Search Results

Search found 16604 results on 665 pages for 'jd long'.

Page 64/665 | < Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >

  • Alternatives for heapdumps creation with higher performance than jmap?

    - by Christian
    Hi, I have to create heapdumps, which works nice with jmap. My problem is, that jmap takes very long to create the heapdump file. Especially when the heap is getting bigger ( 1GB) it is taking too long. One situation as example: When the server gets into trouble with the heapspace, I want to restart it automatically and create a heapdump before the restart. This works, but takes too long to write the heapdump. This way the server is down for too long. The heapdump creation takes longer than one hour. I know about -XX:+HeapDumpOnOutOfMemoryError, but most of the time I can find the memory problem before the exception is thrown by the jvm. Is there an alternative to jmap which writes the heapdumps faster? A special solution for the example above would also be appreciated. This question is a mix between programming and system-administration, but I think I'm at the right place here.

    Read the article

  • Debugging a Drobo that chokes Windows 7x64 When Plugged In

    - by Pridkett
    I've had a love hate relationship with my Drobo for a long time. After two years of using it on a Linux box, I moved it over to a Windows 7 machine where it seemed to work just fine for a long time, but it was under very light usage. Mainly backups that never actually happened. Recently I began using it for additional backup services (through CrashPlan, which is great). This means the Drobo gets a lot more usage. Also it means that something interesting happens, the Drobo can choke my system on startup. Here's what I mean: Start computer without Drobo plugged in, CrashPlan and Drobo Dashboard services disabled: 105s Start computer with Drobo plugged in Crashplan disabled, Drobo Dashboard enabled: 250s (and 1 cpu at 100% for a very long time, drobo churning) Start computer with Drobo plugged in, CrashPlan and Drobo Dashboard disabled: 250s (1 cpu at 100% for a very long time, drobo churning) Start computer with Drobo plugged in, Crashplan and Drobo Dashboard enabled: 300s (1 cpu at 100% for a very long time, drobo churning) If I yank the USB plug on the Drobo the CPU usage goes down to nothing very quickly. The slow startup in the fourth scenario is because CrashPlan is trying desperately to load stuff up on the H: drive before it gives up, so I've disabled it for the time being. So here's my question: What the heck is going on when I plug the drobo in? I've fired up Process Explorer and see that the System process is hogging the CPU, specifically it's an ntoskrnl.exe/KdPollBreakIn thread that's going ape. Is this something that's wrong with Drobo? Windows? Any idea on how to find out? If it matters, here's tech info: Athlon 64x2 4400, 2GB RAM, Win7 Ultimate, Drobo USB (2x1TB, 2x320GB)

    Read the article

  • Understanding branching strategy/workflow correctly

    - by burnersk
    I'm using svn without branches (trunk-only) for a very long time at my workplace. I had discovered most or all of the issues related to projects which do not have any branching strategy. Unlikely this is not going to change at my workplace but for my private projects. For my private projects which most includes coworkers and working together at the same time on different features I like to have an robust branching strategy with supports long-term releases powered by git. I find out that the Atlassian Toolchain (JIRA, Stash and Bamboo) helped me most and it also recommending me an branching strategy which I like to verify for the team needs. The branching strategy was taken directly from Atlassian Stash recommendation with a small modification to the hotfix branch tree. All hotfixes should also merged into mainline. The branching strategy in words mainline (also known as master with git or trunk with svn) contains the "state of the art" developing release. Everything here was successfully checked with various automated tests (through Bamboo) and looks like everything is working. It is not proven as working because of possible missing tests. It is ready to use but not recommended for production. feature covers all new features which are not completely finished. Once a feature is finished it will be merged into mainline. Sample branch: feature/ISSUE-2-A-nice-Feature bugfix fixes non-critical bugs which can wait for the next normal release. Sample branch: bugfix/ISSUE-1-Some-typos production owns the latest release. hotfix fixes critical bugs which have to be release urgent to mainline, production and all affected long-term *release*es. Sample branch: hotfix/ISSUE-3-Check-your-math release is for long-term maintenance. Sample branches: release/1.0, release/1.1 release/1.0-rc1 I am not an expert so please provide me feedback. Which problems might appear? Which parts are missing or slowing down the productivity?

    Read the article

  • exporting clip in Final Cut Pro X or related video editing software on Mac

    - by user46976
    I'm using Final Cut Pro X to edit a 1 hour long video. I made individual clips from it in Final Cut Pro X and I want to save just these clips, some of which are only 5 mins long. How can I do this? I tried using the app ClipExporter, but it won't even read my .fcpxml file, it just says that it's not a valid file and gives no helpful information at all. Another method I tried was to assign roles to each clip. I made one clip, 5 mins long, and then used Share - Export in Final Cut Pro X and chose the option to export roles as separate files. However, the export still estimates that it will take over an hour to export and so it looks like it's trying to export the whole movie, rather than the simple 5 min clip which should be exportable as a .MOV or related formats in a few minutes. How can I do this in final cut pro x? I'm also happy to switch to related video editing software as long as they are not extremely expensive. This seems like a very trivial and obvious feature: take a segment from a long movie and export just the selected region of it... I don't understand why it's so complicated to do in Final Cut Pro X. Thanks.

