Search Results

Search found 16032 results on 642 pages for 'sync framework'.

Page 637/642 | < Previous Page | 633 634 635 636 637 638 639 640 641 642  | Next Page >

  • actionlistener not responding in java calculator

    - by tokee
    hi, please see calculator interface code below, from my beginners point of view the "1" should display when it's pressed but evidently i'm doing something wrong. any suggestiosn please? import java.awt.*; import javax.swing.*; import javax.swing.border.*; import java.awt.event.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JButton; import javax.swing.JFrame; import javax.swing.JPanel; /** *A Class that operates as the framework for a calculator. *No calculations are performed in this section */ public class CalcFrame extends JPanel { private CalcEngine calc; private JFrame frame; private JTextField display; private JLabel status; /** * Constructor for objects of class GridLayoutExample */ //public CalcFrame(CalcEngine engine) //{ //frame.setVisible(true); // calc = engine; // makeFrame(); //} public CalcFrame() { makeFrame(); calc = new CalcEngine(); } class ButtonListener implements ActionListener { ButtonListener() { } public void actionPerformed(ActionEvent e) { if (e.getActionCommand().equals("1")) { System.out.println("1"); } } } /** * This allows you to quit the calculator. */ // Alows the class to quit. private void quit() { System.exit(0); } // Calls the dialog frame with the information about the project. private void showAbout() { JOptionPane.showMessageDialog(frame, "Declan Hodge and Tony O'Keefe Group Project", "About Calculator Group Project", JOptionPane.INFORMATION_MESSAGE); } // ---- swing stuff to build the frame and all its components ---- /** * The following creates a layout of the calculator frame. */ private void makeFrame() { frame = new JFrame("Group Project Calculator"); makeMenuBar(frame); JPanel contentPane = (JPanel)frame.getContentPane(); contentPane.setLayout(new BorderLayout(8, 8)); contentPane.setBorder(new EmptyBorder( 10, 10, 10, 10)); /** * Insert a text field */ display = new JTextField(8); contentPane.add(display, BorderLayout.NORTH); //Container contentPane = frame.getContentPane(); contentPane.setLayout(new GridLayout(4, 5)); JPanel buttonPanel = new JPanel(new GridLayout(4, 4)); contentPane.add(new JButton("9")); contentPane.add(new JButton("8")); contentPane.add(new JButton("7")); contentPane.add(new JButton("6")); contentPane.add(new JButton("5")); contentPane.add(new JButton("4")); contentPane.add(new JButton("3")); contentPane.add(new JButton("2")); contentPane.add(new JButton("1")); contentPane.add(new JButton("0")); contentPane.add(new JButton("+")); contentPane.add(new JButton("-")); contentPane.add(new JButton("/")); contentPane.add(new JButton("*")); contentPane.add(new JButton("=")); contentPane.add(new JButton("C")); contentPane.add(new JButton("CE")); contentPane.add(new JButton("%")); contentPane.add(new JButton("#")); //contentPane.add(buttonPanel, BorderLayout.CENTER); frame.pack(); frame.setVisible(true); } /** * Create the main frame's menu bar. * The frame that the menu bar should be added to. */ private void makeMenuBar(JFrame frame) { final int SHORTCUT_MASK = Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(); JMenuBar menubar = new JMenuBar(); frame.setJMenuBar(menubar); JMenu menu; JMenuItem item; // create the File menu menu = new JMenu("File"); menubar.add(menu); // create the Quit menu with a shortcut "Q" key. item = new JMenuItem("Quit"); item.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_Q, SHORTCUT_MASK)); item.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) { quit(); } }); menu.add(item); // Adds an about menu. menu = new JMenu("About"); menubar.add(menu); // Displays item = new JMenuItem("Calculator Project"); item.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) { showAbout(); } }); menu.add(item); } }

    Read the article

  • Watching a variable for changes without polling.

    - by milkfilk
    I'm using a framework called Processing which is basically a Java applet. It has the ability to do key events because Applet can. You can also roll your own callbacks of sorts into the parent. I'm not doing that right now and maybe that's the solution. For now, I'm looking for a more POJO solution. So I wrote some examples to illustrate my question. Please ignore using key events on the command line (console). Certainly this would be a very clean solution but it's not possible on the command line and my actual app isn't a command line app. In fact, a key event would be a good solution for me but I'm trying to understand events and polling beyond just keyboard specific problems. Both these examples flip a boolean. When the boolean flips, I want to fire something once. I could wrap the boolean in an Object so if the Object changes, I could fire an event too. I just don't want to poll with an if() statement unnecessarily. import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; /* * Example of checking a variable for changes. * Uses dumb if() and polls continuously. */ public class NotAvoidingPolling { public static void main(String[] args) { boolean typedA = false; String input = ""; System.out.println("Type 'a' please."); while (true) { InputStreamReader isr = new InputStreamReader(System.in); BufferedReader br = new BufferedReader(isr); try { input = br.readLine(); } catch (IOException ioException) { System.out.println("IO Error."); System.exit(1); } // contrived state change logic if (input.equals("a")) { typedA = true; } else { typedA = false; } // problem: this is polling. if (typedA) System.out.println("Typed 'a'."); } } } Running this outputs: Type 'a' please. a Typed 'a'. On some forums people suggested using an Observer. And although this decouples the event handler from class being observed, I still have an if() on a forever loop. import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Observable; import java.util.Observer; /* * Example of checking a variable for changes. * This uses an observer to decouple the handler feedback * out of the main() but still is polling. */ public class ObserverStillPolling { boolean typedA = false; public static void main(String[] args) { // this ObserverStillPolling o = new ObserverStillPolling(); final MyEvent myEvent = new MyEvent(o); final MyHandler myHandler = new MyHandler(); myEvent.addObserver(myHandler); // subscribe // watch for event forever Thread thread = new Thread(myEvent); thread.start(); System.out.println("Type 'a' please."); String input = ""; while (true) { InputStreamReader isr = new InputStreamReader(System.in); BufferedReader br = new BufferedReader(isr); try { input = br.readLine(); } catch (IOException ioException) { System.out.println("IO Error."); System.exit(1); } // contrived state change logic // but it's decoupled now because there's no handler here. if (input.equals("a")) { o.typedA = true; } } } } class MyEvent extends Observable implements Runnable { // boolean typedA; ObserverStillPolling o; public MyEvent(ObserverStillPolling o) { this.o = o; } public void run() { // watch the main forever while (true) { // event fire if (this.o.typedA) { setChanged(); // in reality, you'd pass something more useful notifyObservers("You just typed 'a'."); // reset this.o.typedA = false; } } } } class MyHandler implements Observer { public void update(Observable obj, Object arg) { // handle event if (arg instanceof String) { System.out.println("We received:" + (String) arg); } } } Running this outputs: Type 'a' please. a We received:You just typed 'a'. I'd be ok if the if() was a NOOP on the CPU. But it's really comparing every pass. I see real CPU load. This is as bad as polling. I can maybe throttle it back with a sleep or compare the elapsed time since last update but this is not event driven. It's just less polling. So how can I do this smarter? How can I watch a POJO for changes without polling? In C# there seems to be something interesting called properties. I'm not a C# guy so maybe this isn't as magical as I think. private void SendPropertyChanging(string property) { if (this.PropertyChanging != null) { this.PropertyChanging(this, new PropertyChangingEventArgs(property)); } }

    Read the article

  • How do you get XML::Pastor to set xsi:type for programmatically generated elements?

    - by Derrick
    I'm learning how to use Perl as an automation test framework tool for a Java web service and running into trouble generating xml requests from the Pastor generated modules. The problem is that when including a type that extends from the required type for an element, the xsi:type is not included in the generated xml string. Say, for example, I want to generate the following xml request from the modules that XML::Pastor generated from my xsd: <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <PromptAnswersRequest xmlns="http://mycompany.com/api"> <Uri>/some/url</Uri> <User ref="1"/> <PromptAnswers> <PromptAnswer xsi:type="textPromptAnswer" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <Prompt ref="2"/> <Children> <PromptAnswer xsi:type="choicePromptAnswer"> <Prompt ref="1"/> <Choice ref="2"/> </PromptAnswer> </Children> <Value>totally</Value> </PromptAnswer> </PromptAnswers> </PromptAnswersRequest> What I'm getting currently is this: <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <PromptAnswersRequest xmlns="http://mycompany.com/api"> <Uri>/some/url</Uri> <User ref="1"/> <PromptAnswers> <PromptAnswer> <Prompt ref="2"/> <Children> <PromptAnswer> <Prompt ref="1"/> <Choice ref="2"/> </PromptAnswer> </Children> <Value>totally</Value> </PromptAnswer> </PromptAnswers> </PromptAnswersRequest> Here are some relavent snippets from the xsd: <xs:complexType name="request"> <xs:sequence> <xs:element name="Uri" type="xs:anyURI"/> </xs:sequence> </xs:complexType> <xs:complexType name="promptAnswersRequest"> <xs:complexContent> <xs:extension base="api:request"> <xs:sequence> <xs:element name="User" type="api:ref"/> <xs:element name="PromptAnswers" type="api:promptAnswerList"/> </xs:sequence> </xs:extension> </xs:complexContent> </xs:complexType> <xs:complexType name="promptAnswerList"> <xs:sequence> <xs:element name="PromptAnswer" type="api:promptAnswer" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence> </xs:complexType> <xs:complexType name="promptAnswer" abstract="true"> <xs:sequence> <xs:element name="Prompt" type="api:ref"/> <xs:element name="Children" type="api:promptAnswerList" minOccurs="0"/> </xs:sequence> </xs:complexType> <xs:complexType name="textPromptAnswer"> <xs:complexContent> <xs:extension base="promptAnswer"> <xs:sequence> <xs:element name="Value" type="api:nonEmptyString" minOccurs="0"/> </xs:sequence> </xs:extension> </xs:complexContent> </xs:complexType> And here are relavent parts of the script: my $promptAnswerList = new My::API::Type::promptAnswerList; my @promptAnswers; my $promptAnswerList2 = new My::API::Type::promptAnswerList; my @textPromptAnswerChildren; my $textPromptAnswer = new My::API::Type::textPromptAnswer; my $textPromptAnswerRef = new My::API::Type::ref; $textPromptAnswerRef->ref('2'); $textPromptAnswer->Prompt($textPromptAnswerRef); my $choicePromptAnswer = new My::API::Type::choicePromptAnswer; my $choicePromptAnswerPromptRef = new My::API::Type::ref; my $choicePromptAnswerChoiceRef = new My::API::Type::ref; $choicePromptAnswerPromptRef->ref('1'); $choicePromptAnswerChoiceRef->ref('2'); $choicePromptAnswer->Prompt($choicePromptAnswerPromptRef); $choicePromptAnswer->Choice($choicePromptAnswerChoiceRef); push(@textPromptAnswerChildren, $choicePromptAnswer); $promptAnswerList2->PromptAnswer(@textPromptAnswerChildren); $textPromptAnswer->Children($promptAnswerList2); $textPromptAnswer->Value('totally'); push(@promptAnswers, $pulseTextPromptAnswer); push(@promptAnswers, $textPromptAnswer); I haven't seen this addressed anywhere in the documentation for the XML::Pastor modules, so if anyone can point me at a good reference for its use it would be greatly appreciated. Also, I'm only using XML::Pastor because I don't know of any other modules that can do this, so if any of you know of something either easier to use, or more well maintained, please let me know about that too!

    Read the article

  • wglCreateContext in C# failing but not in managed C++

    - by SeeR
    I'm trying to use opengl in C#. I have following code which fails with error 2000 ERROR_INVALID_PIXEL_FORMAT First definitions: [DllImport("user32.dll", CharSet = CharSet.Auto, SetLastError = true, ExactSpelling = true)] public static extern IntPtr GetDC(IntPtr hWnd); [StructLayout(LayoutKind.Sequential)] public struct PIXELFORMATDESCRIPTOR { public void Init() { nSize = (ushort) Marshal.SizeOf(typeof (PIXELFORMATDESCRIPTOR)); nVersion = 1; dwFlags = PFD_FLAGS.PFD_DRAW_TO_WINDOW | PFD_FLAGS.PFD_SUPPORT_OPENGL | PFD_FLAGS.PFD_DOUBLEBUFFER | PFD_FLAGS.PFD_SUPPORT_COMPOSITION; iPixelType = PFD_PIXEL_TYPE.PFD_TYPE_RGBA; cColorBits = 24; cRedBits = cRedShift = cGreenBits = cGreenShift = cBlueBits = cBlueShift = 0; cAlphaBits = cAlphaShift = 0; cAccumBits = cAccumRedBits = cAccumGreenBits = cAccumBlueBits = cAccumAlphaBits = 0; cDepthBits = 32; cStencilBits = cAuxBuffers = 0; iLayerType = PFD_LAYER_TYPES.PFD_MAIN_PLANE; bReserved = 0; dwLayerMask = dwVisibleMask = dwDamageMask = 0; } ushort nSize; ushort nVersion; PFD_FLAGS dwFlags; PFD_PIXEL_TYPE iPixelType; byte cColorBits; byte cRedBits; byte cRedShift; byte cGreenBits; byte cGreenShift; byte cBlueBits; byte cBlueShift; byte cAlphaBits; byte cAlphaShift; byte cAccumBits; byte cAccumRedBits; byte cAccumGreenBits; byte cAccumBlueBits; byte cAccumAlphaBits; byte cDepthBits; byte cStencilBits; byte cAuxBuffers; PFD_LAYER_TYPES iLayerType; byte bReserved; uint dwLayerMask; uint dwVisibleMask; uint dwDamageMask; } [Flags] public enum PFD_FLAGS : uint { PFD_DOUBLEBUFFER = 0x00000001, PFD_STEREO = 0x00000002, PFD_DRAW_TO_WINDOW = 0x00000004, PFD_DRAW_TO_BITMAP = 0x00000008, PFD_SUPPORT_GDI = 0x00000010, PFD_SUPPORT_OPENGL = 0x00000020, PFD_GENERIC_FORMAT = 0x00000040, PFD_NEED_PALETTE = 0x00000080, PFD_NEED_SYSTEM_PALETTE = 0x00000100, PFD_SWAP_EXCHANGE = 0x00000200, PFD_SWAP_COPY = 0x00000400, PFD_SWAP_LAYER_BUFFERS = 0x00000800, PFD_GENERIC_ACCELERATED = 0x00001000, PFD_SUPPORT_DIRECTDRAW = 0x00002000, PFD_DIRECT3D_ACCELERATED = 0x00004000, PFD_SUPPORT_COMPOSITION = 0x00008000, PFD_DEPTH_DONTCARE = 0x20000000, PFD_DOUBLEBUFFER_DONTCARE = 0x40000000, PFD_STEREO_DONTCARE = 0x80000000 } public enum PFD_LAYER_TYPES : byte { PFD_MAIN_PLANE = 0, PFD_OVERLAY_PLANE = 1, PFD_UNDERLAY_PLANE = 255 } public enum PFD_PIXEL_TYPE : byte { PFD_TYPE_RGBA = 0, PFD_TYPE_COLORINDEX = 1 } [DllImport("gdi32.dll", CharSet = CharSet.Auto, SetLastError = true, ExactSpelling = true)] public static extern int ChoosePixelFormat(IntPtr hdc, [In] ref PIXELFORMATDESCRIPTOR ppfd); [DllImport("gdi32.dll", CharSet = CharSet.Auto, SetLastError = true, ExactSpelling = true)] public static extern bool SetPixelFormat(IntPtr hdc, int iPixelFormat, ref PIXELFORMATDESCRIPTOR ppfd); [DllImport("opengl32.dll", CharSet = CharSet.Auto, SetLastError = true, ExactSpelling = true)] public static extern IntPtr wglCreateContext(IntPtr hDC); And now the code that fails: IntPtr dc = Win.GetDC(hwnd); var pixelformatdescriptor = new GL.PIXELFORMATDESCRIPTOR(); pixelformatdescriptor.Init(); var pixelFormat = GL.ChoosePixelFormat(dc, ref pixelformatdescriptor); if(!GL.SetPixelFormat(dc, pixelFormat, ref pixelformatdescriptor)) throw new Win32Exception(Marshal.GetLastWin32Error()); IntPtr hglrc; if((hglrc = GL.wglCreateContext(dc)) == IntPtr.Zero) throw new Win32Exception(Marshal.GetLastWin32Error()); //<----- here I have exception the same code in managed C++ is working HDC dc = GetDC(hWnd); PIXELFORMATDESCRIPTOR pf; pf.nSize = sizeof(PIXELFORMATDESCRIPTOR); pf.nVersion = 1; pf.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER | PFD_SUPPORT_COMPOSITION; pf.cColorBits = 24; pf.cRedBits = pf.cRedShift = pf.cGreenBits = pf.cGreenShift = pf.cBlueBits = pf.cBlueShift = 0; pf.cAlphaBits = pf.cAlphaShift = 0; pf.cAccumBits = pf.cAccumRedBits = pf.cAccumGreenBits = pf.cAccumBlueBits = pf.cAccumAlphaBits = 0; pf.cDepthBits = 32; pf.cStencilBits = pf.cAuxBuffers = 0; pf.iLayerType = PFD_MAIN_PLANE; pf.bReserved = 0; pf.dwLayerMask = pf.dwVisibleMask = pf.dwDamageMask = 0; int ipf = ChoosePixelFormat(dc, &pf); SetPixelFormat(dc, ipf, &pf); HGLRC hglrc = wglCreateContext(dc); I've tried it on VIsta 64-bit with ATI graphic card and on Windows XP 32-bit with Nvidia with the same result in both cases. Also I want to mention that I don't want to use any already written framework for it. Can anyone show me where is the bug in C# code that is causing the exception?

