Search Results

Search found 34162 results on 1367 pages for 'oracle products distributed document capture'.

Page 631/1367 | < Previous Page | 627 628 629 630 631 632 633 634 635 636 637 638  | Next Page >

  • javascript will not work onload

    - by user2711818
    The javascript on the page needs to work onpage load. So I tried adding the document ready function into the code. It doesn't seem to work. http://janeucreative.com/daddychallenge/bag.html <script>$(document).ready(function() { function addItem(item) { var itemInCart = item.cloneNode(true); itemInCart.onclick = function() { removeItem(this); }; var cart = document.getElementById("cart"); cart.appendChild(itemInCart); } function removeItem(item) { var itemInItems = item.cloneNode(true); itemInItems.onclick = function() { addItem(this); }; var cart = document.getElementById("cart"); cart.removeChild(item); } init(); });</script> Any advice would be much appreciated! I'm very new to javascript and just trying to learn it a step at a time.

    Read the article

  • Using JavaScript, how do I write the same text to multiple HTML elements, or how do I write text to all HTML elements of the same class?

    - by myfavoritenoisemaker
    I am writing this program to take a root music note and populate tables with various scales from that root note. So, many of the tables cells will have the exact same value in them. I realize I can call my "useScale" function for every single that I need to write text to but since there will be repeats, it seemed like there should be a way to run my function once and apply the results to multiple but it did not work to use the document.getElementsByClassName("").innerHTML, I had been using "ById" which worked fine but each ID must be unique so, I can't write to multiple elements. Here's my code, I'd love some suggestions. many thanks Root Note <input type="text" name="defineRootNote" id="rootNoteCapture" size="2"/> <button onclick="findScale()">Submit</button> <table id="majorTriad"> <th>Major Triad</th> <tr><td>1st</td><td class="root"> </td></tr> <tr><td>3rd</td><td class="3rd"> </td></tr> <tr><td>5th</td><td class="5th"> </td></tr> </table> <table id="minorTriad"> <th>Minor Triad</th> <tr><td>1st</td><td class="root"> </td></tr> <tr><td>3 Flat</td><td class="3Flat"> </td></tr> <tr><td>5th</td><td class="5th"> </td></tr> </table> <script type="text/javascript"> function findScale(rootNote){ var rootNote = document.getElementById("rootNoteCapture").value; rootNote = rootNote.toUpperCase(); var scaleCheck = ["A", "A#", "AB", "B", "BB", "C", "C#", "D", "D#", "DB", "E", "EB", "F", "F#", "G", "G#", "GB"]; if (scaleCheck.indexOf(rootNote) == -1) { document.getElementById("root").innerHTML = "Invalid Entry"; } else { switch(rootNote){ case "AB": rootNote = "G#"; break; case "BB": rootNote = "A#"; break; case "DB": rootNote = "C#"; break; case "EB": rootNote = "D#"; break; case "GB": rootNote = "F#"; break; rootNote = rootNote; } document.getElementsByClassName("root").innerHTML = rootNote; document.getElementsByClassName("3rd").innerHTML = useScale(rootNote, 4); document.getElementsByClassName("5th").innerHTML = useScale(rootNote, 7); document.getElementsByClassName("3Flat").innerHTML = useScale(rootNote, 3); } } function useScale(startPoint, offset){ var scale = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"]; var returnNote = null; var scalePoint = scale.indexOf(startPoint); for (var i = 0; i < offset; ){ i = i + 1; //console.log(i); //console.log(scalePoint); scalePoint ++; if (scalePoint > 11) {scalePoint = 0;} } returnNote = scale[scalePoint]; return returnNote; } </script>

    Read the article

  • Javascript .removeChild() only deletes even nodes?

    - by user1476297
    first posting. I am trying dynamically add children DIV under a DIV with ID="prnt". Addition of nodes work fine no problem. However strange enough when it comes to deleted nodes its only deleting the even numbered nodes including 0. Why is this, I could be something stupid but it seem more like a bug. I could be very wrong. Please help Thank you in advance. <script type="text/javascript"> function displayNodes() { var prnt = document.getElementById("prnt"); var chlds = prnt.childNodes; var cont = document.getElementById("content"); for(i = 0; i < chlds.length; i++) { if(chlds[i].nodeType == 1) { cont.innerHTML +="<br />"; cont.innerHTML +="Node # " + (i+1); cont.innerHTML +="<br />"; cont.innerHTML +=chlds[i].nodeName; cont.innerHTML +="<br />"; } } } function deleteENodes() { var prnt = document.getElementById("prnt"); var chlds = prnt.childNodes; for(i = 0; i < chlds.length; i++) { if(!(chlds[i].nodeType == 3)) { prnt.removeChild(chlds[i]); } } } function AddENodes() { var prnt = document.getElementById("prnt"); //Only even nodes are deletable PROBLEM for(i = 0; i < 10; i++) { var newDIV = document.createElement('div'); newDIV.setAttribute("id", "c"+(i)); var text = document.createTextNode("New Inserted Child "+(i)); newDIV.appendChild(text); prnt.appendChild(newDIV); } } </script> <title>Checking Div Nodes</title> </head> <body> <div id="prnt"> Parent 1 </div> <br /> <br /> <br /> <button type="button" onclick="displayNodes()">Show Node Info</button> <button type="button" onclick="deleteENodes()">Remove All Element Nodes Under Parent 1</button> <button type="button" onclick="AddENodes()">Add 5 New DIV Nodes</button> <div id="content"> </div> </body>

    Read the article

  • Are there any simple ways to publish APKs on Google Play?

    - by StupidCodeGenerator
    I'm from China and we only publish APKs in Chinese market. This is my first time trying to put out game on Google Play. In China, publishing is pretty simple: They give us a jar file and we just import the file in our project and do something with a small document. But when I was reading the Google Play's document, I think it's too complicated. There're so many documents and what ever you read the document always tell you you need to read another document. Are there any simple ways to do this?

    Read the article

  • JavaScript: One ID, two functions. How can I do this with minimal code duplication?

    - by user1775598
    I've got an ID and I'd like to assign two functions to it. Here's what it currently looks like: document.getElementById(this.config.dragArea).addEventListener("drop", this._dropFiles, false); document.getElementById(this.config.dragArea).addEventListener("drop", this._handleFileDrop, false); How can I rewrite this file without so much duplication? I tried doing document.getElementById(this.config.dragArea).addEventListener("drop", this._dropFiles, this._handleFileDrop, false); and document.getElementById(this.config.dragArea).addEventListener("drop", function(){this._dropFiles; this._handleFileDrop}, false); All to no avail :(

