Search Results

Search found 1783 results on 72 pages for 'computation theory'.

Page 64/72 | < Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >

  • Performance considerations for common SQL queries

    - by Jim Giercyk
    Originally posted on: http://geekswithblogs.net/NibblesAndBits/archive/2013/10/16/performance-considerations-for-common-sql-queries.aspxSQL offers many different methods to produce the same results.  There is a never-ending debate between SQL developers as to the “best way” or the “most efficient way” to render a result set.  Sometimes these disputes even come to blows….well, I am a lover, not a fighter, so I decided to collect some data that will prove which way is the best and most efficient.  For the queries below, I downloaded the test database from SQLSkills:  http://www.sqlskills.com/sql-server-resources/sql-server-demos/.  There isn’t a lot of data, but enough to prove my point: dbo.member has 10,000 records, and dbo.payment has 15,554.  Our result set contains 6,706 records. The following queries produce an identical result set; the result set contains aggregate payment information for each member who has made more than 1 payment from the dbo.payment table and the first and last name of the member from the dbo.member table.   /*************/ /* Sub Query  */ /*************/ SELECT  a.[Member Number] ,         m.lastname ,         m.firstname ,         a.[Number Of Payments] ,         a.[Average Payment] ,         a.[Total Paid] FROM    ( SELECT    member_no 'Member Number' ,                     AVG(payment_amt) 'Average Payment' ,                     SUM(payment_amt) 'Total Paid' ,                     COUNT(Payment_No) 'Number Of Payments'           FROM      dbo.payment           GROUP BY  member_no           HAVING    COUNT(Payment_No) > 1         ) a         JOIN dbo.member m ON a.[Member Number] = m.member_no         /***************/ /* Cross Apply  */ /***************/ SELECT  ca.[Member Number] ,         m.lastname ,         m.firstname ,         ca.[Number Of Payments] ,         ca.[Average Payment] ,         ca.[Total Paid] FROM    dbo.member m         CROSS APPLY ( SELECT    member_no 'Member Number' ,                                 AVG(payment_amt) 'Average Payment' ,                                 SUM(payment_amt) 'Total Paid' ,                                 COUNT(Payment_No) 'Number Of Payments'                       FROM      dbo.payment                       WHERE     member_no = m.member_no                       GROUP BY  member_no                       HAVING    COUNT(Payment_No) > 1                     ) ca /********/                    /* CTEs  */ /********/ ; WITH    Payments           AS ( SELECT   member_no 'Member Number' ,                         AVG(payment_amt) 'Average Payment' ,                         SUM(payment_amt) 'Total Paid' ,                         COUNT(Payment_No) 'Number Of Payments'                FROM     dbo.payment                GROUP BY member_no                HAVING   COUNT(Payment_No) > 1              ),         MemberInfo           AS ( SELECT   p.[Member Number] ,                         m.lastname ,                         m.firstname ,                         p.[Number Of Payments] ,                         p.[Average Payment] ,                         p.[Total Paid]                FROM     dbo.member m                         JOIN Payments p ON m.member_no = p.[Member Number]              )     SELECT  *     FROM    MemberInfo /************************/ /* SELECT with Grouping   */ /************************/ SELECT  p.member_no 'Member Number' ,         m.lastname ,         m.firstname ,         COUNT(Payment_No) 'Number Of Payments' ,         AVG(payment_amt) 'Average Payment' ,         SUM(payment_amt) 'Total Paid' FROM    dbo.payment p         JOIN dbo.member m ON m.member_no = p.member_no GROUP BY p.member_no ,         m.lastname ,         m.firstname HAVING  COUNT(Payment_No) > 1   We can see what is going on in SQL’s brain by looking at the execution plan.  The Execution Plan will demonstrate which steps and in what order SQL executes those steps, and what percentage of batch time each query takes.  SO….if I execute all 4 of these queries in a single batch, I will get an idea of the relative time SQL takes to execute them, and how it renders the Execution Plan.  We can settle this once and for all.  Here is what SQL did with these queries:   Not only did the queries take the same amount of time to execute, SQL generated the same Execution Plan for each of them.  Everybody is right…..I guess we can all finally go to lunch together!  But wait a second, I may not be a fighter, but I AM an instigator.     Let’s see how a table variable stacks up.  Here is the code I executed: /********************/ /*  Table Variable  */ /********************/ DECLARE @AggregateTable TABLE     (       member_no INT ,       AveragePayment MONEY ,       TotalPaid MONEY ,       NumberOfPayments MONEY     ) INSERT  @AggregateTable         SELECT  member_no 'Member Number' ,                 AVG(payment_amt) 'Average Payment' ,                 SUM(payment_amt) 'Total Paid' ,                 COUNT(Payment_No) 'Number Of Payments'         FROM    dbo.payment         GROUP BY member_no         HAVING  COUNT(Payment_No) > 1   SELECT  at.member_no 'Member Number' ,         m.lastname ,         m.firstname ,         at.NumberOfPayments 'Number Of Payments' ,         at.AveragePayment 'Average Payment' ,         at.TotalPaid 'Total Paid' FROM    @AggregateTable at         JOIN dbo.member m ON m.member_no = at.member_no In the interest of keeping things in groupings of 4, I removed the last query from the previous batch and added the table variable query.  Here’s what I got:     Since we first insert into the table variable, then we read from it, the Execution Plan renders 2 steps.  BUT, the combination of the 2 steps is only 22% of the batch.  It is actually faster than the other methods even though it is treated as 2 separate queries in the Execution Plan.  The argument I often hear against Table Variables is that SQL only estimates 1 row for the table size in the Execution Plan.  While this is true, the estimate does not come in to play until you read from the table variable.  In this case, the table variable had 6,706 rows, but it still outperformed the other queries.  People argue that table variables should only be used for hash or lookup tables.  The fact is, you have control of what you put IN to the variable, so as long as you keep it within reason, these results suggest that a table variable is a viable alternative to sub-queries. If anyone does volume testing on this theory, I would be interested in the results.  My suspicion is that there is a breaking point where efficiency goes down the tubes immediately, and it would be interesting to see where the threshold is. Coding SQL is a matter of style.  If you’ve been around since they introduced DB2, you were probably taught a little differently than a recent computer science graduate.  If you have a company standard, I strongly recommend you follow it.    If you do not have a standard, generally speaking, there is no right or wrong answer when talking about the efficiency of these types of queries, and certainly no hard-and-fast rule.  Volume and infrastructure will dictate a lot when it comes to performance, so your results may vary in your environment.  Download the database and try it!

    Read the article

  • NET Math Libraries

    - by JoshReuben
    NET Mathematical Libraries   .NET Builder for Matlab The MathWorks Inc. - http://www.mathworks.com/products/netbuilder/ MATLAB Builder NE generates MATLAB based .NET and COM components royalty-free deployment creates the components by encrypting MATLAB functions and generating either a .NET or COM wrapper around them. .NET/Link for Mathematica www.wolfram.com a product that 2-way integrates Mathematica and Microsoft's .NET platform call .NET from Mathematica - use arbitrary .NET types directly from the Mathematica language. use and control the Mathematica kernel from a .NET program. turns Mathematica into a scripting shell to leverage the computational services of Mathematica. write custom front ends for Mathematica or use Mathematica as a computational engine for another program comes with full source code. Leverages MathLink - a Wolfram Research's protocol for sending data and commands back and forth between Mathematica and other programs. .NET/Link abstracts the low-level details of the MathLink C API. Extreme Optimization http://www.extremeoptimization.com/ a collection of general-purpose mathematical and statistical classes built for the.NET framework. It combines a math library, a vector and matrix library, and a statistics library in one package. download the trial of version 4.0 to try it out. Multi-core ready - Full support for Task Parallel Library features including cancellation. Broad base of algorithms covering a wide range of numerical techniques, including: linear algebra (BLAS and LAPACK routines), numerical analysis (integration and differentiation), equation solvers. Mathematics leverages parallelism using .NET 4.0's Task Parallel Library. Basic math: Complex numbers, 'special functions' like Gamma and Bessel functions, numerical differentiation. Solving equations: Solve equations in one variable, or solve systems of linear or nonlinear equations. Curve fitting: Linear and nonlinear curve fitting, cubic splines, polynomials, orthogonal polynomials. Optimization: find the minimum or maximum of a function in one or more variables, linear programming and mixed integer programming. Numerical integration: Compute integrals over finite or infinite intervals, over 2D and higher dimensional regions. Integrate systems of ordinary differential equations (ODE's). Fast Fourier Transforms: 1D and 2D FFT's using managed or fast native code (32 and 64 bit) BigInteger, BigRational, and BigFloat: Perform operations with arbitrary precision. Vector and Matrix Library Real and complex vectors and matrices. Single and double precision for elements. Structured matrix types: including triangular, symmetrical and band matrices. Sparse matrices. Matrix factorizations: LU decomposition, QR decomposition, singular value decomposition, Cholesky decomposition, eigenvalue decomposition. Portability and performance: Calculations can be done in 100% managed code, or in hand-optimized processor-specific native code (32 and 64 bit). Statistics Data manipulation: Sort and filter data, process missing values, remove outliers, etc. Supports .NET data binding. Statistical Models: Simple, multiple, nonlinear, logistic, Poisson regression. Generalized Linear Models. One and two-way ANOVA. Hypothesis Tests: 12 14 hypothesis tests, including the z-test, t-test, F-test, runs test, and more advanced tests, such as the Anderson-Darling test for normality, one and two-sample Kolmogorov-Smirnov test, and Levene's test for homogeneity of variances. Multivariate Statistics: K-means cluster analysis, hierarchical cluster analysis, principal component analysis (PCA), multivariate probability distributions. Statistical Distributions: 25 29 continuous and discrete statistical distributions, including uniform, Poisson, normal, lognormal, Weibull and Gumbel (extreme value) distributions. Random numbers: Random variates from any distribution, 4 high-quality random number generators, low discrepancy sequences, shufflers. New in version 4.0 (November, 2010) Support for .NET Framework Version 4.0 and Visual Studio 2010 TPL Parallellized – multicore ready sparse linear program solver - can solve problems with more than 1 million variables. Mixed integer linear programming using a branch and bound algorithm. special functions: hypergeometric, Riemann zeta, elliptic integrals, Frensel functions, Dawson's integral. Full set of window functions for FFT's. Product  Price Update subscription Single Developer License $999  $399  Team License (3 developers) $1999  $799  Department License (8 developers) $3999  $1599  Site License (Unlimited developers in one physical location) $7999  $3199    NMath http://www.centerspace.net .NET math and statistics libraries matrix and vector classes random number generators Fast Fourier Transforms (FFTs) numerical integration linear programming linear regression curve and surface fitting optimization hypothesis tests analysis of variance (ANOVA) probability distributions principal component analysis cluster analysis built on the Intel Math Kernel Library (MKL), which contains highly-optimized, extensively-threaded versions of BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACKage). Product  Price Update subscription Single Developer License $1295 $388 Team License (5 developers) $5180 $1554   DotNumerics http://www.dotnumerics.com/NumericalLibraries/Default.aspx free DotNumerics is a website dedicated to numerical computing for .NET that includes a C# Numerical Library for .NET containing algorithms for Linear Algebra, Differential Equations and Optimization problems. The Linear Algebra library includes CSLapack, CSBlas and CSEispack, ports from Fortran to C# of LAPACK, BLAS and EISPACK, respectively. Linear Algebra (CSLapack, CSBlas and CSEispack). Systems of linear equations, eigenvalue problems, least-squares solutions of linear systems and singular value problems. Differential Equations. Initial-value problem for nonstiff and stiff ordinary differential equations ODEs (explicit Runge-Kutta, implicit Runge-Kutta, Gear's BDF and Adams-Moulton). Optimization. Unconstrained and bounded constrained optimization of multivariate functions (L-BFGS-B, Truncated Newton and Simplex methods).   Math.NET Numerics http://numerics.mathdotnet.com/ free an open source numerical library - includes special functions, linear algebra, probability models, random numbers, interpolation, integral transforms. A merger of dnAnalytics with Math.NET Iridium in addition to a purely managed implementation will also support native hardware optimization. constants & special functions complex type support real and complex, dense and sparse linear algebra (with LU, QR, eigenvalues, ... decompositions) non-uniform probability distributions, multivariate distributions, sample generation alternative uniform random number generators descriptive statistics, including order statistics various interpolation methods, including barycentric approaches and splines numerical function integration (quadrature) routines integral transforms, like fourier transform (FFT) with arbitrary lengths support, and hartley spectral-space aware sequence manipulation (signal processing) combinatorics, polynomials, quaternions, basic number theory. parallelized where appropriate, to leverage multi-core and multi-processor systems fully managed or (if available) using native libraries (Intel MKL, ACMS, CUDA, FFTW) provides a native facade for F# developers