    Read the article

  • Multiline code in Word 2007

    - by WaelJ
    I am using word 2007 and am inserting code into the document. I have a style with a fixed-width font and light grey background and all, and I use Notepad++ for syntax highlighting. My problem is with a "line" of code that is too long to display, so is there a way to auto-insert an arrow symbol at the beginning of a such lines to indicate that it is the same line (kind of like hyphenating, except on long lines instead of long words) So for e.g. something like this: public static void foo(String abcdefg, Boolean 123, ?String xyz)

    Read the article

  • How to subtract 1 from a orginal count in an ASP.NET gridview

    - by SAMIR BHOGAYTA
    I have a gridview that contains a count (whic is Quantity) were i have a button that adds a row under the orginal row and i need the sub row's count (Quantity) to subtract one from the orgianl row Quantity. EX: Before button click Orgianl row = 3 After click Orginal row = 2 Subrow = 1 Code: ASP.NET // FUNCTION : Adds a new subrow protected void gvParent_RowCommand(object sender, GridViewCommandEventArgs e) { if (e.CommandName.Equals("btn_AddRow", StringComparison.OrdinalIgnoreCase)) { // Get the row that was clicked (index 0. Meaning that 0 is 1, 1 is 2 and so on) // Objects can be null, Int32s cannot not. // Int16 = 2 bytes long (short) // Int32 = 4 bytes long (int) // Int64 = 8 bytes long (long) int i = Convert.ToInt32(e.CommandArgument); // create a DataTable based off the view state DataTable dataTable = (DataTable)ViewState["gvParent"]; for (int part = 0; part 1) { dataTable.Rows[part]["Quantity"] = oldQuantitySubtract - 1; // Instert a new row at a specific index DataRow dtAdd = dataTable.NewRow(); for (int k = 0; k dtAdd[k] = dataTable.Rows[part][k]; dataTable.Rows.InsertAt(dtAdd, i + 1); break; //dataTable.Rows.Add(dtAdd); } } // Rebind the data gvParent.DataSource = dataTable; gvParent.DataBind(); } }

    Read the article

  • What is the ideal length of a method?

    - by iPhoneDeveloper
    In object-oriented programming, there is no exact rule on the maximum length of a method , but I still found these two qutes somewhat contradicting each other, so I would like to hear what you think. In Clean Code: A Handbook of Agile Software Craftsmanship, Robert Martin says: The first rule of functions is that they should be small. The second rule of functions is that they should be smaller than that. Functions should not be 100 lines long. Functions should hardly ever be 20 lines long. and he gives an example from Java code he sees from Kent Beck: Every function in his program was just two, or three, or four lines long. Each was transparently obvious. Each told a story. And each led you to the next in a compelling order. That’s how short your functions should be! This sounds great, but on the other hand, in Code Complete, Steve McConnell says something very different: The routine should be allowed to grow organically up to 100-200 lines, decades of evidence say that routines of such length no more error prone then shorter routines. And he gives a reference to a study that says routines 65 lines or long are cheaper to develop. So while there are diverging opinions about the matter, is there a functional best-practice towards determining the ideal length of a method for you?

    Read the article

  • Why would accessing photos over a network be a problem for Digikam?

    - by Shedeki
    Digikam has always worked nicely for me. I recently setup a Synology DiskStation (DS212+) and moved all my pictures to it, keeping them in an encrypted folder. I mount that folder using cifs, as some bug prevents eCryptfs and NFS from working together. This has led Digikam to being incredibly slow. Startup takes a very long time (several minutes for 41779 items, 123.8GB) but worse is how long it takes Digikam to write files. I like using Digikams import feature to copy new images from my camera to the hard drive because it checks for duplicates as well as creating a clear folder structure according to the dates the images were taken. Since I moved to using the network drive Digikam takes about 5 to 10 times as long to import photos than it did before. Saving modified or converted images takes equally long. What I am looking for is a way to help Digikam speed things up or an alternative piece of software (I have never liked Digikam being so very much KDEish…). There are just so many features that only Digikam seems to combine, e.g.: Batch processing. Respects existing folder structure. Does not mess up files for other applications. *.NEF support. Caches thumbnails in a clean way.

    Read the article

  • Pause and Resume and get the value of a countdown timer by savedInstanceState [closed]

    - by Catherine grace Balauro
    I have developed a countdown timer and I am not sure how to pause and resume the timer as the TextView for the timer is being clicked. Click to start then click again to pause and to resume, click again the timer's text view. This is my code: Timer = (TextView)this.findViewById(R.id.time); //TIMER Timer.setOnClickListener(TimerClickListener); counter = new MyCount(600000, 1000); }//end of create private OnClickListener TimerClickListener = new OnClickListener() { public void onClick(View v) { updateTimeTask(); } private void updateTimeTask() { if (decision==0){ counter.start(); decision=1;} else if(decision==2){ counter.onResume1(); decision=1; } else{ counter.onPause1(); decision=2; }//end if }; }; class MyCount extends CountDownTimer { public MyCount(long millisInFuture, long countDownInterval) { super(millisInFuture, countDownInterval); }//MyCount public void onResume1(){ onResume(); } public void onPause1() { onPause();} public void onFinish() { Timer.setText("00:00"); p1++; if (p1<=4){ TextView PScore = (TextView) findViewById(R.id.pscore); PScore.setText(p1 + ""); }//end if }//finish public void onTick(long millisUntilFinished) { Integer milisec = new Integer(new Double(millisUntilFinished).intValue()); Integer cd_secs = milisec / 1000; Integer minutes = (cd_secs % 3600) / 60; Integer seconds = (cd_secs % 3600) % 60; Timer.setText(String.format("%02d", minutes) + ":" + String.format("%02d", seconds)); //long timeLeft = millisUntilFinished / 1000; }//on tick }//class MyCount protected void onResume() { super.onResume(); //handler.removeCallbacks(updateTimeTask); //handler.postDelayed(updateTimeTask, 1000); }//onResume @Override protected void onPause() { super.onPause(); //do stuff }//onPause I am only beginner in android programming and I don't know how to get the value of the countdown timer using savedInstanceState. How do I do this?