    Read the article

  • trying to use mod_proxy with httpd and tomcat

    - by techsjs2012
    I been trying to use mod_proxy with httpd and tomcat... I have on VirtualBox running Scientific Linux which has httpd and tomcat 6 on it.. I made two nodes of tomcat6. I followed this guide like 10 times and still cant get the 2nd node of tomcat working.. http://www.richardnichols.net/2010/08/5-minute-guide-clustering-apache-tomcat/ Here is the lines from my http.conf file <Proxy balancer://testcluster stickysession=JSESSIONID> BalancerMember ajp://127.0.0.1:8009 min=10 max=100 route=node1 loadfactor=1 BalancerMember ajp://127.0.0.1:8109 min=10 max=100 route=node2 loadfactor=1 </Proxy> ProxyPass /examples balancer://testcluster/examples <Location /balancer-manager> SetHandler balancer-manager AuthType Basic AuthName "Balancer Manager" AuthUserFile "/etc/httpd/conf/.htpasswd" Require valid-user </Location> Now here is my server.xml from node1 <?xml version='1.0' encoding='utf-8'?> <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <!-- Note: A "Server" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/server.html --> <Server port="8005" shutdown="SHUTDOWN"> <!--APR library loader. Documentation at /docs/apr.html --> <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" /> <!--Initialize Jasper prior to webapps are loaded. Documentation at /docs/jasper-howto.html --> <Listener className="org.apache.catalina.core.JasperListener" /> <!-- Prevent memory leaks due to use of particular java/javax APIs--> <Listener className="org.apache.catalina.core.JreMemoryLeakPreventionListener" /> <!-- JMX Support for the Tomcat server. Documentation at /docs/non-existent.html --> <Listener className="org.apache.catalina.mbeans.ServerLifecycleListener" /> <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" /> <!-- Global JNDI resources Documentation at /docs/jndi-resources-howto.html --> <GlobalNamingResources> <!-- Editable user database that can also be used by UserDatabaseRealm to authenticate users --> <Resource name="UserDatabase" auth="Container" type="org.apache.catalina.UserDatabase" description="User database that can be updated and saved" factory="org.apache.catalina.users.MemoryUserDatabaseFactory" pathname="conf/tomcat-users.xml" /> </GlobalNamingResources> <!-- A "Service" is a collection of one or more "Connectors" that share a single "Container" Note: A "Service" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/service.html --> <Service name="Catalina"> <!--The connectors can use a shared executor, you can define one or more named thread pools--> <!-- <Executor name="tomcatThreadPool" namePrefix="catalina-exec-" maxThreads="150" minSpareThreads="4"/> --> <!-- A "Connector" represents an endpoint by which requests are received and responses are returned. Documentation at : Java HTTP Connector: /docs/config/http.html (blocking & non-blocking) Java AJP Connector: /docs/config/ajp.html APR (HTTP/AJP) Connector: /docs/apr.html Define a non-SSL HTTP/1.1 Connector on port 8080 <Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" /> --> <!-- A "Connector" using the shared thread pool--> <!-- <Connector executor="tomcatThreadPool" port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" /> --> <!-- Define a SSL HTTP/1.1 Connector on port 8443 This connector uses the JSSE configuration, when using APR, the connector should be using the OpenSSL style configuration described in the APR documentation --> <!-- <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" /> --> <!-- Define an AJP 1.3 Connector on port 8009 --> <Connector port="8009" protocol="AJP/1.3" redirectPort="8443" /> <!-- An Engine represents the entry point (within Catalina) that processes every request. The Engine implementation for Tomcat stand alone analyzes the HTTP headers included with the request, and passes them on to the appropriate Host (virtual host). Documentation at /docs/config/engine.html --> <!-- You should set jvmRoute to support load-balancing via AJP ie : <Engine name="Catalina" defaultHost="localhost" jvmRoute="jvm1"> --> <Engine name="Catalina" defaultHost="localhost" jvmRoute="node1"> <!--For clustering, please take a look at documentation at: /docs/cluster-howto.html (simple how to) /docs/config/cluster.html (reference documentation) --> <!-- <Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"/> --> <!-- The request dumper valve dumps useful debugging information about the request and response data received and sent by Tomcat. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.RequestDumperValve"/> --> <!-- This Realm uses the UserDatabase configured in the global JNDI resources under the key "UserDatabase". Any edits that are performed against this UserDatabase are immediately available for use by the Realm. --> <Realm className="org.apache.catalina.realm.UserDatabaseRealm" resourceName="UserDatabase"/> <!-- Define the default virtual host Note: XML Schema validation will not work with Xerces 2.2. --> <Host name="localhost" appBase="webapps" unpackWARs="true" autoDeploy="true" xmlValidation="false" xmlNamespaceAware="false"> <!-- SingleSignOn valve, share authentication between web applications Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.authenticator.SingleSignOn" /> --> <!-- Access log processes all example. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs" prefix="localhost_access_log." suffix=".txt" pattern="common" resolveHosts="false"/> --> </Host> </Engine> </Service> </Server> now here is the server.xml file from node2 <?xml version='1.0' encoding='utf-8'?> <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <!-- Note: A "Server" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/server.html --> <Server port="8105" shutdown="SHUTDOWN"> <!--APR library loader. Documentation at /docs/apr.html --> <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" /> <!--Initialize Jasper prior to webapps are loaded. Documentation at /docs/jasper-howto.html --> <Listener className="org.apache.catalina.core.JasperListener" /> <!-- Prevent memory leaks due to use of particular java/javax APIs--> <Listener className="org.apache.catalina.core.JreMemoryLeakPreventionListener" /> <!-- JMX Support for the Tomcat server. Documentation at /docs/non-existent.html --> <Listener className="org.apache.catalina.mbeans.ServerLifecycleListener" /> <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" /> <!-- Global JNDI resources Documentation at /docs/jndi-resources-howto.html --> <GlobalNamingResources> <!-- Editable user database that can also be used by UserDatabaseRealm to authenticate users --> <Resource name="UserDatabase" auth="Container" type="org.apache.catalina.UserDatabase" description="User database that can be updated and saved" factory="org.apache.catalina.users.MemoryUserDatabaseFactory" pathname="conf/tomcat-users.xml" /> </GlobalNamingResources> <!-- A "Service" is a collection of one or more "Connectors" that share a single "Container" Note: A "Service" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/service.html --> <Service name="Catalina"> <!--The connectors can use a shared executor, you can define one or more named thread pools--> <!-- <Executor name="tomcatThreadPool" namePrefix="catalina-exec-" maxThreads="150" minSpareThreads="4"/> --> <!-- A "Connector" represents an endpoint by which requests are received and responses are returned. Documentation at : Java HTTP Connector: /docs/config/http.html (blocking & non-blocking) Java AJP Connector: /docs/config/ajp.html APR (HTTP/AJP) Connector: /docs/apr.html Define a non-SSL HTTP/1.1 Connector on port 8080 <Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" /> --> <!-- A "Connector" using the shared thread pool--> <!-- <Connector executor="tomcatThreadPool" port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" /> --> <!-- Define a SSL HTTP/1.1 Connector on port 8443 This connector uses the JSSE configuration, when using APR, the connector should be using the OpenSSL style configuration described in the APR documentation --> <!-- <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" /> --> <!-- Define an AJP 1.3 Connector on port 8009 --> <Connector port="8109" protocol="AJP/1.3" redirectPort="8443" /> <!-- An Engine represents the entry point (within Catalina) that processes every request. The Engine implementation for Tomcat stand alone analyzes the HTTP headers included with the request, and passes them on to the appropriate Host (virtual host). Documentation at /docs/config/engine.html --> <!-- You should set jvmRoute to support load-balancing via AJP ie : <Engine name="Catalina" defaultHost="localhost" jvmRoute="jvm1"> --> <Engine name="Catalina" defaultHost="localhost" jvmRoute="node2"> <!--For clustering, please take a look at documentation at: /docs/cluster-howto.html (simple how to) /docs/config/cluster.html (reference documentation) --> <!-- <Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"/> --> <!-- The request dumper valve dumps useful debugging information about the request and response data received and sent by Tomcat. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.RequestDumperValve"/> --> <!-- This Realm uses the UserDatabase configured in the global JNDI resources under the key "UserDatabase". Any edits that are performed against this UserDatabase are immediately available for use by the Realm. --> <Realm className="org.apache.catalina.realm.UserDatabaseRealm" resourceName="UserDatabase"/> <!-- Define the default virtual host Note: XML Schema validation will not work with Xerces 2.2. --> <Host name="localhost" appBase="webapps" unpackWARs="true" autoDeploy="true" xmlValidation="false" xmlNamespaceAware="false"> <!-- SingleSignOn valve, share authentication between web applications Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.authenticator.SingleSignOn" /> --> <!-- Access log processes all example. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs" prefix="localhost_access_log." suffix=".txt" pattern="common" resolveHosts="false"/> --> </Host> </Engine> </Service> </Server> I dont know what it is. but I been trying for days

