like db4o but I'm not wanting to open source this particular project so it was not an option.  Then I remembered that there was an ADO.NET provider for sqlite.  Being a fan of sqlite in general, I downloaded it and gave it an install.  The installer added tooling support for both Visual Studio 2008 & 2010 which is nice because I am working almost exclusively in 2010 at the moment.  I noticed that the provider also had support for Entity Framework, but not specifically v4.  I created a database using the tools that get installed with Visual Studio and all seemed to work fine.  I went on to create an Entity Framework context and selected the sqlite database and to my surprise it worked with out any problems.  The model showed up just like it would for any database and so I started to write a little code to test and then.. BAM!.. Exception. "Mixed mode assembly is built against version 'v2.0.50727' of the runtime and cannot be loaded in the 4.0 runtime without additional configuration information." A quick bit of searching on Bing found the answer.  To get it working, you need to include the following code in your web.config file: 1: <startup useLegacyV2RuntimeActivationPolicy="true"> 2: <supportedRuntime version="v4.0" /> 3: </startup> And then everything magically works.  Entity Framework 4 features worked, like lazy loading and even the POCO templates worked.  The only thing that didn't work was the model first development.  The SQL generated was for SQL Server and of course wouldn't run on sqlite without some modifications. The only other oddity I found was that in order to have an auto incrementing id, you have to use the full integer data type for sqlite; a regular int won't do the trick.  This translates to an Int64, or a long when working with it in Entity Framework.  Not a big deal, but something you need to be aware of. All in all, I am quite impressed with the Entity Framework support I found with sqlite.  I wasn't really expecting much at all, and I was pleasantly surprised. I downloaded the ADO.NET sqlite provider from http://sqlite.phxsoftware.com/.  If you want to use an embedded database with Entity Framework, give it a look.  It will be well worth your time.

    Read the article

  • Trouble compiling MonoDevelop 4 on Ubuntu 12.04

    - by Mehran
    I'm trying to compile the latest version of MonoDevelop (4.0.9) on my Ubuntu 12.04 and I'm facing errors I can not overcome. Here are my machine's configurations: OS: Ubuntu 12.04 64-bit Mono: version 3.0.12 And here are the commands that I ran to download MonoDevelop: $ git clone git://github.com/mono/monodevelop.git $ cd monodevelop $ git submodule init $ git submodule update And afterwards to compile: ./configure --prefix=`pkg-config --variable=prefix mono` --profile=stable make Then I faced the following errors (sorry if it's long): ... Building ./Main.sln xbuild /verbosity:quiet /nologo /property:CodePage=65001 ./Main.sln /property:Configuration=Debug /home/mehran/git/monodevelop/main/Main.sln: warning : Don't know how to handle GlobalSection MonoDevelopProperties.Debug, Ignoring. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' Editor/IDocument.cs(98,30): warning CS0419: Ambiguous reference in cref attribute `GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched PatternMatching/INode.cs(51,37): warning CS1574: XML comment on `ICSharpCode.NRefactory.PatternMatching.PatternExtensions.Match(this ICSharpCode.NRefactory.PatternMatching.INode, ICSharpCode.NRefactory.PatternMatching.INode)' has cref attribute `PatternMatching.Match.Success' that could not be resolved TextLocation.cs(35,23): warning CS0419: Ambiguous reference in cref attribute `Editor.IDocument.GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched TypeSystem/FullTypeName.cs(87,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/INamedElement.cs(59,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/IType.cs(50,26): warning CS1584: XML comment on `ICSharpCode.NRefactory.TypeSystem.IType' has syntactically incorrect cref attribute `IEquatable{IType}.Equals(IType)' TypeSystem/IType.cs(319,38): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `GetMethods(Predicate{IUnresolvedMethod}, GetMemberOptions)' TypeSystem/TypeKind.cs(61,17): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' TypeSystem/SpecialType.cs(50,52): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1.