    Read the article

  • null pointer exception at org.hibernate.tuple.AbstractEntityTuplizer.createProxy

    - by saurabh
    I am using hibernate 3.2 with struts 1.2 framework I got this exception when i m trying to load the object I am using this code to load the object public Currentprofile findById(java.lang.String id) { log.debug("getting Currentprofile instance with id: " + id); try { Currentprofile instance = (Currentprofile) getSession().get( "com.hibermappings.Currentprofile", id); return instance; } catch (RuntimeException re) { log.error("get failed", re); throw re; } } my hbm file is this <one-to-one name="referenceDb" lazy="proxy" class="com.hibermappings.ReferenceDb" cascade="all" constrained="false" /> <one-to-one name="registration" lazy="proxy" class="com.hibermappings.Registration" cascade="all" constrained="false" /> <one-to-one name="jobseekerpackagedetails" lazy="proxy" class="com.hibermappings.Jobseekerpackagedetails" cascade="all" constrained="false" /> <property name="keyWords" type="java.lang.String"> <column name="keyWords" length="5000" /> </property> <property name="totalExp" type="java.lang.String"> <column name="totalExp" length="100" /> </property> <property name="hqualification" type="java.lang.String"> <column name="hQualification" length="100" /> </property> <property name="preferedLocation" type="java.lang.String"> <column name="preferedLocation" length="100" /> </property> <property name="functionalArea" type="java.lang.String"> <column name="functionalArea" length="1000" /> </property> <property name="expSalary" type="java.lang.String"> <column name="expSalary" length="100" /> </property> <property name="designation" type="java.lang.String"> <column name="designation" length="100" /> </property> <property name="resumeTitle" type="java.lang.String"> <column name="resumeTitle" length="500" /> </property> <property name="profileDetails" type="java.lang.String"> <column name="profileDetails" length="65535" /> </property> <property name="requiredProfile" type="java.lang.String"> <column name="requiredProfile" length="65535" /> </property> <property name="activatedOn" type="java.util.Date"> <column name="activatedOn" length="0" /> </property> <set name="resumes" inverse="true" cascade="save-update"> <key> <column name="jobseekerId" length="50" /> </key> <one-to-many class="com.hibermappings.Resume" /> </set> </class> the same code runs well when I m using in a simple java class within main method .. full stack trace of exception is java.lang.NullPointerException at org.hibernate.tuple.AbstractEntityTuplizer.createProxy(AbstractEntityTuplizer.java:372) at org.hibernate.persister.entity.AbstractEntityPersister.createProxy(AbstractEntityPersister.java:3121) at org.hibernate.event.def.DefaultLoadEventListener.createProxyIfNecessary(DefaultLoadEventListener.java:232) at org.hibernate.event.def.DefaultLoadEventListener.proxyOrLoad(DefaultLoadEventListener.java:173) at org.hibernate.event.def.DefaultLoadEventListener.onLoad(DefaultLoadEventListener.java:87) at org.hibernate.impl.SessionImpl.fireLoad(SessionImpl.java:862) at org.hibernate.impl.SessionImpl.load(SessionImpl.java:781) at org.hibernate.impl.SessionImpl.load(SessionImpl.java:774) at com.DAOs.CurrentprofileDAO.getLoad(CurrentprofileDAO.java:71) at com.action.JobSekeerManage.viewProfile(JobSekeerManage.java:447) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.apache.struts.actions.DispatchAction.dispatchMethod(DispatchAction.java:270) at org.apache.struts.actions.DispatchAction.execute(DispatchAction.java:187) at org.apache.struts.action.RequestProcessor.processActionPerform(RequestProcessor.java:431) at org.apache.struts.action.RequestProcessor.process(RequestProcessor.java:236) at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1196) at org.apache.struts.action.ActionServlet.doGet(ActionServlet.java:414) at javax.servlet.http.HttpServlet.service(HttpServlet.java:689) at javax.servlet.http.HttpServlet.service(HttpServlet.java:802) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:237) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:157) at com.filter.HibernateFilter.doFilter(HibernateFilter.java:24) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:186) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:157) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:214) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:178) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:126) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:105) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:107) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:148) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:825) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.processConnection(Http11Protocol.java:731) at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:526) at org.apache.tomcat.util.net.LeaderFollowerWorkerThread.runIt(LeaderFollowerWorkerThread.java:80) at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run(ThreadPool.java:684) at java.lang.Thread.run(Thread.java:595) Error::null

    Read the article

  • jQuery not refreshing tabs content in IE

    - by iddimu
    Hi all! I have a page that is using jQuery tabs. Within one of my tabs I have a div that contains a form (initially hidden) that I want to use to add content to the tab. What I have works perfectly in Chrome, Firefox, and Safari. But, in IE 7 the tab will not refresh. The post works and the data gets added to the database, but it simply will not show the new content after submitting it. I don't think it matters - but, just for information I am using the Codeigniter PHP framework as well. Here is my javascript: <script type="text/javascript"> $(document).ready(function(){ // initialize the addChild form as hidden until user requests it open $('#addChild').hide(); // open the form $('#openDialog').click( function(){ $('#addChild').slideToggle(); return false; }); // close the form $('#closeDialog').click( function(){ $('#addChild').slideToggle(); return false; }); // submit the form $('#frmAddChild').submit( function(){ $('#addChild').slideToggle(); $.ajax({ url: '/children/add', type: 'POST', data: $('#frmAddChild').serialize() //cache: false }); //reload the children tab $('#tabs').tabs('load',3); return false; }); }); </script> And, here is my PHP/HTML: <?php // initialize the elements of the form $frmAddChild = array( 'name' => 'frmAddChild', 'id' => 'frmAddChild', 'method' => 'post' ); $child_name = array( 'name' => 'child_name', 'id' => 'child_name', ); $child_dob = array( 'name' => 'child_dob', 'id' => 'child_dob' ); $btnOpenDialog = array( 'name' => 'openDialog', 'id' => 'openDialog', 'value' => 'true', 'content' => 'Add Child' ); $btnCloseDialog = array( 'name' => 'closeDialog', 'id' => 'closeDialog', 'value' => 'true', 'content' => 'Cancel' ); // button that shows the drop down to add echo form_button($btnOpenDialog); ?> <div id="addChild" title="Add Child"> <?php echo form_open('children/add/',$frmAddChild); ?> <table> <tr> <td> <?php echo form_label('Child\'s Name', 'child_name'); ?>: </td> <td> <?php echo form_input($child_name); ?> </td> </tr> <tr> <td> <?php echo form_label('Date of Birth','child_dob'); ?>: </td> <td> <?php echo form_input($child_dob); ?> </td> </tr> <tr> <td colspan="2" align="right"> <?php echo form_submit('submit', 'Add'); ?> <?php echo form_button($btnCloseDialog); ?> </td> </tr> </table> <?php echo form_close(); ?> </div> Does anyone have any ideas how I can get this working correctly in IE? Also, if anyone has any comments about how I have things structured, please let me know. I'm new to Codeigniter and I am by no means a javascript or jQuery expert. Thanks for your help!

    Read the article

  • OpenGL + cgFX Alpha Blending failure

    - by dopplex
    I have a shader that needs to additively blend to its output render target. While it had been fully implemented and working, I recently refactored and have done something that is causing the alpha blending to not work anymore. I'm pretty sure that the problem is somewhere in my calls to either OpenGL or cgfx - but I'm currently at a loss for where exactly the problem is, as everything looks like it is set up properly for alpha blending to occur. No OpenGL or cg framework errors are showing up, either. For some context, what I'm doing here is taking a buffer which contains screen position and luminance values for each pixel, copying it to a PBO, and using it as the vertex buffer for drawing GL_POINTS. Everything except for the alpha blending appears to be working as expected. I've confirmed both that the input vertex buffer has the correct values, and that my vertex and fragment shaders are outputting the points to the correct locations and with the correct luminance values. The way that I've arrived at the conclusion that the Alpha blending was broken is by making my vertex shader output every point to the same screen location and then setting the pixel shader to always output a value of float4(0.5) for that pixel. Invariably, the end color (dumped afterwards) ends up being float4(0.5). The confusing part is that as far as I can tell, everything is properly set for alpha blending to occur. The cgfx pass has the two following state assignments (among others - I'll put a full listing at the end): BlendEnable = true; BlendFunc = int2(One, One); This ought to be enough, since I am calling cgSetPassState() - and indeed, when I use glGets to check the values of GL_BLEND_SRC, GL_BLEND_DEST, GL_BLEND, and GL_BLEND_EQUATION they all look appropriate (GL_ONE, GL_ONE, GL_TRUE, and GL_FUNC_ADD). This check was done immediately after the draw call. I've been looking around to see if there's anything other than blending being enabled and the blending function being correctly set that would cause alpha blending not to occur, but without any luck. I considered that I could be doing something wrong with GL, but GL is telling me that blending is enabled. I doubt it's cgFX related (as otherwise the GL state wouldn't even be thinking it was enabled) but it still fails if I explicitly use GL calls to set the blend mode and enable it. Here's the trimmed down code for starting the cgfx pass and the draw call: CGtechnique renderTechnique = Filter->curTechnique; TEXUNITCHECK; CGpass pass = cgGetFirstPass(renderTechnique); TEXUNITCHECK; while (pass) { cgSetPassState(pass); cgUpdatePassParameters(pass); //drawFSPointQuadBuff((void*)PointQuad); drawFSPointQuadBuff((void*)LumPointBuffer); TEXUNITCHECK; cgResetPassState(pass); pass = cgGetNextPass(pass); }; and the function with the draw call: void drawFSPointQuadBuff(void* args) { PointBuffer* pointBuffer = (PointBuffer*)args; FBOERRCHECK; glClear(GL_COLOR_BUFFER_BIT); GLERRCHECK; glPointSize(1.0); GLERRCHECK; glEnableClientState(GL_VERTEX_ARRAY); GLERRCHECK; glEnable(GL_POINT_SMOOTH); if (pointBuffer-BufferObject) { glBindBufferARB(GL_ARRAY_BUFFER_ARB, (unsigned int)pointBuffer-BufData); glVertexPointer(pointBuffer-numComp, GL_FLOAT, 0, 0); } else { glVertexPointer(pointBuffer-numComp, GL_FLOAT, 0, pointBuffer-BufData); }; GLERRCHECK; glDrawArrays(GL_POINTS, 0, pointBuffer-numElem); GLboolean testBool; glGetBooleanv(GL_BLEND, &testBool); int iblendColor, iblendDest, iblendEquation, iblendSrc; glGetIntegerv(GL_BLEND_SRC, &iblendSrc); glGetIntegerv(GL_BLEND_DST, &iblendDest); glGetIntegerv(GL_BLEND_EQUATION, &iblendEquation); if (iblendEquation == GL_FUNC_ADD) { cerr << "Correct func" << endl; }; GLERRCHECK; if (pointBuffer-BufferObject) { glBindBufferARB(GL_ARRAY_BUFFER_ARB,0); } GLERRCHECK; glDisableClientState(GL_VERTEX_ARRAY); GLERRCHECK; }; Finally, here is the full state setting of the shader: AlphaTestEnable = false; DepthTestEnable = false; DepthMask = false; ColorMask = true; CullFaceEnable = false; BlendEnable = true; BlendFunc = int2(One, One); FragmentProgram = compile glslf std_PS(); VertexProgram = compile glslv bilatGridVS2();

    Read the article

  • Get the property, as a string, from an Expression<Func<TModel,TProperty>>

    - by Jaxidian
    I use some strongly-typed expressions that get serialized to allow my UI code to have strongly-typed sorting and searching expressions. These are of type Expression<Func<TModel,TProperty>> and are used as such: SortOption.Field = (p => p.FirstName);. I've gotten this working perfectly for this simple case. The code that I'm using for parsing the "FirstName" property out of there is actually reusing some existing functionality in a third-party product that we use and it works great, until we start working with deeply-nested properties(SortOption.Field = (p => p.Address.State.Abbreviation);). This code has some very different assumptions in the need to support deeply-nested properties. As for what this code does, I don't really understand it and rather than changing that code, I figured I should just write from scratch this functionality. However, I don't know of a good way to do this. I suspect we can do something better than doing a ToString() and performing string parsing. So what's a good way to do this to handle the trivial and deeply-nested cases? Requirements: Given the expression p => p.FirstName I need a string of "FirstName". Given the expression p => p.Address.State.Abbreviation I need a string of "Address.State.Abbreviation" While it's not important for an answer to my question, I suspect my serialization/deserialization code could be useful to somebody else who finds this question in the future, so it is below. Again, this code is not important to the question - I just thought it might help somebody. Note that DynamicExpression.ParseLambda comes from the Dynamic LINQ stuff and Property.PropertyToString() is what this question is about. /// <summary> /// This defines a framework to pass, across serialized tiers, sorting logic to be performed. /// </summary> /// <typeparam name="TModel">This is the object type that you are filtering.</typeparam> /// <typeparam name="TProperty">This is the property on the object that you are filtering.</typeparam> [Serializable] public class SortOption<TModel, TProperty> : ISerializable where TModel : class { /// <summary> /// Convenience constructor. /// </summary> /// <param name="property">The property to sort.</param> /// <param name="isAscending">Indicates if the sorting should be ascending or descending</param> /// <param name="priority">Indicates the sorting priority where 0 is a higher priority than 10.</param> public SortOption(Expression<Func<TModel, TProperty>> property, bool isAscending = true, int priority = 0) { Property = property; IsAscending = isAscending; Priority = priority; } /// <summary> /// Default Constructor. /// </summary> public SortOption() : this(null) { } /// <summary> /// This is the field on the object to filter. /// </summary> public Expression<Func<TModel, TProperty>> Property { get; set; } /// <summary> /// This indicates if the sorting should be ascending or descending. /// </summary> public bool IsAscending { get; set; } /// <summary> /// This indicates the sorting priority where 0 is a higher priority than 10. /// </summary> public int Priority { get; set; } #region Implementation of ISerializable /// <summary> /// This is the constructor called when deserializing a SortOption. /// </summary> protected SortOption(SerializationInfo info, StreamingContext context) { IsAscending = info.GetBoolean("IsAscending"); Priority = info.GetInt32("Priority"); // We just persisted this by the PropertyName. So let's rebuild the Lambda Expression from that. Property = DynamicExpression.ParseLambda<TModel, TProperty>(info.GetString("Property"), default(TModel), default(TProperty)); } /// <summary> /// Populates a <see cref="T:System.Runtime.Serialization.SerializationInfo"/> with the data needed to serialize the target object. /// </summary> /// <param name="info">The <see cref="T:System.Runtime.Serialization.SerializationInfo"/> to populate with data. </param> /// <param name="context">The destination (see <see cref="T:System.Runtime.Serialization.StreamingContext"/>) for this serialization. </param> public void GetObjectData(SerializationInfo info, StreamingContext context) { // Just stick the property name in there. We'll rebuild the expression based on that on the other end. info.AddValue("Property", Property.PropertyToString()); info.AddValue("IsAscending", IsAscending); info.AddValue("Priority", Priority); } #endregion }

    Read the article

  • 'Step Into' is suddenly not working in Visual Studio

    - by Nick LaMarca
    All of a sudden, I have run into an issue where I cannot step into any code through debugging in Visual Studio. The step over works fine, but it refuses to step into (F11) any of my code. This was working before, now all of a sudden it does not. I've tried some things below, but I still had no success: Delete all bin files in every project in my solution, clean solution, re-build solution. Build projects in solution indivdualy Restart machine It an ASP.NET C# application consuming a WCF sevice locally. It is in debug mode. I have a breakpoint set on the page consuming the service. The breakpoint hits, but it will not step into the service code. The ASP.NET site and the service code is all in the same solution. This all of a sudden does not work, it did work before. How can I fix this problem? Adding a breakpoint to the service project I get a warning: Breakpoint will not currently be hit. No symbols have been loaded for this document. I deleted all the bin folders for all the projects and re-built them one by one. They all succeeded, but still I am getting the symbols won't load on any breakpoint I put into any project in the solution other than the ASP.NET project where the breakpoint works. I was able to debug step into all the projects before, this is an all of a sudden thing. Information from the output window.. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\SMDiagnostics\v4.0_4.0.0.0__b77a5c561934e089\SMDiagnostics.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.Runtime.DurableInstancing\v4.0_4.0.0.0__31bf3856ad364e35\System.Runtime.DurableInstancing.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.Xaml.Hosting\v4.0_4.0.0.0__31bf3856ad364e35\System.Xaml.Hosting.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.NET\Framework\v4.0.30319\Temporary ASP.NET Files\root\2d49cf50\14eee2cf\App_Web_jmow15fw.dll', Symbols loaded. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.Runtime.Serialization\v4.0_4.0.0.0__b77a5c561934e089\System.Runtime.Serialization.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.WorkflowServices\v4.0_4.0.0.0__31bf3856ad364e35\System.WorkflowServices.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.ServiceModel.Web\v4.0_4.0.0.0__31bf3856ad364e35\System.ServiceModel.Web.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.ServiceModel.Discovery\v4.0_4.0.0.0__31bf3856ad364e35\System.ServiceModel.Discovery.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.ServiceModel.Activities\v4.0_4.0.0.0__31bf3856ad364e35\System.ServiceModel.Activities.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.ServiceModel.Routing\v4.0_4.0.0.0__31bf3856ad364e35\System.ServiceModel.Routing.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.ServiceModel.Channels\v4.0_4.0.0.0__31bf3856ad364e35\System.ServiceModel.Channels.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled. 'WebDev.WebServer40.EXE' (Managed (v4.0.30319)): Loaded 'C:\windows\Microsoft.Net\assembly\GAC_MSIL\System.IdentityModel\v4.0_4.0.0.0__b77a5c561934e089\System.IdentityModel.dll', Skipped loading symbols. Module is optimized and the debugger option 'Just My Code' is enabled.