    Read the article

  • Java enum pairs / "subenum" or what exactly?

    - by vemalsar
    I have an RPG-style Item class and I stored the type of the item in enum (itemType.sword). I want to store subtype too (itemSubtype.long), but I want to express the relation between two data type (sword can be long, short etc. but shield can't be long or short, only round, tower etc). I know this is wrong source code but similar what I want: enum type { sword; } //not valid code! enum swordSubtype extends type.sword { short, long } Question: How can I define this connection between two data type (or more exactly: two value of the data types), what is the most simple and standard way? Array-like data with all valid (itemType,itemSubtype) enum pairs or (itemType,itemSubtype[]) so more subtype for one type, it would be the best. OK but how can I construct this simplest way? Special enum with "subenum" set or second level enum or anything else if it does exists 2 dimensional "canBePairs" array, itemType and itemSubtype dimensions with all type and subtype and boolean elements, "true" means itemType (first dimension) and itemSubtype (second dimension) are okay, "false" means not okay Other better idea Thank you very much!

    Read the article

  • Need to pull data from website after every 5 seconds using Vba

    - by Milton
    I need to pull data from www.dsebd.org after ever 5 seconds. this Vba code pull data but does not run automatically. Please help me. Sub ButtonCode() ' execute macros Call GetCotton ' submit macro to run again in 5 sec Application.OnTime Now + TimeValue("00:00:05"), "ButtonCode" End Sub Sub GetCotton() Dim xml As Object Dim html As Object Dim elemcollection As Object Dim result As String Dim t As Long, r As Long, c As Long, ActRw As Long Set xml = CreateObject("MSXML2.XMLHTTP.6.0") With xml .Open "GET", "http://www.dsebd.org/dseX_share.php", False .send End With result = xml.responseText Set html = CreateObject("htmlfile") html.body.innerHTML = result Set elemcollection = html.getElementsByTagName("table") For t = 0 To elemcollection.Length - 1 For r = 0 To elemcollection(t).Rows.Length - 1 For c = 0 To elemcollection(t).Rows(r).Cells.Length - 1 ThisWorkbook.Sheets("Sheet1").Cells(ActRw + r + 1, c + 1) = elemcollection(t).Rows(r).Cells(c).innerText Next c Next r ActRw = ActRw + elemcollection(t).Rows.Length + 1 Next t End Sub

    Read the article

  • How to convert M4B files to MP3?

    - by Click Upvote
    I have downloaded some .m4b files, but my mp3 player cannot play them. I have tried several converters i found through google, but they can't seem to be able to convert the whole files. (Its an 8 hour long file, first program only converted it to a 1 hour long mp3, and the 2nd converted it to 5 hrs long, but with 3 hrs still missing). Is there a reliable program for converting them that i can use?

    Read the article

  • Google maps later traffic

    - by bobobobo
    Google maps has this feature of showing you how long it will take to get somewhere based on current traffic. But what about history, or asking for a prediction of how long it will take to get somewhere, during rush hour, for example? So, how long will it take to get there on this route if I leave at 5, vs how long it will take if I leave at 3. (A difference of 30 minutes on the road sometimes!) If google maps doesn't provide this service, iis there anywhere that does?

    Read the article

  • How to jump back to the first character in *nix command line?

    - by clami219
    When writing a long command in the *nix command line and having to go back to the first character, in order to add something at the beginning (for instance a nohup, when you realize the process will be a long one, or a sudo, when you realize you need root permissions) it can take a long time for the cursor to make its way back to the first character... Is there a short cut that allows you to jump straight there? I'm using a mac, so Home is not an option