    Read the article

  • ASP.Net 4.5 Garbage Collection Improvement

    - by Aligned
    Originally posted on: http://geekswithblogs.net/Aligned/archive/2013/06/24/asp.net-4.5-garbage-collection-improvement.aspxI just read Five Great .NET Framework 4.5 Features on CodeProject by Shivprasad koirala. Feature 5 in his article mentions the GC background cleanup and has a good explanation of the work the GC has to do for ASP.Net on the server. “Garbage collector is one real heavy task in a .NET application. And it becomes heavier when it is an ASP.NET application. ASP.NET applications run on the server and a lot of clients send requests to the server thus creating loads of objects, making the GC really work hard for cleaning up unwanted objects.” “To overcome the above problem, server GC was introduced. In server GC there is one more thread created which runs in the background. This thread works in the background and keeps cleaning…objects thus minimizing the load on the main GC thread. Due to double GC threads running, the main application threads are less suspended, thus increasing application throughput. To enable server GC, we need to use the gcServer XML tag and enable it to true.” <configuration> <runtime> <gcServer enabled="true"/> </runtime> </configuration> This is not done by default. The MSDN information page says “There are only two garbage collection options, workstation or server. For single-processor computers, the default workstation garbage collection should be the fastest option. Either workstation or server can be used for two-processor computers. Server garbage collection should be the fastest option for more than two processors. Use the GCSettingsIsServerGC property to determine if server garbage collection is enabled.” “In the .NET Framework 4 and earlier versions, concurrent garbage collection is not available when server garbage collection is enabled. Starting with the .NET Framework 4.5, server garbage collection is concurrent. To use non-concurrent server garbage collection, set the <gcServer> element to true and the <gcConcurrent> element to false. “ So if you’re using ASP.Net 4.5 and have a multi-core server, you should try turning on the Server Garbage Collection and do some profiling to see if it improves the performance of your site.

    Read the article

  • bash dirtrim produces strange results with ~/foo/bar/var directory

    - by queueoverflow
    In some of my projects, I keep a var or a lib folder for runtime output and external libraries. To keep my prompt rather short, I have the export PROMPT_DIRTRIM=3 option in my .bashrc. This works very well for most paths, but as soon as I have a /var in there, it goes nuts like this (for ~/Projects/someproject/var/gfx): ~/.../gfxr/gfxr/gfxr/gfxr/gfxr/gfx Interestingly, it works with /opt/lampp/lib Is there some way to get around this? Update my .bashrc my .bash_functions

    Read the article

  • T-SQL in SQL Azure

    - by kaleidoscope
    The following table summarizes the Transact-SQL support provided by SQL Azure Database at PDC 2009: Transact-SQL Features Supported Transact-SQL Features Unsupported Constants Constraints Cursors Index management and rebuilding indexes Local temporary tables Reserved keywords Stored procedures Statistics management Transactions Triggers Tables, joins, and table variables Transact-SQL language elements such as Create/drop databases Create/alter/drop tables Create/alter/drop users and logins User-defined functions Views, including sys.synonyms view Common Language Runtime (CLR) Database file placement Database mirroring Distributed queries Distributed transactions Filegroup management Global temporary tables Spatial data and indexes SQL Server configuration options SQL Server Service Broker System tables Trace Flags   Amit, S