    Read the article

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

  • MySQL Syslog Audit Plugin

    - by jonathonc
    This post shows the construction process of the Syslog Audit plugin that was presented at MySQL Connect 2012. It is based on an environment that has the appropriate development tools enabled including gcc,g++ and cmake. It also assumes you have downloaded the MySQL source code (5.5.16 or higher) and have compiled and installed the system into the /usr/local/mysql directory ready for use.  The information provided below is designed to show the different components that make up a plugin, and specifically an audit type plugin, and how it comes together to be used within the MySQL service. The MySQL Reference Manual contains information regarding the plugin API and how it can be used, so please refer there for more detailed information. The code in this post is designed to give the simplest information necessary, so handling every return code, managing race conditions etc is not part of this example code. Let's start by looking at the most basic implementation of our plugin code as seen below: /*    Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.    Author:  Jonathon Coombes    Licence: GPL    Description: An auditing plugin that logs to syslog and                 can adjust the loglevel via the system variables. */ #include <stdio.h> #include <string.h> #include <mysql/plugin_audit.h> #include <syslog.h> There is a commented header detailing copyright/licencing and meta-data information and then the include headers. The two important include statements for our plugin are the syslog.h plugin, which gives us the structures for syslog, and the plugin_audit.h include which has details regarding the audit specific plugin api. Note that we do not need to include the general plugin header plugin.h, as this is done within the plugin_audit.h file already. To implement our plugin within the current implementation we need to add it into our source code and compile. > cd /usr/local/src/mysql-5.5.28/plugin > mkdir audit_syslog > cd audit_syslog A simple CMakeLists.txt file is created to manage the plugin compilation: MYSQL_ADD_PLUGIN(audit_syslog audit_syslog.cc MODULE_ONLY) Run the cmake  command at the top level of the source and then you can compile the plugin using the 'make' command. This results in a compiled audit_syslog.so library, but currently it is not much use to MySQL as there is no level of api defined to communicate with the MySQL service. Now we need to define the general plugin structure that enables MySQL to recognise the library as a plugin and be able to install/uninstall it and have it show up in the system. The structure is defined in the plugin.h file in the MySQL source code.  /*   Plugin library descriptor */ mysql_declare_plugin(audit_syslog) {   MYSQL_AUDIT_PLUGIN,           /* plugin type                    */   &audit_syslog_descriptor,     /* descriptor handle               */   "audit_syslog",               /* plugin name                     */   "Author Name",                /* author                          */   "Simple Syslog Audit",        /* description                     */   PLUGIN_LICENSE_GPL,           /* licence                         */   audit_syslog_init,            /* init function     */   audit_syslog_deinit,          /* deinit function */   0x0001,                       /* plugin version                  */   NULL,                         /* status variables        */   NULL,                         /* system variables                */   NULL,                         /* no reserves                     */   0,                            /* no flags                        */ } mysql_declare_plugin_end; The general plugin descriptor above is standard for all plugin types in MySQL. The plugin type is defined along with the init/deinit functions and interface methods into the system for sharing information, and various other metadata information. The descriptors have an internally recognised version number so that plugins can be matched against the api on the running server. The other details are usually related to the type-specific methods and structures to implement the plugin. Each plugin has a type-specific descriptor as well which details how the plugin is implemented for the specific purpose of that plugin type. /*   Plugin type-specific descriptor */ static struct st_mysql_audit audit_syslog_descriptor= {   MYSQL_AUDIT_INTERFACE_VERSION,                        /* interface version    */   NULL,                                                 /* release_thd function */   audit_syslog_notify,                                  /* notify function      */   { (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK |                     MYSQL_AUDIT_CONNECTION_CLASSMASK }  /* class mask           */ }; In this particular case, the release_thd function has not been defined as it is not required. The important method for auditing is the notify function which is activated when an event occurs on the system. The notify function is designed to activate on an event and the implementation will determine how it is handled. For the audit_syslog plugin, the use of the syslog feature sends all events to the syslog for recording. The class mask allows us to determine what type of events are being seen by the notify function. There are currently two major types of event: 1. General Events: This includes general logging, errors, status and result type events. This is the main one for tracking the queries and operations on the database. 2. Connection Events: This group is based around user logins. It monitors connections and disconnections, but also if somebody changes user while connected. With most audit plugins, the principle behind the plugin is to track changes to the system over time and counters can be an important part of this process. The next step is to define and initialise the counters that are used to track the events in the service. There are 3 counters defined in total for our plugin - the # of general events, the # of connection events and the total number of events.  static volatile int total_number_of_calls; /* Count MYSQL_AUDIT_GENERAL_CLASS event instances */ static volatile int number_of_calls_general; /* Count MYSQL_AUDIT_CONNECTION_CLASS event instances */ static volatile int number_of_calls_connection; The init and deinit functions for the plugin are there to be called when the plugin is activated and when it is terminated. These offer the best option to initialise the counters for our plugin: /*  Initialize the plugin at server start or plugin installation. */ static int audit_syslog_init(void *arg __attribute__((unused))) {     openlog("mysql_audit:",LOG_PID|LOG_PERROR|LOG_CONS,LOG_USER);     total_number_of_calls= 0;     number_of_calls_general= 0;     number_of_calls_connection= 0;     return(0); } The init function does a call to openlog to initialise the syslog functionality. The parameters are the service to log under ("mysql_audit" in this case), the syslog flags and the facility for the logging. Then each of the counters are initialised to zero and a success is returned. If the init function is not defined, it will return success by default. /*  Terminate the plugin at server shutdown or plugin deinstallation. */ static int audit_syslog_deinit(void *arg __attribute__((unused))) {     closelog();     return(0); } The deinit function will simply close our syslog connection and return success. Note that the syslog functionality is part of the glibc libraries and does not require any external factors.  The function names are what we define in the general plugin structure, so these have to match otherwise there will be errors. The next step is to implement the event notifier function that was defined in the type specific descriptor (audit_syslog_descriptor) which is audit_syslog_notify. /* Event notifier function */ static void audit_syslog_notify(MYSQL_THD thd __attribute__((unused)), unsigned int event_class, const void *event) { total_number_of_calls++; if (event_class == MYSQL_AUDIT_GENERAL_CLASS) { const struct mysql_event_general *event_general= (const struct mysql_event_general *) event; number_of_calls_general++; syslog(audit_loglevel,"%lu: User: %s Command: %s Query: %s\n", event_general->general_thread_id, event_general->general_user, event_general->general_command, event_general->general_query ); } else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS) { const struct mysql_event_connection *event_connection= (const struct mysql_event_connection *) event; number_of_calls_connection++; syslog(audit_loglevel,"%lu: User: %s@%s[%s] Event: %d Status: %d\n", event_connection->thread_id, event_connection->user, event_connection->host, event_connection->ip, event_connection->event_subclass, event_connection->status ); } }   In the case of an event, the notifier function is called. The first step is to increment the total number of events that have occurred in our database.The event argument is then cast into the appropriate event structure depending on the class type, of general event or connection event. The event type counters are incremented and details are sent via the syslog() function out to the system log. There are going to be different line formats and information returned since the general events have different data compared to the connection events, even though some of the details overlap, for example, user, thread id, host etc. On compiling the code now, there should be no errors and the resulting audit_syslog.so can be loaded into the server and ready to use. Log into the server and type: mysql> INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so'; This will install the plugin and will start updating the syslog immediately. Note that the audit plugin attaches to the immediate thread and cannot be uninstalled while that thread is active. This means that you cannot run the UNISTALL command until you log into a different connection (thread) on the server. Once the plugin is loaded, the system log will show output such as the following: Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: show tables Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: show tables Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: select * from t1 Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: select * from t1 It appears that two of each event is being shown, but in actuality, these are two separate event types - the result event and the status event. This could be refined further by changing the audit_syslog_notify function to handle the different event sub-types in a different manner.  So far, it seems that the logging is working with events showing up in the syslog output. The issue now is that the counters created earlier to track the number of events by type are not accessible when the plugin is being run. Instead there needs to be a way to expose the plugin specific information to the service and vice versa. This could be done via the information_schema plugin api, but for something as simple as counters, the obvious choice is the system status variables. This is done using the standard structure and the declaration: /*  Plugin status variables for SHOW STATUS */ static struct st_mysql_show_var audit_syslog_status[]= {   { "Audit_syslog_total_calls",     (char *) &total_number_of_calls,     SHOW_INT },   { "Audit_syslog_general_events",     (char *) &number_of_calls_general,     SHOW_INT },   { "Audit_syslog_connection_events",     (char *) &number_of_calls_connection,     SHOW_INT },   { 0, 0, SHOW_INT } };   The structure is simply the name that will be displaying in the mysql service, the address of the associated variables, and the data type being used for the counter. It is finished with a blank structure to show that there are no more variables. Remember that status variables may have the same name for variables from other plugin, so it is considered appropriate to add the plugin name at the start of the status variable name to avoid confusion. Looking at the status variables in the mysql client shows something like the following: mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 2     | | Audit_syslog_total_calls       | 3     | +--------------------------------+-------+ 3 rows in set (0.00 sec) The final connectivity piece for the plugin is to allow the interactive change of the logging level between the plugin and the system. This requires the ability to send changes via the mysql service through to the plugin. This is done using the system variables interface and defining a single variable to keep track of the active logging level for the facility. /* Plugin system variables for SHOW VARIABLES */ static MYSQL_SYSVAR_STR(loglevel, audit_loglevel,                         PLUGIN_VAR_RQCMDARG,                         "User can specify the log level for auditing",                         audit_loglevel_check, audit_loglevel_update, "LOG_NOTICE"); static struct st_mysql_sys_var* audit_syslog_sysvars[] = {     MYSQL_SYSVAR(loglevel),     NULL }; So now the system variable 'loglevel' is defined for the plugin and associated to the global variable 'audit_loglevel'. The check or validation function is defined to make sure that no garbage values are attempted in the update of the variable. The update function is used to save the new value to the variable. Note that the audit_syslog_sysvars structure is defined in the general plugin descriptor to associate the link between the plugin and the system and how much they interact. Next comes the implementation of the validation function and the update function for the system variable. It is worth noting that if you have a simple numeric such as integers for the variable types, the validate function is often not required as MySQL will handle the automatic check and validation of simple types. /* longest valid value */ #define MAX_LOGLEVEL_SIZE 100 /* hold the valid values */ static const char *possible_modes[]= { "LOG_ERROR", "LOG_WARNING", "LOG_NOTICE", NULL };  static int audit_loglevel_check(     THD*                        thd,    /*!< in: thread handle */     struct st_mysql_sys_var*    var,    /*!< in: pointer to system                                         variable */     void*                       save,   /*!< out: immediate result                                         for update function */     struct st_mysql_value*      value)  /*!< in: incoming string */ {     char buff[MAX_LOGLEVEL_SIZE];     const char *str;     const char **found;     int length;     length= sizeof(buff);     if (!(str= value->val_str(value, buff, &length)))         return 1;     /*         We need to return a pointer to a locally allocated value in "save".         Here we pick to search for the supplied value in an global array of         constant strings and return a pointer to one of them.         The other possiblity is to use the thd_alloc() function to allocate         a thread local buffer instead of the global constants.     */     for (found= possible_modes; *found; found++)     {         if (!strcmp(*found, str))         {             *(const char**)save= *found;             return 0;         }     }     return 1; } The validation function is simply to take the value being passed in via the SET GLOBAL VARIABLE command and check if it is one of the pre-defined values allowed  in our possible_values array. If it is found to be valid, then the value is assigned to the save variable ready for passing through to the update function. static void audit_loglevel_update(     THD*                        thd,        /*!< in: thread handle */     struct st_mysql_sys_var*    var,        /*!< in: system variable                                             being altered */     void*                       var_ptr,    /*!< out: pointer to                                             dynamic variable */     const void*                 save)       /*!< in: pointer to                                             temporary storage */ {     /* assign the new value so that the server can read it */     *(char **) var_ptr= *(char **) save;     /* assign the new value to the internal variable */     audit_loglevel= *(char **) save; } Since all the validation has been done already, the update function is quite simple for this plugin. The first part is to update the system variable pointer so that the server can read the value. The second part is to update our own global plugin variable for tracking the value. Notice that the save variable is passed in as a void type to allow handling of various data types, so it must be cast to the appropriate data type when assigning it to the variables. Looking at how the latest changes affect the usage of the plugin and the interaction within the server shows: mysql> show global variables like "audit%"; +-----------------------+------------+ | Variable_name         | Value      | +-----------------------+------------+ | audit_syslog_loglevel | LOG_NOTICE | +-----------------------+------------+ 1 row in set (0.00 sec) mysql> set global audit_syslog_loglevel="LOG_ERROR"; Query OK, 0 rows affected (0.00 sec) mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 11    | | Audit_syslog_total_calls       | 12    | +--------------------------------+-------+ 3 rows in set (0.00 sec) mysql> show global variables like "audit%"; +-----------------------+-----------+ | Variable_name         | Value     | +-----------------------+-----------+ | audit_syslog_loglevel | LOG_ERROR | +-----------------------+-----------+ 1 row in set (0.00 sec)   So now we have a plugin that will audit the events on the system and log the details to the system log. It allows for interaction to see the number of different events within the server details and provides a mechanism to change the logging level interactively via the standard system methods of the SET command. A more complex auditing plugin may have more detailed code, but each of the above areas is what will be involved and simply expanded on to add more functionality. With the above skeleton code, it is now possible to create your own audit plugins to implement your own auditing requirements. If, however, you are not of the coding persuasion, then you could always consider the option of the MySQL Enterprise Audit plugin that is available to purchase.