    Read the article

  • Problem creating calculations 'engine' in two class java calculator

    - by tokee
    i have hit a brick wall whilst attempting to create a two class java calculator but have been unsuccessful so far in getting it working. i have the code for an interface which works and displays ok but creating a seperate class 'CalcEngine' to do the actual calculations has proven to be beyond me. I'd appreciate it if someone could kick start things for me and create a class calcEngine which works with the interface class and allows input when from single button i.e. if one is pressed on the calc then 1 displays onscreen. please note i'm not asking someone to do the whole thing for me as i want to learn and i'm confident i can do the rest including addition subtraction etc. once i get over the obstacle of getting the two classes to communicate. any and all assistance would be very much appreciated. Please see the calcInterface class code below - import java.awt.*; import javax.swing.*; import javax.swing.border.*; import java.awt.event.*; /** *A Class that operates as the framework for a calculator. *No calculations are performed in this section */ public class CalcFrame implements ActionListener { private CalcEngine calc; private JFrame frame; private JTextField display; private JLabel status; /** * Constructor for objects of class GridLayoutExample */ public CalcFrame() { makeFrame(); //calc = engine; } /** * This allows you to quit the calculator. */ // Alows the class to quit. private void quit() { System.exit(0); } // Calls the dialog frame with the information about the project. private void showAbout() { JOptionPane.showMessageDialog(frame, "Group Project", "About Calculator Group Project", JOptionPane.INFORMATION_MESSAGE); } private void makeFrame() { frame = new JFrame("Group Project Calculator"); makeMenuBar(frame); JPanel contentPane = (JPanel)frame.getContentPane(); contentPane.setLayout(new BorderLayout(8, 8)); contentPane.setBorder(new EmptyBorder( 10, 10, 10, 10)); /** * Insert a text field */ display = new JTextField(); contentPane.add(display, BorderLayout.NORTH); //Container contentPane = frame.getContentPane(); contentPane.setLayout(new GridLayout(4, 4)); JPanel buttonPanel = new JPanel(new GridLayout(4, 4)); contentPane.add(new JButton("1")); contentPane.add(new JButton("2")); contentPane.add(new JButton("3")); contentPane.add(new JButton("4")); contentPane.add(new JButton("5")); contentPane.add(new JButton("6")); contentPane.add(new JButton("7")); contentPane.add(new JButton("8")); contentPane.add(new JButton("9")); contentPane.add(new JButton("0")); contentPane.add(new JButton("+")); contentPane.add(new JButton("-")); contentPane.add(new JButton("/")); contentPane.add(new JButton("*")); contentPane.add(new JButton("=")); contentPane.add(new JButton("C")); contentPane.add(buttonPanel, BorderLayout.CENTER); //status = new JLabel(calc.getAuthor()); //contentPane.add(status, BorderLayout.SOUTH); frame.pack(); frame.setVisible(true); } /** * Create the main frame's menu bar. * The frame that the menu bar should be added to. */ private void makeMenuBar(JFrame frame) { final int SHORTCUT_MASK = Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(); JMenuBar menubar = new JMenuBar(); frame.setJMenuBar(menubar); JMenu menu; JMenuItem item; // create the File menu menu = new JMenu("File"); menubar.add(menu); // create the Quit menu with a shortcut "Q" key. item = new JMenuItem("Quit"); item.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_Q, SHORTCUT_MASK)); item.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) { quit(); } }); menu.add(item); // Adds an about menu. menu = new JMenu("About"); menubar.add(menu); // Displays item = new JMenuItem("Calculator Project"); item.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) { showAbout(); } }); menu.add(item); } /** * An interface action has been performed. * Find out what it was and handle it. * @param event The event that has occured. */ public void actionPerformed(ActionEvent event) { String command = event.getActionCommand(); if(command.equals("0") || command.equals("1") || command.equals("2") || command.equals("3") || command.equals("4") || command.equals("5") || command.equals("6") || command.equals("7") || command.equals("8") || command.equals("9")) { int number = Integer.parseInt(command); calc.numberPressed(number); } else if(command.equals("+")) { calc.plus(); } else if(command.equals("-")) { calc.minus(); } else if(command.equals("=")) { calc.equals(); } else if(command.equals("C")) { calc.clear(); } else if(command.equals("?")) { } // else unknown command. redisplay(); } /** * Update the interface display to show the current value of the * calculator. */ private void redisplay() { display.setText("" + calc.getDisplayValue()); } /** * Toggle the info display in the calculator's status area between the * author and version information. */ }

    Read the article

  • How to detect crashing tabed webbrowser and handle it?

    - by David Eaton
    I have a desktop application (forms) with a tab control, I assign a tab and a new custom webrowser control. I open up about 10 of these tabs. Each one visits about 100 - 500 different pages. The trouble is that if 1 webbrowser control has a problem it shuts down the entire program. I want to be able to close the offending webbrowser control and open a new one in it's place. Is there any event that I need to subscribe to catch a crashing or unresponsive webbrowser control ? I am using C# on windows 7 (Forms), .NET framework v4 =============================================================== UPDATE: 1 - The Tabbed WebBrowser Example Here is the code I have and How I use the webbrowser control in the most basic way. Create a new forms project and name it SimpleWeb Add a new class and name it myWeb.cs, here is the code to use. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Windows.Forms; using System.Security.Policy; namespace SimpleWeb { //inhert all of webbrowser class myWeb : WebBrowser { public myWeb() { //no javascript errors this.ScriptErrorsSuppressed = true; //Something we want set? AssignEvents(); } //keep near the top private void AssignEvents() { //assign WebBrowser events to our custom methods Navigated += myWeb_Navigated; DocumentCompleted += myWeb_DocumentCompleted; Navigating += myWeb_Navigating; NewWindow += myWeb_NewWindow; } #region Events //List of events:http://msdn.microsoft.com/en-us/library/system.windows.forms.webbrowser_events%28v=vs.100%29.aspx //Fired when a new windows opens private void myWeb_NewWindow(object sender, System.ComponentModel.CancelEventArgs e) { //cancel all popup windows e.Cancel = true; //beep to let you know canceled new window Console.Beep(9000, 200); } //Fired before page is navigated (not sure if its before or during?) private void myWeb_Navigating(object sender, System.Windows.Forms.WebBrowserNavigatingEventArgs args) { } //Fired after page is navigated (but not loaded) private void myWeb_Navigated(object sender, System.Windows.Forms.WebBrowserNavigatedEventArgs args) { } //Fired after page is loaded (Catch 22 - Iframes could be considered a page, can fire more than once. Ads are good examples) private void myWeb_DocumentCompleted(System.Object sender, System.Windows.Forms.WebBrowserDocumentCompletedEventArgs args) { } #endregion //Answer supplied by mo. (modified)? public void OpenUrl(string url) { try { //this.OpenUrl(url); this.Navigate(url); } catch (Exception ex) { MessageBox.Show("Your App Crashed! Because = " + ex.ToString()); //MyApplication.HandleException(ex); } } //Keep near the bottom private void RemoveEvents() { //Remove Events Navigated -= myWeb_Navigated; DocumentCompleted -= myWeb_DocumentCompleted; Navigating -= myWeb_Navigating; NewWindow -= myWeb_NewWindow; } } } On Form1 drag a standard tabControl and set the dock to fill, you can go into the tab collection and delete the pre-populated tabs if you like. Right Click on Form1 and Select "View Code" and replace it with this code. using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using mshtml; namespace SimpleWeb { public partial class Form1 : Form { public Form1() { InitializeComponent(); //Load Up 10 Tabs for (int i = 0; i <= 10; i++) { newTab("Test_" + i, "http://wwww.yahoo.com"); } } private void newTab(string Title, String Url) { //Create a new Tab TabPage newTab = new TabPage(); newTab.Name = Title; newTab.Text = Title; //create webbrowser Instance myWeb newWeb = new myWeb(); //Add webbrowser to new tab newTab.Controls.Add(newWeb); newWeb.Dock = DockStyle.Fill; //Add New Tab to Tab Pages tabControl1.TabPages.Add(newTab); newWeb.OpenUrl(Url); } } } Save and Run the project. Using the answer below by mo. , you can surf the first url with no problem, but what about all the urls the user clicks on? How do we check those? I prefer not to add events to every single html element on a page, there has to be a way to run the new urls thru the function OpenUrl before it navigates without having an endless loop. Thanks.

    Read the article

  • Parsing adobe Kuler RSS feed

    - by dezkev
    I have been trying to parse the below XML file (kuler rss feed). I have read the various posts on this site but am unable to piece them together. I specifically want to extract the child(or siblings) nodes of the element <kuler:themeItem>. However I am getting an exception : Namespace Manager or XsltContext needed. This query has a prefix, variable, or user-defined function. Pl help : C# 3.0 net framework 3.5 RSS feed snippet: <?xml version="1.0" encoding="UTF-8" ?> - <rss xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:kuler="http://kuler.adobe.com/kuler/API/rss/" xmlns:rss="http://blogs.law.harvard.edu/tech/rss" version="2.0"> - <channel> <title>kuler recent themes</title> <link>http://kuler.adobe.com/</link> <description>most recent themes published on kuler (1 to 20 of 332518)</description> <language>en-us</language> <pubDate>Wed, 07 Apr 2010 08:41:31 PST</pubDate> <lastBuildDate>Wed, 07 Apr 2010 08:41:31 PST</lastBuildDate> <docs>http://blogs.law.harvard.edu/tech/rss</docs> <generator>Kuler Services</generator> <managingEditor>[email protected]</managingEditor> <webMaster>[email protected]</webMaster> <recordCount>332518</recordCount> <startIndex>0</startIndex> <itemsPerPage>20</itemsPerPage> - <item> <title>Theme Title: Muted Graph</title> <link>http://kuler.adobe.com/index.cfm#themeID/856075</link> <guid>http://kuler.adobe.com/index.cfm#themeID/856075</guid> - <enclosure xmlns="http://www.solitude.dk/syndication/enclosures/"> <title>Muted Graph</title> - <link length="1" type="image/png"> <url>http://kuler-api.adobe.com/kuler/themeImages/theme_856075.png</url> </link> </enclosure> <description><img src="http://kuler-api.adobe.com/kuler/themeImages/theme_856075.png" /><br /> Artist: tischt<br /> ThemeID: 856075<br /> Posted: 04/07/2010<br /> Hex: F1E9B2, 3D3606, 2A3231, 4A0A07, 424431</description> - <kuler:themeItem> <kuler:themeID>856075</kuler:themeID> <kuler:themeTitle>Muted Graph</kuler:themeTitle> <kuler:themeImage>http://kuler-api.adobe.com/kuler/themeImages/theme_856075.png</kuler:themeImage> - <kuler:themeAuthor> <kuler:authorID>216099</kuler:authorID> <kuler:authorLabel>tischt</kuler:authorLabel> </kuler:themeAuthor> <kuler:themeTags /> <kuler:themeRating>0</kuler:themeRating> <kuler:themeDownloadCount>0</kuler:themeDownloadCount> <kuler:themeCreatedAt>20100407</kuler:themeCreatedAt> <kuler:themeEditedAt>20100407</kuler:themeEditedAt> - <kuler:themeSwatches> - <kuler:swatch> <kuler:swatchHexColor>F1E9B2</kuler:swatchHexColor> <kuler:swatchColorMode>rgb</kuler:swatchColorMode> <kuler:swatchChannel1>0.945098</kuler:swatchChannel1> <kuler:swatchChannel2>0.913725</kuler:swatchChannel2> <kuler:swatchChannel3>0.698039</kuler:swatchChannel3> <kuler:swatchChannel4>0.0</kuler:swatchChannel4> <kuler:swatchIndex>0</kuler:swatchIndex> </kuler:swatch> My Code so far: static void Main(string[] args) { const string feedUrl = "http://kuler-api.adobe.com/rss/get.cfm?listtype=recent&key=xxxx"; var doc = new XmlDocument(); var request = WebRequest.Create(feedUrl) as HttpWebRequest; using (var response = request.GetResponse() as HttpWebResponse) { var reader = new StreamReader(response.GetResponseStream()); doc.Load(reader); } XmlNodeList rsslist = doc.SelectNodes("//rss/channel/item/kuler:themeItem"); for (int i = 0; i < rsslist.Count; i++) { XmlNode rssdetail = rsslist.Item(i).SelectSingleNode("kuler:themeTitle"); string title = rssdetail.InnerText; Console.WriteLine(title); } } }

    Read the article

  • Handling file upload in a non-blocking manner

    - by Kaliyug Antagonist
    The background thread is here Just to make objective clear - the user will upload a large file and must be redirected immediately to another page for proceeding different operations. But the file being large, will take time to be read from the controller's InputStream. So I unwillingly decided to fork a new Thread to handle this I/O. The code is as follows : The controller servlet /** * @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse * response) */ protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { // TODO Auto-generated method stub System.out.println("In Controller.doPost(...)"); TempModel tempModel = new TempModel(); tempModel.uploadSegYFile(request, response); System.out.println("Forwarding to Accepted.jsp"); /*try { Thread.sleep(1000 * 60); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); }*/ request.getRequestDispatcher("/jsp/Accepted.jsp").forward(request, response); } The model class package com.model; import java.io.IOException; import java.util.concurrent.ExecutionException; import java.util.concurrent.Future; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import com.utils.ProcessUtils; public class TempModel { public void uploadSegYFile(HttpServletRequest request, HttpServletResponse response) { // TODO Auto-generated method stub System.out.println("In TempModel.uploadSegYFile(...)"); /* * Trigger the upload/processing code in a thread, return immediately * and notify when the thread completes */ try { FileUploaderRunnable fileUploadRunnable = new FileUploaderRunnable( request.getInputStream()); /* * Future<FileUploaderRunnable> future = ProcessUtils.submitTask( * fileUploadRunnable, fileUploadRunnable); * * FileUploaderRunnable processed = future.get(); * * System.out.println("Is file uploaded : " + * processed.isFileUploaded()); */ Thread uploadThread = new Thread(fileUploadRunnable); uploadThread.start(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } /* * catch (InterruptedException e) { // TODO Auto-generated catch block * e.printStackTrace(); } catch (ExecutionException e) { // TODO * Auto-generated catch block e.printStackTrace(); } */ System.out.println("Returning from TempModel.uploadSegYFile(...)"); } } The Runnable package com.model; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.nio.ByteBuffer; import java.nio.channels.Channels; import java.nio.channels.ReadableByteChannel; public class FileUploaderRunnable implements Runnable { private boolean isFileUploaded = false; private InputStream inputStream = null; public FileUploaderRunnable(InputStream inputStream) { // TODO Auto-generated constructor stub this.inputStream = inputStream; } public void run() { // TODO Auto-generated method stub /* Read from InputStream. If success, set isFileUploaded = true */ System.out.println("Starting upload in a thread"); File outputFile = new File("D:/06c01_output.seg");/* * This will be changed * later */ FileOutputStream fos; ReadableByteChannel readable = Channels.newChannel(inputStream); ByteBuffer buffer = ByteBuffer.allocate(1000000); try { fos = new FileOutputStream(outputFile); while (readable.read(buffer) != -1) { fos.write(buffer.array()); buffer.clear(); } fos.flush(); fos.close(); readable.close(); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println("File upload thread completed"); } public boolean isFileUploaded() { return isFileUploaded; } } My queries/doubts : Spawning threads manually from the Servlet makes sense to me logically but scares me coding wise - the container isn't aware of these threads after all(I think so!) The current code is giving an Exception which is quite obvious - the stream is inaccessible as the doPost(...) method returns before the run() method completes : In Controller.doPost(...) In TempModel.uploadSegYFile(...) Returning from TempModel.uploadSegYFile(...) Forwarding to Accepted.jsp Starting upload in a thread Exception in thread "Thread-4" java.lang.NullPointerException at org.apache.coyote.http11.InternalInputBuffer.fill(InternalInputBuffer.java:512) at org.apache.coyote.http11.InternalInputBuffer.fill(InternalInputBuffer.java:497) at org.apache.coyote.http11.InternalInputBuffer$InputStreamInputBuffer.doRead(InternalInputBuffer.java:559) at org.apache.coyote.http11.AbstractInputBuffer.doRead(AbstractInputBuffer.java:324) at org.apache.coyote.Request.doRead(Request.java:422) at org.apache.catalina.connector.InputBuffer.realReadBytes(InputBuffer.java:287) at org.apache.tomcat.util.buf.ByteChunk.substract(ByteChunk.java:407) at org.apache.catalina.connector.InputBuffer.read(InputBuffer.java:310) at org.apache.catalina.connector.CoyoteInputStream.read(CoyoteInputStream.java:202) at java.nio.channels.Channels$ReadableByteChannelImpl.read(Unknown Source) at com.model.FileUploaderRunnable.run(FileUploaderRunnable.java:39) at java.lang.Thread.run(Unknown Source) Keeping in mind the point 1., does the use of Executor framework help me in anyway ? package com.utils; import java.util.concurrent.Future; import java.util.concurrent.ScheduledThreadPoolExecutor; public final class ProcessUtils { /* Ensure that no more than 2 uploads,processing req. are allowed */ private static final ScheduledThreadPoolExecutor threadPoolExec = new ScheduledThreadPoolExecutor( 2); public static <T> Future<T> submitTask(Runnable task, T result) { return threadPoolExec.submit(task, result); } } So how should I ensure that the user doesn't block and the stream remains accessible so that the (uploaded)file can be read from it?

    Read the article

  • ASP.Net MVC 2 Auto Complete Textbox With Custom View Model Attribute & EditorTemplate