    Read the article

  • Partition Wise Joins

    - by jean-pierre.dijcks
    Some say they are the holy grail of parallel computing and PWJ is the basis for a shared nothing system and the only join method that is available on a shared nothing system (yes this is oversimplified!). The magic in Oracle is of course that is one of many ways to join data. And yes, this is the old flexibility vs. simplicity discussion all over, so I won't go there... the point is that what you must do in a shared nothing system, you can do in Oracle with the same speed and methods. The Theory A partition wise join is a join between (for simplicity) two tables that are partitioned on the same column with the same partitioning scheme. In shared nothing this is effectively hard partitioning locating data on a specific node / storage combo. In Oracle is is logical partitioning. If you now join the two tables on that partitioned column you can break up the join in smaller joins exactly along the partitions in the data. Since they are partitioned (grouped) into the same buckets, all values required to do the join live in the equivalent bucket on either sides. No need to talk to anyone else, no need to redistribute data to anyone else... in short, the optimal join method for parallel processing of two large data sets. PWJ's in Oracle Since we do not hard partition the data across nodes in Oracle we use the Partitioning option to the database to create the buckets, then set the Degree of Parallelism (or run Auto DOP - see here) and get our PWJs. The main questions always asked are: How many partitions should I create? What should my DOP be? In a shared nothing system the answer is of course, as many partitions as there are nodes which will be your DOP. In Oracle we do want you to look at the workload and concurrency, and once you know that to understand the following rules of thumb. Within Oracle we have more ways of joining of data, so it is important to understand some of the PWJ ideas and what it means if you have an uneven distribution across processes. Assume we have a simple scenario where we partition the data on a hash key resulting in 4 hash partitions (H1 -H4). We have 2 parallel processes that have been tasked with reading these partitions (P1 - P2). The work is evenly divided assuming the partitions are the same size and we can scan this in time t1 as shown below. Now assume that we have changed the system and have a 5th partition but still have our 2 workers P1 and P2. The time it takes is actually 50% more assuming the 5th partition has the same size as the original H1 - H4 partitions. In other words to scan these 5 partitions, the time t2 it takes is not 1/5th more expensive, it is a lot more expensive and some other join plans may now start to look exciting to the optimizer. Just to post the disclaimer, it is not as simple as I state it here, but you get the idea on how much more expensive this plan may now look... Based on this little example there are a few rules of thumb to follow to get the partition wise joins. First, choose a DOP that is a factor of two (2). So always choose something like 2, 4, 8, 16, 32 and so on... Second, choose a number of partitions that is larger or equal to 2* DOP. Third, make sure the number of partitions is divisible through 2 without orphans. This is also known as an even number... Fourth, choose a stable partition count strategy, which is typically hash, which can be a sub partitioning strategy rather than the main strategy (range - hash is a popular one). Fifth, make sure you do this on the join key between the two large tables you want to join (and this should be the obvious one...). Translating this into an example: DOP = 8 (determined based on concurrency or by using Auto DOP with a cap due to concurrency) says that the number of partitions >= 16. Number of hash (sub) partitions = 32, which gives each process four partitions to work on. This number is somewhat arbitrary and depends on your data and system. In this case my main reasoning is that if you get more room on the box you can easily move the DOP for the query to 16 without repartitioning... and of course it makes for no leftovers on the table... And yes, we recommend up-to-date statistics. And before you start complaining, do read this post on a cool way to do stats in 11.

    Read the article

  • Independence Day for Software Components &ndash; Loosening Coupling by Reducing Connascence

    - by Brian Schroer
    Today is Independence Day in the USA, which got me thinking about loosely-coupled “independent” software components. I was reminded of a video I bookmarked quite a while ago of Jim Weirich’s “Grand Unified Theory of Software Design” talk at MountainWest RubyConf 2009. I finally watched that video this morning. I highly recommend it. In the video, Jim talks about software connascence. The dictionary definition of connascence (con-NAY-sense) is: 1. The common birth of two or more at the same time 2. That which is born or produced with another. 3. The act of growing together. The brief Wikipedia page about Connascent Software Components says that: Two software components are connascent if a change in one would require the other to be modified in order to maintain the overall correctness of the system. Connascence is a way to characterize and reason about certain types of complexity in software systems. The term was introduced to the software world in Meilir Page-Jones’ 1996 book “What Every Programmer Should Know About Object-Oriented Design”. The middle third of that book is the author’s proposed graphical notation for describing OO designs. UML became the standard about a year later, so a revised version of the book was published in 1999 as “Fundamentals of Object-Oriented Design in UML”. Weirich says that the third part of the book, in which Page-Jones introduces the concept of connascence “is worth the price of the entire book”. (The price of the entire book, by the way, is not much – I just bought a used copy on Amazon for $1.36, so that was a pretty low-risk investment. I’m looking forward to getting the book and learning about connascence from the original source.) Meanwhile, here’s my summary of Weirich’s summary of Page-Jones writings about connascence: The stronger the form of connascence, the more difficult and costly it is to change the elements in the relationship. Some of the connascence types, ordered from weak to strong are: Connascence of Name Connascence of name is when multiple components must agree on the name of an entity. If you change the name of a method or property, then you need to change all references to that method or property. Duh. Connascence of name is unavoidable, assuming your objects are actually used. My main takeaway about connascence of name is that it emphasizes the importance of giving things good names so you don’t need to go changing them later. Connascence of Type Connascence of type is when multiple components must agree on the type of an entity. I assume this is more of a problem for languages without compilers (especially when used in apps without tests). I know it’s an issue with evil JavaScript type coercion. Connascence of Meaning Connascence of meaning is when multiple components must agree on the meaning of particular values, e.g that “1” means normal customer and “2” means preferred customer. The solution to this is to use constants or enums instead of “magic” strings or numbers, which reduces the coupling by changing the connascence form from “meaning” to “name”. Connascence of Position Connascence of positions is when multiple components must agree on the order of values. This refers to methods with multiple parameters, e.g.: eMailer.Send("[email protected]", "[email protected]", "Your order is complete", "Order completion notification"); The more parameters there are, the stronger the connascence of position is between the component and its callers. In the example above, it’s not immediately clear when reading the code which email addresses are sender and receiver, and which of the final two strings are subject vs. body. Connascence of position could be improved to connascence of type by replacing the parameter list with a struct or class. This “introduce parameter object” refactoring might be overkill for a method with 2 parameters, but would definitely be an improvement for a method with 10 parameters. This points out two “rules” of connascence:  The Rule of Degree: The acceptability of connascence is related to the degree of its occurrence. The Rule of Locality: Stronger forms of connascence are more acceptable if the elements involved are closely related. For example, positional arguments in private methods are less problematic than in public methods. Connascence of Algorithm Connascence of algorithm is when multiple components must agree on a particular algorithm. Be DRY – Don’t Repeat Yourself. If you have “cloned” code in multiple locations, refactor it into a common function.   Those are the “static” forms of connascence. There are also “dynamic” forms, including… Connascence of Execution Connascence of execution is when the order of execution of multiple components is important. Consumers of your class shouldn’t have to know that they have to call an .Initialize method before it’s safe to call a .DoSomething method. Connascence of Timing Connascence of timing is when the timing of the execution of multiple components is important. I’ll have to read up on this one when I get the book, but assume it’s largely about threading. Connascence of Identity Connascence of identity is when multiple components must reference the entity. The example Weirich gives is when you have two instances of the “Bob” Employee class and you call the .RaiseSalary method on one and then the .Pay method on the other does the payment use the updated salary?   Again, this is my summary of a summary, so please be forgiving if I misunderstood anything. Once I get/read the book, I’ll make corrections if necessary and share any other useful information I might learn.   See Also: Gregory Brown: Ruby Best Practices Issue #24: Connascence as a Software Design Metric (That link is failing at the time I write this, so I had to go to the Google cache of the page.)

    Read the article

  • An Alphabet of Eponymous Aphorisms, Programming Paradigms, Software Sayings, Annoying Alliteration

    - by Brian Schroer
    Malcolm Anderson blogged about “Einstein’s Razor” yesterday, which reminded me of my favorite software development “law”, the name of which I can never remember. It took much Wikipedia-ing to find it (Hofstadter’s Law – see below), but along the way I compiled the following list: Amara’s Law: We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run. Brook’s Law: Adding manpower to a late software project makes it later. Clarke’s Third Law: Any sufficiently advanced technology is indistinguishable from magic. Law of Demeter: Each unit should only talk to its friends; don't talk to strangers. Einstein’s Razor: “Make things as simple as possible, but not simpler” is the popular paraphrase, but what he actually said was “It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience”, an overly complicated quote which is an obvious violation of Einstein’s Razor. (You can tell by looking at a picture of Einstein that the dude was hardly an expert on razors or other grooming apparati.) Finagle's Law of Dynamic Negatives: Anything that can go wrong, will—at the worst possible moment. - O'Toole's Corollary: The perversity of the Universe tends towards a maximum. Greenspun's Tenth Rule: Any sufficiently complicated C or Fortran program contains an ad hoc, informally-specified, bug-ridden, slow implementation of half of Common Lisp. (Morris’s Corollary: “…including Common Lisp”) Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law. Issawi’s Omelet Analogy: One cannot make an omelet without breaking eggs - but it is amazing how many eggs one can break without making a decent omelet. Jackson’s Rules of Optimization: Rule 1: Don't do it. Rule 2 (for experts only): Don't do it yet. Kaner’s Caveat: A program which perfectly meets a lousy specification is a lousy program. Liskov Substitution Principle (paraphrased): Functions that use pointers or references to base classes must be able to use objects of derived classes without knowing it Mason’s Maxim: Since human beings themselves are not fully debugged yet, there will be bugs in your code no matter what you do. Nils-Peter Nelson’s Nil I/O Rule: The fastest I/O is no I/O.    Occam's Razor: The simplest explanation is usually the correct one. Parkinson’s Law: Work expands so as to fill the time available for its completion. Quentin Tarantino’s Pie Principle: “…you want to go home have a drink and go and eat pie and talk about it.” (OK, he was talking about movies, not software, but I couldn’t find a “Q” quote about software. And wouldn’t it be cool to write a program so great that the users want to eat pie and talk about it?) Raymond’s Rule: Computer science education cannot make anybody an expert programmer any more than studying brushes and pigment can make somebody an expert painter.  Sowa's Law of Standards: Whenever a major organization develops a new system as an official standard for X, the primary result is the widespread adoption of some simpler system as a de facto standard for X. Turing’s Tenet: We shall do a much better programming job, provided we approach the task with a full appreciation of its tremendous difficulty, provided that we respect the intrinsic limitations of the human mind and approach the task as very humble programmers.  Udi Dahan’s Race Condition Rule: If you think you have a race condition, you don’t understand the domain well enough. These rules didn’t exist in the age of paper, there is no reason for them to exist in the age of computers. When you have race conditions, go back to the business and find out actual rules. Van Vleck’s Kvetching: We know about as much about software quality problems as they knew about the Black Plague in the 1600s. We've seen the victims' agonies and helped burn the corpses. We don't know what causes it; we don't really know if there is only one disease. We just suffer -- and keep pouring our sewage into our water supply. Wheeler’s Law: All problems in computer science can be solved by another level of indirection... Except for the problem of too many layers of indirection. Wheeler also said “Compatibility means deliberately repeating other people's mistakes.”. The Wrong Road Rule of Mr. X (anonymous): No matter how far down the wrong road you've gone, turn back. Yourdon’s Rule of Two Feet: If you think your management doesn't know what it's doing or that your organisation turns out low-quality software crap that embarrasses you, then leave. Zawinski's Law of Software Envelopment: Every program attempts to expand until it can read mail. Zawinski is also responsible for “Some people, when confronted with a problem, think 'I know, I'll use regular expressions.' Now they have two problems.” He once commented about X Windows widget toolkits: “Using these toolkits is like trying to make a bookshelf out of mashed potatoes.”