    Read the article

  • Create Panoramic Photos with Windows Live Photo Gallery

    - by Matthew Guay
    Have you ever wanted to capture the view from a mountain or the full size of a building?  Here’s how you can stitch multiple shots together into the perfect panoramic picture for free with Windows Live Photo Gallery. Getting Started First, make sure you have Windows Live Photo Gallery installed (link below).  Live Photo Gallery is part of the Windows Live Essentials suite, you can select other programs to install along with it if you want. Make sure to uncheck setting your home page to MSN and setting your search provider as Bing if you don’t want them changed.   Now, make sure you have pictures that will work good for a panorama.  These need to be taken from the same spot, and the edges of the pictures need to overlap so the program can find where the pictures connect.  Here we have taken pictures inside a building with a cell phone camera. Make your Panorama Open Live Photo Gallery, and find the pictures you want to use in your panorama.  It will automatically index and display all of the photos in your Pictures folder or Library if you’re using Windows 7. If your pictures are saved elsewhere, add that folder to Photo Gallery.  Click File, Include a folder in the gallery, and select the correct folder at the prompt. Now select all of the pictures that you will use in your panorama.  You can easily do this by clicking the checkbox on each picture that appears when you hover over it.    Once all of the pictures are selected, click Make in the menu bar and select Create panoramic photo… Alternately, right-click on any of the pictures you’ve selected, and click Create panoramic photo… Live Photo Gallery will analyze your photos and compost them together to create a panorama.  The amount of time it takes will vary depending on the number of photos, size of the pictures, and computer speed. When it’s finished making the panorama, you’ll be prompted to enter a file name and save the picture. Your new panorama picture will open as soon as it’s saved.  Depending on your shots, the picture may have quite a bit of black space around the edges where each picture didn’t cover the exact same amount of area. To correct this, click Fix on the menu bar, and then select Crop Photo in the sidebar that opens. Select the center of the picture with the crop tool, and click Apply when you’ve got the selection you want. Live Photo Gallery automatically saves your picture changes, and you can revert back to the original picture if you wish. Now you’ve got a nice panoramic shot, trimmed and ready to print, share, and more. Conclusion Panoramic shots are great ways to capture your whole surroundings, whether it’s a sports stadium, mall, or a scenic mountain view.  They can also be a great way to capture more with low-resolution cameras. Link Download Windows Live Photo Gallery Similar Articles Productive Geek Tips Family Fun: Share Photos with Photo Gallery and Windows Live SpacesLearning Windows 7: Manage Photos with Live Photo GalleryEasily Re-Size Photos in Windows Vista or XPInstall Windows Live Essentials In Windows 7Convert Photos to Flash for Your Website TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 2010 World Cup Schedule Boot Snooze – Reboot and then Standby or Hibernate Customize Everything Related to Dates, Times, Currency and Measurement in Windows 7 Google Earth replacement Icon (Icons we like) Build Great Charts in Excel with Chart Advisor tinysong gives a shortened URL for you to post on Twitter (or anywhere)

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Cluster Node Recovery Using Second Node in Solaris Cluster