    - by SeanMcAlinden
    In this post I’m going to show how to create a generic, ajax driven Auto Complete text box using the new MVC 2 Templates and the jQuery UI library. The template will be automatically displayed when a property is decorated with a custom attribute within the view model. The AutoComplete text box in action will look like the following:   The first thing to do is to do is visit my previous blog post to put the custom model metadata provider in place, this is necessary when using custom attributes on the view model. http://weblogs.asp.net/seanmcalinden/archive/2010/06/11/custom-asp-net-mvc-2-modelmetadataprovider-for-using-custom-view-model-attributes.aspx Once this is in place, make sure you visit the jQuery UI and download the latest stable release – in this example I’m using version 1.8.2. You can download it here. Add the jQuery scripts and css theme to your project and add references to them in your master page. Should look something like the following: Site.Master <head runat="server">     <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>     <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />     <link href="../../css/ui-lightness/jquery-ui-1.8.2.custom.css" rel="stylesheet" type="text/css" />     <script src="../../Scripts/jquery-1.4.2.min.js" type="text/javascript"></script>     <script src="../../Scripts/jquery-ui-1.8.2.custom.min.js" type="text/javascript"></script> </head> Once this is place we can get started. Creating the AutoComplete Custom Attribute The auto complete attribute will derive from the abstract MetadataAttribute created in my previous post. It will look like the following: AutoCompleteAttribute using System.Collections.Generic; using System.Web.Mvc; using System.Web.Routing; namespace Mvc2Templates.Attributes {     public class AutoCompleteAttribute : MetadataAttribute     {         public RouteValueDictionary RouteValueDictionary;         public AutoCompleteAttribute(string controller, string action, string parameterName)         {             this.RouteValueDictionary = new RouteValueDictionary();             this.RouteValueDictionary.Add("Controller", controller);             this.RouteValueDictionary.Add("Action", action);             this.RouteValueDictionary.Add(parameterName, string.Empty);         }         public override void Process(ModelMetadata modelMetaData)         {             modelMetaData.AdditionalValues.Add("AutoCompleteUrlData", this.RouteValueDictionary);             modelMetaData.TemplateHint = "AutoComplete";         }     } } As you can see, the constructor takes in strings for the controller, action and parameter name. The parameter name will be used for passing the search text within the auto complete text box. The constructor then creates a new RouteValueDictionary which we will use later to construct the url for getting the auto complete results via ajax. The main interesting method is the method override called Process. With the process method, the route value dictionary is added to the modelMetaData AdditionalValues collection. The TemplateHint is also set to AutoComplete, this means that when the view model is parsed for display, the MVC 2 framework will look for a view user control template called AutoComplete, if it finds one, it uses that template to display the property. The View Model To show you how the attribute will look, this is the view model I have used in my example which can be downloaded at the end of this post. View Model using System.ComponentModel; using Mvc2Templates.Attributes; namespace Mvc2Templates.Models {     public class TemplateDemoViewModel     {         [AutoComplete("Home", "AutoCompleteResult", "searchText")]         [DisplayName("European Country Search")]         public string SearchText { get; set; }     } } As you can see, the auto complete attribute is called with the controller name, action name and the name of the action parameter that the search text will be passed into. The AutoComplete Template Now all of this is in place, it’s time to create the AutoComplete template. Create a ViewUserControl called AutoComplete.ascx at the following location within your application – Views/Shared/EditorTemplates/AutoComplete.ascx Add the following code: AutoComplete.ascx <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> <%     var propertyName = ViewData.ModelMetadata.PropertyName;     var propertyValue = ViewData.ModelMetadata.Model;     var id = Guid.NewGuid().ToString();     RouteValueDictionary urlData =         (RouteValueDictionary)ViewData.ModelMetadata.AdditionalValues.Where(x => x.Key == "AutoCompleteUrlData").Single().Value;     var url = Mvc2Templates.Views.Shared.Helpers.RouteHelper.GetUrl(this.ViewContext.RequestContext, urlData); %> <input type="text" name="<%= propertyName %>" value="<%= propertyValue %>" id="<%= id %>" class="autoComplete" /> <script type="text/javascript">     $(function () {         $("#<%= id %>").autocomplete({             source: function (request, response) {                 $.ajax({                     url: "<%= url %>" + request.term,                     dataType: "json",                     success: function (data) {                         response(data);                     }                 });             },             minLength: 2         });     }); </script> There is a lot going on in here but when you break it down it’s quite simple. Firstly, the property name and property value are retrieved through the model meta data. These are required to ensure that the text box input has the correct name and data to allow for model binding. If you look at line 14 you can see them being used in the text box input creation. The interesting bit is on line 8 and 9, this is the code to retrieve the route value dictionary we added into the model metada via the custom attribute. Line 11 is used to create the url, in order to do this I created a quick helper class which looks like the code below titled RouteHelper. The last bit of script is the code to initialise the jQuery UI AutoComplete control with the correct url for calling back to our controller action. RouteHelper using System.Web.Mvc; using System.Web.Routing; namespace Mvc2Templates.Views.Shared.Helpers {     public static class RouteHelper     {         const string Controller = "Controller";         const string Action = "Action";         const string ReplaceFormatString = "REPLACE{0}";         public static string GetUrl(RequestContext requestContext, RouteValueDictionary routeValueDictionary)         {             RouteValueDictionary urlData = new RouteValueDictionary();             UrlHelper urlHelper = new UrlHelper(requestContext);                          int i = 0;             foreach(var item in routeValueDictionary)             {                 if (item.Value == string.Empty)                 {                     i++;                     urlData.Add(item.Key, string.Format(ReplaceFormatString, i.ToString()));                 }                 else                 {                     urlData.Add(item.Key, item.Value);                 }             }             var url = urlHelper.RouteUrl(urlData);             for (int index = 1; index <= i; index++)             {                 url = url.Replace(string.Format(ReplaceFormatString, index.ToString()), string.Empty);             }             return url;         }     } } See it in action All you need to do to see it in action is pass a view model from your controller with the new AutoComplete attribute attached and call the following within your view: <%= this.Html.EditorForModel() %> NOTE: The jQuery UI auto complete control expects a JSON string returned from your controller action method… as you can’t use the JsonResult to perform GET requests, use a normal action result, convert your data into json and return it as a string via a ContentResult. If you download the solution it will be very clear how to handle the controller and action for this demo. The full source code for this post can be downloaded here. It has been developed using MVC 2 and Visual Studio 2010. As always, I hope this has been interesting/useful. Kind Regards, Sean McAlinden.

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Server 2012 DFS New Member Issue

    - by David
    I am trying to add a new member to our DFS topology. We have 3 DCs (VMs - VMware) running Windows server 2012, two servers are located in or Primary site and the third at our DR site. Currently the two servers at our primary site are currently replicating DFS (full mesh) and are working fine. I have tried several times to add the third DC to our DFS topology, every time i configure the replication path e.g E:\MSI and click ok the MMC snap in crashes. Below is the crash info, any idea what is causing this? What i am doing is fairly straight forward and don't see why this would be happening. Windows Crash Error: gnature: Problem Event Name: CLR20r3 Problem Signature 01: mmc.exe Problem Signature 02: 6.2.9200.16496 Problem Signature 03: 50ece2e8 Problem Signature 04: System.Windows.Forms Problem Signature 05: 4.0.30319.18046 Problem Signature 06: 51552cda Problem Signature 07: 6291 Problem Signature 08: 25 Problem Signature 09: RML5K4UDBMA5NI04CIYRWVDHKEWFDHCV OS Version: 6.2.9200.2.0.0.272.7 Locale ID: 3081 Additional Information 1: b979 Additional Information 2: b97911c958b3d076b53a1d80c1c56088 Additional Information 3: 4fee Additional Information 4: 4fee5b9baabd694859b15dfc5e1863b7      Crash Report Version=1 EventType=CLR20r3 EventTime=130165974300817209 ReportType=2 Consent=1 ReportIdentifier=d15d0d38-dd36-11e2-93fb-005056af764c IntegratorReportIdentifier=d15d0d37-dd36-11e2-93fb-005056af764c NsAppName=mmc.exe Response.type=4 Sig[0].Name=Problem Signature 01 Sig[0].Value=mmc.exe Sig[1].Name=Problem Signature 02 Sig[1].Value=6.2.9200.16496 Sig[2].Name=Problem Signature 03 Sig[2].Value=50ece2e8 Sig[3].Name=Problem Signature 04 Sig[3].Value=System.Windows.Forms Sig[4].Name=Problem Signature 05 Sig[4].Value=4.0.30319.18046 Sig[5].Name=Problem Signature 06 Sig[5].Value=51552cda Sig[6].Name=Problem Signature 07 Sig[6].Value=6291 Sig[7].Name=Problem Signature 08 Sig[7].Value=25 Sig[8].Name=Problem Signature 09 Sig[8].Value=RML5K4UDBMA5NI04CIYRWVDHKEWFDHCV DynamicSig[1].Name=OS Version DynamicSig[1].Value=6.2.9200.2.0.0.272.7 DynamicSig[2].Name=Locale ID DynamicSig[2].Value=3081 DynamicSig[22].Name=Additional Information 1 DynamicSig[22].Value=b979 DynamicSig[23].Name=Additional Information 2 DynamicSig[23].Value=b97911c958b3d076b53a1d80c1c56088 DynamicSig[24].Name=Additional Information 3 DynamicSig[24].Value=4fee DynamicSig[25].Name=Additional Information 4 DynamicSig[25].Value=4fee5b9baabd694859b15dfc5e1863b7 UI[2]=C:\Windows\system32\mmc.exe UI[3]=Microsoft Management Console has stopped working UI[4]=Windows can check online for a solution to the problem. UI[5]=Check online for a solution and close the program UI[6]=Check online for a solution later and close the program UI[7]=Close the program LoadedModule[0]=C:\Windows\system32\mmc.exe LoadedModule[1]=C:\Windows\SYSTEM32\ntdll.dll LoadedModule[2]=C:\Windows\system32\KERNEL32.DLL LoadedModule[3]=C:\Windows\system32\KERNELBASE.dll LoadedModule[4]=C:\Windows\system32\GDI32.dll LoadedModule[5]=C:\Windows\system32\USER32.dll LoadedModule[6]=C:\Windows\system32\MFC42u.dll LoadedModule[7]=C:\Windows\system32\msvcrt.dll LoadedModule[8]=C:\Windows\system32\mmcbase.DLL LoadedModule[9]=C:\Windows\system32\ole32.dll LoadedModule[10]=C:\Windows\system32\SHLWAPI.dll LoadedModule[11]=C:\Windows\system32\UxTheme.dll LoadedModule[12]=C:\Windows\system32\DUser.dll LoadedModule[13]=C:\Windows\system32\OLEAUT32.dll LoadedModule[14]=C:\Windows\system32\ODBC32.dll LoadedModule[15]=C:\Windows\SYSTEM32\combase.dll LoadedModule[16]=C:\Windows\system32\RPCRT4.dll LoadedModule[17]=C:\Windows\SYSTEM32\sechost.dll LoadedModule[18]=C:\Windows\system32\ADVAPI32.dll LoadedModule[19]=C:\Windows\system32\SHCORE.DLL LoadedModule[20]=C:\Windows\system32\IMM32.DLL LoadedModule[21]=C:\Windows\system32\MSCTF.dll LoadedModule[22]=C:\Windows\system32\DUI70.dll LoadedModule[23]=C:\Windows\WinSxS\amd64_microsoft.windows.common-controls_6595b64144ccf1df_6.0.9200.16579_none_418ab7ef718b27ef\Comctl32.dll LoadedModule[24]=C:\Windows\system32\SHELL32.dll LoadedModule[25]=C:\Windows\system32\CRYPTBASE.dll LoadedModule[26]=C:\Windows\system32\bcryptPrimitives.dll LoadedModule[27]=C:\Windows\system32\urlmon.dll LoadedModule[28]=C:\Windows\system32\iertutil.dll LoadedModule[29]=C:\Windows\system32\WININET.dll LoadedModule[30]=C:\Windows\SYSTEM32\clbcatq.dll LoadedModule[31]=C:\Windows\system32\mmcndmgr.dll LoadedModule[32]=C:\Windows\System32\msxml6.dll LoadedModule[33]=C:\Windows\system32\profapi.dll LoadedModule[34]=C:\Windows\system32\apphelp.dll LoadedModule[35]=C:\Windows\system32\dwmapi.dll LoadedModule[36]=C:\Windows\System32\oleacc.dll LoadedModule[37]=C:\Windows\system32\CRYPTSP.dll LoadedModule[38]=C:\Windows\system32\rsaenh.dll LoadedModule[39]=C:\Windows\system32\NetworkExplorer.dll LoadedModule[40]=C:\Windows\system32\PROPSYS.dll LoadedModule[41]=C:\Windows\system32\SETUPAPI.dll LoadedModule[42]=C:\Windows\system32\CFGMGR32.dll LoadedModule[43]=C:\Windows\system32\DEVOBJ.dll LoadedModule[44]=C:\Windows\system32\mlang.dll LoadedModule[45]=C:\Windows\system32\xmllite.dll LoadedModule[46]=C:\Windows\system32\VERSION.dll LoadedModule[47]=C:\Windows\SYSTEM32\mscoree.dll LoadedModule[48]=C:\Windows\Microsoft.NET\Framework64\v4.0.30319\mscoreei.dll LoadedModule[49]=C:\Windows\Microsoft.NET\Framework64\v4.0.30319\clr.dll LoadedModule[50]=C:\Windows\SYSTEM32\MSVCR110_CLR0400.dll LoadedModule[51]=C:\Windows\assembly\NativeImages_v4.0.30319_64\mscorlib\fa44d07a6b592198dfeae841489f295b\mscorlib.ni.dll LoadedModule[52]=C:\Windows\system32\sxs.dll LoadedModule[53]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System\577825eedb03a45fd7327050e85d0c44\System.ni.dll LoadedModule[54]=C:\Windows\assembly\NativeImages_v4.0.30319_64\MMCEx\9b714b187bfb304526df6d4e6160e15c\MMCEx.ni.dll LoadedModule[55]=C:\Windows\assembly\NativeImages_v4.0.30319_64\MMCFxCommon\3804721e3998fdf29b06e86bcfe92eb8\MMCFxCommon.ni.dll LoadedModule[56]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Configuration\e3873005e8829578178618d41d012849\System.Configuration.ni.dll LoadedModule[57]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Xml\aea95442f7e98cffc3c849fe3b0658d6\System.Xml.ni.dll LoadedModule[58]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Drawing\f28da0d8140095c5c86e9f2443878807\System.Drawing.ni.dll LoadedModule[59]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Windows.Forms\c2f5f2174cecd9faaf74a0cdeebfdd49\System.Windows.Forms.ni.dll LoadedModule[60]=C:\Windows\Microsoft.NET\Framework64\v4.0.30319\diasymreader.dll LoadedModule[61]=C:\Windows\assembly\NativeImages_v4.0.30319_64\Microsoft.Mff1be75b#\3c16df28b2935a005a7fd0da96e0ff6c\Microsoft.ManagementConsole.ni.dll LoadedModule[62]=C:\Windows\Microsoft.NET\Framework64\v4.0.30319\clrjit.dll LoadedModule[63]=C:\Windows\assembly\NativeImages_v4.0.30319_64\DfsMgmt\ed2ebd5dc4469285040f2e21c5e990dc\DfsMgmt.ni.dll LoadedModule[64]=C:\Windows\assembly\NativeImages_v4.0.30319_64\DfsObjectModel\43ed7ca19e7c26cbf27c5c8a2e0fec93\DfsObjectModel.ni.dll LoadedModule[65]=C:\Windows\assembly\NativeImages_v4.0.30319_64\CfsCommonUIFx\aea54a98ed63ebeaa6703e9f0a724ac8\CfsCommonUIFx.ni.dll LoadedModule[66]=C:\Windows\assembly\NativeImages_v4.0.30319_64\Interop.DFSRHelper\3780b83ee96c137664d8807e7042768f\Interop.DFSRHelper.ni.dll LoadedModule[67]=C:\Windows\system32\WindowsCodecs.dll LoadedModule[68]=C:\Windows\WinSxS\amd64_microsoft.windows.common-controls_6595b64144ccf1df_5.82.9200.16384_none_7762d5fd3178b04e\comctl32.dll LoadedModule[69]=C:\Windows\WinSxS\amd64_microsoft.windows.gdiplus_6595b64144ccf1df_1.1.9200.16518_none_726fbfe0cc22f012\gdiplus.dll LoadedModule[70]=C:\Windows\system32\DWrite.dll LoadedModule[71]=C:\Windows\system32\COMDLG32.dll LoadedModule[72]=C:\Windows\system32\Netapi32.dll LoadedModule[73]=C:\Windows\system32\netutils.dll LoadedModule[74]=C:\Windows\system32\srvcli.dll LoadedModule[75]=C:\Windows\system32\wkscli.dll LoadedModule[76]=C:\Windows\system32\clusapi.dll LoadedModule[77]=C:\Windows\system32\cryptdll.dll LoadedModule[78]=C:\Windows\system32\WS2_32.dll LoadedModule[79]=C:\Windows\system32\NSI.dll LoadedModule[80]=C:\Windows\system32\mswsock.dll LoadedModule[81]=C:\Windows\system32\DNSAPI.dll LoadedModule[82]=C:\Windows\System32\rasadhlp.dll LoadedModule[83]=C:\Windows\system32\IPHLPAPI.DLL LoadedModule[84]=C:\Windows\system32\WINNSI.DLL LoadedModule[85]=C:\Windows\System32\fwpuclnt.dll LoadedModule[86]=C:\Windows\system32\DFSCLI.DLL LoadedModule[87]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Dired13b18a9#\0acd265b442254788d2d1429c296558c\System.DirectoryServices.ni.dll LoadedModule[88]=C:\Windows\system32\ntdsapi.dll LoadedModule[89]=C:\Windows\system32\LOGONCLI.DLL LoadedModule[90]=C:\Windows\system32\activeds.dll LoadedModule[91]=C:\Windows\system32\adsldpc.dll LoadedModule[92]=C:\Windows\system32\WLDAP32.dll LoadedModule[93]=C:\Windows\system32\adsldp.dll LoadedModule[94]=C:\Windows\system32\SspiCli.dll LoadedModule[95]=C:\Windows\system32\DSPARSE.dll LoadedModule[96]=C:\Windows\system32\msv1_0.DLL LoadedModule[97]=C:\Windows\system32\cscapi.dll LoadedModule[98]=C:\Windows\system32\DSROLE.DLL LoadedModule[99]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Dire5d62f0a2#\819205bfacb57978948171e414993369\System.DirectoryServices.Protocols.ni.dll LoadedModule[100]=C:\Windows\System32\objsel.dll LoadedModule[101]=C:\Windows\System32\Secur32.dll LoadedModule[102]=C:\Windows\System32\credui.dll LoadedModule[103]=C:\Windows\system32\CRYPT32.dll LoadedModule[104]=C:\Windows\system32\MSASN1.dll LoadedModule[105]=C:\Windows\System32\DPAPI.DLL LoadedModule[106]=C:\Windows\system32\riched32.dll LoadedModule[107]=C:\Windows\system32\RICHED20.dll LoadedModule[108]=C:\Windows\system32\USP10.dll LoadedModule[109]=C:\Windows\system32\msls31.dll LoadedModule[110]=C:\Windows\System32\Windows.Globalization.dll LoadedModule[111]=C:\Windows\System32\Bcp47Langs.dll LoadedModule[112]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Serv759bfb78#\e44b9230fcc7dc263820eff07cfc6353\System.ServiceProcess.ni.dll LoadedModule[113]=C:\Windows\system32\kerberos.DLL LoadedModule[114]=C:\Windows\system32\bcrypt.dll LoadedModule[115]=C:\Windows\assembly\NativeImages_v4.0.30319_64\Accessibility\e69795104b16b74fe9c1e7dff4f3f510\Accessibility.ni.dll LoadedModule[116]=C:\Windows\system32\MPR.dll LoadedModule[117]=C:\Windows\System32\drprov.dll LoadedModule[118]=C:\Windows\System32\WINSTA.dll LoadedModule[119]=C:\Windows\System32\ntlanman.dll LoadedModule[120]=C:\Windows\system32\explorerframe.dll FriendlyEventName=Stopped working ConsentKey=CLR20r3 AppName=Microsoft Management Console AppPath=C:\Windows\system32\mmc.exe NsPartner=windows NsGroup=windows8 Application Log Event ID: 1000 Faulting application name: mmc.exe, version: 6.2.9200.16496, time stamp: 0x50ece2e8 Faulting module name: KERNELBASE.dll, version: 6.2.9200.16451, time stamp: 0x50988aa6 Exception code: 0xe0434352 Fault offset: 0x000000000003811c Faulting process id: 0xd30 Faulting application start time: 0x01ce71411a7b775b Faulting application path: C:\Windows\system32\mmc.exe Faulting module path: C:\Windows\system32\KERNELBASE.dll Report Id: d15d0d37-dd36-11e2-93fb-005056af764c Faulting package full name: Faulting package-relative application ID: Application Log Event ID: 1026 Application: mmc.exe Framework Version: v4.0.30319 Description: The process was terminated due to an unhandled exception. Exception Info: System.Runtime.InteropServices.SEHException Stack: at System.Windows.Forms.UnsafeNativeMethods.ThemingScope.DeactivateActCtx(Int32 dwFlags, IntPtr lpCookie) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at Microsoft.ManagementConsole.Internal.SnapInMessagePumpProxy.Microsoft.ManagementConsole.Internal.ISnapInMessagePumpProxy.Run() at Microsoft.ManagementConsole.Executive.SnapInThread.OnThreadStart() at System.Threading.ExecutionContext.RunInternal(System.Threading.ExecutionContext, System.Threading.ContextCallback, System.Object, Boolean) at System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext, System.Threading.ContextCallback, System.Object, Boolean) at System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext, System.Threading.ContextCallback, System.Object) at System.Threading.ThreadHelper.ThreadStart()

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating Custom Ajax Control Toolkit Controls

    - by Stephen Walther
    The goal of this blog entry is to explain how you can extend the Ajax Control Toolkit with custom Ajax Control Toolkit controls. I describe how you can create the two halves of an Ajax Control Toolkit control: the server-side control extender and the client-side control behavior. Finally, I explain how you can use the new Ajax Control Toolkit control in a Web Forms page. At the end of this blog entry, there is a link to download a Visual Studio 2010 solution which contains the code for two Ajax Control Toolkit controls: SampleExtender and PopupHelpExtender. The SampleExtender contains the minimum skeleton for creating a new Ajax Control Toolkit control. You can use the SampleExtender as a starting point for your custom Ajax Control Toolkit controls. The PopupHelpExtender control is a super simple custom Ajax Control Toolkit control. This control extender displays a help message when you start typing into a TextBox control. The animated GIF below demonstrates what happens when you click into a TextBox which has been extended with the PopupHelp extender. Here’s a sample of a Web Forms page which uses the control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowPopupHelp.aspx.cs" Inherits="MyACTControls.Web.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head runat="server"> <title>Show Popup Help</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblSSN" Text="SSN:" AssociatedControlID="txtSSN" runat="server" /> <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblPhone" Text="Phone Number:" AssociatedControlID="txtPhone" runat="server" /> <asp:TextBox ID="txtPhone" runat="server" /> <act:PopupHelpExtender id="ph2" TargetControlID="txtPhone" HelpText="Please enter your phone number." runat="server" /> </div> </form> </body> </html> In the page above, the PopupHelp extender is used to extend the functionality of the two TextBox controls. When focus is given to a TextBox control, the popup help message is displayed. An Ajax Control Toolkit control extender consists of two parts: a server-side control extender and a client-side behavior. For example, the PopupHelp extender consists of a server-side PopupHelpExtender control (PopupHelpExtender.cs) and a client-side PopupHelp behavior JavaScript script (PopupHelpBehavior.js). Over the course of this blog entry, I describe how you can create both the server-side extender and the client-side behavior. Writing the Server-Side Code Creating a Control Extender You create a control extender by creating a class that inherits from the abstract ExtenderControlBase class. For example, the PopupHelpExtender control is declared like this: public class PopupHelpExtender: ExtenderControlBase { } The ExtenderControlBase class is part of the Ajax Control Toolkit. This base class contains all of the common server properties and methods of every Ajax Control Toolkit extender control. The ExtenderControlBase class inherits from the ExtenderControl class. The ExtenderControl class is a standard class in the ASP.NET framework located in the System.Web.UI namespace. This class is responsible for generating a client-side behavior. The class generates a call to the Microsoft Ajax Library $create() method which looks like this: <script type="text/javascript"> $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); }); </script> The JavaScript $create() method is part of the Microsoft Ajax Library. The reference for this method can be found here: http://msdn.microsoft.com/en-us/library/bb397487.aspx This method accepts the following parameters: type – The type of client behavior to create. The $create() method above creates a client PopupHelpBehavior. Properties – Enables you to pass initial values for the properties of the client behavior. For example, the initial value of the HelpText property. This is how server property values are passed to the client. Events – Enables you to pass client-side event handlers to the client behavior. References – Enables you to pass references to other client components. Element – The DOM element associated with the client behavior. This will be the DOM element associated with the control being extended such as the txtSSN TextBox. The $create() method is generated for you automatically. You just need to focus on writing the server-side control extender class. Specifying the Target Control All Ajax Control Toolkit extenders inherit a TargetControlID property from the ExtenderControlBase class. This property, the TargetControlID property, points at the control that the extender control extends. For example, the Ajax Control Toolkit TextBoxWatermark control extends a TextBox, the ConfirmButton control extends a Button, and the Calendar control extends a TextBox. You must indicate the type of control which your extender is extending. You indicate the type of control by adding a [TargetControlType] attribute to your control. For example, the PopupHelp extender is declared like this: [TargetControlType(typeof(TextBox))] public class PopupHelpExtender: ExtenderControlBase { } The PopupHelp extender can be used to extend a TextBox control. If you try to use the PopupHelp extender with another type of control then an exception is thrown. If you want to create an extender control which can be used with any type of ASP.NET control (Button, DataView, TextBox or whatever) then use the following attribute: [TargetControlType(typeof(Control))] Decorating Properties with Attributes If you decorate a server-side property with the [ExtenderControlProperty] attribute then the value of the property gets passed to the control’s client-side behavior. The value of the property gets passed to the client through the $create() method discussed above. The PopupHelp control contains the following HelpText property: [ExtenderControlProperty] [RequiredProperty] public string HelpText { get { return GetPropertyValue("HelpText", "Help Text"); } set { SetPropertyValue("HelpText", value); } } The HelpText property determines the help text which pops up when you start typing into a TextBox control. Because the HelpText property is decorated with the [ExtenderControlProperty] attribute, any value assigned to this property on the server is passed to the client automatically. For example, if you declare the PopupHelp extender in a Web Form page like this: <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" />   Then the PopupHelpExtender renders the call to the the following Microsoft Ajax Library $create() method: $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); You can see this call to the JavaScript $create() method by selecting View Source in your browser. This call to the $create() method calls a method named set_HelpText() automatically and passes the value “Please enter your social security number”. There are several attributes which you can use to decorate server-side properties including: ExtenderControlProperty – When a property is marked with this attribute, the value of the property is passed to the client automatically. ExtenderControlEvent – When a property is marked with this attribute, the property represents a client event handler. Required – When a value is not assigned to this property on the server, an error is displayed. DefaultValue – The default value of the property passed to the client. ClientPropertyName – The name of the corresponding property in the JavaScript behavior. For example, the server-side property is named ID (uppercase) and the client-side property is named id (lower-case). IDReferenceProperty – Applied to properties which refer to the IDs of other controls. URLProperty – Calls ResolveClientURL() to convert from a server-side URL to a URL which can be used on the client. ElementReference – Returns a reference to a DOM element by performing a client $get(). The WebResource, ClientResource, and the RequiredScript Attributes The PopupHelp extender uses three embedded resources named PopupHelpBehavior.js, PopupHelpBehavior.debug.js, and PopupHelpBehavior.css. The first two files are JavaScript files and the final file is a Cascading Style sheet file. These files are compiled as embedded resources. You don’t need to mark them as embedded resources in your Visual Studio solution because they get added to the assembly when the assembly is compiled by a build task. You can see that these files get embedded into the MyACTControls assembly by using Red Gate’s .NET Reflector tool: In order to use these files with the PopupHelp extender, you need to work with both the WebResource and the ClientScriptResource attributes. The PopupHelp extender includes the following three WebResource attributes. [assembly: WebResource("PopupHelp.PopupHelpBehavior.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.debug.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.css", "text/css", PerformSubstitution = true)] These WebResource attributes expose the embedded resource from the assembly so that they can be accessed by using the ScriptResource.axd or WebResource.axd handlers. The first parameter passed to the WebResource attribute is the name of the embedded resource and the second parameter is the content type of the embedded resource. The PopupHelp extender also includes the following ClientScriptResource and ClientCssResource attributes: [ClientScriptResource("MyACTControls.PopupHelpBehavior", "PopupHelp.PopupHelpBehavior.js")] [ClientCssResource("PopupHelp.PopupHelpBehavior.css")] Including these attributes causes the PopupHelp extender to request these resources when you add the PopupHelp extender to a page. If you open View Source in a browser which uses the PopupHelp extender then you will see the following link for the Cascading Style Sheet file: <link href="/WebResource.axd?d=0uONMsWXUuEDG-pbJHAC1kuKiIMteQFkYLmZdkgv7X54TObqYoqVzU4mxvaa4zpn5H9ch0RDwRYKwtO8zM5mKgO6C4WbrbkWWidKR07LD1d4n4i_uNB1mHEvXdZu2Ae5mDdVNDV53znnBojzCzwvSw2&amp;t=634417392021676003" type="text/css" rel="stylesheet" /> You also will see the following script include for the JavaScript file: <script src="/ScriptResource.axd?d=pIS7xcGaqvNLFBvExMBQSp_0xR3mpDfS0QVmmyu1aqDUjF06TrW1jVDyXNDMtBHxpRggLYDvgFTWOsrszflZEDqAcQCg-hDXjun7ON0Ol7EXPQIdOe1GLMceIDv3OeX658-tTq2LGdwXhC1-dE7_6g2&amp;t=ffffffff88a33b59" type="text/javascript"></script> The JavaScrpt file returned by this request to ScriptResource.axd contains the combined scripts for any and all Ajax Control Toolkit controls in a page. By default, the Ajax Control Toolkit combines all of the JavaScript files required by a page into a single JavaScript file. Combining files in this way really speeds up how quickly all of the JavaScript files get delivered from the web server to the browser. So, by default, there will be only one ScriptResource.axd include for all of the JavaScript files required by a page. If you want to disable Script Combining, and create separate links, then disable Script Combining like this: <act:ToolkitScriptManager ID="tsm" runat="server" CombineScripts="false" /> There is one more important attribute used by Ajax Control Toolkit extenders. The PopupHelp behavior uses the following two RequirdScript attributes to load the JavaScript files which are required by the PopupHelp behavior: [RequiredScript(typeof(CommonToolkitScripts), 0)] [RequiredScript(typeof(PopupExtender), 1)] The first parameter of the RequiredScript attribute represents either the string name of a JavaScript file or the type of an Ajax Control Toolkit control. The second parameter represents the order in which the JavaScript files are loaded (This second parameter is needed because .NET attributes are intrinsically unordered). In this case, the RequiredScript attribute will load the JavaScript files associated with the CommonToolkitScripts type and the JavaScript files associated with the PopupExtender in that order. The PopupHelp behavior depends on these JavaScript files. Writing the Client-Side Code The PopupHelp extender uses a client-side behavior written with the Microsoft Ajax Library. Here is the complete code for the client-side behavior: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { Type.registerNamespace('MyACTControls'); MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); Sys.registerComponent(MyACTControls.PopupHelpBehavior, { name: "popupHelp" }); } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })();   In the following sections, we’ll discuss how this client-side behavior works. Wrapping the Behavior for the Script Loader The behavior is wrapped with the following script: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { // Behavior Content } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })(); This code is required by the Microsoft Ajax Library Script Loader. You need this code if you plan to use a behavior directly from client-side code and you want to use the Script Loader. If you plan to only use your code in the context of the Ajax Control Toolkit then you can leave out this code. Registering a JavaScript Namespace The PopupHelp behavior is declared within a namespace named MyACTControls. In the code above, this namespace is created with the following registerNamespace() method: Type.registerNamespace('MyACTControls'); JavaScript does not have any built-in way of creating namespaces to prevent naming conflicts. The Microsoft Ajax Library extends JavaScript with support for namespaces. You can learn more about the registerNamespace() method here: http://msdn.microsoft.com/en-us/library/bb397723.aspx Creating the Behavior The actual Popup behavior is created with the following code. MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; The code above has two parts. The first part of the code is used to define the constructor function for the PopupHelp behavior. This is a factory method which returns an instance of a PopupHelp behavior: MyACTControls.PopupHelpBehavior = function (element) { } The second part of the code modified the prototype for the PopupHelp behavior: MyACTControls.PopupHelpBehavior.prototype = { } Any code which is particular to a single instance of the PopupHelp behavior should be placed in the constructor function. For example, the default value of the _helpText field is assigned in the constructor function: this._helpText = "Help Text"; Any code which is shared among all instances of the PopupHelp behavior should be added to the PopupHelp behavior’s prototype. For example, the public HelpText property is added to the prototype: get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, Registering a JavaScript Class After you create the PopupHelp behavior, you must register the behavior as a class by using the Microsoft Ajax registerClass() method like this: MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); This call to registerClass() registers PopupHelp behavior as a class which derives from the base Sys.Extended.UI.BehaviorBase class. Like the ExtenderControlBase class on the server side, the BehaviorBase class on the client side contains method used by every behavior. The documentation for the BehaviorBase class can be found here: http://msdn.microsoft.com/en-us/library/bb311020.aspx The most important methods and properties of the BehaviorBase class are the following: dispose() – Use this method to clean up all resources used by your behavior. In the case of the PopupHelp behavior, the dispose() method is used to remote the event handlers created by the behavior and disposed the Popup behavior. get_element() -- Use this property to get the DOM element associated with the behavior. In other words, the DOM element which the behavior extends. get_id() – Use this property to the ID of the current behavior. initialize() – Use this method to initialize the behavior. This method is called after all of the properties are set by the $create() method. Creating Debug and Release Scripts You might have noticed that the PopupHelp behavior uses two scripts named PopupHelpBehavior.js and PopupHelpBehavior.debug.js. However, you never create these two scripts. Instead, you only create a single script named PopupHelpBehavior.pre.js. The pre in PopupHelpBehavior.pre.js stands for preprocessor. When you build the Ajax Control Toolkit (or the sample Visual Studio Solution at the end of this blog entry), a build task named JSBuild generates the PopupHelpBehavior.js release script and PopupHelpBehavior.debug.js debug script automatically. The JSBuild preprocessor supports the following directives: #IF #ELSE #ENDIF #INCLUDE #LOCALIZE #DEFINE #UNDEFINE The preprocessor directives are used to mark code which should only appear in the debug version of the script. The directives are used extensively in the Microsoft Ajax Library. For example, the Microsoft Ajax Library Array.contains() method is created like this: $type.contains = function Array$contains(array, item) { //#if DEBUG var e = Function._validateParams(arguments, [ {name: "array", type: Array, elementMayBeNull: true}, {name: "item", mayBeNull: true} ]); if (e) throw e; //#endif return (indexOf(array, item) >= 0); } Notice that you add each of the preprocessor directives inside a JavaScript comment. The comment prevents Visual Studio from getting confused with its Intellisense. The release version, but not the debug version, of the PopupHelpBehavior script is also minified automatically by the Microsoft Ajax Minifier. The minifier is invoked by a build step in the project file. Conclusion The goal of this blog entry was to explain how you can create custom AJAX Control Toolkit controls. In the first part of this blog entry, you learned how to create the server-side portion of an Ajax Control Toolkit control. You learned how to derive a new control from the ExtenderControlBase class and decorate its properties with the necessary attributes. Next, in the second part of this blog entry, you learned how to create the client-side portion of an Ajax Control Toolkit control by creating a client-side behavior with JavaScript. You learned how to use the methods of the Microsoft Ajax Library to extend your client behavior from the BehaviorBase class. Download the Custom ACT Starter Solution