    Read the article

  • C# 4.0: Covariance And Contravariance In Generics

    - by Paulo Morgado
    C# 4.0 (and .NET 4.0) introduced covariance and contravariance to generic interfaces and delegates. But what is this variance thing? According to Wikipedia, in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometrical or physical entities changes when passing from one coordinate system to another.(*) But what does this have to do with C# or .NET? In type theory, a the type T is greater (>) than type S if S is a subtype (derives from) T, which means that there is a quantitative description for types in a type hierarchy. So, how does covariance and contravariance apply to C# (and .NET) generic types? In C# (and .NET), variance applies to generic type parameters and not to the resulting generic type. A generic type parameter is: covariant if the ordering of the generic types follows the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. contravariant if the ordering of the generic types is reversed from the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. invariant if neither of the above apply. If this definition is applied to arrays, we can see that arrays have always been covariant because this is valid code: object[] objectArray = new string[] { "string 1", "string 2" }; objectArray[0] = "string 3"; objectArray[1] = new object(); However, when we try to run this code, the second assignment will throw an ArrayTypeMismatchException. Although the compiler was fooled into thinking this was valid code because an object is being assigned to an element of an array of object, at run time, there is always a type check to guarantee that the runtime type of the definition of the elements of the array is greater or equal to the instance being assigned to the element. In the above example, because the runtime type of the array is array of string, the first assignment of array elements is valid because string = string and the second is invalid because string = object. This leads to the conclusion that, although arrays have always been covariant, they are not safely covariant – code that compiles is not guaranteed to run without errors. In C#, the way to define that a generic type parameter as covariant is using the out generic modifier: public interface IEnumerable<out T> { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> { T Current { get; } bool MoveNext(); } Notice the convenient use the pre-existing out keyword. Besides the benefit of not having to remember a new hypothetic covariant keyword, out is easier to remember because it defines that the generic type parameter can only appear in output positions — read-only properties and method return values. In a similar way, the way to define a type parameter as contravariant is using the in generic modifier: public interface IComparer<in T> { int Compare(T x, T y); } Once again, the use of the pre-existing in keyword makes it easier to remember that the generic type parameter can only be used in input positions — write-only properties and method non ref and non out parameters. Because covariance and contravariance apply only to the generic type parameters, a generic type definition can have both covariant and contravariant generic type parameters in its definition: public delegate TResult Func<in T, out TResult>(T arg); A generic type parameter that is not marked covariant (out) or contravariant (in) is invariant. All the types in the .NET Framework where variance could be applied to its generic type parameters have been modified to take advantage of this new feature. In summary, the rules for variance in C# (and .NET) are: Variance in type parameters are restricted to generic interface and generic delegate types. A generic interface or generic delegate type can have both covariant and contravariant type parameters. Variance applies only to reference types; if you specify a value type for a variant type parameter, that type parameter is invariant for the resulting constructed type. Variance does not apply to delegate combination. That is, given two delegates of types Action<Derived> and Action<Base>, you cannot combine the second delegate with the first although the result would be type safe. Variance allows the second delegate to be assigned to a variable of type Action<Derived>, but delegates can combine only if their types match exactly. If you want to learn more about variance in C# (and .NET), you can always read: Covariance and Contravariance in Generics — MSDN Library Exact rules for variance validity — Eric Lippert Events get a little overhaul in C# 4, Afterward: Effective Events — Chris Burrows Note: Because variance is a feature of .NET 4.0 and not only of C# 4.0, all this also applies to Visual Basic 10.

    Read the article

  • SQLAuthority News – #TechEdIn – TechEd India 2012 Memories and Photos

    - by pinaldave
    TechEd India 2012 was held in Bangalore last March 21 to 23, 2012. Just like every year, this event is bigger, grander and inspiring. Pinal Dave at TechEd India 2012 Family Event Every single year, TechEd is a special affair for my entire family.  Four months before the start of TechEd, I usually start to build the mental image of the event. I start to think  about various things. For the most part, what excites me most is presenting a session and meeting friends. Seriously, I start thinking about presenting my session 4 months earlier than the event!  I work on my presentation day and night. I want to make sure that what I present is accurate and that I have experienced it firsthand. My wife and my daughter also contribute to my efforts. For us, TechEd is a family event, and the two of them feel equally responsible as well. They give up their family time so I can bring out the best content for the Community. Pinal, Shaivi and Nupur at TechEd India 2012 Guinea Pigs (My Experiment Victims) I do not rehearse my session, ever. However, I test my demo almost every single day till the last moment that I have to present it already. I sometimes go over the demo more than 2-3 times a day even though the event is more than a month away. I have two “guinea pigs”: 1) Nupur Dave and 2) Vinod Kumar. When I am at home, I present my demos to my wife Nupur. At times I feel that people often backup their demo, but in my case, I have backup demo presenters. In the office during lunch time, I present the demos to Vinod. I am sure he can walk my demos easily with eyes closed. Pinal and Vinod at TechEd India 2012 My Sessions I’ve been determined to present my sessions in a real and practical manner. I prefer to present the subject that I myself would be eager to attend to and sit through if I were an audience. Just keeping that principle in mind, I have created two sessions this year. SQL Server Misconception and Resolution Pinal and Vinod at TechEd India 2012 We believe all kinds of stuff – that the earth is flat, or that the forbidden fruit is apple, or that the big bang theory explains the origin of the universe, and so many other things. Just like these, we have plenty of misconceptions in SQL Server as well. I have had this dream of co-presenting a session with Vinod Kumar for the past 3 years. I have been asking him every year if we could present a session together, but we never got it to work out, until this year came. Fortunately, we got a chance to stand on the same stage and present a single subject.  I believe that Vinod Kumar and I have an excellent synergy when we are working together. We know each other’s strengths and weakness. We know when the other person will speak and when he will keep quiet. The reason behind this synergy is that we have worked on 2 Video Learning Courses (SQL Server Indexes and SQL Server Questions and Answers) and authored 1 book (SQL Server Questions and Answers) together. Crowd Outside Session Hall This session was inspired from the “Laurel and Hardy” show so we performed a role-playing of those famous characters. We had an excellent time at the stage and, for sure, the audience had a wonderful time, too. We had an extremely large audience for this session and had a great time interacting with them. Speed Up! – Parallel Processes and Unparalleled Performance Pinal Dave at TechEd India 2012 I wanted to approach this session at level 400 and I was very determined to do so. The biggest challenge I had was that this was a total of 60 minutes of session and the audience profile was very generic. I had to present at level 100 as well at 400. I worked hard to tune up these demos. I wanted to make sure that my messages would land perfectly to the minds of the attendees, and when they walk out of the session, they could use the knowledge I shared on their servers. After the session, I felt an extreme satisfaction as I received lots of positive feedback at the event. At one point, so many people rushed towards me that I was a bit scared that the stage might break and someone would get injured. Fortunately, nothing like that happened and I was able to shake hands with everybody. Pinal Dave at TechEd India 2012 Crowd rushing to Pinal at TechEd India 2012 Networking This is one of the primary reasons many of us visit the annual TechEd event. I had a fantastic time meeting SQL Server enthusiasts. Well, it was a terrific time meeting old friends, user group members, MVPs and SQL Enthusiasts. I have taken many photographs with lots of people, but I have received a very few back. If you are reading this blog and have a photo of us at the event, would you please send it to me so I could keep it in my memory lane? SQL Track Speaker: Jacob and Pinal at TechEd India 2012 SQL Community: Pinal, Tejas, Nakul, Jacob, Balmukund, Manas, Sudeepta, Sahal at TechEd India 2012 Star Speakers: Amit and Balmukund at TechEd India 2012 TechED Rockstars: Nakul, Tejas and Pinal at TechEd India 2012 I guess TechEd is a mix of family affair and culture for me! Hamara TechEd (Our TechEd) Please tell me which photo you like the most! Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Author Visit, SQLAuthority News, SQLServer, T SQL, Technology Tagged: TechEd, TechEdIn

    Read the article

  • The illusion of Competence

    - by tony_lombardo
    Working as a contractor opened my eyes to the developer food chain.  Even though I had similar experiences earlier in my career, the challenges seemed much more vivid this time through.  I thought I’d share a couple of experiences with you, and the lessons that can be taken from them. Lesson 1: Beware of the “funnel” guy.  The funnel guy is the one who wants you to funnel all thoughts, ideas and code changes through him.  He may say it’s because he wants to avoid conflicts in source control, but the real reason is likely that he wants to hide your contributions.  Here’s an example.  When I finally got access to the code on one of my projects, I was told by the developer that I had to funnel all of my changes through him.  There were 4 of us coding on the project, but only 2 of us working on the UI.  The other 2 were working on a separate application, but part of the overall project.  So I figured, I’ll check it into SVN, he reviews and accepts then merges in.  Not even close.  I didn’t even have checkin rights to SVN, I had to email my changes to the developer so he could check those changes in.  Lesson 2: If you point out flaws in code to someone supposedly ‘higher’ than you in the developer chain, they’re going to get defensive.  My first task on this project was to review the code, familiarize myself with it.  So of course, that’s what I did.  And in familiarizing myself with it, I saw so many bad practices and code smells that I immediately started coming up with solutions to fix it.  Of course, when I reviewed these changes with the developer (guy who originally wrote the code), he smiled and nodded and said, we can’t make those changes now, it’s too destabilizing.  I recommended we create a new branch and start working on refactoring, but branching was a new concept for this guy and he was worried we would somehow break SVN. How about some concrete examples? I started out by recommending we remove NUnit dependency and tests from the application project, and create a separate Unit testing project.  This was met with a little bit of resistance because - “How do I access the private methods?”  As it turned out there weren’t really any private methods that weren’t exposed by public methods, so I quickly calmed this fear. Win 1 Loss 0 Next, I recommended that all of the File IO access be wrapped in Using clauses, or at least properly wrapped in try catch finally.  This recommendation was accepted.. but never implemented. Win 2  Loss 1 Next recommendation was to refactor the command pattern implementation.  The command pattern was implemented, but it wasn’t really necessary for the application.  More over, the fact that we had 100 different command classes, each with it’s own specific command parameters class, made maintenance a huge hassle.  The same code repeated over and over and over.  This recommendation was declined, the code was too fragile and this change would destabilize it.  I couldn’t disagree, though it was the commands themselves in many cases that were fragile. Win 2 Loss 2 Next recommendation was to aid performance (and responsiveness) of the application by using asynchronous service calls.  This on was accepted. Win 2 Loss 3 If you’re paying any attention, you’re wondering why the async service calls was scored as a loss.. Let me explain.  The service call was made using the async pattern.  Followed by a thread.sleep  <facepalm>. Now it’s easy to be harsh on this kind of code, especially if you’re an experienced developer.  But I understood how most of this happened.  One junior guy, working as hard as he can to build his first real world application, with little or no guidance from anyone else.  He had his pattern book and theory of programming to help him, but no real world experience.  He didn’t know how difficult it would be to trace the crashes to the coding issues above, but he will one day.  The part that amazed me was the management position that “this guy should be a team lead, because he’s worked so hard”.  I’m all for rewarding hard work, but when you reward someone by promoting them past the point of their competence, you’re setting yourself and them up for failure.  And that’s lesson 3.  Just because you’ve got a hard worker, doesn’t mean he should be leading a development project.  If you’re a junior guy busting your ass, keep at it.  I encourage you to try new things, but most importantly to learn from your mistakes.  And correct your mistakes.  And if someone else looks at your code and shows you a laundry list of things that should be done differently, don’t take it personally – they’re really trying to help you.  And if you’re a senior guy, working with a junior guy, it’s your duty to point out the flaws in the code.  Even if it does make you the bad guy.  And while I’ve used “guy” above, I mean both men and women.  And in some cases mutant dinosaurs. 