    - by Onur Bingul
    Assumptions:Node 0a is the cluster node that has crashed and could not boot anymore.Node 0b is the node in cluster and in production with services active.Both nodes have their boot disk mirrored via SDS/SVM.We have many options to clone the boot disk from node 0b:- make a copy via network using the ufsdump command and pipe to ufsrestore - make a copy inserting the disk locally on node 0b and creating the third mirror with SDS- make a copy inserting the disk locally on node 0b using dd commandIn this procedure we are going to use dd command (from my experience this is the best option).Bare in mind that in the examples provided we work on Sun Fire V240 systems which have SCSI internal disks. In the case of Fibre Channel (FC) internal disks you must pay attention to the unique identifier, or World Wide Name (WWN), associated with each FC disk (in this case take a look at infodoc #40133 in order to recreate the device tree correctly).Procedure:On node 0b the boot disk is c1t0d0 (c1t1d0 mirror) and this is the VTOC:* Partition  Tag  Flags    Sector     Count    Sector  Mount Directory      0      2    00          0   2106432   2106431      1      3    01    2106432  74630784  76737215      2      5    00          0 143349312 143349311      4      7    00   76737216  50340672 127077887      5      4    00  127077888  14683968 141761855      6      0    00  141761856   1058304 142820159      7      0    00  142820160    529152 143349311We will insert the new disk on node 0b and it will be seen as c1t2d0.1) On node 0b we make a copy via dd from disk c1t0d0s2 to disk c1t2d0s2# dd if=/dev/rdsk/c1t0d0s2 of=/dev/rdsk/c1t2d0s2 bs=8192kA copy of a 72GB disk will take approximately about 45 minutes.Note: as an alternative to make identical copy of root over network follow Document ID: 47498Title: Sun[TM] Cluster 3.0: How to Rebuild a node with Veritas Volume Manager2) Perform an fsck on disk c1t2d0 data slices:   1.  fsck -o f /dev/rdsk/c1t2d0s0 (root)   2.  fsck -o f /dev/rdsk/c1t2d0s4 (/var)   3.  fsck -o f /dev/rdsk/c1t2d0s5 (/usr)   4.  fsck -o f /dev/rdsk/c1t2d0s6 (/globaldevices)3) Mount the root file system in order to edit following files for changing the node name:# mount /dev/dsk/c1t2d0s0 /mntChange the hostname from 0b to 0a:# cd /mnt/etc# vi hosts # vi hostname.bge0 # vi hostname.bge2 # vi nodename 4) Change the /mnt/etc/vfstab from the actual:/dev/md/dsk/d201        -       -       swap    -       no      -/dev/md/dsk/d200        /dev/md/rdsk/d200       /       ufs     1       no      -/dev/md/dsk/d205        /dev/md/rdsk/d205       /usr    ufs     1       no      logging/dev/md/dsk/d204        /dev/md/rdsk/d204       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d206        /dev/md/rdsk/d206       /global/.devices/node@2 ufs     2       noglobalto this (unencapsulate disk from SDS/SVM):/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/dsk/c1t0d0s0       /dev/rdsk/c1t0d0s0       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs     2       no globalIt is important that global device partition (slice 6) in the new vfstab will point to the physical partition of the disk (in our case slice 6).Be careful with the name you use for the new disk. In this case we define it as c1t0d0 because we will insert it as target 0 in node 0a.But this could be different based on the configuration you are working on.5) Remove following entry from /mnt/etc/system (part of unencapsulation procedure):rootdev:/pseudo/md@0:0,200,blk6) Correct the link shared -> ../../global/.devices/node@2/dev/md/shared in order to point to the nodeid of node 0a (in our case nodeid 1):# cd /mnt/dev/mdhow it is now.... node 0b has nodeid 2lrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@2/dev/md/shared# rm shared# ln -s ../../global/.devices/node@1/dev/md/shared sharedhow is going to be... with nodeid 1 for node 0alrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@1/dev/md/shared7) Change nodeid (in our case from 2 to 1):# cd /mnt/etc/cluster# vi nodeid8) Change the file /mnt/etc/path_to_inst in order to reflect the correct nodeid for node 0a:# cd /mnt/etc# vi path_to_instChange entries from node@2 to node@1 with the vi command ":%s/node@2/node@1/g"9) Write the bootblock to the disk... just in case:# /usr/sbin/installboot /usr/platform/sun4u/lib/fs/ufs/bootblk /dev/rdsk/c1t2d0s0Now the disk is ready to be inserted in node 0a in order to bootup the node.10) Bootup node 0a with command "boot -sx"... this is becasue we need to make some changes in ccr files in order to recreate did environment.11) Modify cluster ccr:# cd /etc/cluster/ccr# rm did_instances# rm did_instances.bak# vi directory - remove the did_instances line.# /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/directory # grep ccr_gennum /etc/cluster/ccr/directory ccr_gennum -1 # /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/infrastructure # grep ccr_gennum /etc/cluster/ccr/infrastructure ccr_gennum -112) Bring the node 0a down again to the ok prompt and then issue the command "boot -r"Now the node will join the cluster and from scstat and metaset command you can verify functionality. Next step is to encapsulate the boot disk in SDS/SVM and create the mirrors.In our case node 0b has metadevice name starting from d200. For this reason on node 0a we need to create metadevice starting from d100. This is just an example, you can have different names.The important thing to remember is that metadevice boot disks have different names on each node.13) Remove metadevice pointing to the boot and mirror disks (inherit from node 0b):# metaclear -r -f d200# metaclear -r -f d201# metaclear -r -f d204# metaclear -r -f d205# metaclear -r -f d206verify from metastat that no metadevices are set for boot and mirror disks.14) Encapsulate the boot disk:# metainit -f d110 1 1 c1t0d0s0# metainit d100 -m d110# metaroot d10015) Reboot node 0a.16) Create all the metadevice for slices remaining on boot disk# metainit -f d111 1 1 c1t0d0s1# metainit d101 -m d111# metainit -f d114 1 1 c1t0d0s4# metainit d104 -m d114# metainit -f d115 1 1 c1t0d0s5# metainit d105 -m d115# metainit -f d116 1 1 c1t0d0s6# metainit d106 -m d11617) Edit the vfstab in order to specifiy metadevices created:old:/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs      2       no  globalnew:/dev/md/dsk/d101        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/md/dsk/d105        /dev/md/rdsk/d105       /usr    ufs     1       no      logging/dev/md/dsk/d104        /dev/md/rdsk/d104       /var    ufs     1       no      logging#/dev/md/dsk/106       /dev/md/rdsk/d106       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d106        /dev/md/rdsk/d106       /global/.devices/node@1 ufs     2       noglobal18) Reboot node 0a in order to check new SDS/SVM boot configuration.19) Label the mirror disk c1t1d0 with the VTOC of boot disk c1t0d0:# prtvtoc /dev/dsk/c1t0d0s2 > /var/tmp/VTOC_c1t0d0 # fmthard -s /var/tmp/VTOC_c1t0d0 /dev/rdsk/c1t1d0s220) Put DB replica on slice 7 of disk c1t1d0:# metadb -a -c 3 /dev/dsk/c1t1d0s721) Create metadevice for mirror disk c1t1d0 and attach the new mirror side:# metainit d120 1 1 c1t1d0s0# metattach d100 d120# metainit d121 1 1 c1t1d0s1# metattach d101 d121# metainit d124 1 1 c1t1d0s4# metattach d104 d124# metainit d125 1 1 c1t1d0s5# metattach d105 d125# metainit d126 1 1 c1t1d0s6# metattach d106 d126

    Read the article

  • Big Data – Interacting with Hadoop – What is Sqoop? – What is Zookeeper? – Day 17 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Pig and Pig Latin in Big Data Story. In this article we will understand what is Sqoop and Zookeeper in Big Data Story. There are two most important components one should learn when learning about interacting with Hadoop – Sqoop and Zookper. What is Sqoop? Most of the business stores their data in RDBMS as well as other data warehouse solutions. They need a way to move data to the Hadoop system to do various processing and return it back to RDBMS from Hadoop system. The data movement can happen in real time or at various intervals in bulk. We need a tool which can help us move this data from SQL to Hadoop and from Hadoop to SQL. Sqoop (SQL to Hadoop) is such a tool which extract data from non-Hadoop data sources and transform them into the format which Hadoop can use it and later it loads them into HDFS. Essentially it is ETL tool where it Extracts, Transform and Load from SQL to Hadoop. The best part is that it also does extract data from Hadoop and loads them to Non-SQL (or RDBMS) data stores. Essentially, Sqoop is a command line tool which does SQL to Hadoop and Hadoop to SQL. It is a command line interpreter. It creates MapReduce job behinds the scene to import data from an external database to HDFS. It is very effective and easy to learn tool for nonprogrammers. What is Zookeeper? ZooKeeper is a centralized service for maintaining configuration information, naming, providing distributed synchronization, and providing group services. In other words Zookeeper is a replicated synchronization service with eventual consistency. In simpler words – in Hadoop cluster there are many different nodes and one node is master. Let us assume that master node fails due to any reason. In this case, the role of the master node has to be transferred to a different node. The main role of the master node is managing the writers as that task requires persistence in order of writing. In this kind of scenario Zookeeper will assign new master node and make sure that Hadoop cluster performs without any glitch. Zookeeper is the Hadoop’s method of coordinating all the elements of these distributed systems. Here are few of the tasks which Zookeepr is responsible for. Zookeeper manages the entire workflow of starting and stopping various nodes in the Hadoop’s cluster. In Hadoop cluster when any processes need certain configuration to complete the task. Zookeeper makes sure that certain node gets necessary configuration consistently. In case of the master node fails, Zookeepr can assign new master node and make sure cluster works as expected. There many other tasks Zookeeper performance when it is about Hadoop cluster and communication. Basically without the help of Zookeeper it is not possible to design any new fault tolerant distributed application. Tomorrow In tomorrow’s blog post we will discuss about very important components of the Big Data Ecosystem – Big Data Analytics. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • What do you need to know to be a world-class master software developer? [closed]