    Read the article

  • JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes

    - by John-Brown.Evans
    JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c17_6{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c5_6{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c6_6{vertical-align:top;width:156pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c15_6{background-color:#ffffff} .c10_6{color:#1155cc;text-decoration:underline} .c1_6{text-align:center;direction:ltr} .c0_6{line-height:1.0;direction:ltr} .c16_6{color:#666666;font-size:12pt} .c18_6{color:inherit;text-decoration:inherit} .c8_6{background-color:#f3f3f3} .c2_6{direction:ltr} .c14_6{font-size:8pt} .c11_6{font-size:10pt} .c7_6{font-weight:bold} .c12_6{height:0pt} .c3_6{height:11pt} .c13_6{border-collapse:collapse} .c4_6{font-family:"Courier New"} .c9_6{font-style:italic} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue This example leads you through the creation of an Oracle database Advanced Queue and the related WebLogic server objects in order to use AQ JMS in connection with a SOA composite. If you have not already done so, I recommend you look at the previous posts in this series, as they include steps which this example builds upon. The following examples will demonstrate how to write and read from the queue from a SOA process. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we wrote and deployed BPEL composites, which enqueued and dequeued a simple XML payload. AQ JMS allows you to interoperate with database Advanced Queueing via JMS in WebLogic server and therefore take advantage of database features, while maintaining compliance with the JMS architecture. AQ JMS uses the WebLogic JMS Foreign Server framework. A full description of this functionality can be found in the following Oracle documentation Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server 11g Release 1 (10.3.6) Part Number E13738-06 7. Interoperating with Oracle AQ JMS http://docs.oracle.com/cd/E23943_01/web.1111/e13738/aq_jms.htm#CJACBCEJ For easier reference, this sample will use the same names for the objects as in the above document, except for the name of the database user, as it is possible that this user already exists in your database. We will create the following objects Database Objects Name Type AQJMSUSER Database User MyQueueTable Advanced Queue (AQ) Table UserQueue Advanced Queue WebLogic Server Objects Object Name Type JNDI Name aqjmsuserDataSource Data Source jdbc/aqjmsuserDataSource AqJmsModule JMS System Module AqJmsForeignServer JMS Foreign Server AqJmsForeignServerConnectionFactory JMS Foreign Server Connection Factory AqJmsForeignServerConnectionFactory AqJmsForeignDestination AQ JMS Foreign Destination queue/USERQUEUE eis/aqjms/UserQueue Connection Pool eis/aqjms/UserQueue 2. Create a Database User and Advanced Queue The following steps can be executed in the database client of your choice, e.g. JDeveloper or SQL Developer. The examples below use SQL*Plus. Log in to the database as a DBA user, for example SYSTEM or SYS. Create the AQJMSUSER user and grant privileges to enable the user to create AQ objects. Create Database User and Grant AQ Privileges sqlplus system/password as SYSDBA GRANT connect, resource TO aqjmsuser IDENTIFIED BY aqjmsuser; GRANT aq_user_role TO aqjmsuser; GRANT execute ON sys.dbms_aqadm TO aqjmsuser; GRANT execute ON sys.dbms_aq TO aqjmsuser; GRANT execute ON sys.dbms_aqin TO aqjmsuser; GRANT execute ON sys.dbms_aqjms TO aqjmsuser; Create the Queue Table and Advanced Queue and Start the AQ The following commands are executed as the aqjmsuser database user. Create the Queue Table connect aqjmsuser/aqjmsuser; BEGIN dbms_aqadm.create_queue_table ( queue_table = 'myQueueTable', queue_payload_type = 'sys.aq$_jms_text_message', multiple_consumers = false ); END; / Create the AQ BEGIN dbms_aqadm.create_queue ( queue_name = 'userQueue', queue_table = 'myQueueTable' ); END; / Start the AQ BEGIN dbms_aqadm.start_queue ( queue_name = 'userQueue'); END; / The above commands can be executed in a single PL/SQL block, but are shown as separate blocks in this example for ease of reference. You can verify the queue by executing the SQL command SELECT object_name, object_type FROM user_objects; which should display the following objects: OBJECT_NAME OBJECT_TYPE ------------------------------ ------------------- SYS_C0056513 INDEX SYS_LOB0000170822C00041$$ LOB SYS_LOB0000170822C00040$$ LOB SYS_LOB0000170822C00037$$ LOB AQ$_MYQUEUETABLE_T INDEX AQ$_MYQUEUETABLE_I INDEX AQ$_MYQUEUETABLE_E QUEUE AQ$_MYQUEUETABLE_F VIEW AQ$MYQUEUETABLE VIEW MYQUEUETABLE TABLE USERQUEUE QUEUE Similarly, you can view the objects in JDeveloper via a Database Connection to the AQJMSUSER. 3. Configure WebLogic Server and Add JMS Objects All these steps are executed from the WebLogic Server Administration Console. Log in as the webLogic user. Configure a WebLogic Data Source The data source is required for the database connection to the AQ created above. Navigate to domain > Services > Data Sources and press New then Generic Data Source. Use the values:Name: aqjmsuserDataSource JNDI Name: jdbc/aqjmsuserDataSource Database type: Oracle Database Driver: *Oracle’ Driver (Thin XA) for Instance connections; Versions:9.0.1 and later Connection Properties: Enter the connection information to the database containing the AQ created above and enter aqjmsuser for the User Name and Password. Press Test Configuration to verify the connection details and press Next. Target the data source to the soa server. The data source will be displayed in the list. It is a good idea to test the data source at this stage. Click on aqjmsuserDataSource, select Monitoring > Testing > soa_server1 and press Test Data Source. The result is displayed at the top of the page. Configure a JMS System Module The JMS system module is required to host the JMS foreign server for AQ resources. Navigate to Services > Messaging > JMS Modules and select New. Use the values: Name: AqJmsModule (Leave Descriptor File Name and Location in Domain empty.) Target: soa_server1 Click Finish. The other resources will be created in separate steps. The module will be displayed in the list.   Configure a JMS Foreign Server A foreign server is required in order to reference a 3rd-party JMS provider, in this case the database AQ, within a local WebLogic server JNDI tree. Navigate to Services > Messaging > JMS Modules and select (click on) AqJmsModule to configure it. Under Summary of Resources, select New then Foreign Server. Name: AqJmsForeignServer Targets: The foreign server is targeted automatically to soa_server1, based on the JMS module’s target. Press Finish to create the foreign server. The foreign server resource will be listed in the Summary of Resources for the AqJmsModule, but needs additional configuration steps. Click on AqJmsForeignServer and select Configuration > General to complete the configuration: JNDI Initial Context Factory: oracle.jms.AQjmsInitialContextFactory JNDI Connection URL: <empty> JNDI Properties Credential:<empty> Confirm JNDI Properties Credential: <empty> JNDI Properties: datasource=jdbc/aqjmsuserDataSource This is an important property. It is the JNDI name of the data source created above, which points to the AQ schema in the database and must be entered as a name=value pair, as in this example, e.g. datasource=jdbc/aqjmsuserDataSource, including the “datasource=” property name. Default Targeting Enabled: Leave this value checked. Press Save to save the configuration. At this point it is a good idea to verify that the data source was written correctly to the config file. In a terminal window, navigate to $MIDDLEWARE_HOME/user_projects/domains/soa_domain/config/jms  and open the file aqjmsmodule-jms.xml . The foreign server configuration should contain the datasource name-value pair, as follows:   <foreign-server name="AqJmsForeignServer">         <default-targeting-enabled>true</default-targeting-enabled>         <initial-context-factory>oracle.jms.AQjmsInitialContextFactory</initial-context-factory>         <jndi-property>           <key> datasource </key>           <value> jdbc/aqjmsuserDataSource </value>         </jndi-property>   </foreign-server> </weblogic-jms> Configure a JMS Foreign Server Connection Factory When creating the foreign server connection factory, you enter local and remote JNDI names. The name of the connection factory itself and the local JNDI name are arbitrary, but the remote JNDI name must match a specific format, depending on the type of queue or topic to be accessed in the database. This is very important and if the incorrect value is used, the connection to the queue will not be established and the error messages you get will not immediately reflect the cause of the error. The formats required (Remote JNDI names for AQ JMS Connection Factories) are described in the section Configure AQ Destinations  of the Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server document mentioned earlier. In this example, the remote JNDI name used is   XAQueueConnectionFactory  because it matches the AQ and data source created earlier, i.e. thin with AQ. Navigate to JMS Modules > AqJmsModule > AqJmsForeignServer > Connection Factories then New.Name: AqJmsForeignServerConnectionFactory Local JNDI Name: AqJmsForeignServerConnectionFactory Note: this local JNDI name is the JNDI name which your client application, e.g. a later BPEL process, will use to access this connection factory. Remote JNDI Name: XAQueueConnectionFactory Press OK to save the configuration. Configure an AQ JMS Foreign Server Destination A foreign server destination maps the JNDI name on the foreign JNDI provider to the respective local JNDI name, allowing the foreign JNDI name to be accessed via the local server. As with the foreign server connection factory, the local JNDI name is arbitrary (but must be unique), but the remote JNDI name must conform to a specific format defined in the section Configure AQ Destinations  of the Oracle® Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server document mentioned earlier. In our example, the remote JNDI name is Queues/USERQUEUE , because it references a queue (as opposed to a topic) with the name USERQUEUE. We will name the local JNDI name queue/USERQUEUE, which is a little confusing (note the missing “s” in “queue), but conforms better to the JNDI nomenclature in our SOA server and also allows us to differentiate between the local and remote names for demonstration purposes. Navigate to JMS Modules > AqJmsModule > AqJmsForeignServer > Destinations and select New.Name: AqJmsForeignDestination Local JNDI Name: queue/USERQUEUE Remote JNDI Name:Queues/USERQUEUE After saving the foreign destination configuration, this completes the JMS part of the configuration. We still need to configure the JMS adapter in order to be able to access the queue from a BPEL processt. 4. Create a JMS Adapter Connection Pool in Weblogic Server Create the Connection Pool Access to the AQ JMS queue from a BPEL or other SOA process in our example is done via a JMS adapter. To enable this, the JmsAdapter in WebLogic server needs to be configured to have a connection pool which points to the local connection factory JNDI name which was created earlier. Navigate to Deployments > Next and select (click on) the JmsAdapter. Select Configuration > Outbound Connection Pools and New. Check the radio button for oracle.tip.adapter.jms.IJmsConnectionFactory and press Next. JNDI Name: eis/aqjms/UserQueue Press Finish Expand oracle.tip.adapter.jms.IJmsConnectionFactory and click on eis/aqjms/UserQueue to configure it. The ConnectionFactoryLocation must point to the foreign server’s local connection factory name created earlier. In our example, this is AqJmsForeignServerConnectionFactory . As a reminder, this connection factory is located under JMS Modules > AqJmsModule > AqJmsForeignServer > Connection Factories and the value needed here is under Local JNDI Name. Enter AqJmsForeignServerConnectionFactory  into the Property Value field for ConnectionFactoryLocation. You must then press Return/Enter then Save for the value to be accepted. If your WebLogic server is running in Development mode, you should see the message that the changes have been activated and the deployment plan successfully updated. If not, then you will manually need to activate the changes in the WebLogic server console.Although the changes have been activated, the JmsAdapter needs to be redeployed in order for the changes to become effective. This should be confirmed by the message Remember to update your deployment to reflect the new plan when you are finished with your changes. Redeploy the JmsAdapter Navigate back to the Deployments screen, either by selecting it in the left-hand navigation tree or by selecting the “Summary of Deployments” link in the breadcrumbs list at the top of the screen. Then select the checkbox next to JmsAdapter and press the Update button. On the Update Application Assistant page, select “Redeploy this application using the following deployment files” and press Finish. After a few seconds you should get the message that the selected deployments were updated. The JMS adapter configuration is complete and it can now be used to access the AQ JMS queue. You can verify that the JNDI name was created correctly, by navigating to Environment > Servers > soa_server1 and View JNDI Tree. Then scroll down in the JNDI Tree Structure to eis and select aqjms. This concludes the sample. In the following post, I will show you how to create a BPEL process which sends a message to this advanced queue via JMS. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • CodePlex Daily Summary for Thursday, November 18, 2010

    CodePlex Daily Summary for Thursday, November 18, 2010Popular ReleasesSitefinity Migration Tool: Sitefinity Migration Tool 0.2 Alpha: - Improvements for the Sitefinity RC releaseMiniTwitter: 1.57: MiniTwitter 1.57 ???? ?? ?????????????????? ?? User Streams ????????????????????? ???????????????·??????·???????VFPX: VFP2C32 2.0.0.7: fixed a bug in AAverage - NULL values in the array corrupted the result removed limitation in ASum, AMin, AMax, AAverage - the functions were limited to 65000 elements, now they're limited to 65000 rows ASplitStr now returns a 1 element array with an empty string when an empty string is passed (behaves more like ALINES) internal code cleanup and optimization: optimized FoxArray class - results in a speedup of 10-20% in many functions which return the result in an array - like AProcesses...Microsoft SQL Server Product Samples: Database: AdventureWorks 2008R2 SR1: Sample Databases for Microsoft SQL Server 2008R2 (SR1)This release is dedicated to the sample databases that ship for Microsoft SQL Server 2008R2. See Database Prerequisites for SQL Server 2008R2 for feature configurations required for installing the sample databases. See Installing SQL Server 2008R2 Databases for step by step installation instructions. The SR1 release contains minor bug fixes to the installer used to create the sample databases. There are no changes to the databases them...VidCoder: 0.7.2: Fixed duplicated subtitles when running multiple encodes off of the same title.Razor Templating Engine: Razor Template Engine v1.1: Release 1.1 Changes: ADDED: Signed assemblies with strong name to allow assemblies to be referenced by other strongly-named assemblies. FIX: Filter out dynamic assemblies which causes failures in template compilation. FIX: Changed ASCII to UTF8 encoding to support UTF-8 encoded string templates. FIX: Corrected implementation of TemplateBase adding ITemplate interface.Prism Training Kit: Prism Training Kit - 1.1: This is an updated version of the Prism training Kit that targets Prism 4.0 and fixes the bugs reported in the version 1.0. This release consists of a Training Kit with Labs on the following topics Modularity Dependency Injection Bootstrapper UI Composition Communication Note: Take into account that this is a Beta version. If you find any bugs please report them in the Issue Tracker PrerequisitesVisual Studio 2010 Microsoft Word 2007/2010 Microsoft Silverlight 4 Microsoft S...Craig's Utility Library: Craig's Utility Library Code 2.0: This update contains a number of changes, added functionality, and bug fixes: Added transaction support to SQLHelper. Added linked/embedded resource ability to EmailSender. Updated List to take into account new functions. Added better support for MAC address in WMI classes. Fixed Parsing in Reflection class when dealing with sub classes. Fixed bug in SQLHelper when replacing the Command that is a select after doing a select. Fixed issue in SQL Server helper with regard to generati...MFCMAPI: November 2010 Release: Build: 6.0.0.1023 Full release notes at SGriffin's blog. If you just want to run the tool, get the executable. If you want to debug it, get the symbol file and the source. The 64 bit build will only work on a machine with Outlook 2010 64 bit installed. All other machines should use the 32 bit build, regardless of the operating system. Facebook BadgeDotNetNuke® Community Edition: 05.06.00: Major HighlightsAdded automatic portal alias creation for single portal installs Updated the file manager upload page to allow user to upload multiple files without returning to the file manager page. Fixed issue with Event Log Email Notifications. Fixed issue where Telerik HTML Editor was unable to upload files to secure or database folder. Fixed issue where registration page is not set correctly during an upgrade. Fixed issue where Sendmail stripped HTML and Links from emails...mVu Mobile Viewer: mVu Mobile Viewer 0.7.10.0: Tube8 fix.EPPlus-Create advanced Excel 2007 spreadsheets on the server: EPPlus 2.8.0.1: EPPlus-Create advanced Excel 2007 spreadsheets on the serverNew Features Improved chart support Different chart-types series on the same chart Support for secondary axis and a lot of new properties Better styling Encryption and Workbook protection Table support Import csv files Array formulas ...and a lot of bugfixesAutoLoL: AutoLoL v1.4.2: Added support for more clients (French and Russian) Settings are now stored sepperatly for each user on a computer Auto Login is much faster now Auto Login detects and handles caps lock state properly nowTailspinSpyworks - WebForms Sample Application: TailspinSpyworks-v0.9: Contains a number of bug fixes and additional tutorial steps as well as complete database implementation details.ASP.NET MVC Project Awesome (rich jQuery AJAX helpers): 1.3 and demos: a library with mvc helpers and a demo project that demonstrates an awesome way of doing asp.net mvc. tested on mozilla, safari, chrome, opera, ie 9b/8/7/6 new stuff in 1.3 Autocomplete helper Autocomplete and AjaxDropdown can have parentId and be filled with data depending on the value of the parent PopupForm besides Content("ok") on success can also return Json(data) and use 'data' in a client side function Awesome demo improved (cruder, builder, added service layer)Nearforums - ASP.NET MVC forum engine: Nearforums v4.1: Version 4.1 of the ASP.NET MVC forum engine, with great improvements: TinyMCE added as visual editor for messages (removed CKEditor). Integrated AntiSamy for cleaner html user post and add more prevention to potential injections. Admin status page: a page for the site admin to check the current status of the configuration / db / etc. View Roadmap for more details.UltimateJB: UltimateJB 2.01 PL3 KakaRoto + PSNYes by EvilSperm: Voici une version attendu avec impatience pour beaucoup : - La Version PSNYes pour pouvoir jouer sur le PSN avec une PS3 Jailbreaker. - Pour l'instant le PSNYes n'est disponible qu'avec les PS3 en firmwares 3.41 !!! - La version PL3 KAKAROTO intégre ses dernières modification et prépare a l'intégration du Firmware 3.30 !!! Conclusion : - UltimateJB PSNYes => Valide l'utilisation du PSN : Uniquement compatible avec les 3.41 - ultimateJB DEFAULT => Pas de PSN mais disponible pour les PS3 sui...Fluent Ribbon Control Suite: Fluent Ribbon Control Suite 2.0: Fluent Ribbon Control Suite 2.0(supports .NET 4.0 RTM and .NET 3.5) Includes: Fluent.dll (with .pdb and .xml) Showcase Application Samples (only for .NET 4.0) Foundation (Tabs, Groups, Contextual Tabs, Quick Access Toolbar, Backstage) Resizing (ribbon reducing & enlarging principles) Galleries (Gallery in ContextMenu, InRibbonGallery) MVVM (shows how to use this library with Model-View-ViewModel pattern) KeyTips ScreenTips Toolbars ColorGallery NEW! *Walkthrough (documenta...patterns & practices: Prism: Prism 4 Documentation: This release contains the Prism 4 documentation in Help 1.0 (CHM) format and PDF format. The documentation is also included with the full download of the guidance. Note: If you cannot view the content of the CHM, using Windows Explorer, select the properties for the file and then click Unblock on the General tab. Note: The PDF version of the guidance is provided for printing and reading in book format. The online version of the Prism 4 documentation can be read here.Farseer Physics Engine: Farseer Physics Engine 3.1: DonationsIf you like this release and would like to keep Farseer Physics Engine running, please consider a small donation. What's new?We bring a lot of new features in Farseer Physics Engine 3.1. Just to name a few: New Box2D core Rope joint added More stable CCD algorithm YuPeng clipper Explosives logic New Constrained Delaunay Triangulation algorithm from the Poly2Tri project. New Flipcode triangulation algorithm. Silverlight 4 samples Silverlight 4 debug view XNA 4.0 relea...New Projectsbizicosoft crm: crmBlog Migrator: The Blog Migrator tool is an all purpose utility designed to help transition a blog from one platform to another. It leverages XML-RPC, BlogML, and WordPress WXR formats. It also provides the ability to "rewrite" your posts on your old blog to point to the new location.bzr-tfs integration tests: Used to test bzr-tfs integrationC++ Open Source Advanced Operating System: C++ Open Source Advanced Operating System is a project which allows starter developers create their own OS. For now it is at a really initial stage.Chavah - internet radio for Yeshua's disciples: Chavah (pronounced "ha-vah") is internet radio for Yeshua's disciples. Inspired by Pandora, Chavah is a Silverlight application that brings community-driven Messianic Jewish tunes for the Lord over the web to your eager ears.CodePoster: An add-in for Visual Studio which allows you to post code directly from Visual Studio to your blog. CRM 2011 Plugin Testing Tools: This solution is meant to make unit testing of plugins in CRM 2011 a simpler and more efficient process. This solution serializes the objects that the CRM server passes to a plugin on execution and then offers a library that allows you to deserialize them in a unit test.Edinamarry Free Tarot Software for Windows: A freeware yet an advanced Tarot reading divinity Software for Psychics and for all those who practice Divinity and Spirituality. This software includes Tarot Spread Designer, Tarot Deck Designer, Tarot Cards Gallery, Client & Customer Profile, Word Editor, Tarot Reader, etc.EPiSocial: Social addons for EPiServer.first team foundation project: this is my first project for the student to teach them about the ms visual studio 201o and team foundation serverFKTdev: Proyecto donde subiremos las pruebas, códigos de ejemplo y demás recursos en nuestro aprendizaje en XNA, hasta que comencemos un desarrollo estable.Gardens Point Component Pascal: Gardens Point Component Pascal is an implementation for .NET of the Component Pascal Language (CP). CP is an object oriented version of Pascal, and shares many design features with Oberon-2. Geoinformatics: geoinformaticsGREENHOUSEMANAGER: GREENHOUSE es un proyecto universitario para manejar los distintos aspectos de un invernadero. El sistema esta desarrollado en c# con interfaz grafica en WPFHousing: This project is only for the asp.net learning. HR-XML.NET: A .NET HR-XML Serialization Library. Also supports the Dutch SETU standard and some proprietary extensions used in the Netherlands. The project is currently targeting HR-XML version 2.5 and Setu standard 2008-01.InternetShop2: ShopLesson4: Lesson4 for M.Logical Synchronous Circuit Simulator: As part of a student project, we are trying to make a logic synchronous circuit simulator, with the ultimate goal of simulating a processor and a digital clock running on it.MediaOwl: MediaOwl is a music (albums, artists, tracks, tags) and movie (movies, series, actors, directors, genres) search engine, but above all, it is a Microsoft Silverlight 4 application (C#), that shows how to use Caliburn Micro.N2F Yverdon Solar Flare Reflector: The solar flare reflector provides minimal base-range protection for your N2F Yverdon installation against solar flare interference.Netduino Plus Home Automation Toolkit: The Netduino Plus Home Automation project is designed to proivde a communication platform from various consumer based home automation products that offer a common web service endpoint. This will hopefully create a low cost DIY alternative to the expensive ethernet interfaces.NRapid: NRapidOfficeHelper: Wrapper around the open xml office package. You can easily create xlsx documents based on a template xlsx document and reuse parts from that document, if you mark them as named ranges (i.e. "names").OffProjects: This is a private project which for my dev investigationParis Velib Stations for Windows Mobile: Allow to find the closest Velib bike station in Paris on a Windows Mobile Phone (6.5)/ Permet de trouver la station de Vélib la plus proche dans Paris ainsi que ses informations sur un smartphone Windows MobilePolarConverter: Adjust the measured distance of HRM files created by Polar Heart Rate monitorsSexy Select: a jQuery plugin that allows for easy manipulation of select options. Allows for adding, removing, sorting, validation and custom skinningSilverlight Progress Feedback: Demonstrates how to get progress feedback from slow running WPF processes in Silverlight.Silverlight Tabbed Panel: Tabbed Panel based on Silverlight targeted for both developers and designers audience. Tabbed Control is used in this project. This is a basic application. More features will be added in further releases. XAML has been used to design this panel. slabhid: SLABHIDDevice.dll is used for the SLAB MCU example code on PC, the original source code is written by C++. This wrapper class brings SLABHIDDevice.dll to the .Net world, so it will be possible to make some quick solution for firmware testing purpose.SuperWebSocket: A .NET server side implementation of WebSocket protocol.test1-jjoiner: just a test projectTotem Alpha Developer Framework For .Net: ????tadf??VS.NET???????????,????jtadf???????????????。 ?????????tadf??????????????J2EE???????VS.NET?????????,??tadf?????.NET??,???????????,????????????,??????C#??????????Java???????,??????。 tadf?????????????,????HTML???????????,???????,?????????,?????。tadf???????????,????????RICH UI?????WEB??。??????,??。 tadf?????????????????????,????WEB??????????。???????,???????????,?Ajax???????,????????????????,????????,????????????????。???????????,???????????????????????????????,?xml??????,?????????????xml...Ukázkové projekty: Obsahuje ukázkové projekty uživatele TenCoKaciStromy.WPFDemo: This Peoject is only for the WPF learning.Xinx TimeIt!: TinyAlarm is a small utility that allows you to configure an Alarm so that you can opt for 1. Shutdown computer 2. Play a sound 3. Show a note with sound 4. Disconnect a dial-up connection 5. Connect via dial-up connection

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to avoid the Portlet Skin mismatch

    - by Martin Deh
    here are probably many on going debates whether to use portlets or taskflows in a WebCenter custom portal application.  Usually the main battle on which side to take in these debates are centered around which technology enables better performance.  The good news is that both of my colleagues, Maiko Rocha and George Maggessy have posted their respective views on this topic so I will not have to further the discussion.  However, if you do plan to use portlets in a WebCenter custom portal application, this post will help you not have the "portlet skin mismatch" issue.   An example of the presence of the mismatch can be view from the applications log: The skin customsharedskin.desktop specified on the requestMap will be used even though the consumer's skin's styleSheetDocumentId on the requestMap does not match the local skin's styleSheetDocument's id. This will impact performance since the consumer and producer stylesheets cannot be shared. The producer styleclasses will not be compressed to avoid conflicts. A reason the ids do not match may be the jars are not identical on the producer and the consumer. For example, one might have trinidad-skins.xml's skin-additions in a jar file on the class path that the other does not have. Notice that due to the mismatch the portlet's CSS will not be able to be compressed, which will most like impact performance in the portlet's consuming portal. The first part of the blog will define the portlet mismatch and cover some debugging tips that can help you solve the portlet mismatch issue.  Following that I will give a complete example of the creating, using and sharing a shared skin in both a portlet producer and the consumer application. Portlet Mismatch Defined  In general, when you consume/render an ADF page (or task flow) using the ADF Portlet bridge, the portlet (producer) would try to use the skin of the consumer page - this is called skin-sharing. When the producer cannot match the consumer skin, the portlet would generate its own stylesheet and reference it from its markup - this is called mismatched-skin. This can happen because: The consumer and producer use different versions of ADF Faces, or The consumer has additional skin-additions that the producer doesn't have or vice-versa, or The producer does not have the consumer skin For case (1) & (2) above, the producer still uses the consumer skin ID to render its markup. For case (3), the producer would default to using portlet skin. If there is a skin mis-match then there may be a performance hit because: The browser needs to fetch this extra stylesheet (though it should be cached unless expires caching is turned off) The generated portlet markup uses uncompressed styles resulting in a larger markup It is often not obvious when a skin mismatch occurs, unless you look for either of these indicators: The log messages in the producer log, for example: The skin blafplus-rich.desktop specified on the requestMap will not be used because the styleSheetDocument id on the requestMap does not match the local skin's styleSheetDocument's id. It could mean the jars are not identical. For example, one might have trinidad-skins.xml's skin-additions in a jar file on the class path that the other does not have. View the portlet markup inside the iframe, there should be a <link> tag to the portlet stylesheet resource like this (note the CSS is proxied through consumer's resourceproxy): <link rel=\"stylesheet\" charset=\"UTF-8\" type=\"text/css\" href=\"http:.../resourceproxy/portletId...252525252Fadf%252525252Fstyles%252525252Fcache%252525252Fblafplus-rich-portlet-d1062g-en-ltr-gecko.css... Using HTTP monitoring tool (eg, firebug, httpwatch), you can see a request is made to the portlet stylesheet resource (see URL above) There are a number of reasons for mismatched-skin. For skin to match the producer and consumer must match the following configurations: The ADF Faces version (different versions may have different style selectors) Style Compression, this is defined in the web.xml (default value is false, i.e. compression is ON) Tonal styles or themes, also defined in the web.xml via context-params The same skin additions (jars with skin) are available for both producer and consumer.  Skin additions are defined in the trinidad-skins.xml, using the <skin-addition> tags. These are then aggregated from all the jar files in the classpath. If there's any jar that exists on the producer but not the consumer, or vice veras, you get a mismatch. Debugging Tips  Ensure the style compression and tonal styles/themes match on the consumer and producer, by looking at the web.xml documents for the consumer & producer applications It is bit more involved to determine if the jars match.  However, you can enable the Trinidad logging to show which skin-addition it is processing.  To enable this feature, update the logging.xml log level of both the producer and consumer WLS to FINEST.  For example, in the case of the WebLogic server used by JDeveloper: $JDEV_USER_DIR/system<version number>/DefaultDomain/config/fmwconfig/servers/DefaultServer/logging.xml Add a new entry: <logger name="org.apache.myfaces.trinidadinternal.skin.SkinUtils" level="FINEST"/> Restart WebLogic.  Run the consumer page, you should see the following logging in both the consumer and producer log files. Any entries that don't match is the cause of the mismatch.  The following is an example of what the log will produce with this setting: [SRC_CLASS: org.apache.myfaces.trinidadinternal.skin.SkinUtils] [APP: WebCenter] [SRC_METHOD: _getMetaInfSkinsNodeList] Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/announcement-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/calendar-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/custComps-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/forum-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/page-service-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/peopleconnections-kudos-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/peopleconnections-wall-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/portlet-client-adf-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/rtc-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/serviceframework-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/smarttag-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/spaces-service-skins.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.composer/3yo7j/WEB-INF/lib/custComps-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/adf.oracle.domain.webapp/q433f9/WEB-INF/lib/adf-richclient-impl-11.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/adf.oracle.domain.webapp/q433f9/WEB-INF/lib/dvt-faces.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/adf.oracle.domain.webapp/q433f9/WEB-INF/lib/dvt-trinidad.jar!/META-INF/trinidad-skins.xml   The Complete Example The first step is to create the shared library.  The WebCenter documentation covering this is located here in section 15.7.  In addition, our ADF guru Frank Nimphius also covers this in hes blog.  Here are my steps (in JDeveloper) to create the skin that will be used as the shared library for both the portlet producer and consumer. Create a new Generic Application Give application name (i.e. MySharedSkin) Give a project name (i.e. MySkinProject) Leave Project Technologies blank (none selected), and click Finish Create the trinidad-skins.xml Right-click on the MySkinProject node in the Application Navigator and select "New" In the New Galley, click on "General", select "File" from the Items, and click OK In the Create File dialog, name the file trinidad-skins.xml, and (IMPORTANT) give the directory path to MySkinProject\src\META-INF In the trinidad-skins.xml, complete the skin entry.  for example: <?xml version="1.0" encoding="windows-1252" ?> <skins xmlns="http://myfaces.apache.org/trinidad/skin">   <skin>     <id>mysharedskin.desktop</id>     <family>mysharedskin</family>     <extends>fusionFx-v1.desktop</extends>     <style-sheet-name>css/mysharedskin.css</style-sheet-name>   </skin> </skins> Create CSS file In the Application Navigator, right click on the META-INF folder (where the trinidad-skins.xml is located), and select "New" In the New Gallery, select Web-Tier-> HTML, CSS File from the the Items and click OK In the Create Cascading Style Sheet dialog, give the name (i.e. mysharedskin.css) Ensure that the Directory path is the under the META-INF (i.e. MySkinProject\src\META-INF\css) Once the new CSS opens in the editor, add in a style selector.  For example, this selector will style the background of a particular panelGroupLayout: af|panelGroupLayout.customPGL{     background-color:Fuchsia; } Create the MANIFEST.MF (used for deployment JAR) In the Application Navigator, right click on the META-INF folder (where the trinidad-skins.xml is located), and select "New" In the New Galley, click on "General", select "File" from the Items, and click OK In the Create File dialog, name the file MANIFEST.MF, and (IMPORTANT) ensure that the directory path is to MySkinProject\src\META-INF Complete the MANIFEST.MF, where the extension name is the shared library name Manifest-Version: 1.1 Created-By: Martin Deh Implementation-Title: mysharedskin Extension-Name: mysharedskin.lib.def Specification-Version: 1.0.1 Implementation-Version: 1.0.1 Implementation-Vendor: MartinDeh Create new Deployment Profile Right click on the MySkinProject node, and select New From the New Gallery, select General->Deployment Profiles, Shared Library JAR File from Items, and click OK In the Create Deployment Profile dialog, give name (i.e.mysharedskinlib) and click OK In the Edit JAR Deployment dialog, un-check Include Manifest File option  Select Project Output->Contributors, and check Project Source Path Select Project Output->Filters, ensure that all items under the META-INF folder are selected Click OK to exit the Project Properties dialog Deploy the shared lib to WebLogic (start server before steps) Right click on MySkin Project and select Deploy For this example, I will deploy to JDeverloper WLS In the Deploy dialog, select Deploy to Weblogic Application Server and click Next Choose IntegratedWebLogicServer and click Next Select Deploy to selected instances in the domain radio, select Default Server (note: server must be already started), and ensure Deploy as a shared Library radio is selected Click Finish Open the WebLogic console to see the deployed shared library The following are the steps to create a simple test Portlet Create a new WebCenter Portal - Portlet Producer Application In the Create Portlet Producer dialog, select default settings and click Finish Right click on the Portlets node and select New IIn the New Gallery, select Web-Tier->Portlets, Standards-based Java Portlet (JSR 286) and click OK In the General Portlet information dialog, give portlet name (i.e. MyPortlet) and click Next 2 times, stopping at Step 3 In the Content Types, select the "view" node, in the Implementation Method, select the Generate ADF-Faces JSPX radio and click Finish Once the portlet code is generated, open the view.jspx in the source editor Based on the simple CSS entry, which sets the background color of a panelGroupLayout, replace the <af:form/> tag with the example code <af:form>         <af:panelGroupLayout id="pgl1" styleClass="customPGL">           <af:outputText value="background from shared lib skin" id="ot1"/>         </af:panelGroupLayout>  </af:form> Since this portlet is to use the shared library skin, in the generated trinidad-config.xml, remove both the skin-family tag and the skin-version tag In the Application Resources view, under Descriptors->META-INF, double-click to open the weblogic-application.xml Add a library reference to the shared skin library (note: the library-name must match the extension-name declared in the MANIFEST.MF):  <library-ref>     <library-name>mysharedskin.lib.def</library-name>  </library-ref> Notice that a reference to oracle.webcenter.skin exists.  This is important if this portlet is going to be consumed by a WebCenter Portal application.  If this tag is not present, the portlet skin mismatch will happen.  Configure the portlet for deployment Create Portlet deployment WAR Right click on the Portlets node and select New In the New Gallery, select Deployment Profiles, WAR file from Items and click OK In the Create Deployment Profile dialog, give name (i.e. myportletwar), click OK Keep all of the defaults, however, remember the Context Root entry (i.e. MyPortlet4SharedLib-Portlets-context-root, this will be needed to obtain the producer WSDL URL) Click OK, then OK again to exit from the Properties dialog Since the weblogic-application.xml has to be included in the deployment, the portlet must be deployed as a WAR, within an EAR In the Application dropdown, select Deploy->New Deployment Profile... By default EAR File has been selected, click OK Give Deployment Profile (EAR) a name (i.e. MyPortletProducer) and click OK In the Properties dialog, select Application Assembly and ensure that the myportletwar is checked Keep all of the other defaults and click OK For this demo, un-check the Auto Generate ..., and all of the Security Deployment Options, click OK Save All In the Application dropdown, select Deploy->MyPortletProducer In the Deployment Action, select Deploy to Application Server, click Next Choose IntegratedWebLogicServer and click Next Select Deploy to selected instances in the domain radio, select Default Server (note: server must be already started), and ensure Deploy as a standalone Application radio is selected The select deployment type (identifying the deployment as a JSR 286 portlet) dialog appears.  Keep default radio "Yes" selection and click OK Open the WebLogic console to see the deployed Portlet The last step is to create the test portlet consuming application.  This will be done using the OOTB WebCenter Portal - Framework Application.  Create the Portlet Producer Connection In the JDeveloper Deployment log, copy the URL of the portlet deployment (i.e. http://localhost:7101/MyPortlet4SharedLib-Portlets-context-root Open a browser and paste in the URL.  The Portlet information page should appear.  Click on the WSRP v2 WSDL link Copy the URL from the browser (i.e. http://localhost:7101/MyPortlet4SharedLib-Portlets-context-root/portlets/wsrp2?WSDL) In the Application Resources view, right click on the Connections folder and select New Connection->WSRP Connection Give the producer a name or accept the default, click Next Enter (paste in) the WSDL URL, click Next If connection to Portlet is succesful, Step 3 (Specify Additional ...) should appear.  Accept defaults and click Finish Add the portlet to a test page Open the home.jspx.  Note in the visual editor, the orange dashed border, which identifies the panelCustomizable tag. From the Application Resources. select the MyPortlet portlet node, and drag and drop the node into the panelCustomizable section.  A Confirm Portlet Type dialog appears, keep default ADF Rich Portlet and click OK Configure the portlet to use the shared skin library Open the weblogic-application.xml and add the library-ref entry (mysharedskin.lib.def) for the shared skin library.  See create portlet example above for the steps Since by default, the custom portal using a managed bean to (dynamically) determine the skin family, the default trinidad-config.xml will need to be altered Open the trinidad-config.xml in the editor and replace the EL (preferenceBean) for the skin-family tag, with mysharedskin (this is the skin-family named defined in the trinidad-skins.xml) Remove the skin-version tag Right click on the index.html to test the application   Notice that the JDeveloper log view does not have any reporting of a skin mismatch.  In addition, since I have configured the extra logging outlined in debugging section above, I can see the processed skin jar in both the producer and consumer logs: <SkinUtils> <_getMetaInfSkinsNodeList> Processing skin URL:zip:/JDeveloper/system11.1.1.6.38.61.92/DefaultDomain/servers/DefaultServer/upload/mysharedskin.lib.def/[email protected]/app/mysharedskinlib.jar!/META-INF/trinidad-skins.xml 

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Built-in GZip/Deflate Compression on IIS 7.x

    - by Rick Strahl
    IIS 7 improves internal compression functionality dramatically making it much easier than previous versions to take advantage of compression that’s built-in to the Web server. IIS 7 also supports dynamic compression which allows automatic compression of content created in your own applications (ASP.NET or otherwise!). The scheme is based on content-type sniffing and so it works with any kind of Web application framework. While static compression on IIS 7 is super easy to set up and turned on by default for most text content (text/*, which includes HTML and CSS, as well as for JavaScript, Atom, XAML, XML), setting up dynamic compression is a bit more involved, mostly because the various default compression settings are set in multiple places down the IIS –> ASP.NET hierarchy. Let’s take a look at each of the two approaches available: Static Compression Compresses static content from the hard disk. IIS can cache this content by compressing the file once and storing the compressed file on disk and serving the compressed alias whenever static content is requested and it hasn’t changed. The overhead for this is minimal and should be aggressively enabled. Dynamic Compression Works against application generated output from applications like your ASP.NET apps. Unlike static content, dynamic content must be compressed every time a page that requests it regenerates its content. As such dynamic compression has a much bigger impact than static caching. How Compression is configured Compression in IIS 7.x  is configured with two .config file elements in the <system.WebServer> space. The elements can be set anywhere in the IIS/ASP.NET configuration pipeline all the way from ApplicationHost.config down to the local web.config file. The following is from the the default setting in ApplicationHost.config (in the %windir%\System32\inetsrv\config forlder) on IIS 7.5 with a couple of small adjustments (added json output and enabled dynamic compression): <?xml version="1.0" encoding="UTF-8"?> <configuration> <system.webServer> <httpCompression directory="%SystemDrive%\inetpub\temp\IIS Temporary Compressed Files"> <scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" /> <dynamicTypes> <add mimeType="text/*" enabled="true" /> <add mimeType="message/*" enabled="true" /> <add mimeType="application/x-javascript" enabled="true" /> <add mimeType="application/json" enabled="true" /> <add mimeType="*/*" enabled="false" /> </dynamicTypes> <staticTypes> <add mimeType="text/*" enabled="true" /> <add mimeType="message/*" enabled="true" /> <add mimeType="application/x-javascript" enabled="true" /> <add mimeType="application/atom+xml" enabled="true" /> <add mimeType="application/xaml+xml" enabled="true" /> <add mimeType="*/*" enabled="false" /> </staticTypes> </httpCompression> <urlCompression doStaticCompression="true" doDynamicCompression="true" /> </system.webServer> </configuration> You can find documentation on the httpCompression and urlCompression keys here respectively: http://msdn.microsoft.com/en-us/library/ms690689%28v=vs.90%29.aspx http://msdn.microsoft.com/en-us/library/aa347437%28v=vs.90%29.aspx The httpCompression Element – What and How to compress Basically httpCompression configures what types to compress and how to compress them. It specifies the DLL that handles gzip encoding and the types of documents that are to be compressed. Types are set up based on mime-types which looks at returned Content-Type headers in HTTP responses. For example, I added the application/json to mime type to my dynamic compression types above to allow that content to be compressed as well since I have quite a bit of AJAX content that gets sent to the client. The UrlCompression Element – Enables and Disables Compression The urlCompression element is a quick way to turn compression on and off. By default static compression is enabled server wide, and dynamic compression is disabled server wide. This might be a bit confusing because the httpCompression element also has a doDynamicCompression attribute which is set to true by default, but the urlCompression attribute by the same name actually overrides it. The urlCompression element only has three attributes: doStaticCompression, doDynamicCompression and dynamicCompressionBeforeCache. The doCompression attributes are the final determining factor whether compression is enabled, so it’s a good idea to be explcit! The default for doDynamicCompression='false”, but doStaticCompression="true"! Static Compression is enabled by Default, Dynamic Compression is not Because static compression is very efficient in IIS 7 it’s enabled by default server wide and there probably is no reason to ever change that setting. Dynamic compression however, since it’s more resource intensive, is turned off by default. If you want to enable dynamic compression there are a few quirks you have to deal with, namely that enabling it in ApplicationHost.config doesn’t work. Setting: <urlCompression doDynamicCompression="true" /> in applicationhost.config appears to have no effect and I had to move this element into my local web.config to make dynamic compression work. This is actually a smart choice because you’re not likely to want dynamic compression in every application on a server. Rather dynamic compression should be applied selectively where it makes sense. However, nowhere is it documented that the setting in applicationhost.config doesn’t work (or more likely is overridden somewhere and disabled lower in the configuration hierarchy). So: remember to set doDynamicCompression=”true” in web.config!!! How Static Compression works Static compression works against static content loaded from files on disk. Because this content is static and not bound to change frequently – such as .js, .css and static HTML content – it’s fairly easy for IIS to compress and then cache the compressed content. The way this works is that IIS compresses the files into a special folder on the server’s hard disk and then reads the content from this location if already compressed content is requested and the underlying file resource has not changed. The semantics of serving an already compressed file are very efficient – IIS still checks for file changes, but otherwise just serves the already compressed file from the compression folder. The compression folder is located at: %windir%\inetpub\temp\IIS Temporary Compressed Files\ApplicationPool\ If you look into the subfolders you’ll find compressed files: These files are pre-compressed and IIS serves them directly to the client until the underlying files are changed. As I mentioned before – static compression is on by default and there’s very little reason to turn that functionality off as it is efficient and just works out of the box. The one tweak you might want to do is to set the compression level to maximum. Since IIS only compresses content very infrequently it would make sense to apply maximum compression. You can do this with the staticCompressionLevel setting on the scheme element: <scheme name="gzip" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" /> Other than that the default settings are probably just fine. Dynamic Compression – not so fast! By default dynamic compression is disabled and that’s actually quite sensible – you should use dynamic compression very carefully and think about what content you want to compress. In most applications it wouldn’t make sense to compress *all* generated content as it would generate a significant amount of overhead. Scott Fortsyth has a great post that details some of the performance numbers and how much impact dynamic compression has. Depending on how busy your server is you can play around with compression and see what impact it has on your server’s performance. There are also a few settings you can tweak to minimize the overhead of dynamic compression. Specifically the httpCompression key has a couple of CPU related keys that can help minimize the impact of Dynamic Compression on a busy server: dynamicCompressionDisableCpuUsage dynamicCompressionEnableCpuUsage By default these are set to 90 and 50 which means that when the CPU hits 90% compression will be disabled until CPU utilization drops back down to 50%. Again this is actually quite sensible as it utilizes CPU power from compression when available and falling off when the threshold has been hit. It’s a good way some of that extra CPU power on your big servers to use when utilization is low. Again these settings are something you likely have to play with. I would probably set the upper limit a little lower than 90% maybe around 70% to make this a feature that kicks in only if there’s lots of power to spare. I’m not really sure how accurate these CPU readings that IIS uses are as Cpu usage on Web Servers can spike drastically even during low loads. Don’t trust settings – do some load testing or monitor your server in a live environment to see what values make sense for your environment. Finally for dynamic compression I tend to add one Mime type for JSON data, since a lot of my applications send large chunks of JSON data over the wire. You can do that with the application/json content type: <add mimeType="application/json" enabled="true" /> What about Deflate Compression? The default compression is GZip. The documentation hints that you can use a different compression scheme and mentions Deflate compression. And sure enough you can change the compression settings to: <scheme name="deflate" dll="%Windir%\system32\inetsrv\gzip.dll" staticCompressionLevel="9" /> to get deflate style compression. The deflate algorithm produces slightly more compact output so I tend to prefer it over GZip but more HTTP clients (other than browsers) support GZip than Deflate so be careful with this option if you build Web APIs. I also had some issues with the above value actually being applied right away. Changing the scheme in applicationhost.config didn’t show up on the site  right away. It required me to do a full IISReset to get that change to show up before I saw the change over to deflate compressed content. Content was slightly more compressed with deflate – not sure if it’s worth the slightly less common compression type, but the option at least is available. IIS 7 finally makes GZip Easy In summary IIS 7 makes GZip easy finally, even if the configuration settings are a bit obtuse and the documentation is seriously lacking. But once you know the basic settings I’ve described here and the fact that you can override all of this in your local web.config it’s pretty straight forward to configure GZip support and tweak it exactly to your needs. Static compression is a total no brainer as it adds very little overhead compared to direct static file serving and provides solid compression. Dynamic Compression is a little more tricky as it does add some overhead to servers, so it probably will require some tweaking to get the right balance of CPU load vs. compression ratios. Looking at large sites like Amazon, Yahoo, NewEgg etc. – they all use Related Content Code based ASP.NET GZip Caveats HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in IIS7   ASP.NET  

    Read the article

  • Elfsign Object Signing on Solaris

    - by danx
    Elfsign Object Signing on Solaris Don't let this happen to you—use elfsign! Solaris elfsign(1) is a command that signs and verifies ELF format executables. That includes not just executable programs (such as ls or cp), but other ELF format files including libraries (such as libnvpair.so) and kernel modules (such as autofs). Elfsign has been available since Solaris 10 and ELF format files distributed with Solaris, since Solaris 10, are signed by either Sun Microsystems or its successor, Oracle Corporation. When an ELF file is signed, elfsign adds a new section the ELF file, .SUNW_signature, that contains a RSA public key signature and other information about the signer. That is, the algorithm used, algorithm OID, signer CN/OU, and time stamp. The signature section can later be verified by elfsign or other software by matching the signature in the file agains the ELF file contents (excluding the signature). ELF executable files may also be signed by a 3rd-party or by the customer. This is useful for verifying the origin and authenticity of executable files installed on a system. The 3rd-party or customer public key certificate should be installed in /etc/certs/ to allow verification by elfsign. For currently-released versions of Solaris, only cryptographic framework plugin libraries are verified by Solaris. However, all ELF files may be verified by the elfsign command at any time. Elfsign Algorithms Elfsign signatures are created by taking a digest of the ELF section contents, then signing the digest with RSA. To verify, one takes a digest of ELF file and compares with the expected digest that's computed from the signature and RSA public key. Originally elfsign took a MD5 digest of a SHA-1 digest of the ELF file sections, then signed the resulting digest with RSA. In Solaris 11.1 then Solaris 11.1 SRU 7 (5/2013), the elfsign crypto algorithms available have been expanded to keep up with evolving cryptography. The following table shows the available elfsign algorithms: Elfsign Algorithm Solaris Release Comments elfsign sign -F rsa_md5_sha1   S10, S11.0, S11.1 Default for S10. Not recommended* elfsign sign -F rsa_sha1 S11.1 Default for S11.1. Not recommended elfsign sign -F rsa_sha256 S11.1 patch SRU7+   Recommended ___ *Most or all CAs do not accept MD5 CSRs and do not issue MD5 certs due to MD5 hash collision problems. RSA Key Length. I recommend using RSA-2048 key length with elfsign is RSA-2048 as the best balance between a long expected "life time", interoperability, and performance. RSA-2048 keys have an expected lifetime through 2030 (and probably beyond). For details, see Recommendation for Key Management: Part 1: General, NIST Publication SP 800-57 part 1 (rev. 3, 7/2012, PDF), tables 2 and 4 (pp. 64, 67). Step 1: create or obtain a key and cert The first step in using elfsign is to obtain a key and cert from a public Certificate Authority (CA), or create your own self-signed key and cert. I'll briefly explain both methods. Obtaining a Certificate from a CA To obtain a cert from a CA, such as Verisign, Thawte, or Go Daddy (to name a few random examples), you create a private key and a Certificate Signing Request (CSR) file and send it to the CA, following the instructions of the CA on their website. They send back a signed public key certificate. The public key cert, along with the private key you created is used by elfsign to sign an ELF file. The public key cert is distributed with the software and is used by elfsign to verify elfsign signatures in ELF files. You need to request a RSA "Class 3 public key certificate", which is used for servers and software signing. Elfsign uses RSA and we recommend RSA-2048 keys. The private key and CSR can be generated with openssl(1) or pktool(1) on Solaris. Here's a simple example that uses pktool to generate a private RSA_2048 key and a CSR for sending to a CA: $ pktool gencsr keystore=file format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" \ outkey=MYPRIVATEKEY.key $ openssl rsa -noout -text -in MYPRIVATEKEY.key Private-Key: (2048 bit) modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 publicExponent: 65537 (0x10001) privateExponent: 26:14:fc:49:26:bc:a3:14:ee:31:5e:6b:ac:69:83: . . . [omitted for brevity] . . . 81 prime1: 00:f6:b7:52:73:bc:26:57:26:c8:11:eb:6c:dc:cb: . . . [omitted for brevity] . . . bc:91:d0:40:d6:9d:ac:b5:69 prime2: 00:da:df:3f:56:b2:18:46:e1:89:5b:6c:f1:1a:41: . . . [omitted for brevity] . . . f3:b7:48:de:c3:d9:ce:af:af exponent1: 00:b9:a2:00:11:02:ed:9a:3f:9c:e4:16:ce:c7:67: . . . [omitted for brevity] . . . 55:50:25:70:d3:ca:b9:ab:99 exponent2: 00:c8:fc:f5:57:11:98:85:8e:9a:ea:1f:f2:8f:df: . . . [omitted for brevity] . . . 23:57:0e:4d:b2:a0:12:d2:f5 coefficient: 2f:60:21:cd:dc:52:76:67:1a:d8:75:3e:7f:b0:64: . . . [omitted for brevity] . . . 06:94:56:d8:9d:5c:8e:9b $ openssl req -noout -text -in MYCSR.p10 Certificate Request: Data: Version: 2 (0x2) Subject: OU=Canine SW object signing, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 Exponent: 65537 (0x10001) Attributes: Signature Algorithm: sha1WithRSAEncryption b3:e8:30:5b:88:37:68:1c:26:6b:45:af:5e:de:ea:60:87:ea: . . . [omitted for brevity] . . . 06:f9:ed:b4 Secure storage of RSA private key. The private key needs to be protected if the key signing is used for production (as opposed to just testing). That is, protect the key to protect against unauthorized signatures by others. One method is to use a PIN-protected PKCS#11 keystore. The private key you generate should be stored in a secure manner, such as in a PKCS#11 keystore using pktool(1). Otherwise others can sign your signature. Other secure key storage mechanisms include a SCA-6000 crypto card, a USB thumb drive stored in a locked area, a dedicated server with restricted access, Oracle Key Manager (OKM), or some combination of these. I also recommend secure backup of the private key. Here's an example of generating a private key protected in the PKCS#11 keystore, and a CSR. $ pktool setpin # use if PIN not set yet Enter token passphrase: changeme Create new passphrase: Re-enter new passphrase: Passphrase changed. $ pktool gencsr keystore=pkcs11 label=MYPRIVATEKEY \ format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" $ pktool list keystore=pkcs11 Enter PIN for Sun Software PKCS#11 softtoken: Found 1 asymmetric public keys. Key #1 - RSA public key: MYPRIVATEKEY Here's another example that uses openssl instead of pktool to generate a private key and CSR: $ openssl genrsa -out cert.key 2048 $ openssl req -new -key cert.key -out MYCSR.p10 Self-Signed Cert You can use openssl or pktool to create a private key and a self-signed public key certificate. A self-signed cert is useful for development, testing, and internal use. The private key created should be stored in a secure manner, as mentioned above. The following example creates a private key, MYSELFSIGNED.key, and a public key cert, MYSELFSIGNED.pem, using pktool and displays the contents with the openssl command. $ pktool gencert keystore=file format=pem serial=0xD06F00D lifetime=20-year \ keytype=rsa hash=sha256 outcert=MYSELFSIGNED.pem outkey=MYSELFSIGNED.key \ subject="O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com" $ pktool list keystore=file objtype=cert infile=MYSELFSIGNED.pem Found 1 certificates. 1. (X.509 certificate) Filename: MYSELFSIGNED.pem ID: c8:24:59:08:2b:ae:6e:5c:bc:26:bd:ef:0a:9c:54:de:dd:0f:60:46 Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Not Before: Oct 17 23:18:00 2013 GMT Not After: Oct 12 23:18:00 2033 GMT Serial: 0xD06F00D0 Signature Algorithm: sha256WithRSAEncryption $ openssl x509 -noout -text -in MYSELFSIGNED.pem Certificate: Data: Version: 3 (0x2) Serial Number: 3496935632 (0xd06f00d0) Signature Algorithm: sha256WithRSAEncryption Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Validity Not Before: Oct 17 23:18:00 2013 GMT Not After : Oct 12 23:18:00 2033 GMT Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 Exponent: 65537 (0x10001) Signature Algorithm: sha256WithRSAEncryption 9e:39:fe:c8:44:5c:87:2c:8f:f4:24:f6:0c:9a:2f:64:84:d1: . . . [omitted for brevity] . . . 5f:78:8e:e8 $ openssl rsa -noout -text -in MYSELFSIGNED.key Private-Key: (2048 bit) modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 publicExponent: 65537 (0x10001) privateExponent: 0a:06:0f:23:e7:1b:88:62:2c:85:d3:2d:c1:e6:6e: . . . [omitted for brevity] . . . 9c:e1:e0:0a:52:77:29:4a:75:aa:02:d8:af:53:24: c1 prime1: 00:ea:12:02:bb:5a:0f:5a:d8:a9:95:b2:ba:30:15: . . . [omitted for brevity] . . . 5b:ca:9c:7c:19:48:77:1e:5d prime2: 00:cd:82:da:84:71:1d:18:52:cb:c6:4d:74:14:be: . . . [omitted for brevity] . . . 5f:db:d5:5e:47:89:a7:ef:e3 exponent1: 32:37:62:f6:a6:bf:9c:91:d6:f0:12:c3:f7:04:e9: . . . [omitted for brevity] . . . 97:3e:33:31:89:66:64:d1 exponent2: 00:88:a2:e8:90:47:f8:75:34:8f:41:50:3b:ce:93: . . . [omitted for brevity] . . . ff:74:d4:be:f3:47:45:bd:cb coefficient: 4d:7c:09:4c:34:73:c4:26:f0:58:f5:e1:45:3c:af: . . . [omitted for brevity] . . . af:01:5f:af:ad:6a:09:bf Step 2: Sign the ELF File object By now you should have your private key, and obtained, by hook or crook, a cert (either from a CA or use one you created (a self-signed cert). The next step is to sign one or more objects with your private key and cert. Here's a simple example that creates an object file, signs, verifies, and lists the contents of the ELF signature. $ echo '#include <stdio.h>\nint main(){printf("Hello\\n");}'>hello.c $ make hello cc -o hello hello.c $ elfsign verify -v -c MYSELFSIGNED.pem -e hello elfsign: no signature found in hello. $ elfsign sign -F rsa_sha256 -v -k MYSELFSIGNED.key -c MYSELFSIGNED.pem -e hello elfsign: hello signed successfully. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. $ elfsign list -f format -e hello rsa_sha256 $ elfsign list -f signer -e hello O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com $ elfsign list -f time -e hello October 17, 2013 04:22:49 PM PDT $ elfsign verify -v -c MYSELFSIGNED.key -e hello elfsign: verification of hello failed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. Signing using the pkcs11 keystore To sign the ELF file using a private key in the secure pkcs11 keystore, replace "-K MYSELFSIGNED.key" in the "elfsign sign" command line with "-T MYPRIVATEKEY", where MYPRIVATKEY is the pkcs11 token label. Step 3: Install the cert and test on another system Just signing the object isn't enough. You need to copy or install the cert and the signed ELF file(s) on another system to test that the signature is OK. Your public key cert should be installed in /etc/certs. Use elfsign verify to verify the signature. Elfsign verify checks each cert in /etc/certs until it finds one that matches the elfsign signature in the file. If one isn't found, the verification fails. Here's an example: $ su Password: # rm /etc/certs/MYSELFSIGNED.key # cp MYSELFSIGNED.pem /etc/certs # exit $ elfsign verify -v hello elfsign: verification of hello passed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:24:20 PM PDT. After testing, package your cert along with your ELF object to allow elfsign verification after your cert and object are installed or copied. Under the Hood: elfsign verification Here's the steps taken to verify a ELF file signed with elfsign. The steps to sign the file are similar except the private key exponent is used instead of the public key exponent and the .SUNW_signature section is written to the ELF file instead of being read from the file. Generate a digest (SHA-256) of the ELF file sections. This digest uses all ELF sections loaded in memory, but excludes the ELF header, the .SUNW_signature section, and the symbol table Extract the RSA signature (RSA-2048) from the .SUNW_signature section Extract the RSA public key modulus and public key exponent (65537) from the public key cert Calculate the expected digest as follows:     signaturepublicKeyExponent % publicKeyModulus Strip the PKCS#1 padding (most significant bytes) from the above. The padding is 0x00, 0x01, 0xff, 0xff, . . ., 0xff, 0x00. If the actual digest == expected digest, the ELF file is verified (OK). Further Information elfsign(1), pktool(1), and openssl(1) man pages. "Signed Solaris 10 Binaries?" blog by Darren Moffat (2005) shows how to use elfsign. "Simple CLI based CA on Solaris" blog by Darren Moffat (2008) shows how to set up a simple CA for use with self-signed certificates. "How to Create a Certificate by Using the pktool gencert Command" System Administration Guide: Security Services (available at docs.oracle.com)

    Read the article

< Previous Page | 633 634 635 636 637 638 639 640 641 642  | Next Page >