    Read the article

  • Java2Days 2012 Trip Report

    - by reza_rahman
    Java2Days 2012 was held in beautiful Sofia, Bulgaria on October 25-26. For those of you not familiar with it, this is the third installment of the premier Java conference for the Balkan region. It is an excellent effort by admirable husband and wife team Emo Abadjiev and Iva Abadjieva as well as the rest of the Java2Days team including Yoana Ivanova and Nadia Kostova. Thanks to their hard work, the conference continues to grow vigorously with almost a thousand enthusiastic, bright young people attending this year and no less than three tracks on Java, the Cloud and Mobile. The conference is a true gem in this region of the world and I am very proud to have been a part of it again, along with the other world class speakers the event rightfully attracts. It was my honor to present the first talk of the conference. It was a full-house session on Java EE 7 and 8 titled "JavaEE.Next(): Java EE 7, 8, and Beyond". The talk was primarily along the same lines as Arun Gupta's JavaOne 2012 technical keynote. I covered the changes in JMS 2, the Java API for WebSocket (JSR 356), the Java API for JSON Processing (JSON-P), JAX-RS 2, JCache, JPA 2.1, JTA 1.2, JSF 2.2, Java Batch, Bean Validation 1.1 and the rest of the APIs in Java EE 7. I also briefly talked about the possible contents of Java EE 8. My stretch goal was to gather some feedback on some open issues in the Java EE EG (more on that soon) but I ran out of time in the short format forty-five minute session. The talk was received well and I had some pretty good discussions afterwards. The slides for the talk are here: JavaEE.Next(): Java EE 7, 8, and Beyond from reza_rahman To my delight, the Java2Days folks were very interested in my domain-driven design/Java EE 6 talk (titled "Domain Driven Design with Java EE 6"). I've had this talk in my inventory for a long time now but it always gets overridden by less theoretical talks on APIs, tools, etc. The talk has three parts -- a brief overview of DDD theory, mapping DDD to Java EE and actual running DDD code in Java EE 6/GlassFish. For the demo, I converted the well-known DDD sample application (http://dddsample.sourceforge.net/) written mostly in Spring 2 and Hibernate 2 to Java EE 6. My eventual plan is to make the code available via a top level java.net project. Even despite the broad topic and time constraints, the talk went very well. It was a full house, the Q & A was excellent and one of the other speakers even told me they thought this was the best talk of the conference! The slides for the talk are here: Domain Driven Design with Java EE 6 from Reza Rahman The code examples are available here: https://blogs.oracle.com/reza/resource/dddsample.zip for now, as a simple zip file. Give me a shout if you would like to get it up and running. It was also a great honor to present the last session of the conference. It was a talk on the Java API for WebSocket/JSR 356 titled "Building HTML5/WebSocket Applications with JSR 356 and GlassFish". The talk is based on Danny Coward's JavaOne 2012 talk. The talk covers the basic of WebSocket, the JSR 356 API and a simple demo using Tyrus/GlassFish. The talk went very well and there were some very good questions afterwards. The slides for the talk are here: Building HTML5/WebSocket Applications with GlassFish and JSR 356 from Reza Rahman The code samples are available here: https://blogs.oracle.com/arungupta/resource/totd183-HelloWebSocket.zip. You'll need the latest promoted GlassFish 4 build to run the code. Give me a shout if you need help. Besides presenting my talks, I got to attend some great sessions on OSGi, HTML5, cloud, agile and Java 8. I got an invite to speak at the Macedonia JUG when possible. Victor Grazi of InfoQ wrote about my sessions and Java2Days here: http://www.infoq.com/news/2012/11/Java2DaysConference. Stoyan Rachev was very kind to blog about my sessions here: http://www.stoyanr.com/2012/11/java2days-2012-java-ee.html. I definitely enjoyed Java2Days 2012 and hope to be part of the conference next year!

    Read the article

  • Must-see sessions at TCUK11

    - by Roger Hart
    Technical Communication UK is probably the best professional conference I've been to. Last year, I spoke there on content strategy, and this year I'll be co-hosting a workshop on embedded user assistance. Obviously, I'd love people to come along to that; but there are some other sessions I'd like to flag up for anybody thinking of attending. Tuesday 20th Sept - workshops This will be my first year at the pre-conference workshop day, and I'm massively glad that our workshop hasn't been scheduled along-side the one I'm really interested in. My picks: It looks like you're embedding user assistance. Would you like help? My colleague Dom and I are presenting this one. It's our paen to Clippy, to the brilliant idea he represented, and the crashing failure he was. Less precociously, we'll be teaching embedded user assistance, Red Gate style. Statistics without maths: acquiring, visualising and interpreting your data This doesn't need to do anything apart from what it says on the tin in order to be gold dust. But given the speakers, I suspect it will. A data-informed approach is a great asset to technical communications, so I'd recommend this session to anybody event faintly interested. The speakers here have a great track record of giving practical, accessible introductions to big topics. Go along. Wednesday 21st Sept - day one There's no real need to recommend the keynote for a conference, but I will just point out that this year it's Google's Patrick Hofmann. That's cool. You know what else is cool: Focus on the user, the rest follows An intro to modelling customer experience. This is a really exciting area for tech comms, and potentially touches on one of my personal hobby-horses: the convergence of technical communication and marketing. It's all part of delivering customer experience, and knowing what your users need lets you help them, sell to them, and delight them. Content strategy year 1: a tale from the trenches It's often been observed that content strategy is great at banging its own drum, but not so hot on compelling case studies. Here you go, folks. This is the presentation I'm most excited about so far. On a mission to communicate! Skype help their users communicate, but how do they communicate with them? I guess we'll find out. Then there's the stuff that I'm not too excited by, but you might just be. The standards geeks and agile freaks can get together in a presentation on the forthcoming ISO standards for agile authoring. Plus, there's a session on VBA for tech comms. I do have one gripe about day 1. The other big UK tech comms conference, UA Europe, have - I think - netted the more interesting presentation from Ellis Pratt. While I have no doubt that his TCUK case study on producing risk assessments will be useful, I'd far rather go to his talk on game theory for tech comms. Hopefully UA Europe will record it. Thursday 22nd Sept - day two Day two has a couple of slots yet to be confirmed. The rumour is that one of them will be the brilliant "Questions and rants" session from last year. I hope so. It's not ranting, but I'll be going to: RTFMobile: beyond stating the obvious Ultan O'Broin is an engaging speaker with a lot to say, and mobile is one of the most interesting and challenging new areas for tech comms. Even if this weren't a research-based presentation from a company with buckets of technology experience, I'd be going. It is, and you should too. Pattern recognition for technical communicators One of the best things about TCUK is the tendency to include sessions that tackle the theoretical and bring them towards the practical. Kai and Chris delivered cracking and well-received talks last year, and I'm looking forward to seeing what they've got for us on some of the conceptual underpinning of technical communication. Developing an interactive non-text learning programme Annoyingly, this clashes with Pattern Recognition, so I hope at least one of the streams is recorded again this year. The idea of communicating complex information without words us fascinating and this sounds like a great example of this year's third stream: "anything but text". For the localization and DITA crowds, there's rich pickings on day two, though I'm not sure how many of those sessions I'm interested in. In the 13:00 - 13:40 slot, there's an interesting clash between Linda Urban on re-use and training content, and a piece on minimalism I'm sorely tempted by. That's my pick of #TCUK11. I'll be doing a round-up blog after the event, and probably talking a bit more about it beforehand. I'm also reliably assured that there are still plenty of tickets.

    Read the article

  • Global Perspective: Oracle AppAdvantage Does its Stage Debut in the UK

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Global Perspective is a monthly series that brings experiences, business needs and real-world use cases from regions across the globe. This month’s feature is a follow-up from last month’s Global Perspective note from a well known ACE Director based in EMEA. My first contribution to this blog was before Oracle Open World and I was quite excited about where this initiative would take me in my understanding of the value of Oracle Fusion Middleware. Rimi Bewtra from the Oracle AppAdvantage team came as promised to the Oracle ACE Director briefings and explained what this initiative was all about and I then asked the directors to take part in the new survey. The story was really well received and then at the SOA advisory board that many of these ACE Directors already take part in there was a further discussion on how this initiative will help customers understand the benefits of adoption. A few days later Rick Beers launched the program at a lunch of invited customer executives which included one from Pella who talked about their projects (a quick recap on that here). I wasn’t able to stay for the whole event but what really interested me was that these executives who understood the technology but where looking for how they could use them to drive their businesses. Lots of ideas were bubbling up in my head about how we can use this in user groups to help our members, and the timing was fantastic as just three weeks later we had UKOUG_Apps13, our flagship Applications conference in the UK. We had independently working with Oracle marketing in the UK on an initiative called Apps Transformation to help our members look beyond just the application they use today. We have had a Fusion community page but felt the options open are now much wider than Fusion Applications, there are acquired applications, social, mobility and of course the underlying technology, Oracle Fusion Middleware. I was really pleased to be allowed to give the Oracle AppAdvantage story as a session in our conference and we are planning a special Apps Transformation event in March where I hope the Oracle AppAdvantage team will take part and we will have the results of the survey to discuss. But, life also came full circle for me. In my first post, I talked about Andrew Sutherland and his original theory that Oracle Fusion Middleware adoption had technical drivers. Well, Andrew was a speaker at our event and he gave a potted, tech-talk free update on Oracle Open World. Andrew talked about the Prevailing Technology Winds, and what is driving this today and he talked about that in the past it was the move from simply automating processes (ERP etc), through the altering of those processes (SOA) and onto consolidation. The next drivers are around the need to predict, both faster and more accurately; how to better exploit the information that we have available. He went on to talk about The Nexus of Forces: Social, Mobile, Cloud and Information – harnessing these forces of change with Oracle technology. Gartner really likes this concept and if you want to know more you can get their paper here. All this has made me think, and I hope it will make you too. Technology can help us drive our businesses better and understanding your needs can be the first step on your journey, which was the theme of our event in the UK. I spoke to a number of the delegates and I hope to share some of their stories in later posts. If you have a story to share, the survey is at: https://www.surveymonkey.com/s/P335DD3 About the Author: Debra Lilley, Fujitsu Fusion Champion, UKOUG Board Member, Fusion User Experience Advocate and ACE Director. Debra has 18 years experience with Oracle Applications, with E Business Suite since 9.4.1, moving to Business Intelligence Team Leader and then Oracle Alliance Director. She has spoken at over 100 conferences worldwide and posts at debrasoraclethoughts Editor’s Note: Debra has kindly agreed to share her musings and experience in a monthly column on the Fusion Middleware blog so do stay tuned…