    Read the article

  • The best cross platform (portable) arbitrary precision math library

    - by Siu Ching Pong - Asuka Kenji
    Dear ninjas / hackers / wizards, I'm looking for a good arbitrary precision math library in C or C++. Could you please give me some advices / suggestions? The primary requirements: It MUST handle arbitrarily big integers (my primary interest is on integers). In case that you don't know what the word arbitrarily big means, imagine something like 100000! (the factorial of 100000). The precision MUST NOT NEED to be specified during library initialization / object creation. The precision should ONLY be constrained by the available resources of the system. It SHOULD utilize the full power of the platform, and should handle "small" numbers natively. That means on a 64-bit platform, calculating 2^33 + 2^32 should use the available 64-bit CPU instructions. The library SHOULD NOT calculate this in the same way as it does with 2^66 + 2^65 on the same platform. It MUST handle addition (+), subtraction (-), multiplication (*), integer division (/), remainder (%), power (**), increment (++), decrement (--), gcd(), factorial(), and other common integer arithmetic calculations efficiently. Ability to handle functions like sqrt() (square root), log() (logarithm) that do not produce integer results is a plus. Ability to handle symbolic computations is even better. Here are what I found so far: Java's BigInteger and BigDecimal class: I have been using these so far. I have read the source code, but I don't understand the math underneath. It may be based on theories / algorithms that I have never learnt. The built-in integer type or in core libraries of bc / Python / Ruby / Haskell / Lisp / Erlang / OCaml / PHP / some other languages: I have ever used some of these, but I have no idea on which library they are using, or which kind of implementation they are using. What I have already known: Using a char as a decimal digit, and a char* as a decimal string and do calculations on the digits using a for-loop. Using an int (or a long int, or a long long) as a basic "unit" and an array of it as an arbitrary long integer, and do calculations on the elements using a for-loop. Booth's multiplication algorithm What I don't know: Printing the binary array mentioned above in decimal without using naive methods. Example of a naive method: (1) add the bits from the lowest to the highest: 1, 2, 4, 8, 16, 32, ... (2) use a char* string mentioned above to store the intermediate decimal results). What I appreciate: Good comparisons on GMP, MPFR, decNumber (or other libraries that are good in your opinion). Good suggestions on books / articles that I should read. For example, an illustration with figures on how a un-naive arbitrarily long binary to decimal conversion algorithm works is good. Any help. Please DO NOT answer this question if: you think using a double (or a long double, or a long long double) can solve this problem easily. If you do think so, it means that you don't understand the issue under discussion. you have no experience on arbitrary precision mathematics. Thank you in advance! Asuka Kenji

    Read the article

  • Picking good first estimates for Goldschmidt division

    - by Mads Elvheim
    I'm calculating fixedpoint reciprocals in Q22.10 with Goldschmidt division for use in my software rasterizer on ARM. This is done by just setting the nominator to 1, i.e the nominator becomes the scalar on the first iteration. To be honest, I'm kind of following the wikipedia algorithm blindly here. The article says that if the denominator is scaled in the half-open range (0.5, 1.0], a good first estimate can be based on the denominator alone: Let F be the estimated scalar and D be the denominator, then F = 2 - D. But when doing this, I lose a lot of precision. Say if I want to find the reciprocal of 512.00002f. In order to scale the number down, I lose 10 bits of precision in the fraction part, which is shifted out. So, my questions are: Is there a way to pick a better estimate which does not require normalization? Also, is it possible to pre-calculate the first estimates so the series converges faster? Right now, it converges after the 4th iteration on average. On ARM this is about ~50 cycles worst case, and that's not taking emulation of clz/bsr into account, nor memory lookups. Here is my testcase. Note: The software implementation of clz on line 13 is from my post here. You can replace it with an intrinsic if you want. #include <stdio.h> #include <stdint.h> const unsigned int BASE = 22ULL; static unsigned int divfp(unsigned int val, int* iter) { /* Nominator, denominator, estimate scalar and previous denominator */ unsigned long long N,D,F, DPREV; int bitpos; *iter = 1; D = val; /* Get the shift amount + is right-shift, - is left-shift. */ bitpos = 31 - clz(val) - BASE; /* Normalize into the half-range (0.5, 1.0] */ if(0 < bitpos) D >>= bitpos; else D <<= (-bitpos); /* (FNi / FDi) == (FN(i+1) / FD(i+1)) */ /* F = 2 - D */ F = (2ULL<<BASE) - D; /* N = F for the first iteration, because the nominator is simply 1. So don't waste a 64-bit UMULL on a multiply with 1 */ N = F; D = ((unsigned long long)D*F)>>BASE; while(1){ DPREV = D; F = (2<<(BASE)) - D; D = ((unsigned long long)D*F)>>BASE; /* Bail when we get the same value for two denominators in a row. This means that the error is too small to make any further progress. */ if(D == DPREV) break; N = ((unsigned long long)N*F)>>BASE; *iter = *iter + 1; } if(0 < bitpos) N >>= bitpos; else N <<= (-bitpos); return N; } int main(int argc, char* argv[]) { double fv, fa; int iter; unsigned int D, result; sscanf(argv[1], "%lf", &fv); D = fv*(double)(1<<BASE); result = divfp(D, &iter); fa = (double)result / (double)(1UL << BASE); printf("Value: %8.8lf 1/value: %8.8lf FP value: 0x%.8X\n", fv, fa, result); printf("iteration: %d\n",iter); return 0; }

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • How to Convert multiple sets of Data going from left to right to top to bottom the Pythonic way?

    - by ThinkCode
    Following is a sample of sets of contacts for each company going from left to right. ID Company ContactFirst1 ContactLast1 Title1 Email1 ContactFirst2 ContactLast2 Title2 Email2 1 ABC John Doe CEO [email protected] Steve Bern CIO [email protected] How do I get them to go top to bottom as shown? ID Company Contactfirst ContactLast Title Email 1 ABC John Doe CEO [email protected] 1 ABC Steve Bern CIO [email protected] I am hoping there is a Pythonic way of solving this task. Any pointers or samples are really appreciated! p.s : In the actual file, there are 10 sets of contacts going from left to right and there are few thousand such records. It is a CSV file and I loaded into MySQL to manipulate the data.