    Read the article

  • Back-sliding into Unmanaged Code

    - by Laila
    It is difficult to write about Microsoft's ambivalence to .NET without mentioning clichés about dog food.  In case you've been away a long time, you'll remember that Microsoft surprised everyone with the speed and energy with which it introduced and evangelised the .NET Framework for managed code. There was good reason for this. Once it became obvious to all that it had sleepwalked into third place as a provider of development languages, behind Borland and Sun, it reacted quickly to attract the best talent in the industry to produce a windows version of the Java runtime, with Bounds-checking, Automatic Garbage collection, structures exception handling and common data types. To develop applications for this managed runtime, it produced several excellent languages, and more are being provided. The only thing Microsoft ever got wrong was to give it a stupid name. The logical step for Microsoft would be to base the entire operating system on the .NET framework, and to re-engineer its own applications. In 2002, Bill Gates, then Microsoft Chairman and Chief Software Architect said about their plans for .NET, "This is a long-term approach. These things don't happen overnight." Now, eight years later, we're still waiting for signs of the 'long-term approach'. Microsoft's vision of an entirely managed operating system has subsided since the Vista fiasco, but stays alive yet dormant as Midori, still being developed by Microsoft Research. This is an Internet-centric fork of the singularity operating system, a research project started in 2003 to build a highly-dependable operating system in which the kernel, device drivers, and applications are all written in managed code. Midori is predicated on the prevalence of connected systems, with provisions for distributed concurrency where application components exist 'in the cloud', and supports a programming model that can tolerate cancellation, intermittent connectivity and latency. It features an entirely new security model that sandboxes applications for increased security. So have Microsoft converted its existing applications to the .NET framework? It seems not. What Windows applications can run on Mono? Very few, it seems. We all thought that .NET spelt the end of DLL Hell and the need for COM interop, but it looks as if Bill Gates' idea of 'not overnight' might stretch to a decade or more. The Operating System has shown only minimal signs of migrating to .NET. Even where the use of .NET has come to dominate, when used for server applications with IIS, IIS itself is still entirely developed in unmanaged code. This is an irritation to Microsoft's greatest supporters who committed themselves fully to the NET framework, only to find parts of the Ambivalent Microsoft Empire quietly backsliding into unmanaged code and the awful C++. It is a strategic mistake that the invigorated Apple didn't make with the Mac OS X Architecture. Cheers, Laila

    Read the article

  • ASP.NET MVC 3 Hosting :: How to Upgrade ASP.NET MVC 2 Project to ASP.NET MVC 3

    - by mbridge
    ASP.NET MVC 3 can be installed side by side with ASP.NET MVC 2 on the same computer, which gives you flexibility in choosing when to upgrade an ASP.NET MVC 2 application to ASP.NET MVC 3. The simplest way to upgrade is to create a new ASP.NET MVC 3 project and copy all the views, controllers, code, and content files from the existing MVC 2 project to the new project and then to update the assembly references in the new project to match the old project. If you have made changes to the Web.config file in the MVC 2 project, you must also merge those changes with the Web.config file in the MVC 3 project. To manually upgrade an existing ASP.NET MVC 2 application to version 3, do the following: 1. In both Web.config files in the MVC 3 project, globally search and replace the MVC version. Find the following: System.Web.Mvc, Version=2.0.0.0 Replace it with the following System.Web.Mvc, Version=3.0.0.0 There are three changes in the root Web.config and four in the Views\Web.config file. 2. In Solution Explorer, delete the reference to System.Web.Mvc (which points to the version 2 DLL). Then add a reference to System.Web.Mvc (v3.0.0.0). 3. In Solution Explorer, right-click the project name and then select Unload Project. Then right-click again and select Edit ProjectName.csproj. 4. Locate the ProjectTypeGuids element and replace {F85E285D-A4E0-4152-9332-AB1D724D3325} with {E53F8FEA-EAE0-44A6-8774-FFD645390401}. 5. Save the changes and then right-click the project and select Reload Project. 6. If the project references any third-party libraries that are compiled using ASP.NET MVC 2, add the following highlighted bindingRedirect element to the Web.config file in the application root under the configuration section: <runtime>   <assemblyBinding >     <dependentAssembly>       <assemblyIdentity name="System.Web.Mvc"           publicKeyToken="31bf3856ad364e35"/>       <bindingRedirect oldVersion="2.0.0.0" newVersion="3.0.0.0"/>     </dependentAssembly>   </assemblyBinding> </runtime> Another ASP.NET MVC 3 article: - Rolling with Razor in MVC v3 Preview - Deploying ASP.NET MVC 3 web application to server where ASP.NET MVC 3 is not installed - RenderAction with ASP.NET MVC 3 Sessionless Controllers