    Read the article

  • Updating a database connection password using a script

    - by Tim Dexter
    An interesting customer requirement that I thought was worthy of sharing today. Thanks to James for the requirement and Bryan for the proposed solution and me for testing the solution and proving it works :0) A customers implementation of Sarbanes Oxley requires them to change all database account passwords every 90 days. This is scripted leveraging shell scripts today for most of their environments. But how can they manage the BI Publisher connections? Now, the customer is running 11g and therefore using weblogic on the middle tier, which is the first clue to Bryans proposed solution. To paraphrase and embellish Bryan's solution a little; why not use a JNDI connection from BIP to the database. Then employ the web logic scripting engine to make updates to the JNDI as needed? BIP is completely uninvolved and with a little 'timing' users will be completely unaware of the password updates i.e. change the password when reports are not being executed. Perfect! James immediately tracked down the WLST script that could be used here, http://middlewaremagic.com/weblogic/?p=4261 (thanks Ravish) Now it was just a case of testing the theory. Some steps: Create the JNDI connection in WLS Create the JNDI connection in BI Publisher pointing to the WLS connection Build new data models using or re-point data sources to use the JNDI connection. Create the WLST script to update the WLS JNDI password as needed. Test! Some details. Creating the JNDI connection in web logic is pretty straightforward. Log into hte console and look for Data Sources under the Services section of the home page and click it Click New >> Generic Datasource Give the connection a name. For the JNDI name, prefix it with 'jdbc/' so I have 'jdbc/localdb' - this name is important you'll need it on the BIP side. Select your db type - this will influence the drivers and information needed on the next page. Being a company man, Im using an Oracle db. Click Next Select the driver of choice, theres lots I know, you can read about them I just chose 'Oracle's Driver (Thin) for Instance connections; Versions 9.0.1 and later' Click Next >> Next Fill out the db name (SID), server, port, username to connect and password >> Next Test the config to ensure you can connect. >> Next Now you need to deploy the connection to your BI server, select it and click Next. You're done with the JNDI config. Creating the JNDI connection on the Publisher side is covered here. Just remember to the connection name you created in WLS e.g. 'jdbc/localdb' Not gonna tell you how to do this, go read the user guide :0) Suffice to say, it works. This requires a little reading around the subject to understand the scripting engine and how to execute scripts. Nicely covered here. However a bit of googlin' and I found an even easier way of running the script. ${ServerHome}/common/bin/wlst.sh updatepwd.py Where updatepwd.py is my script file, it can be in another directory. As part of the wlst.sh script your environment is set up for you so its very simple to execute. The nitty gritty: Need to take Ravish's script above and create a file with a .py extension. Its going to need some modification, as he explains on the web page, to make it work in your environment. I played around with it for a while but kept running into errors. The script as is, tries to loop through all of your connections and modify the user and passwords for each. Not quite what we are looking for. Remember our requirement is to just update the password for a given connection. I also found another issue with the script. WLS 10.x does not allow updates to passwords using clear type ie un-encrypted text while the server is in production mode. Its a bit much to set it back to developer mode bounce it, change the passwords and then bounce and then change back to production and bounce again. After lots of messing about I finally came up with the following: ############################################################################# # # Update password for JNDI connections # ############################################################################# print("*** Trying to Connect.... *****") connect('weblogic','welcome1','t3://localhost:7001') print("*** Connected *****") edit() startEdit() print ("*** Encrypt the password ***") en = encrypt('hr') print "Encrypted pwd: ", en print ("*** Changing pwd for LocalDB ***") dsName = 'LocalDB' print 'Changing Password for DataSource ', dsName cd('/JDBCSystemResources/'+dsName+'/JDBCResource/'+dsName+'/JDBCDriverParams/'+dsName) set('PasswordEncrypted',en) save() activate() Its pretty simple and you can expand on it to loop through the data sources and change each as needed. I have hardcoded the password into the file but you can pass it as a parameter as needed using the properties file method. Im not going to get into the detail of that here but its covered with an example here. Couple of points to note: 1. The change to the password requires a server bounce to get the changes picked up. You can add that to the shell script you will use to call the script above. 2. The script above needs to be run from the MW_HOME\user_projects\domains\bifoundation_domain directory to get the encryption libraries set correctly. My command to run the whole script was: d:\oracle\bi_mw\wlserver_10.3\common\bin\wlst.cmd updatepwd.py - where wlst.cmd is the scripting command line and updatepwd.py was my update password script above. I have not quite spoon fed everything you need to make it a robust script but at least you know you can do it and you can work out the rest I think :0)

    Read the article

  • SQL SERVER – ?Finding Out What Changed in a Deleted Database – Notes from the Field #041

    - by Pinal Dave
    [Note from Pinal]: This is a 41th episode of Notes from the Field series. The real world is full of challenges. When we are reading theory or book, we sometimes do not realize how real world reacts works and that is why we have the series notes from the field, which is extremely popular with developers and DBA. Let us talk about interesting problem of how to figure out what has changed in the DELETED database. Well, you think I am just throwing the words but in reality this kind of problems are making our DBA’s life interesting and in this blog post we have amazing story from Brian Kelley about the same subject. In this episode of the Notes from the Field series database expert Brian Kelley explains a how to find out what has changed in deleted database. Read the experience of Brian in his own words. Sometimes, one of the hardest questions to answer is, “What changed?” A similar question is, “Did anything change other than what we expected to change?” The First Place to Check – Schema Changes History Report: Pinal has recently written on the Schema Changes History report and its requirement for the Default Trace to be enabled. This is always the first place I look when I am trying to answer these questions. There are a couple of obvious limitations with the Schema Changes History report. First, while it reports what changed, when it changed, and who changed it, other than the base DDL operation (CREATE, ALTER, DELETE), it does not present what the changes actually were. This is not something covered by the default trace. Second, the default trace has a fixed size. When it hits that size, the changes begin to overwrite. As a result, if you wait too long, especially on a busy database server, you may find your changes rolled off. But the Database Has Been Deleted! Pinal cited another issue, and that’s the inability to run the Schema Changes History report if the database has been dropped. Thankfully, all is not lost. One thing to remember is that the Schema Changes History report is ultimately driven by the Default Trace. As you may have guess, it’s a trace, like any other database trace. And the Default Trace does write to disk. The trace files are written to the defined LOG directory for that SQL Server instance and have a prefix of log_: Therefore, you can read the trace files like any other. Tip: Copy the files to a working directory. Otherwise, you may occasionally receive a file in use error. With the Default Trace files, if you ask the question early enough, you can see the information for a deleted database just the same as any other database. Testing with a Deleted Database: Here’s a short script that will create a database, create a schema, create an object, and then drop the database. Without the database, you can’t do a standard Schema Changes History report. CREATE DATABASE DeleteMe; GO USE DeleteMe; GO CREATE SCHEMA Test AUTHORIZATION dbo; GO CREATE TABLE Test.Foo (FooID INT); GO USE MASTER; GO DROP DATABASE DeleteMe; GO This sets up the perfect situation where we can’t retrieve the information using the Schema Changes History report but where it’s still available. Finding the Information: I’ve sorted the columns so I can see the Event Subclass, the Start Time, the Database Name, the Object Name, and the Object Type at the front, but otherwise, I’m just looking at the trace files using SQL Profiler. As you can see, the information is definitely there: Therefore, even in the case of a dropped/deleted database, you can still determine who did what and when. You can even determine who dropped the database (loginame is captured). The key is to get the default trace files in a timely manner in order to extract the information. If you want to get started with performance tuning and database security with the help of experts, read more over at Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Security, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • What Counts For a DBA: Fitness

    - by Louis Davidson
    If you know me, you can probably guess that physical exercise is not really my thing. There was a time in my past when it a larger part of my life, but even then never in the same sort of passionate way as a number of our SQL friends.  For me, I find that mental exercise satisfies what I believe to be the same inner need that drives people to run farther than I like to drive on most Saturday mornings, and it is certainly just as addictive. Mental fitness shares many common traits with physical fitness, especially the need to attain it through repetitive training. I only wish that mental training burned off a bacon cheeseburger in the same manner as does jogging around a dewy park on Saturday morning. In physical training, there are at least two goals, the first of which is to be physically able to do a task. The second is to train the brain to perform the task without thinking too hard about it. No matter how long it has been since you last rode a bike, you will be almost certainly be able to hop on and start riding without thinking about the process of pedaling or balancing. If you’ve never ridden a bike, you could be a physics professor /Olympic athlete and still crash the first few times you try, even though you are as strong as an ox and your knowledge of the physics of bicycle riding makes the concept child’s play. For programming tasks, the process is very similar. As a DBA, you will come to know intuitively how to backup, optimize, and secure database systems. As a data programmer, you will work to instinctively use the clauses of Transact-SQL DML so that, when you need to group data three ways (and not four), you will know to use the GROUP BY clause with GROUPING SETS without resorting to a search engine.  You have the skill. Making it naturally then requires repetition and experience is the primary requirement, not just simply learning about a topic. The hardest part of being really good at something is this difference between knowledge and skill. I have recently taken several informative training classes with Kimball University on data warehousing and ETL. Now I have a lot more knowledge about designing data warehouses than before. I have also done a good bit of data warehouse designing of late and have started to improve to some level of proficiency with the theory. Yet, for all of this head knowledge, it is still a struggle to take what I have learned and apply it to the designs I am working on.  Data warehousing is still a task that is not yet deeply ingrained in my brain muscle memory. On the other hand, relational database design is something that no matter how much or how little I may get to do it, I am comfortable doing it. I have done it as a profession now for well over a decade, I teach classes on it, and I also have done (and continue to do) a lot of mental training beyond the work day. Sometimes the training is just basic education, some reading blogs and attending sessions at PASS events.  My best training comes from spending time working on other people’s design issues in forums (though not nearly as much as I would like to lately). Working through other people’s problems is a great way to exercise your brain on problems with which you’re not immediately familiar. The final bit of exercise I find useful for cultivating mental fitness for a data professional is also probably the nerdiest thing that I will ever suggest you do.  Akin to running in place, the idea is to work through designs in your head. I have designed more than one database system that would revolutionize grocery store operations, sales at my local Target store, the ordering process at Amazon, and ways to improve Disney World operations to get me through a line faster (some of which they are starting to implement without any of my help.) Never are the designs truly fleshed out, but enough to work through structures and processes.  On “paper”, I have designed database systems to catalog things as trivial as my Lego creations, rental car companies and my audio and video collections. Once I get the database designed mentally, sometimes I will create the database, add some data (often using Red-Gate’s Data Generator), and write a few queries to see if a concept was realistic, but I will rarely fully flesh out the database since I have no desire to do any user interface programming anymore.  The mental training allows me to keep in practice for when the time comes to do the work I love the most for real…even if I have been spending most of my work time lately building data warehouses.  If you are really strong of mind and body, perhaps you can mix a mental run with a physical run; though don’t run off of a cliff while contemplating how you might design a database to catalog the trees on a mountain…that would be contradictory to the purpose of both types of exercise.