    Read the article

  • Memory not being freed, causing giant memory leak

    - by Delan Azabani
    In my Unicode library for C++, the ustring class has operator= functions set for char* values and other ustring values. When doing the simple memory leak test: #include <cstdio> #include "ucpp" main() { ustring a; for(;;)a="MEMORY"; } the memory used by the program grows uncontrollably (characteristic of a program with a big memory leak) even though I've added free() calls to both of the functions. I am unsure why this is ineffective (am I missing free() calls in other places?) This is the current library code: #include <cstdlib> #include <cstring> class ustring { int * values; long len; public: long length() { return len; } ustring() { len = 0; values = (int *) malloc(0); } ustring(const ustring &input) { len = input.len; values = (int *) malloc(sizeof(int) * len); for (long i = 0; i < len; i++) values[i] = input.values[i]; } ustring operator=(ustring input) { ustring result(input); free(values); len = input.len; values = input.values; return * this; } ustring(const char * input) { values = (int *) malloc(0); long s = 0; // s = number of parsed chars int a, b, c, d, contNeed = 0, cont = 0; for (long i = 0; input[i]; i++) if (input[i] < 0x80) { // ASCII, direct copy (00-7f) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = input[i]; } else if (input[i] < 0xc0) { // this is a continuation (80-bf) if (cont == contNeed) { // no need for continuation, use U+fffd values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } cont = cont + 1; values[s - 1] = values[s - 1] | ((input[i] & 0x3f) << ((contNeed - cont) * 6)); if (cont == contNeed) cont = contNeed = 0; } else if (input[i] < 0xc2) { // invalid byte, use U+fffd (c0-c1) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } else if (input[i] < 0xe0) { // start of 2-byte sequence (c2-df) contNeed = 1; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x1f) << 6; } else if (input[i] < 0xf0) { // start of 3-byte sequence (e0-ef) contNeed = 2; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x0f) << 12; } else if (input[i] < 0xf5) { // start of 4-byte sequence (f0-f4) contNeed = 3; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x07) << 18; } else { // restricted or invalid (f5-ff) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } len = s; } ustring operator=(const char * input) { ustring result(input); free(values); len = result.len; values = result.values; return * this; } ustring operator+(ustring input) { ustring result; result.len = len + input.len; result.values = (int *) malloc(sizeof(int) * result.len); for (long i = 0; i < len; i++) result.values[i] = values[i]; for (long i = 0; i < input.len; i++) result.values[i + len] = input.values[i]; return result; } ustring operator[](long index) { ustring result; result.len = 1; result.values = (int *) malloc(sizeof(int)); result.values[0] = values[index]; return result; } operator char * () { return this -> encode(); } char * encode() { char * r = (char *) malloc(0); long s = 0; for (long i = 0; i < len; i++) { if (values[i] < 0x80) r = (char *) realloc(r, s + 1), r[s + 0] = char(values[i]), s += 1; else if (values[i] < 0x800) r = (char *) realloc(r, s + 2), r[s + 0] = char(values[i] >> 6 | 0x60), r[s + 1] = char(values[i] & 0x3f | 0x80), s += 2; else if (values[i] < 0x10000) r = (char *) realloc(r, s + 3), r[s + 0] = char(values[i] >> 12 | 0xe0), r[s + 1] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 2] = char(values[i] & 0x3f | 0x80), s += 3; else r = (char *) realloc(r, s + 4), r[s + 0] = char(values[i] >> 18 | 0xf0), r[s + 1] = char(values[i] >> 12 & 0x3f | 0x80), r[s + 2] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 3] = char(values[i] & 0x3f | 0x80), s += 4; } return r; } };

    Read the article

  • Why can't I assign a scalar value to a class using shorthand, but instead declare it first, then set

    - by ~delan-azabani
    I am writing a UTF-8 library for C++ as an exercise as this is my first real-world C++ code. So far, I've implemented concatenation, character indexing, parsing and encoding UTF-8 in a class called "ustring". It looks like it's working, but two (seemingly equivalent) ways of declaring a new ustring behave differently. The first way: ustring a; a = "test"; works, and the overloaded "=" operator parses the string into the class (which stores the Unicode strings as an dynamically allocated int pointer). However, the following does not work: ustring a = "test"; because I get the following error: test.cpp:4: error: conversion from ‘const char [5]’ to non-scalar type ‘ustring’ requested Is there a way to workaround this error? It probably is a problem with my code, though. The following is what I've written so far for the library: #include <cstdlib> #include <cstring> class ustring { int * values; long len; public: long length() { return len; } ustring * operator=(ustring input) { len = input.len; values = (int *) malloc(sizeof(int) * len); for (long i = 0; i < len; i++) values[i] = input.values[i]; return this; } ustring * operator=(char input[]) { len = sizeof(input); values = (int *) malloc(0); long s = 0; // s = number of parsed chars int a, b, c, d, contNeed = 0, cont = 0; for (long i = 0; i < sizeof(input); i++) if (input[i] < 0x80) { // ASCII, direct copy (00-7f) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = input[i]; } else if (input[i] < 0xc0) { // this is a continuation (80-bf) if (cont == contNeed) { // no need for continuation, use U+fffd values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } cont = cont + 1; values[s - 1] = values[s - 1] | ((input[i] & 0x3f) << ((contNeed - cont) * 6)); if (cont == contNeed) cont = contNeed = 0; } else if (input[i] < 0xc2) { // invalid byte, use U+fffd (c0-c1) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } else if (input[i] < 0xe0) { // start of 2-byte sequence (c2-df) contNeed = 1; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x1f) << 6; } else if (input[i] < 0xf0) { // start of 3-byte sequence (e0-ef) contNeed = 2; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x0f) << 12; } else if (input[i] < 0xf5) { // start of 4-byte sequence (f0-f4) contNeed = 3; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x07) << 18; } else { // restricted or invalid (f5-ff) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } return this; } ustring operator+(ustring input) { ustring result; result.len = len + input.len; result.values = (int *) malloc(sizeof(int) * result.len); for (long i = 0; i < len; i++) result.values[i] = values[i]; for (long i = 0; i < input.len; i++) result.values[i + len] = input.values[i]; return result; } ustring operator[](long index) { ustring result; result.len = 1; result.values = (int *) malloc(sizeof(int)); result.values[0] = values[index]; return result; } char * encode() { char * r = (char *) malloc(0); long s = 0; for (long i = 0; i < len; i++) { if (values[i] < 0x80) r = (char *) realloc(r, s + 1), r[s + 0] = char(values[i]), s += 1; else if (values[i] < 0x800) r = (char *) realloc(r, s + 2), r[s + 0] = char(values[i] >> 6 | 0x60), r[s + 1] = char(values[i] & 0x3f | 0x80), s += 2; else if (values[i] < 0x10000) r = (char *) realloc(r, s + 3), r[s + 0] = char(values[i] >> 12 | 0xe0), r[s + 1] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 2] = char(values[i] & 0x3f | 0x80), s += 3; else r = (char *) realloc(r, s + 4), r[s + 0] = char(values[i] >> 18 | 0xf0), r[s + 1] = char(values[i] >> 12 & 0x3f | 0x80), r[s + 2] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 3] = char(values[i] & 0x3f | 0x80), s += 4; } return r; } };

    Read the article

  • Proper binding data to combobox and handling its events.

    - by Wodzu
    Hi guys. I have a table in SQL Server which looks like this: ID Code Name Surname 1 MS Mike Smith 2 JD John Doe 3 UP Unknown Person and so on... Now I want to bind the data from this table into the ComboBox in a way that in the ComboBox I have displayed value from the Code column. I am doing the binding in this way: SqlDataAdapter sqlAdapter = new SqlDataAdapter("SELECT * FROM dbo.Users ORDER BY Code", MainConnection); sqlAdapter.Fill(dsUsers, "Users"); cbxUsers.DataSource = dsUsers.Tables["Users"]; cmUsers = (CurrencyManager)cbxUsers.BindingContext[dsUsers.Tables["Users"]]; cbxUsers.DisplayMember = "Code"; And this code seems to work. I can scroll through the list of Codes. Also I can start to write code by hand and ComboBox will autocomplete the code for me. However, I wanted to put a label at the top of the combobox to display Name and Surname of the currently selected user code. My line of though was like that: "So, I need to find an event which will fire up after the change of code in combobox and in that event I will get the current DataRow..." I was browsing through the events of combobox, tried many of them but without a success. For example: private void cbxUsers_SelectionChangeCommitted(object sender, EventArgs e) { if (cmUsers != null) { DataRowView drvCurrentRowView = (DataRowView)cmUsers.Current; DataRow drCurrentRow = drvCurrentRowView.Row; lblNameSurname.Text = Convert.ToString(drCurrentRow["Name"]) + " " + Convert.ToString(drCurrentRow["Surname"]); } } This give me a strange results. Firstly when I scroll via mouse scroll it doesn't return me the row wich I am expecting to obtain. For example on JD it shows me "Mike Smith", on MS it shows me "John Doe" and on UP it shows me "Mike Smith" again! The other problem is that when I start to type in ComboBox and press enter it doesn't trigger the event. However, everything works as expected when I bind data to lblNameSurname.Text in this way: lblNameSurname.DataBindings.Add("Text", dsusers.Tables["Users"], "Name"); The problem here is that I can bind only one column and I want to have two. I don't want to use two labels for it (one to display name and other to display surname). So, what is the solution to my problem? Also, I have one question related to the data selection in ComboBox. Now, when I type something in the combobox it allows me to type letters that are not existing in the list. For example, I start to type "J" and instead of finishing with "D" so I would have "JD", I type "Jsomerandomtexthere". Combobox will allow that but such item does not exists on the list. In other words, I want combobox to prevent user from typing code which is not on the list of codes. Thanks in advance for your time.

    Read the article

  • Assignment operator that calls a constructor is broken

    - by Delan Azabani
    I've implemented some of the changes suggested in this question, and (thanks very much) it works quite well, however... in the process I've seemed to break the post-declaration assignment operator. With the following code: #include <cstdio> #include "ucpp" main() { ustring a = "test"; ustring b = "ing"; ustring c = "- -"; ustring d = "cafe\xcc\x81"; printf("%s\n", (a + b + c[1] + d).encode()); } I get a nice "testing cafe´" message. However, if I modify the code slightly so that the const char * conversion is done separately, post-declaration: #include <cstdio> #include "ucpp" main() { ustring a = "test"; ustring b = "ing"; ustring c = "- -"; ustring d; d = "cafe\xcc\x81"; printf("%s\n", (a + b + c[1] + d).encode()); } the ustring named d becomes blank, and all that is output is "testing ". My new code has three constructors, one void (which is probably the one being incorrectly used, and is used in the operator+ function), one that takes a const ustring &, and one that takes a const char *. The following is my new library code: #include <cstdlib> #include <cstring> class ustring { int * values; long len; public: long length() { return len; } ustring() { len = 0; values = (int *) malloc(0); } ustring(const ustring &input) { len = input.len; values = (int *) malloc(sizeof(int) * len); for (long i = 0; i < len; i++) values[i] = input.values[i]; } ustring operator=(ustring input) { ustring result(input); return result; } ustring(const char * input) { values = (int *) malloc(0); long s = 0; // s = number of parsed chars int a, b, c, d, contNeed = 0, cont = 0; for (long i = 0; input[i]; i++) if (input[i] < 0x80) { // ASCII, direct copy (00-7f) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = input[i]; } else if (input[i] < 0xc0) { // this is a continuation (80-bf) if (cont == contNeed) { // no need for continuation, use U+fffd values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } cont = cont + 1; values[s - 1] = values[s - 1] | ((input[i] & 0x3f) << ((contNeed - cont) * 6)); if (cont == contNeed) cont = contNeed = 0; } else if (input[i] < 0xc2) { // invalid byte, use U+fffd (c0-c1) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } else if (input[i] < 0xe0) { // start of 2-byte sequence (c2-df) contNeed = 1; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x1f) << 6; } else if (input[i] < 0xf0) { // start of 3-byte sequence (e0-ef) contNeed = 2; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x0f) << 12; } else if (input[i] < 0xf5) { // start of 4-byte sequence (f0-f4) contNeed = 3; values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = (input[i] & 0x07) << 18; } else { // restricted or invalid (f5-ff) values = (int *) realloc(values, sizeof(int) * ++s); values[s - 1] = 0xfffd; } len = s; } ustring operator=(const char * input) { ustring result(input); return result; } ustring operator+(ustring input) { ustring result; result.len = len + input.len; result.values = (int *) malloc(sizeof(int) * result.len); for (long i = 0; i < len; i++) result.values[i] = values[i]; for (long i = 0; i < input.len; i++) result.values[i + len] = input.values[i]; return result; } ustring operator[](long index) { ustring result; result.len = 1; result.values = (int *) malloc(sizeof(int)); result.values[0] = values[index]; return result; } char * encode() { char * r = (char *) malloc(0); long s = 0; for (long i = 0; i < len; i++) { if (values[i] < 0x80) r = (char *) realloc(r, s + 1), r[s + 0] = char(values[i]), s += 1; else if (values[i] < 0x800) r = (char *) realloc(r, s + 2), r[s + 0] = char(values[i] >> 6 | 0x60), r[s + 1] = char(values[i] & 0x3f | 0x80), s += 2; else if (values[i] < 0x10000) r = (char *) realloc(r, s + 3), r[s + 0] = char(values[i] >> 12 | 0xe0), r[s + 1] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 2] = char(values[i] & 0x3f | 0x80), s += 3; else r = (char *) realloc(r, s + 4), r[s + 0] = char(values[i] >> 18 | 0xf0), r[s + 1] = char(values[i] >> 12 & 0x3f | 0x80), r[s + 2] = char(values[i] >> 6 & 0x3f | 0x80), r[s + 3] = char(values[i] & 0x3f | 0x80), s += 4; } return r; } };

    Read the article

  • Java threads, wait time always 00:00:00-Producer/Consumer

    - by user3742254
    I am currently doing a producer consumer problem with a number of threads and have had to set priorities and waits to them to ensure that one thread, the security thread, runs last. I have managed to do this and I have managed to get the buffer working. The last thing that I am required to do is to show the wait time of threads that are too large for the buffer and to calculate the average wait time. I have included code to do so, but everything I run the program, the wait time is always returned as 00:00:00, and by extension, the average is returned as the same. I was speaking to one of my colleagues who said that it is not a matter of the code but rather a matter of the computer needing to work off of one processor, which can be adjusted in the task manager settings. He has an HP like myself but his program prints the wait time 180 times, whereas mine prints usually about 3-7 times and is only 00:00:01 on one instance before finishing when I have made the processor adjustments. My other colleague has an iMac and hers puts out an average of 42:00:34(42 minutes??) I am very confused about this because I can see no difference between our codes and like my colleague said, I was wondering is it a computer issue. I am obviously concerned as I wanted to make sure that my code correctly calculated an average wait time, but that is impossible to tell when the wait times always show as 00:00:00. To calculate the thread duration, including the time it entered and exited the buffer was done by using a timestamp import, and then subtracting start time from end time. Is my code correct for this issue or is there something which is missing? I would be very grateful for any solutions. Below is my code: My buffer class package com.Com813cw; import java.text.DateFormat; import java.text.SimpleDateFormat; /** * Created by Rory on 10/08/2014. */ class Buffer { private int contents, count = 0, process = 200; private int totalRam = 1000; private boolean available = false; private long start, end, wait, request = 0; private DateFormat time = new SimpleDateFormat("ss:SSS"); public int avWaitTime =0; public void average(){ System.out.println("Average Application Request wait time: "+ time.format(request/count)); } public synchronized int get() { while (process <= 500) { try { wait(); } catch (InterruptedException e) { } } process -= 200; System.out.println("CPU After Process " + process); notifyAll(); return contents; } public synchronized void put(int value) { if (process <= 500) { process += value; } else { start = System.currentTimeMillis(); try { wait(); } catch (InterruptedException e) { } end = System.currentTimeMillis(); wait = end - start; count++; request += wait; System.out.println("Application Request Wait Time: " + time.format(wait)); process += value; contents = value; calcWait(wait, count); } notifyAll(); } public void calcWait(long wait, int count){ this.avWaitTime = (int) (wait/count); } public void printWait(){ System.out.println("Wait time is " + time.format(this.avWaitTime)); } } My spotify class package com.Com813cw; import java.sql.Timestamp; /** * Created by Rory on 11/08/2014. */ class Spotify extends Thread { private Buffer buffer; private int number; private int bytes = 250; public Spotify(Buffer c, int number) { buffer = c; this.number = number; } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 20; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes "); try { sleep(1000); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("Spotify has finished executing."); System.out.println("Time taken to execute was " + timeTaken + " milliseconds"); System.out.println("Time that Spotify thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("-----------------------------"); } } My BubbleWitch class package com.Com813cw; import java.lang.*; import java.lang.System; import java.sql.Timestamp; /** * Created by Rory on 10/08/2014. */ class BubbleWitch2 extends Thread { private Buffer buffer; private int number; private int bytes = 100; public BubbleWitch2(Buffer c, int number) { buffer = c; this.number=number ; } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 10; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes "); try { sleep(1000); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("BubbleWitch2 has finished executing."); System.out.println("Time taken to execute was " +timeTaken+ " milliseconds"); System.out.println("Time Bubblewitch2 thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("-----------------------------"); } } My Test class package com.Com813cw; /** * Created by Rory on 10/08/2014. */ public class ProducerConsumerTest { public static void main(String[] args) throws InterruptedException { Buffer c = new Buffer(); BubbleWitch2 p1 = new BubbleWitch2(c,1); Processor c1 = new Processor(c, 1); Spotify p2 = new Spotify(c, 2); SystemManagement p3 = new SystemManagement(c, 3); SecurityUpdate p4 = new SecurityUpdate(c, 4, p1, p2, p3); p1.setName("BubbleWitch2 "); p2.setName("Spotify "); p3.setName("System Management "); p4.setName("Security Update "); p1.setPriority(10); p2.setPriority(10); p3.setPriority(10); p4.setPriority(5); c1.start(); p1.start(); p2.start(); p3.start(); p4.start(); p2.join(); p3.join(); p4.join(); c.average(); System.exit(0); } } My security update package com.Com813cw; import java.lang.*; import java.lang.System; import java.sql.Timestamp; /** * Created by Rory on 11/08/2014. */ class SecurityUpdate extends Thread { private Buffer buffer; private int number; private int bytes = 150; private int process = 0; public SecurityUpdate(Buffer c, int number, BubbleWitch2 bubbleWitch2, Spotify spotify, SystemManagement systemManagement) throws InterruptedException { buffer = c; this.number = number; bubbleWitch2.join(); spotify.join(); systemManagement.join(); } long startTime = System.currentTimeMillis(); public void run() { for (int i = 0; i < 15; i++) { buffer.put(bytes); System.out.println(getName() + this.number + " put: " + bytes + " bytes"); try { sleep(1500); } catch (InterruptedException e) { } } long endTime = System.currentTimeMillis(); long timeTaken = endTime - startTime; java.util.Date date = new java.util.Date(); System.out.println("-----------------------------"); System.out.println("Security Update has finished executing."); System.out.println("Time taken to execute was " + timeTaken + " milliseconds"); System.out.println("Time that SecurityUpdate thread exited Buffer was " + new Timestamp(date.getTime())); System.out.println("------------------------------"); } } I'd be grateful as I said for any help as this is the last and most frustrating obstacle.

    Read the article

  • Enforce SSIS naming conventions using BI-xPress

    - by jamiet
    A long long long time ago (in 2006 in fact) I published a blog post entitled Suggested Best Practises and naming conventions in which I suggested a bunch of acronyms that folks could use to prefix object names in their SSIS packages, thus allowing easier identification of those objects in log records, here is a sample of some of those suggestions: If you have adopted these naming conventions (and I am led to believe that a bunch of people have) then you might like to know that you can now check for adherence to these conventions using a tool called BI-xPress from Pragmatic Works. BI-xPress includes a feature called the Best Practices Analyzer that scans your packages and assess them according to some rules that you specify. In addition Pragmatic Works have made available a collection of these rules that adhere to the naming conventions I specified in 2006 You can download this collection however I recommend you first read the accompanying article that demonstrates the capabilities of the Best Practices Analyzer. Pretty cool stuff. @Jamiet

    Read the article

  • LINQ for SQL Developers and DBA’s

    - by AtulThakor
    Firstly I’d just like to thank the guys who organise the SQL Server User Group (Martin/Tony/Chris) and for giving me the opportunity to speak at the recent event. Sorry about the slides taking so long but here they are along with some extra information. Firstly the demo’s were all done using LINQPad 4.0 which can be downloaded here: http://www.linqpad.net/ There are 2 versions 3.5/4.0 With 3.5 you should be able to replicate the problem I showed where a query using a parameter which is X characters long would create a different execution plan to a query which uses a parameter which is Y characters long, otherwise I would just use 4.0 The sample database used is AdventureWorksLT2008 which can be downloaded from here: http://msftdbprodsamples.codeplex.com/releases/view/37109 The scripts have been named so that you can select the appropriate way to run them i.e.: C# expression / C#statement, each script can be run individually be highlighting the query and clicking the play symbol or hitting F5. Scripts and Slides: http://sqlblogcasts.com/blogs/atulthakor/An%20Introduction%20to%20LINQ.zip Please don't hesitate in sending any questions via email/twitter, I’ll try my best to answer your questions! Thanks, Atul

    Read the article

< Previous Page | 60 61 62 63 64 65 66 67 68 69 70 71  | Next Page >