    - by glitch
    I wanted to bring up this question to you folks and see what you think, hopefully advise me on the matter: let's say you had 30 years of learning and practicing software development in front of you, how would you dedicate your time so that you'd get the biggest bang for your buck. What would you both learn and work on to be a world-class software developer that would make a large impact on the industry and leave behind a legacy? I think that most great developers end up being both broad generalists and specialists in one-two areas of interest. I'm thinking Bill Joy, John Carmack, Linus Torvalds, K&R and so on. I'm thinking that perhaps one approach would be to break things down by categories and establish a base minimum of "software development" greatness. I'm thinking: Operating Systems: completely internalize the core concepts of OS, perhaps gain a lot of familiarity with an OSS one such as Linux. Anything from memory management to device drivers has to be complete second nature. Programming Languages: this is one of those topics that imho has to be fully grokked even if it might take many years. I don't think there's quite anything like going through the process of developing your own compiler, understanding language design trade-offs and so on. Programming Language Pragmatics is one of my favorite books actually, I think you want to have that internalized back to back, and that's just the start. You could go significantly deeper, but I think it's time well spent, because it's such a crucial building block. As a subset of that, you want to really understand the different programming paradigms out there. Imperative, declarative, logic, functional and so on. Anything from assembly to LISP should be at the very least comfortable to write in. Contexts: I believe one should have experience working in different contexts to truly be able to appreciate the trade-offs that are being made every day. Embedded, web development, mobile development, UX development, distributed, cloud computing and so on. Hardware: I'm somewhat conflicted about this one. I think you want some understanding of computer architecture at a low level, but I feel like the concepts that will truly matter will be slightly higher level, such as CPU caching / memory hierarchy, ILP, and so on. Networking: we live in a completely network-dependent era. Having a good understanding of the OSI model, knowing how the Web works, how HTTP works and so on is pretty much a pre-requisite these days. Distributed systems: once again, everything's distributed these days, it's getting progressively harder to ignore this reality. Slightly related, perhaps add solid understanding of how browsers work to that, since the world seems to be moving so much to interfacing with everything through a browser. Tools: Have a really broad toolset that you're familiar with, one that continuously expands throughout the years. Communication: I think being a great writer, effective communicator and a phenomenal team player is pretty much a prerequisite for a lot of a software developer's greatness. It can't be overstated. Software engineering: understanding the process of building software, team dynamics, the requirements of the business-side, all the pitfalls. You want to deeply understand where what you're writing fits from the market perspective. The better you understand all of this, the more of your work will actually see the daylight. This is really just a starting list, I'm confident that there's a ton of other material that you need to master. As I mentioned, you most likely end up specializing in a bunch of these areas as you go along, but I was trying to come up with a baseline. Any thoughts, suggestions and words of wisdom from the grizzled veterans out there who would like to share their thoughts and experiences with this? I'd really love to know what you think!

    Read the article

  • VPN with client-to-client direct connectivity?

    - by Johannes Ernst
    When setting up a VPN, clients (say client1 and client2) usually authenticate to a server, and together the three constitute the VPN. When client1 wishes to send a packet to client2, this packet usually gets routed by way of server. Are there products / configuration blueprints for products where it is possible to send packets directly from client1 to client2 without going though server? (if the underlying network topology permits it, e.g. no firewalls in the way) If not, is there a way by which client1 can send a packet to client2 by way of server, without the server being able to snoop on the content of the packet? (E.g. because the packet is encrypted with the public key of client2) I just asked in the OpenVPN forum, and the answer I got was "not with OpenVPN". So my question is: are there other products with which this is possible? Open-source preferred ... One use case: client1 and client2, typically in separate offices, find themselves both at headquarters. Do they still need to talk to each other via the public internet? Links appreciated. Thank you.

    Read the article

  • How do I push my initial snapshot to a subscriber server in SQL Server 2000?

    - by Kev
    I'm configuring Transactional Replication using the Push model. The scenario is: The SQL Servers: SQL01 (publisher) and SQL02 (subscriber) - both running SQL 2000 SP4. Both servers are standalone (i.e. not domain members) Both servers have their FQDN and NETBIOS names in their HOSTS files I've managed to configure SQL01 to publish my database and configured a Push subscription for SQL02 using the Push New Subscription wizard and set the Distribution Agent to update the subscription continuously. On the Push Subscription wizard "Initialise Subscription" page I've selected "Yes, initialise the schema and data" and ticked the "Start the Snapshot Agent to begin the initialisation process immediately" option. All the required services are running (SQL Agent). When I complete the wizard and browse the Replication - Publications folder I can see my publication (blue book with arrow). The publication shows the Push subscription and its status is Pending. If I look in the c:\Program Files\Microsoft SQL Server\Mssql\Repldata folder I see a number of T-SQL scripts for each table e.g. Products.bcp, Products.sch, Products.idx. What should happen now? Should my replicated database now (magically) appear on the subscription server?

    Read the article

  • What do these MS DTC Exceptions mean?

    - by David B
    I wrote a program to demonstrate the behavior of DTC timeouts with multiple threads. I'm getting several exceptions, seemingly at random. Are all of these simple Timeouts, or are some of them indicative of deeper problems (connection pool interactions, etc)? The Microsoft Distributed Transaction Coordinator (MS DTC) has cancelled the distributed transaction. Distributed transaction completed. Either enlist this session in a new transaction or the NULL transaction. The transaction associated with the current connection has completed but has not been disposed. The transaction must be disposed before the connection can be used to execute SQL statements. The operation is not valid for the state of the transaction. ExecuteReader requires an open and available Connection. The connection's current state is closed. Here's the data part of the code: using (DemoDataDataContext dc1 = new DemoDataDataContext(Conn1)) using (DemoDataDataContext dc2 = new DemoDataDataContext(Conn2)) { WriteMany(dc1, 100); //generate 100 records for insert WriteMany(dc2, 100000); //generate 100,000 records for insert Console.WriteLine("{0} : {1}", Name, " generated records for insert."); using (TransactionScope ts = new TransactionScope()) { dc1.SubmitChanges(); dc2.SubmitChanges(); ts.Complete(); } }

    Read the article

  • Guidelines for using Merge task in SSIS

    - by thursdaysgeek
    I have a table with three fields, one an identity field, and I need to add some new records from a source that has the other two fields. I'm using SSIS, and I think I should use the merge tool, because one of the sources is not in the local database. But, I'm confused by the merge tool and the proper process. I have my one source (an Oracle table), and I get two fields, well_id and well_name, with a sort after, sorting by well_id. I have the destination table (sql server), and I'm also using that as a source. It has three fields: well_key (identity field), well_id, and well_name, and I then have a sort task, sorting on well_id. Both of those are input to my merge task. I was going to output to a temporary table, and then somehow get the new records back into the sql server table. Oracle Well SQL Well | | V V Sort Source Sort Well | | -------> Merge* <----------- | V Temp well table I suspect this isn't the best way to use this tool, however. What are the proper steps for a merge like this? One of my reasons for questioning this method is that my merge has an error, telling me that the "Merge Input 2" must be sorted, but its source is a sort task, so it IS sorted. Example data SQL Well (before merge) well_key well_id well_name 1 123 well k 2 292 well c 3 344 well t 5 439 well d Oracle Well well_id well_name 123 well k 292 well c 311 well y 344 well t 439 well d 532 well j SQL Well (after merge) well_key well_id well_name 1 123 well k 2 292 well c 3 344 well t 5 439 well d 6 311 well y 7 532 well j Would it be better to load my Oracle Well to a temporary local file, and then just use a sql insert statment on it?