    Read the article

  • Trouble with Samba Domain

    - by Arkevius
    I'm having a bit of trouble setting up this Samba domain correctly. I'm getting an Access Denied error when trying to add a Windows XP machine to the domain. I'll go through my scenario in detail, but for those of you wanting a TLDR summary it'll be at the bottom of this post. I have HP Proliant server with Ubuntu 12.04 LTS installed. For this particular environment, I need this server to act as a PDC, file server, and print server. I began by updating and upgrading the packages (of course). Then went to install samba, gnome-desktop, wine, and cpanm. Samba was, of course, for the PDC and file/print services. The GUI was needed because a certain software has to be installed on there that needs a GUI. Wine was needed because the software is Windows-native. And cpanm was for a perl script I have running. For Samba, I went into the smb.conf file and enabled domain logons, changed the workgroup/domain name, the logon script for a per-group basis (netlogon/%g), enabled the netlogon and profiles share, and setup a couple of custom shares for the file service. The printer was added later, and seems to be working just fine. I then restarted the services, and used the net groupmap command to ensure my unix groups were mapped correctly to the Windows groups. After this, I went to a Windows box, and was able to successfully join the domain without a problem. After some fidgeting with the software to get it running on the win boxes from the server (it's a records management system program, which stores it's database files on the server), I went to add another computer to the domain. But now it's saying Access Denied. Before when I had this trouble it was because I forgot to add the group "machines" so Samba could create machine accounts. Thinking this was the case, I manually created the machine account to test this theory. However, it would still give me an Access Denied error. That must mean it has something to do with permissions now, correct? I've been fighting with this server for the past two weeks. If it's not one thing that;s wrong, then it's something else completely different. This would be the third time I've actually reinstalled everything to start over. I'll post snippets of my system settings below. If anything else is needed, just say the word and I'll gather up the info. The unix group 'domadmin' is the Domain Admins group. Samba Administrator account administrator:x:1000:1000:Administrator,,,:/home/administrator:/bin/bash Adminstrator's groups administrator adm cdrom sudo dip plugdev lpadmin sambashare domadmin crimestar Samba's Configuration FIle (a snippet anyways) [global] workgroup = CITYPD server string = BPDServer dns proxy = no log file = /var/log/samba/log.%m max log size = 1000 syslog = 0 panic action = /usr/share/samba/panic-action %d security = user encrypt passwords = true passdb backend = tdbsam obey pam restrictions = yes unix password sync = yes passwd program = /usr/bin/passwd %u passwd chat = *Enter\snew\s*\spassword:* %n\n *Retype\snew\s*\spassword:* %n\n *password\supdated\ssuccessfully* . pam password change = yes map to guest = bad user domain logons = yes logon path = \\%L\srv\samba\profiles\%U logon script = logon.bat add machine script = /usr/sbin/useradd -g machines -c "%u machine account" -d /var/lib/samba -s /bin/false %u domain master = yes usershare allow guests = yes [netlogon] comment = Network Logon Service path = /srv/samba/netlogon/%g guest ok = yes read only = yes browseable = no [profiles] comment = All Printers browseable = no path = /var/spool/samba printable = yes guest ok = no read only = yes create mask = 0700 [print$] comment = Printer Drivers path = /var/lib/samba/printers browseable = yes read only = yes guest ok = no write list = root, @lpadmin [crimestar] comment = "Crimestar DB" path = /srv/crimestar/db valid users = @domadmin, @crimestar admin users = administrator writeable = yes guest ok = no browseable = no create mask = 0666 directory mask = 0777 [crimestarfiles] path = /home/administrator/.wine/drive_c/crimestar admin users = administrator browseable = yes ls -la on /srv/samba/profiles drwxrwxrwx 2 root machines 4096 Nov 21 15:27 . drwxr-xr-x 4 root root 4096 Nov 21 15:28 .. ls -la on /srv/samba/netlogon drwxr-xr-x 6 root root 4096 Nov 21 15:30 . drwxr-xr-x 4 root root 4096 Nov 21 15:28 .. drwxr-xr-x 2 root root 4096 Nov 21 15:30 crimestar drwxr-xr-x 2 root root 4096 Nov 21 18:13 domadmin drwxr-xr-x 3 root root 4096 Nov 21 15:30 guests drwxr-xr-x 2 root root 4096 Nov 21 15:29 users GrouMap list Domain Users (S-1-5-21-2978508755-2341913247-928297747-513) -> users Domain Admins (S-1-5-21-2978508755-2341913247-928297747-512) -> domadmin Domain Guests (S-1-5-21-2978508755-2341913247-928297747-514) -> nogroup TLDR I'm getting an Access Denied error message while trying to join a windows box to a samba domain, even after I successfully joined another computer without a problem. System settings / files are quoted above. Anyone have any ideas or suggestions?

    Read the article

  • WMemoryProfiler is Released

    - by Alois Kraus
    What is it? WMemoryProfiler is a managed profiling Api to aid integration testing. This free library can get managed heap statistics and memory usage for your own process (remember testing) and other processes as well. The best thing is that it does work from .NET 2.0 up to .NET 4.5 in x86 and x64. To make it more interesting it can attach to any running .NET process. The reason why I do mention this is that commercial profilers do support this functionality only for their professional editions. An normally only since .NET 4.0 since the profiling API only since then does support attaching to a running process. This thing does differ in many aspects from “normal” profilers because while profiling yourself you can get all objects from all managed heaps back as an object array. If you ever wanted to change the state of an object which does only exist a method local in another thread you can get your hands on it now … Enough theory. Show me some code /// <summary> /// Show feature to not only get statisics out of a process but also the newly allocated /// instances since the last call to MarkCurrentObjects. /// GetNewObjects does return the newly allocated objects as object array /// </summary> static void InstanceTracking() { using (var dumper = new MemoryDumper()) // if you have problems use to see the debugger windows true,true)) { dumper.MarkCurrentObjects(); Allocate(); ILookup<Type, object> newObjects = dumper.GetNewObjects() .ToLookup( x => x.GetType() ); Console.WriteLine("New Strings:"); foreach (var newStr in newObjects[typeof(string)] ) { Console.WriteLine("Str: {0}", newStr); } } } … New Strings: Str: qqd Str: String data: Str: String data: 0 Str: String data: 1 … This is really hot stuff. Not only you can get heap statistics but you can directly examine the new objects and make queries upon them. When I do find more time I can reconstruct the object root graph from it from my own process. It this cool or what? You can also peek into the Finalization Queue to check if you did accidentally forget to dispose a whole bunch of objects … /// <summary> /// .NET 4.0 or above only. Get all finalizable objects which are ready for finalization and have no other object roots anymore. /// </summary> static void NotYetFinalizedObjects() { using (var dumper = new MemoryDumper()) { object[] finalizable = dumper.GetObjectsReadyForFinalization(); Console.WriteLine("Currently {0} objects of types {1} are ready for finalization. Consider disposing them before.", finalizable.Length, String.Join(",", finalizable.ToLookup( x=> x.GetType() ) .Select( x=> x.Key.Name)) ); } } How does it work? The W of WMemoryProfiler is a good hint. It does employ Windbg and SOS dll to do the heavy lifting and concentrates on an easy to use Api which does hide completely Windbg. If you do not want to see Windbg you will never see it. In my experience the most complex thing is actually to download Windbg from the Windows 8 Stanalone SDK. This is described in the Readme and the exception you are greeted with if it is missing in much greater detail. So I will not go into this here.   What Next? Depending on the feedback I do get I can imagine some features which might be useful as well Calculate first order GC Roots from the actual object graph Identify global statics in Types in object graph Support read out of finalization queue of .NET 2.0 as well. Support Memory Dump analysis (again a feature only supported by commercial profilers in their professional editions if it is supported at all) Deserialize objects from a memory dump into a live process back (this would need some more investigation but it is doable) The last item needs some explanation. Why on earth would you want to do that? The basic idea is to store in your live process some logging/tracing data which can become quite big but since it is never written to it is very fast to generate. When your process crashes with a memory dump you could transfer this data structure back into a live viewer which can then nicely display your program state at the point it did crash. This is an advanced trouble shooting technique I have not seen anywhere yet but it could be quite useful. You can have here a look at the current feature list of WMemoryProfiler with some examples.   How To Get Started? First I would download the released source package (it is tiny). And compile the complete project. Then you can compile the Example project (it has this name) and uncomment in the main method the scenario you want to check out. If you are greeted with an exception it is time to install the Windows 8 Standalone SDK which is described in great detail in the exception text. Thats it for the first round. I have seen something more limited in the Java world some years ago (now I cannot find the link anymore) but anyway. Now we have something much better.

    Read the article

  • Pirates, Treasure Chests and Architectural Mapping

    Pirate 1: Why do pirates create treasure maps? Pirate 2: I do not know.Pirate 1: So they can find their gold. Yes, that was a bad joke, but it does illustrate a point. Pirates are known for drawing treasure maps to their most prized possession. These documents detail the decisions pirates made in order to hide and find their chests of gold. The map allows them to trace the steps they took originally to hide their treasure so that they may return. As software engineers, programmers, and architects we need to treat software implementations much like our treasure chest. Why is software like a treasure chest? It cost money, time,  and resources to develop (Usually) It can make or save money, time, and resources (Hopefully) If we operate under the assumption that software is like a treasure chest then wouldn’t make sense to document the steps, rationale, concerns, and decisions about how it was designed? Pirates are notorious for documenting where they hide their treasure.  Shouldn’t we as creators of software do the same? By documenting our design decisions and rationale behind them will help others be able to understand and maintain implemented systems. This can only be done if the design decisions are correctly mapped to its corresponding implementation. This allows for architectural decisions to be traced from the conceptual model, architectural design and finally to the implementation. Mapping gives software professional a method to trace the reason why specific areas of code were developed verses other options. Just like the pirates we need to able to trace our steps from the start of a project to its implementation,  so that we will understand why specific choices were chosen. The traceability of a software implementation that actually maps back to its originating design decisions is invaluable for ensuring that architectural drifting and erosion does not take place. The drifting and erosion is prevented by allowing others to understand the rational of why an implementation was created in a specific manor or methodology The process of mapping distinct design concerns/decisions to the location of its implemented is called traceability. In this context traceability is defined as method for connecting distinctive software artifacts. This process allows architectural design models and decisions to be directly connected with its physical implementation. The process of mapping architectural design concerns to a software implementation can be very complex. However, most design decision can be placed in  a few generalized categories. Commonly Mapped Design Decisions Design Rationale Components and Connectors Interfaces Behaviors/Properties Design rational is one of the hardest categories to map directly to an implementation. Typically this rational is mapped or document in code via comments. These comments consist of general design decisions and reasoning because they do not directly refer to a specific part of an application. They typically focus more on the higher level concerns. Components and connectors can directly be mapped to architectural concerns. Typically concerns subdivide an application in to distinct functional areas. These functional areas then can map directly back to their originating concerns.Interfaces can be mapped back to design concerns in one of two ways. Interfaces that pertain to specific function definitions can be directly mapped back to its originating concern(s). However, more complicated interfaces require additional analysis to ensure that the proper mappings are created. Depending on the complexity some Behaviors\Properties can be translated directly into a generic implementation structure that is ready for business logic. In addition, some behaviors can be translated directly in to an actual implementation depending on the complexity and architectural tools used. Mapping design concerns to an implementation is a lot of work to maintain, but is doable. In order to ensure that concerns are mapped correctly and that an implementation correctly reflects its design concerns then one of two standard approaches are usually used. All Changes Come From ArchitectureBy forcing all application changes to come through the architectural model prior to implementation then the existing mappings will be used to locate where in the implementation changes need to occur. Allow Changes From Implementation Or Architecture By allowing changes to come from the implementation and/or the architecture then the other area must be kept in sync. This methodology is more complex compared to the previous approach.  One reason to justify the added complexity for an application is due to the fact that this approach tends to detect and prevent architectural drift and erosion. Additionally, this approach is usually maintained via software because of the complexity. Reference:Taylor, R. N., Medvidovic, N., & Dashofy, E. M. (2009). Software architecture: Foundations, theory, and practice Hoboken, NJ: John Wiley & Sons  