    Read the article

  • how to install g++ and openJDK from .deb package

    - by Saurav Shekhar
    I have recently started using ubuntu 12.04 for my dell inspiron 5500 15r. I want to install g++ and javac on my ubuntu.Since my USB modem doesn't support ubuntu i cannot connect my ubuntu to the internet.I have the .deb package of g++-4.4 GNU C++ compiler and openJDK Java 6 Runtime with me. Please explain to me in detail how to install them to my ubuntu. Thank You Saurav Shekhar ph-+91 895 344 1464

    Read the article

  • Problemas de instalación de Silverlight 4 (Solución)

    - by Eugenio Estrada
    A lo largo de esta semana, he estado intentando actualizar en producción una serie de equipos con Silverlight 3 a Silverlight 4, digo intentando porque nos hemos encontrado con un problema bastante grande. No hemos sido los únicos por lo que he podido leer en los foros de Silverlight . El caso es que para actualizar Silverlight 3 a Silverlight 4 hemos usado la Web oficial donde se puede descargar el paquete runtime de Silverlight: http://www.microsoft.com/getsilverlight . Una vez aquí nos dice que...(read more)

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Interesting links week #7

    - by erwin21
    Below a list of interesting links that I found this week: Frontend: HTML5 Peeks, Pokes and Pointers HTML 5 Markup that Gracefully Degrades Mobile Sites vs. Media Queries Development: Register your HTTP modules at runtime without config mobl - Open Source Language For Mobile Development PageMethod an easier and faster approach for Asp.Net AJAX Interested in more interesting links follow me at twitter http://twitter.com/erwingriekspoor

    Read the article

  • Debugging .NET code called from X++ code in AX 2012

    - by ssmantha
    A very intriguing issue came to me to debug .Net code called from X++ code in AX 2012. This was indeed a challenge to be nailed down. Luckily the tools and some concepts helped me to achieve this task. Here it goes... We need to do a seamless debugging from AX debugger to Visual Studio back and forth. To enable this we need to first see if the dll to be debug is present in GAC then we might need to uninstall it from it due to the order of preference .NET loads the assemblies. The assemblies are first loaded from GAC and then the runtime checks for Public and Private Assemblies. Since the assembly in GAC is always compiled with runtime optimizations it is difficult to debug. We need to unhook this assembly from GAC and then move further relying on >NET assembly loading patterns. Step 1: Remove the target assembly to debug from GAC. Before that stop all the AOS servers and close all the instances of programs which rely on AOT e.g. all clients and even visual studio now. Step 2: Build your sample code which is present in AOT in debug mode and get the dll file along with PDB files. Step 3: Place these files in the Server\..\Bin and Client\bin directories of AX installation. Step 4: Configure Visual Studio: Step 4.1: Configure Debugging Options. In Visual Studio Go to Debug -> Options and Settings -> Debug node -> General sub node and disable “Enable Just My Code (managed)” Step 4.2: Specify the symbol loading directory options. Specify the locations for Client bin and server bin directories of the installation, remember to specify the correct instance of Server bin directory corresponding to your AOS. Step 4.3: Configure the project for debugging Step 5: Ready to go place your breakpoints in X++ and in .Net wherever necessary before this process... Run the Visual studio project and it will invoke the AX client with your breakpoint hitting X++ code.. and when you do a step-in using F11 the Visual studio debugger will be active and from here onwards you would be able to debug the complete flow. Debugging in seamless manner across debuggers is really very good feature and mostly underutilized, but by doing so we can have improved troubleshooting and saves a hell lot of time.. Stay tuned for more in Advanced Debugging..

    Read the article

  • MythTV lost recordings - "No recordings available" and no recording rules either

    - by nimasmi
    I have a c.6 year old mythtv database. I recently upgraded from Ubuntu 10.04 to 12.04. This brought a MythTV upgrade from 0.24 to 0.25, which went well. Today, all my recordings have disappeared. They still exist in the /var/lib/mythtv/recordings folder, and the 'M' key in the Watch Recordings page says that there are 201 recordings available somewhere, but they will not display. See screenshot: (implicit thanks to whomever upvoted this, giving me sufficient reputation to upload images) Changing the filter does not remedy the fact that there is nothing shown in the lists. My Upcoming Recordings screen says that there are no rules set, but my list of previously recorded shows is still there, and has an entry from as recently as 3am today. mythbackend --printsched gives the following: user@box:~$ mythbackend --printsched 2012-09-22 12:59:20.537008 C mythbackend version: fixes/0.25 [v0.25.2-15-g46cab93] www.mythtv.org 2012-09-22 12:59:20.537043 C Qt version: compile: 4.8.1, runtime: 4.8.1 2012-09-22 12:59:20.537048 N Enabled verbose msgs: general 2012-09-22 12:59:20.537076 N Setting Log Level to LOG_INFO 2012-09-22 12:59:20.537142 I Added logging to the console 2012-09-22 12:59:20.537152 I Added database logging to table logging 2012-09-22 12:59:20.537279 N Setting up SIGHUP handler 2012-09-22 12:59:20.537373 N Using runtime prefix = /usr 2012-09-22 12:59:20.537394 N Using configuration directory = /home/user/.mythtv 2012-09-22 12:59:20.537999 I Assumed character encoding: en_GB.UTF-8 2012-09-22 12:59:20.538599 N Empty LocalHostName. 2012-09-22 12:59:20.538610 I Using localhost value of box 2012-09-22 12:59:20.538792 I Testing network connectivity to '192.168.1.2' 2012-09-22 12:59:20.539420 I Starting process manager 2012-09-22 12:59:20.541412 I Starting IO manager (read) 2012-09-22 12:59:20.541715 I Starting IO manager (write) 2012-09-22 12:59:20.541836 I Starting process signal handler 2012-09-22 12:59:20.684497 N Setting QT default locale to EN_GB 2012-09-22 12:59:20.684694 I Current locale EN_GB 2012-09-22 12:59:20.684813 N Reading locale defaults from /usr/share/mythtv//locales/en_gb.xml 2012-09-22 12:59:20.697623 I New static DB connectionDataDirectCon 2012-09-22 12:59:20.704769 I MythCoreContext: Connecting to backend server: 192.168.1.2:6543 (try 1 of 1) Calculating Schedule from database. Inputs, Card IDs, and Conflict info may be invalid if you have multiple tuners. 2012-09-22 12:59:27.710538 E MythSocket(21dfcd0:14): readStringList: Error, timed out after 7000 ms. 2012-09-22 12:59:27.710592 C Protocol version check failure. The response to MYTH_PROTO_VERSION was empty. This happens when the backend is too busy to respond, or has deadlocked in due to bugs or hardware failure. Things I have tried so far: restart the backend restart the frontend run mythtv-setup and check database passwords and IP addresses change the frontend setting for backend IP from localhost to 192.168.1.2 (the backend/frontend's IP) run optimize_mythdb.pl Other suggestions appreciated.

    Read the article

  • Using SSIS to send a HTML E-Mail Message with built-in table of Counts.

    - by Kevin Shyr
    For the record, this can be just as easily done with a .NET class with a DLL call.  The two major reasons for this ending up as a SSIS package are: There are a lot of SQL resources for maintenance, but not as many .NET developers. There is an existing automated process that links up SQL Jobs (more on that in the next post), and this is part of that process.   To start, this is what the SSIS looks like: The first part of the control flow is just for the override scenario.   In the Execute SQL Task, it calls a stored procedure, which already formats the result into XML by using "FOR XML PATH('Row'), ROOT(N'FieldingCounts')".  The result XML string looks like this: <FieldingCounts>   <Row>     <CellId>M COD</CellId>     <Mailed>64</Mailed>     <ReMailed>210</ReMailed>     <TotalMail>274</TotalMail>     <EMailed>233</EMailed>     <TotalSent>297</TotalSent>   </Row>   <Row>     <CellId>M National</CellId>     <Mailed>11</Mailed>     <ReMailed>59</ReMailed>     <TotalMail>70</TotalMail>     <EMailed>90</EMailed>     <TotalSent>101</TotalSent>   </Row>   <Row>     <CellId>U COD</CellId>     <Mailed>91</Mailed>     <ReMailed>238</ReMailed>     <TotalMail>329</TotalMail>     <EMailed>291</EMailed>     <TotalSent>382</TotalSent>   </Row>   <Row>     <CellId>U National</CellId>     <Mailed>63</Mailed>     <ReMailed>286</ReMailed>     <TotalMail>349</TotalMail>     <EMailed>374</EMailed>     <TotalSent>437</TotalSent>   </Row> </FieldingCounts>  This result is saved into an internal SSIS variable with the following settings on the General tab and the Result Set tab:   Now comes the trickier part.  We need to use the XML Task to format the XML string result into an HTML table, and I used Direct input XSLT And here is the code of XSLT: <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="html" indent="yes"/>   <xsl:template match="/ROOT">         <table border="1" cellpadding="6">           <tr>             <td></td>             <td>Mailed</td>             <td>Re-mailed</td>             <td>Total Mail (Mailed, Re-mailed)</td>             <td>E-mailed</td>             <td>Total Sent (Mailed, E-mailed)</td>           </tr>           <xsl:for-each select="FieldingCounts/Row">             <tr>               <xsl:for-each select="./*">                 <td>                   <xsl:value-of select="." />                 </td>               </xsl:for-each>             </tr>           </xsl:for-each>         </table>   </xsl:template> </xsl:stylesheet>    Then a script task is used to send out an HTML email (as we are all painfully aware that SSIS Send Mail Task only sends plain text) Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 using System; using System.Data; using Microsoft.SqlServer.Dts.Runtime; using System.Windows.Forms; using System.Net.Mail; using System.Net;   namespace ST_b829a2615e714bcfb55db0ce97be3901.csproj {     [System.AddIn.AddIn("ScriptMain", Version = "1.0", Publisher = "", Description = "")]     public partial class ScriptMain : Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase     {           #region VSTA generated code         enum ScriptResults         {             Success = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Success,             Failure = Microsoft.SqlServer.Dts.Runtime.DTSExecResult.Failure         };         #endregion           public void Main()         {             String EmailMsgBody = String.Format("<HTML><BODY><P>{0}</P><P>{1}</P></BODY></HTML>"                                                 , Dts.Variables["Config_SMTP_MessageSourceText"].Value.ToString()                                                 , Dts.Variables["InternalStr_CountResultAfterXSLT"].Value.ToString());             MailMessage EmailCountMsg = new MailMessage(Dts.Variables["Config_SMTP_From"].Value.ToString().Replace(";", ",")                                                         , Dts.Variables["Config_SMTP_Success_To"].Value.ToString().Replace(";", ",")                                                         , Dts.Variables["Config_SMTP_SubjectLinePrefix"].Value.ToString() + " " + Dts.Variables["InternalStr_FieldingDate"].Value.ToString()                                                         , EmailMsgBody);             //EmailCountMsg.From.             EmailCountMsg.CC.Add(Dts.Variables["Config_SMTP_Success_CC"].Value.ToString().Replace(";", ","));             EmailCountMsg.IsBodyHtml = true;               SmtpClient SMTPForCount = new SmtpClient(Dts.Variables["Config_SMTP_ServerAddress"].Value.ToString());             SMTPForCount.Credentials = CredentialCache.DefaultNetworkCredentials;               SMTPForCount.Send(EmailCountMsg);               Dts.TaskResult = (int)ScriptResults.Success;         }     } } Note on this code: notice the email list has Replace(";", ",").  This is only here because the list is configurable in the SQL Job Step at Set Values, which does not react well with colons as email separator, but system.Net.Mail only handles comma as email separator, hence the extra replace in the string. The result is a nicely formatted email message with count information:

    Read the article

< Previous Page | 59 60 61 62 63 64 65 66 67 68 69 70  | Next Page >