    Read the article

  • Trouble move-capturing std::unique_ptr in a lambda using std::bind

    - by user2478832
    I'd like to capture a variable of type std::vector<std::unique_ptr<MyClass>> in a lambda expression (in other words, "capture by move"). I found a solution which uses std::bind to capture unique_ptr (http://stackoverflow.com/a/12744730/2478832) and decided to use it as a starting point. However, the most simplified version of the proposed code I could get doesn't compile (lots of template mistakes, it seems to try to call unique_ptr's copy constructor). #include <functional> #include <memory> std::function<void ()> a(std::unique_ptr<int>&& param) { return std::bind( [] (int* p) {}, std::move(param)); } int main() { a(std::unique_ptr<int>(new int())); } Can anybody point out what is wrong with this code? EDIT: tried changing the lambda to take a reference to unique_ptr, it still doesn't compile. #include <functional> #include <memory> std::function<void ()> a(std::unique_ptr<int>&& param) { return std::bind( [] (std::unique_ptr<int>& p) {}, // also as a const reference std::move(param)); } int main() { a(std::unique_ptr<int>(new int())); }

    Read the article

  • Scalable / Parallel Large Graph Analysis Library?

    - by Joel Hoff
    I am looking for good recommendations for scalable and/or parallel large graph analysis libraries in various languages. The problems I am working on involve significant computational analysis of graphs/networks with 1-100 million nodes and 10 million to 1+ billion edges. The largest SMP computer I am using has 256 GB memory, but I also have access to an HPC cluster with 1000 cores, 2 TB aggregate memory, and MPI for communication. I am primarily looking for scalable, high-performance graph libraries that could be used in either single or multi-threaded scenarios, but parallel analysis libraries based on MPI or a similar protocol for communication and/or distributed memory are also of interest for high-end problems. Target programming languages include C++, C, Java, and Python. My research to-date has come up with the following possible solutions for these languages: C++ -- The most viable solutions appear to be the Boost Graph Library and Parallel Boost Graph Library. I have looked briefly at MTGL, but it is currently slanted more toward massively multithreaded hardware architectures like the Cray XMT. C - igraph and SNAP (Small-world Network Analysis and Partitioning); latter uses OpenMP for parallelism on SMP systems. Java - I have found no parallel libraries here yet, but JGraphT and perhaps JUNG are leading contenders in the non-parallel space. Python - igraph and NetworkX look like the most solid options, though neither is parallel. There used to be Python bindings for BGL, but these are now unsupported; last release in 2005 looks stale now. Other topics here on SO that I've looked at have discussed graph libraries in C++, Java, Python, and other languages. However, none of these topics focused significantly on scalability. Does anyone have recommendations they can offer based on experience with any of the above or other library packages when applied to large graph analysis problems? Performance, scalability, and code stability/maturity are my primary concerns. Most of the specialized algorithms will be developed by my team with the exception of any graph-oriented parallel communication or distributed memory frameworks (where the graph state is distributed across a cluster).

    Read the article

  • Catching MediaPlayer Exceptions from WPF MediaElement Control

    - by ScottCate
    I'm playing video in a MediaElement in WPF. It's working 1000's of times, over and over again. Once in a blue moon (like once a week), I get a windows exception (you know the dialog Dr. Watson Crash??) that happens. The MediaElment doesn't expose an error, it just crashes and sits there with an ugly Crash report on the screen. If you "view this report" you can see it is in fact MediaPlayer that has crashed. I know I can disable the crash reports from popping up - but I'm more interested in finding out what's going wrong. I'm not sure how to capture the results of the Dr. Watson capture, but I have the dialog open now if someone has advice on a better way to capture. Here is the opening line of data, that points to my application, then to wmvdecod.dll AppName: ScottApp.exe AppVer: 2.2009.2291.805 AppStamp:4a36c812 ModName: wmvdecod.dll ModVer: 11.0.5721.5145 ModStamp:453711a3 fDebug: 0 Offset: 000cbc88 And from the Win Event Log. (same information) Event Type: Error Event Source: .NET Runtime 2.0 Error Reporting Event Category: None Event ID: 1000 Date: 7/13/2009 Time: 10:20:27 AM User: N/A Computer:28022 Description: Faulting application ScottApp.exe, version 2.2009.2291.805, stamp 4a36c812, faulting module wmvdecod.dll, version 11.0.5721.5145, stamp 453711a3, debug? 0, fault address 0x000cbc88.

    Read the article

  • Android: Crashed when single contact is clicked

    - by Sean Tan
    My application is always crashed at this moment, guru here please help me to solved. Thanks.The situation now is as mentioned in title above. Hereby is my AndroidManifest.xml <?xml version="1.0" encoding="utf-8"?> <!-- Copyright (C) 2009 The Android Open Source Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.example.android.contactmanager" android:versionCode="1" android:versionName="1.0"> <uses-sdk android:minSdkVersion="10" /> <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/> <uses-permission android:name="android.permission.MANAGE_ACCOUNTS"/> <uses-permission android:name="android.permission.WRITE_OWNER_DATA"/> <uses-permission android:name="android.permission.CAMERA"/> <uses-permission android:name="android.permission.CALL_PHONE"/> <uses-permission android:name="android.permission.GET_ACCOUNTS" /> <uses-permission android:name="android.permission.READ_CONTACTS" /> <uses-permission android:name="android.permission.WRITE_CONTACTS" /> <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/> <uses-permission android:name="android.permission.INTERNET"/> <uses-permission android:name="android.permission.CAMERA"/> <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/> <uses-permission android:name="android.permission.GET_ACCOUNTS"/> <application android:label="@string/app_name" android:icon="@drawable/icon" android:allowBackup="true"> <!-- --><activity android:name=".ContactManager" android:label="@string/app_name"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> <activity android:name="ContactAdder" android:label="@string/addContactTitle"> </activity> <activity android:name=".SingleListContact" android:label="Contact Person Details"> </activity> </application> </manifest> The SingleListContact.java package com.example.android.contactmanager; import android.app.Activity; import android.content.Intent; import android.os.Bundle; import android.widget.TextView; public class SingleListContact extends Activity{ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); this.setContentView(R.layout.single_list_contact_view); TextView txtContact = (TextView) findViewById(R.id.contactList); Intent i = getIntent(); // getting attached intent data String contact = i.getStringExtra("contact"); // displaying selected product name txtContact.setText(contact); } } My ContactManager.java as below /* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.example.android.contactmanager; import android.app.Activity; import android.content.Intent; import android.database.Cursor; import android.net.Uri; import android.os.Bundle; import android.provider.ContactsContract; import android.util.Log; import android.view.View; import android.widget.AdapterView; import android.widget.AdapterView.OnItemClickListener; import android.widget.Button; import android.widget.CheckBox; import android.widget.CompoundButton; import android.widget.CompoundButton.OnCheckedChangeListener; import android.widget.ListView; import android.widget.SimpleCursorAdapter; import android.widget.TextView; public final class ContactManager extends Activity implements OnItemClickListener { public static final String TAG = "ContactManager"; private Button mAddAccountButton; private ListView mContactList; private boolean mShowInvisible; //public BooleanObservable ShowInvisible = new BooleanObservable(false); private CheckBox mShowInvisibleControl; /** * Called when the activity is first created. Responsible for initializing the UI. */ @Override public void onCreate(Bundle savedInstanceState) { Log.v(TAG, "Activity State: onCreate()"); super.onCreate(savedInstanceState); setContentView(R.layout.contact_manager); // Obtain handles to UI objects mAddAccountButton = (Button) findViewById(R.id.addContactButton); mContactList = (ListView) findViewById(R.id.contactList); mShowInvisibleControl = (CheckBox) findViewById(R.id.showInvisible); // Initialise class properties mShowInvisible = false; mShowInvisibleControl.setChecked(mShowInvisible); // Register handler for UI elements mAddAccountButton.setOnClickListener(new View.OnClickListener() { public void onClick(View v) { Log.d(TAG, "mAddAccountButton clicked"); launchContactAdder(); } }); mShowInvisibleControl.setOnCheckedChangeListener(new OnCheckedChangeListener() { public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) { Log.d(TAG, "mShowInvisibleControl changed: " + isChecked); mShowInvisible = isChecked; populateContactList(); } }); mContactList = (ListView) findViewById(R.id.contactList); mContactList.setOnItemClickListener(this); // Populate the contact list populateContactList(); } /** * Populate the contact list based on account currently selected in the account spinner. */ private void populateContactList() { // Build adapter with contact entries Cursor cursor = getContacts(); String[] fields = new String[] { ContactsContract.Data.DISPLAY_NAME }; SimpleCursorAdapter adapter = new SimpleCursorAdapter(this, R.layout.contact_entry, cursor, fields, new int[] {R.id.contactEntryText}); mContactList.setAdapter(adapter); } /** * Obtains the contact list for the currently selected account. * * @return A cursor for for accessing the contact list. */ private Cursor getContacts() { // Run query Uri uri = ContactsContract.Contacts.CONTENT_URI; String[] projection = new String[] { ContactsContract.Contacts._ID, ContactsContract.Contacts.DISPLAY_NAME }; String selection = ContactsContract.Contacts.IN_VISIBLE_GROUP + " = '" + (mShowInvisible ? "0" : "1") + "'"; //String selection = ContactsContract.Contacts.IN_VISIBLE_GROUP + " = '" + (mShowInvisible.get() ? "0" : "1") + "'"; String[] selectionArgs = null; String sortOrder = ContactsContract.Contacts.DISPLAY_NAME + " COLLATE LOCALIZED ASC"; return this.managedQuery(uri, projection, selection, selectionArgs, sortOrder); } /** * Launches the ContactAdder activity to add a new contact to the selected account. */ protected void launchContactAdder() { Intent i = new Intent(this, ContactAdder.class); startActivity(i); } public void onItemClick(AdapterView<?> l, View v, int position, long id) { Log.i("TAG", "You clicked item " + id + " at position " + position); // Here you start the intent to show the contact details // selected item TextView tv=(TextView)v.findViewById(R.id.contactList); String allcontactlist = tv.getText().toString(); // Launching new Activity on selecting single List Item Intent i = new Intent(getApplicationContext(), SingleListContact.class); // sending data to new activity i.putExtra("Contact Person", allcontactlist); startActivity(i); } } contact_entry.xml <?xml version="1.0" encoding="utf-8"?> <!-- Copyright (C) 2009 The Android Open Source Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="fill_parent" android:layout_height="fill_parent" android:orientation="vertical"> <ListView android:layout_width="wrap_content" android:id="@+id/contactList" android:layout_height="0dp" android:padding="10dp" android:textSize="200sp" android:layout_weight="10"/> <CheckBox android:layout_width="wrap_content" android:layout_height="wrap_content" android:id="@+id/showInvisible" android:text="@string/showInvisible"/> <Button android:layout_width="fill_parent" android:layout_height="wrap_content" android:id="@+id/addContactButton" android:text="@string/addContactButtonLabel"/> </LinearLayout> Logcat result: 12-05 05:00:31.289: E/AndroidRuntime(642): FATAL EXCEPTION: main 12-05 05:00:31.289: E/AndroidRuntime(642): java.lang.NullPointerException 12-05 05:00:31.289: E/AndroidRuntime(642): at com.example.android.contactmanager.ContactManager.onItemClick(ContactManager.java:148) 12-05 05:00:31.289: E/AndroidRuntime(642): at android.widget.AdapterView.performItemClick(AdapterView.java:284) 12-05 05:00:31.289: E/AndroidRuntime(642): at android.widget.ListView.performItemClick(ListView.java:3513) 12-05 05:00:31.289: E/AndroidRuntime(642): at android.widget.AbsListView$PerformClick.run(AbsListView.java:1812) 12-05 05:00:31.289: E/AndroidRuntime(642): at android.os.Handler.handleCallback(Handler.java:587) 12-05 05:00:31.289: E/AndroidRuntime(642): at android.os.Handler.dispatchMessage(Handler.java:92) 12-05 05:00:31.289: E/AndroidRuntime(642): at android.os.Looper.loop(Looper.java:123) 12-05 05:00:31.289: E/AndroidRuntime(642): at android.app.ActivityThread.main(ActivityThread.java:3683) 12-05 05:00:31.289: E/AndroidRuntime(642): at java.lang.reflect.Method.invokeNative(Native Method) 12-05 05:00:31.289: E/AndroidRuntime(642): at java.lang.reflect.Method.invoke(Method.java:507) 12-05 05:00:31.289: E/AndroidRuntime(642): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:839) 12-05 05:00:31.289: E/AndroidRuntime(642): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:597) 12-05 05:00:31.289: E/AndroidRuntime(642): at dalvik.system.NativeStart.main(Native Method)

    Read the article

  • imagegrabwindow + https = black screen

    - by earls
    I'm doing something stupid and trying to capture thumbnails, snapshots, images of a html webpages. I'm doing something along the lines of: http://stackoverflow.com/questions/443837/how-might-i-obtain-a-snapshot-or-thumbnail-of-a-web-page-using-php DCOM + IE + PHP (imagegrabwindow; example from manual) Everything works PERFECT until I try to capture a HTTPS website... https://mail.google.com for example. imagegrabwindow produces a png, but it only shows the browser. the contents of the browser are black. If I log out of Google, I can capture the browser window and the contents thereof - the second I log in, the contents (not the browser frame) are black screen. Yes, I've increased the timeout (before closing the browser window). IE has clearly loaded the page, it just refuses to render for imagegrabwindow. I've been fighting this long enough I know it's either a permissions problem or a service needs to interact with the desktop. Does anyone have any clue what permissions need to be set or which service needs access? I assumed cryptographic services, but that's run as a network service and trying to change it to interact makes it shout and carry on. This is the last piece of the puzzle, I'd really like to get it working. Thank you!

    Read the article

  • Blocking on DBCP connection pool (open and close connnection). Is database connection pooling in OpenEJB pluggable?

    - by topchef
    We use OpenEJB on Tomcat (used to run on JBoss, Weblogic, etc.). While running load tests we experience significant performance problems with handling JMS messages (queues). Problem was localized to blocking on database connection pool getting or releasing connection to the pool. Blocking prevented concurrent MDB instances (threads) from running hence performance suffered 10-fold and worse. The same code used to run on application servers (with their respective connection pool implementations) with no blocking at all. Example of thread blocked: Name: JMS Resource Adapter-worker-23 State: BLOCKED on org.apache.commons.pool.impl.GenericObjectPool@1ea6b4a owned by: JMS Resource Adapter-worker-19 Total blocked: 18,426 Total waited: 0 Stack trace: org.apache.commons.pool.impl.GenericObjectPool.returnObject(GenericObjectPool.java:916) org.apache.commons.dbcp.PoolableConnection.close(PoolableConnection.java:91) - locked org.apache.commons.dbcp.PoolableConnection@1bcba8 org.apache.commons.dbcp.managed.ManagedConnection.close(ManagedConnection.java:147) com.xxxxx.persistence.DbHelper.closeConnection(DbHelper.java:290) .... Couple of questions. I am almost certain that some transactional attributes and properties contribute to this blocking, but MDBs are defined as non-transactional (we use both annotations and ejb-jar.xml). Some EJBs do use container-managed transactions though (and we can observe blocking there as well). Are there any DBCP configurations that may fix blocking? Is DBCP connection pool implementation replaceable in OpenEJB? How easy (difficult) to replace it with another library? Just in case this is how we define data source in OpenEJB (openejb.xml): <Resource id="MyDataSource" type="DataSource"> JdbcDriver oracle.jdbc.driver.OracleDriver JdbcUrl ${oracle.jdbc} UserName ${oracle.user} Password ${oracle.password} JtaManaged true InitialSize 5 MaxActive 30 ValidationQuery SELECT 1 FROM DUAL TestOnBorrow true </Resource>

    Read the article

  • [Java] Cluster Shared Cache

    - by GuiSim
    Hi everyone. I am searching for a java framework that would allow me to share a cache between multiple JVMs. What I would need is something like Hazelcast but without the "distributed" part. I want to be able to add an item in the cache and have it automatically synced to the other "group member" cache. If possible, I'd like the cache to be sync'd via a reliable multicast (or something similar). I've looked at Shoal but sadly the "Distributed State Cache" seems like an insufficient implementation for my needs. I've looked at JBoss Cache but it seems a little overkill for what I need to do. I've looked at JGroups, which seems to be the most promising tool for what I need to do. Does anyone have experiences with JGroups ? Preferably if it was used as a shared cache ? Any other suggestions ? Thanks ! EDIT : We're starting tests to help us decide between Hazelcast and Infinispan, I'll accept an answer soon. EDIT : Due to a sudden requirements changes, we don't need a distributed map anymore. We'll be using JGroups for a low level signaling framework. Thanks everyone for you help.

    Read the article

< Previous Page | 627 628 629 630 631 632 633 634 635 636 637 638  | Next Page >