    Read the article

  • Android-Java: Constructing a triangle based on Coordinates on a map and your bearing

    - by Aidan
    Hi Guys, I'm constructing a geolocation based application and I'm trying to figure out a way to make my application realise when a user is facing the direction of the given location (a particular long / lat co-ord). I've got the math figured, I just have the triangle to construct. //UPDATE So I've figured out a good bit of this... Below is a method which takes in a long / lat value and attempts to compute a triangle finding a point 700 meters away and one to its left + right. It'd then use these to construct the triangle. It computes the correct longitude but the latitude ends up somewhere off the coast of east Africa. (I'm in Ireland!). public void drawtri(double currlng,double currlat, double bearing){ bearing = (bearing < 0 ? -bearing : bearing); System.out.println("RUNNING THE DRAW TRIANGLE METHOD!!!!!"); System.out.println("CURRENT LNG" + currlng); System.out.println("CURRENT LAT" + currlat); System.out.println("CURRENT BEARING" + bearing); //Find point X(x,y) double distance = 0.7; //700 meters. double R = 6371.0; //The radius of the earth. //Finding X's y value. Math.toRadians(currlng); Math.toRadians(currlat); Math.toRadians(bearing); distance = distance/R; Global.Alat = Math.asin(Math.sin(currlat)*Math.cos(distance)+ Math.cos(currlat)*Math.sin(distance)*Math.cos(bearing)); System.out.println("CURRENT ALAT!!: " + Global.Alat); //Finding X's x value. Global.Alng = currlng + Math.atan2(Math.sin(bearing)*Math.sin(distance) *Math.cos(currlat), Math.cos(distance)-Math.sin(currlat)*Math.sin(Global.Alat)); Math.toDegrees(Global.Alat); Math.toDegrees(Global.Alng); //Co-ord of Point B(x,y) // Note: Lng = X axis, Lat = Y axis. Global.Blat = Global.Alat+ 00.007931; Global.Blng = Global.Alng; //Co-ord of Point C(x,y) Global.Clat = Global.Alat - 00.007931; Global.Clng = Global.Alng; } From debugging I've determined the problem lies with the computation of the latitude done here.. Global.Alat = Math.asin(Math.sin(currlat)*Math.cos(distance)+ Math.cos(currlat)*Math.sin(distance)*Math.cos(bearing)); I have no idea why though and don't know how to fix it. I got the formula from this site.. http://www.movable-type.co.uk/scripts/latlong.html It appears correct and I've tested multiple things... I've tried converting to Radians then post computations back to degrees, etc. etc. Anyone got any ideas how to fix this method so that it will map the triangle ONLY 700 meters in from my current location in the direction that I am facing? Thanks, EDIT/// Converting the outcome to radians gives me a lat of 5.6xxxxxxxxxxxxxx .I have a feeling this bug has something to do with conversions but its not THAT simple. The equation is correct, it just.. outputs wrong..

    Read the article

  • Rendering a WPF Network Map/Graph layout - Manual? PathListBox? Something Else?

    - by Ben Von Handorf
    I'm writing code to present the user with a simplified network map. At any given time, the map is focused on a specific item... say a router or a server. Based on the focused item, other network entities are grouped into sets (i.e. subnets or domains) and then rendered around the focused item. Lines would represent connections and groups would be visually grouped inside a rectangle or ellipse. Panning and zooming are required features. An item can be selected to display more information in a "properties" style window. An item could also be double-clicked to re-focus the entire network map on that item. At that point, the entire map would be re-calculated. I am using MVVM without any framework, as of yet. Assume the logic for grouping items and determining what should be shown or not is all in place. I'm looking for the best way to approach the UI layout. So far, I'm aware of the following options: Use a canvas for layout (inside a ScrollViewer to handle the panning). Have my ViewModel make use of a Layout Manager type of class, which would handle assigning all the layout properties (Top, Left, etc.). Bind my set of display items to an ItemsControl and use Data Templates to handle the actual rendering. The drawbacks with this approach: Highly manual layout on my part. Lots of calculation. I have to handle item selection manually. Computation of connecting lines is manual. The Pros of this approach: I can draw additional lines between child subnets as appropriate (manually). Additional LayoutManagers could be added later to render the display differently. This could probably be wrapped up into some sort of a GraphLayout control to be re-used. Present the focused item at the center of the display and then use a PathListBox for layout of the additional items. Have my ViewModel expose a simple list of things to be drawn and bind them to the PathListBox. Override the ListBoxItem Template to also create a line geometry from the borders of the focused item (tricky) to the bound item. Use DataTemplates to handle the case where the item being bound is a subnet, in which case we would use another PathListBox in the template to display items inside the subnet. The drawbacks with this approach: Selected Item synchronization across multiple `PathListBox`es. Only one item on the whole graph can be selected at a time, but each child PathListBox maintains its own selection. Also, subnets cannot be selected, but would be selectable without additional work. Drawing the connecting lines is going to be a bit of trickery in the ListBoxItem template, since I need to know the correct side of the focused item to connect to. The pros of this approach: I get to stay out of the layout business, more. I'm looking for any advice or thoughts from others who have encountered similar issues or who have more WPF experience than I. I'm using WPF 4, so any new tricks are legal and encouraged.

    Read the article

  • Java: micro-optimizing array manipulation

    - by Martin Wiboe
    Hello all, I am trying to make a Java port of a simple feed-forward neural network. This obviously involves lots of numeric calculations, so I am trying to optimize my central loop as much as possible. The results should be correct within the limits of the float data type. My current code looks as follows (error handling & initialization removed): /** * Simple implementation of a feedforward neural network. The network supports * including a bias neuron with a constant output of 1.0 and weighted synapses * to hidden and output layers. * * @author Martin Wiboe */ public class FeedForwardNetwork { private final int outputNeurons; // No of neurons in output layer private final int inputNeurons; // No of neurons in input layer private int largestLayerNeurons; // No of neurons in largest layer private final int numberLayers; // No of layers private final int[] neuronCounts; // Neuron count in each layer, 0 is input // layer. private final float[][][] fWeights; // Weights between neurons. // fWeight[fromLayer][fromNeuron][toNeuron] // is the weight from fromNeuron in // fromLayer to toNeuron in layer // fromLayer+1. private float[][] neuronOutput; // Temporary storage of output from previous layer public float[] compute(float[] input) { // Copy input values to input layer output for (int i = 0; i < inputNeurons; i++) { neuronOutput[0][i] = input[i]; } // Loop through layers for (int layer = 1; layer < numberLayers; layer++) { // Loop over neurons in the layer and determine weighted input sum for (int neuron = 0; neuron < neuronCounts[layer]; neuron++) { // Bias neuron is the last neuron in the previous layer int biasNeuron = neuronCounts[layer - 1]; // Get weighted input from bias neuron - output is always 1.0 float activation = 1.0F * fWeights[layer - 1][biasNeuron][neuron]; // Get weighted inputs from rest of neurons in previous layer for (int inputNeuron = 0; inputNeuron < biasNeuron; inputNeuron++) { activation += neuronOutput[layer-1][inputNeuron] * fWeights[layer - 1][inputNeuron][neuron]; } // Store neuron output for next round of computation neuronOutput[layer][neuron] = sigmoid(activation); } } // Return output from network = output from last layer float[] result = new float[outputNeurons]; for (int i = 0; i < outputNeurons; i++) result[i] = neuronOutput[numberLayers - 1][i]; return result; } private final static float sigmoid(final float input) { return (float) (1.0F / (1.0F + Math.exp(-1.0F * input))); } } I am running the JVM with the -server option, and as of now my code is between 25% and 50% slower than similar C code. What can I do to improve this situation? Thank you, Martin Wiboe

    Read the article

  • Matlab: Optimization by perturbing variable

    - by S_H
    My main script contains following code: %# Grid and model parameters nModel=50; nModel_want=1; nI_grid1=5; Nth=1; nRow.Scale1=5; nCol.Scale1=5; nRow.Scale2=5^2; nCol.Scale2=5^2; theta = 90; % degrees a_minor = 2; % range along minor direction a_major = 5; % range along major direction sill = var(reshape(Deff_matrix_NthModel,nCell.Scale1,1)); % variance of the coarse data matrix of size nRow.Scale1 X nCol.Scale1 %# Covariance computation % Scale 1 for ihRow = 1:nRow.Scale1 for ihCol = 1:nCol.Scale1 [cov.Scale1(ihRow,ihCol),heff.Scale1(ihRow,ihCol)] = general_CovModel(theta, ihCol, ihRow, a_minor, a_major, sill, 'Exp'); end end % Scale 2 for ihRow = 1:nRow.Scale2 for ihCol = 1:nCol.Scale2 [cov.Scale2(ihRow,ihCol),heff.Scale2(ihRow,ihCol)] = general_CovModel(theta, ihCol/(nCol.Scale2/nCol.Scale1), ihRow/(nRow.Scale2/nRow.Scale1), a_minor, a_major, sill/(nRow.Scale2*nCol.Scale2), 'Exp'); end end %# Scale-up of fine scale values by averaging [covAvg.Scale2,var_covAvg.Scale2,varNorm_covAvg.Scale2] = general_AverageProperty(nRow.Scale2/nRow.Scale1,nCol.Scale2/nCol.Scale1,1,nRow.Scale1,nCol.Scale1,1,cov.Scale2,1); I am using two functions, general_CovModel() and general_AverageProperty(), in my main script which are given as following: function [cov,h_eff] = general_CovModel(theta, hx, hy, a_minor, a_major, sill, mod_type) % mod_type should be in strings angle_rad = theta*(pi/180); % theta in degrees, angle_rad in radians R_theta = [sin(angle_rad) cos(angle_rad); -cos(angle_rad) sin(angle_rad)]; h = [hx; hy]; lambda = a_minor/a_major; D_lambda = [lambda 0; 0 1]; h_2prime = D_lambda*R_theta*h; h_eff = sqrt((h_2prime(1)^2)+(h_2prime(2)^2)); if strcmp(mod_type,'Sph')==1 || strcmp(mod_type,'sph') ==1 if h_eff<=a cov = sill - sill.*(1.5*(h_eff/a_minor)-0.5*((h_eff/a_minor)^3)); else cov = sill; end elseif strcmp(mod_type,'Exp')==1 || strcmp(mod_type,'exp') ==1 cov = sill-(sill.*(1-exp(-(3*h_eff)/a_minor))); elseif strcmp(mod_type,'Gauss')==1 || strcmp(mod_type,'gauss') ==1 cov = sill-(sill.*(1-exp(-((3*h_eff)^2/(a_minor^2))))); end and function [PropertyAvg,variance_PropertyAvg,NormVariance_PropertyAvg]=... general_AverageProperty(blocksize_row,blocksize_col,blocksize_t,... nUpscaledRow,nUpscaledCol,nUpscaledT,PropertyArray,omega) % This function computes average of a property and variance of that averaged % property using power averaging PropertyAvg=zeros(nUpscaledRow,nUpscaledCol,nUpscaledT); %# Average of property for k=1:nUpscaledT, for j=1:nUpscaledCol, for i=1:nUpscaledRow, sum=0; for a=1:blocksize_row, for b=1:blocksize_col, for c=1:blocksize_t, sum=sum+(PropertyArray((i-1)*blocksize_row+a,(j-1)*blocksize_col+b,(k-1)*blocksize_t+c).^omega); % add all the property values in 'blocksize_x','blocksize_y','blocksize_t' to one variable end end end PropertyAvg(i,j,k)=(sum/(blocksize_row*blocksize_col*blocksize_t)).^(1/omega); % take average of the summed property end end end %# Variance of averageed property variance_PropertyAvg=var(reshape(PropertyAvg,... nUpscaledRow*nUpscaledCol*nUpscaledT,1),1,1); %# Normalized variance of averageed property NormVariance_PropertyAvg=variance_PropertyAvg./(var(reshape(... PropertyArray,numel(PropertyArray),1),1,1)); Question: Using Matlab, I would like to optimize covAvg.Scale2 such that it matches closely with cov.Scale1 by perturbing/varying any (or all) of the following variables 1) a_minor 2) a_major 3) theta Thanks.

    Read the article

  • Tiered Design With Analytical Widgets - Is This Code Smell?

    - by Repo Man
    The idea I'm playing with right now is having a multi-leveled "tier" system of analytical objects which perform a certain computation on a common object and then create a new set of analytical objects depending on their outcome. The newly created analytical objects will then get their own turn to run and optionally create more analytical objects, and so on and so on. The point being that the child analytical objects will always execute after the objects that created them, which is relatively important. The whole apparatus will be called by a single thread so I'm not concerned with thread safety at the moment. As long as a certain base condition is met, I don't see this being an unstable design but I'm still a little bit queasy about it. Is this some serious code smell or should I go ahead and implement it this way? Is there a better way? Here is a sample implementation: namespace WidgetTier { public class Widget { private string _name; public string Name { get { return _name; } } private TierManager _tm; private static readonly Random random = new Random(); static Widget() { } public Widget(string name, TierManager tm) { _name = name; _tm = tm; } public void DoMyThing() { if (random.Next(1000) > 1) { _tm.Add(); } } } //NOT thread-safe! public class TierManager { private Dictionary<int, List<Widget>> _tiers; private int _tierCount = 0; private int _currentTier = -1; private int _childCount = 0; public TierManager() { _tiers = new Dictionary<int, List<Widget>>(); } public void Add() { if (_currentTier + 1 >= _tierCount) { _tierCount++; _tiers.Add(_currentTier + 1, new List<Widget>()); } _tiers[_currentTier + 1].Add(new Widget(string.Format("({0})", _childCount), this)); _childCount++; } //Dangerous? public void Sweep() { _currentTier = 0; while (_currentTier < _tierCount) //_tierCount will start at 1 but keep increasing because child objects will keep adding more tiers. { foreach (Widget w in _tiers[_currentTier]) { w.DoMyThing(); } _currentTier++; } } public void PrintAll() { for (int t = 0; t < _tierCount; t++) { Console.Write("Tier #{0}: ", t); foreach (Widget w in _tiers[t]) { Console.Write(w.Name + " "); } Console.WriteLine(); } } } class Program { static void Main(string[] args) { TierManager tm = new TierManager(); for (int c = 0; c < 10; c++) { tm.Add(); //create base widgets; } tm.Sweep(); tm.PrintAll(); Console.ReadLine(); } } }

    Read the article

  • Code Golf: Finite-state machine!

    - by Adam Matan
    Finite state machine A deterministic finite state machine is a simple computation model, widely used as an introduction to automata theory in basic CS courses. It is a simple model, equivalent to regular expression, which determines of a certain input string is Accepted or Rejected. Leaving some formalities aside, A run of a finite state machine is composed of: alphabet, a set of characters. states, usually visualized as circles. One of the states must be the start state. Some of the states might be accepting, usually visualized as double circles. transitions, usually visualized as directed arches between states, are directed links between states associated with an alphabet letter. input string, a list of alphabet characters. A run on the machine begins at the starting state. Each letter of the input string is read; If there is a transition between the current state and another state which corresponds to the letter, the current state is changed to the new state. After the last letter was read, if the current state is an accepting state, the input string is accepted. If the last state was not an accepting state, or a letter had no corresponding arch from a state during the run, the input string is rejected. Note: This short descruption is far from being a full, formal definition of a FSM; Wikipedia's fine article is a great introduction to the subject. Example For example, the following machine tells if a binary number, read from left to right, has an even number of 0s: The alphabet is the set {0,1}. The states are S1 and S2. The transitions are (S1, 0) -> S2, (S1, 1) -> S1, (S2, 0) -> S1 and (S2, 1) -> S2. The input string is any binary number, including an empty string. The rules: Implement a FSM in a language of your choice. Input The FSM should accept the following input: <States> List of state, separated by space mark. The first state in the list is the start state. Accepting states begin with a capital letter. <transitions> One or more lines. Each line is a three-tuple: origin state, letter, destination state) <input word> Zero or more characters, followed by a newline. For example, the aforementioned machine with 1001010 as an input string, would be written as: S1 s2 S1 0 s2 S1 1 S1 s2 0 S1 s2 1 s2 1001010 Output The FSM's run, written as <State> <letter> -> <state>, followed by the final state. The output for the example input would be: S1 1 -> S1 S1 0 -> s2 s2 0 -> S1 S1 1 -> S1 S1 0 -> s2 s2 1 -> s2 s2 0 -> S1 ACCEPT For the empty input '': S1 ACCEPT For 101: S1 1 -> S1 S1 0 -> s2 s2 1 -> s2 REJECT For '10X': S1 1 -> S1 S1 0 -> s2 s2 X REJECT Prize A nice bounty will be given to the most elegant and short solution. Reference implementation A reference Python implementation will be published soon.

    Read the article

  • How can I make this Java code run faster?

    - by Martin Wiboe
    Hello all, I am trying to make a Java port of a simple feed-forward neural network. This obviously involves lots of numeric calculations, so I am trying to optimize my central loop as much as possible. The results should be correct within the limits of the float data type. My current code looks as follows (error handling & initialization removed): /** * Simple implementation of a feedforward neural network. The network supports * including a bias neuron with a constant output of 1.0 and weighted synapses * to hidden and output layers. * * @author Martin Wiboe */ public class FeedForwardNetwork { private final int outputNeurons; // No of neurons in output layer private final int inputNeurons; // No of neurons in input layer private int largestLayerNeurons; // No of neurons in largest layer private final int numberLayers; // No of layers private final int[] neuronCounts; // Neuron count in each layer, 0 is input // layer. private final float[][][] fWeights; // Weights between neurons. // fWeight[fromLayer][fromNeuron][toNeuron] // is the weight from fromNeuron in // fromLayer to toNeuron in layer // fromLayer+1. private float[][] neuronOutput; // Temporary storage of output from previous layer public float[] compute(float[] input) { // Copy input values to input layer output for (int i = 0; i < inputNeurons; i++) { neuronOutput[0][i] = input[i]; } // Loop through layers for (int layer = 1; layer < numberLayers; layer++) { // Loop over neurons in the layer and determine weighted input sum for (int neuron = 0; neuron < neuronCounts[layer]; neuron++) { // Bias neuron is the last neuron in the previous layer int biasNeuron = neuronCounts[layer - 1]; // Get weighted input from bias neuron - output is always 1.0 float activation = 1.0F * fWeights[layer - 1][biasNeuron][neuron]; // Get weighted inputs from rest of neurons in previous layer for (int inputNeuron = 0; inputNeuron < biasNeuron; inputNeuron++) { activation += neuronOutput[layer-1][inputNeuron] * fWeights[layer - 1][inputNeuron][neuron]; } // Store neuron output for next round of computation neuronOutput[layer][neuron] = sigmoid(activation); } } // Return output from network = output from last layer float[] result = new float[outputNeurons]; for (int i = 0; i < outputNeurons; i++) result[i] = neuronOutput[numberLayers - 1][i]; return result; } private final static float sigmoid(final float input) { return (float) (1.0F / (1.0F + Math.exp(-1.0F * input))); } } I am running the JVM with the -server option, and as of now my code is between 25% and 50% slower than similar C code. What can I do to improve this situation? Thank you, Martin Wiboe

    Read the article

  • Odd C++ template behaviour with static member vars

    - by jon hanson
    This piece of code is supposed to calculate an approximation to e (i.e. the mathematical constant ~ 2.71828183) at compile-time, using the following approach; e1 = 2 / 1 e2 = (2 * 2 + 1) / (2 * 1) = 5 / 2 = 2.5 e3 = (3 * 5 + 1) / (3 * 2) = 16 / 6 ~ 2.67 e4 = (4 * 16 + 1) / (4 * 6) = 65 / 24 ~ 2.708 ... e(i) = (e(i-1).numer * i + 1) / (e(i-1).denom * i) The computation is returned via the result static member however, after 2 iterations it yields zero instead of the expected value. I've added a static member function f() to compute the same value and that doesn't exhibit the same problem. #include <iostream> #include <iomanip> // Recursive case. template<int ITERS, int NUMERATOR = 2, int DENOMINATOR = 1, int I = 2> struct CalcE { static const double result; static double f () {return CalcE<ITERS, NUMERATOR * I + 1, DENOMINATOR * I, I + 1>::f ();} }; template<int ITERS, int NUMERATOR, int DENOMINATOR, int I> const double CalcE<ITERS, NUMERATOR, DENOMINATOR, I>::result = CalcE<ITERS, NUMERATOR * I + 1, DENOMINATOR * I, I + 1>::result; // Base case. template<int ITERS, int NUMERATOR, int DENOMINATOR> struct CalcE<ITERS, NUMERATOR, DENOMINATOR, ITERS> { static const double result; static double f () {return result;} }; template<int ITERS, int NUMERATOR, int DENOMINATOR> const double CalcE<ITERS, NUMERATOR, DENOMINATOR, ITERS>::result = static_cast<double>(NUMERATOR) / DENOMINATOR; // Test it. int main (int argc, char* argv[]) { std::cout << std::setprecision (8); std::cout << "e2 ~ " << CalcE<2>::result << std::endl; std::cout << "e3 ~ " << CalcE<3>::result << std::endl; std::cout << "e4 ~ " << CalcE<4>::result << std::endl; std::cout << "e5 ~ " << CalcE<5>::result << std::endl; std::cout << std::endl; std::cout << "e2 ~ " << CalcE<2>::f () << std::endl; std::cout << "e3 ~ " << CalcE<3>::f () << std::endl; std::cout << "e4 ~ " << CalcE<4>::f () << std::endl; std::cout << "e5 ~ " << CalcE<5>::f () << std::endl; return 0; } I've tested this with VS 2008 and VS 2010, and get the same results in each case: e2 ~ 2 e3 ~ 2.5 e4 ~ 0 e5 ~ 0 e2 ~ 2 e3 ~ 2.5 e4 ~ 2.6666667 e5 ~ 2.7083333 Why does result not yield the expected values whereas f() does? According to Rotsor's comment below, this does work with GCC, so I guess the question is, am i relying on some type of undefined behaviour with regards to static initialisation order, or is this a bug with Visual Studio?

    Read the article

< Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >