Search Results

Search found 1680 results on 68 pages for 'berkeley sockets'.

Page 65/68 | < Previous Page | 61 62 63 64 65 66 67 68  | Next Page >

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • iproute2 not functioning ("RTNETLINK answers: Operation not supported")

    - by James Watt
    The command and error message: gtwy ~ # ip rule add from 64.251.23.186 table t1 RTNETLINK answers: Operation not supported Older article of the same problem, but it did not help me: http://forums.gentoo.org/viewtopic-t-696982-start-0-postdays-0-postorder-asc-highlight-.html I have looked on google at great lengths to try to find a solution. It seems that my kernel configuration is missing something? Any help or ideas would be appreciated. My system/kernel is: 2.6.36-gentoo-r5 #3 SMP Thu Jan 13 10:49:06 EST 2011 x86_64 Intel(R) Xeon(R) CPU X3220 @ 2.40GHz GenuineIntel GNU/Linux. I am posting this on SuperUser since this system is used as a workstation and this problem is unrelated to specific tasks that are handled exclusively by servers. iproute2 is installed: gtwy etc # emerge --search iproute2 Searching... [ Results for search key : iproute2 ] [ Applications found : 1 ] * sys-apps/iproute2 Latest version available: 2.6.35-r2 Latest version installed: 2.6.35-r2 Size of files: 378 kB Homepage: http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2 Description: kernel routing and traffic control utilities License: GPL-2 A small snippet of my kernel .config (view entire .config): gtwy linux # cat .config | grep NETLINK CONFIG_NETFILTER_NETLINK=y CONFIG_NETFILTER_NETLINK_QUEUE=y CONFIG_NETFILTER_NETLINK_LOG=y CONFIG_NF_CT_NETLINK=y CONFIG_SCSI_NETLINK=y gtwy linux # cat .config | grep IP_ADVANCED_ROUTER CONFIG_IP_ADVANCED_ROUTER=y gtwy linux # cat .config | grep INGRESS CONFIG_NET_SCH_INGRESS=y gtwy linux # cat .config | grep NET_SCHED CONFIG_NET_SCHED=y emerge --info Portage 2.1.9.25 (default/linux/amd64/10.0, gcc-4.1.2, glibc-2.10.1-r1, 2.6.36-gentoo-r5 x86_64) ================================================================= System uname: Linux-2.6.36-gentoo-r5-x86_64-Intel-R-_Xeon-R-_CPU_X3220_@_2.40GHz-with-gentoo-1.12.13 Timestamp of tree: Thu, 13 Jan 2011 01:15:01 +0000 app-shells/bash: 4.0_p37 dev-java/java-config: 1.3.7-r1, 2.1.10 dev-lang/python: 2.4.6, 2.5.4-r4, 2.6.5-r2, 3.1.2-r3 sys-apps/baselayout: 1.12.13 sys-apps/sandbox: 1.6-r2 sys-devel/autoconf: 2.13, 2.65 sys-devel/automake: 1.9.6-r2::<unknown repository>, 1.10.2, 1.11.1 sys-devel/binutils: 2.20.1-r1 sys-devel/gcc: 4.1.2, 4.3.4, 4.4.3-r2 sys-devel/gcc-config: 1.4.1 sys-devel/libtool: 2.2.6b sys-devel/make: 3.81 virtual/os-headers: 2.6.30-r1 (sys-kernel/linux-headers) ACCEPT_KEYWORDS="amd64" ACCEPT_LICENSE="*" CBUILD="x86_64-pc-linux-gnu" CFLAGS="-march=nocona -O2 -pipe" CHOST="x86_64-pc-linux-gnu" CONFIG_PROTECT="/etc /var/bind" CONFIG_PROTECT_MASK="/etc/ca-certificates.conf /etc/env.d /etc/env.d/java/ /etc/fonts/fonts.conf /etc/gconf /etc/php/apache2-php5/ext-active/ /etc/php/cgi-php5/ext-active/ /etc/php/cli-php5/ext-active/ /etc/revdep-rebuild /etc/sandbox.d /etc/terminfo" CXXFLAGS="-march=nocona -O2 -pipe" DISTDIR="/usr/portage/distfiles" FEATURES="assume-digests binpkg-logs distlocks fixlafiles fixpackages news parallel-fetch protect-owned sandbox sfperms strict unknown-features-warn unmerge-logs unmerge-orphans userfetch" GENTOO_MIRRORS="http://gentoo.chem.wisc.edu/gentoo" LC_ALL="en_US.UTF-8" LDFLAGS="-Wl,-O1 -Wl,--as-needed" LINGUAS="en" MAKEOPTS="-j5" PKGDIR="/usr/portage/packages" PORTAGE_CONFIGROOT="/" PORTAGE_RSYNC_OPTS="--recursive --links --safe-links --perms --times --compress --force --whole-file --delete --stats --timeout=180 --exclude=/distfiles --exclude=/local --exclude=/packages" PORTAGE_TMPDIR="/var/tmp" PORTDIR="/usr/portage" PORTDIR_OVERLAY="/usr/local/portage" SYNC="rsync://rsync.namerica.gentoo.org/gentoo-portage" USE="acl amd64 apache2 berkdb bzip2 cli cracklib crypt ctype cups curl cxx dri fortran gdbm gpm iconv jpeg jpeg2k libwww mmx modules mudflap multilib mysql ncurses nls nptl nptlonly openmp pam pcre perl php png pppd python readline session sockets sse sse2 ssl symlink sysfs tcpd threads unicode vhosts xml xorg xsl zlib" ALSA_CARDS="ali5451 als4000 atiixp atiixp-modem bt87x ca0106 cmipci emu10k1x ens1370 ens1371 es1938 es1968 fm801 hda-intel intel8x0 intel8x0m maestro3 trident usb-audio via82xx via82xx-modem ymfpci" ALSA_PCM_PLUGINS="adpcm alaw asym copy dmix dshare dsnoop empty extplug file hooks iec958 ioplug ladspa lfloat linear meter mmap_emul mulaw multi null plug rate route share shm softvol" APACHE2_MODULES="actions alias auth_basic authn_alias authn_anon authn_dbm authn_default authn_file authz_dbm authz_default authz_groupfile authz_host authz_owner authz_user autoindex cache cgi cgid dav dav_fs dav_lock deflate dir disk_cache env expires ext_filter file_cache filter headers include info log_config logio mem_cache mime mime_magic negotiation rewrite setenvif speling status unique_id userdir usertrack vhost_alias" COLLECTD_PLUGINS="df interface irq load memory rrdtool swap syslog" ELIBC="glibc" GPSD_PROTOCOLS="ashtech aivdm earthmate evermore fv18 garmin garmintxt gpsclock itrax mtk3301 nmea ntrip navcom oceanserver oldstyle oncore rtcm104v2 rtcm104v3 sirf superstar2 timing tsip tripmate tnt ubx" INPUT_DEVICES="keyboard mouse evdev" KERNEL="linux" LCD_DEVICES="bayrad cfontz cfontz633 glk hd44780 lb216 lcdm001 mtxorb ncurses text" LINGUAS="en" PHP_TARGETS="php5-3" RUBY_TARGETS="ruby18" USERLAND="GNU" VIDEO_CARDS="fbdev glint intel mach64 mga neomagic nouveau nv r128 radeon savage sis tdfx trident vesa via vmware dummy v4l" XTABLES_ADDONS="quota2 psd pknock lscan length2 ipv4options ipset ipp2p iface geoip fuzzy condition tee tarpit sysrq steal rawnat logmark ipmark dhcpmac delude chaos account" Unset: CPPFLAGS, CTARGET, EMERGE_DEFAULT_OPTS, FFLAGS, INSTALL_MASK, LANG, PORTAGE_BUNZIP2_COMMAND, PORTAGE_COMPRESS, PORTAGE_COMPRESS_FLAGS, PORTAGE_RSYNC_EXTRA_OPTS

    Read the article

  • Cannot get libcurl-devl on OpenSUSE 11.3

    - by Dai
    I have a server running OpenSUSE 11.3 that I can't really upgrade to a newer version of OpenSUSE (it's a managed appliance). I have some PHP shell scripts that need to run on the server that have a dependency on both cURL and OpenSSL. I discovered that the PHP 5.3.3 binaries on the server did not include OpenSSL but did include cURL I downloaded the latest PHP sources, extracted them, and ran ./configure --with-openssl --with-zlib --with-bcmath --with-curl --with-readline --with-libxml --enable-sockets This failed: the configure script complained that it couldn't find cURL: checking for cURL support... yes checking for cURL in default path... not found configure: error: Please reinstall the libcurl distribution - easy.h should be in /include/curl/ I tried to install libcurl by running zypper install libcurl-devl This failed too: doom:~/phpworksite/php-5.5.15 # zypper install libcurl-devl Loading repository data... Warning: Repository 'Updates for openSUSE 11.3 11.3-1.82' appears to outdated. Consider using a different mirror or server. Warning: Repository 'openSUSE_11.3_Updates' appears to outdated. Consider using a different mirror or server. Reading installed packages... 'libcurl-devl' not found in package names. Trying capabilities. No provider of 'libcurl-devl' found. Resolving package dependencies... Nothing to do. However, libcurl-devl is listed when I run zypper search curl. doom:~/phpworksite/php-5.5.15 # zypper search curl Loading repository data... Warning: Repository 'Updates for openSUSE 11.3 11.3-1.82' appears to outdated. Consider using a different mirror or server. Warning: Repository 'openSUSE_11.3_Updates' appears to outdated. Consider using a different mirror or server. Reading installed packages... S | Name | Summary | Type --+-----------------------------+----------------------------------------------------------+-------- i | curl | A Tool for Transferring Data from URLs | package | curlftpfs | Filesystem for mounting FTP hosts using FUSE and libcurl | package | libcurl-devel | A Tool for Transferring Data from URLs | package i | libcurl4 | cURL shared library version 4 | package i | perl-WWW-Curl | Perl extension interface for libcurl | package i | php5-curl | PHP5 Extension Module | package | python-curl | Python module interface to the cURL library | package | python-curl-doc | Documentation for python-curl | package | xmms2-plugin-curl | Curl Support for xmms2 | package | xmms2-plugin-curl-debuginfo | Debug information for package xmms2-plugin-curl | package doom:~/phpworksite/php-5.5.15 # Here are the current repositories. doom:~/phpworksite/php-5.5.15 # zypper repos # | Alias | Name | Enabled | Refresh ---+----------------------------------------------+----------------------------------------------+---------+-------- 1 | PHP_extensions_(openSUSE_11.3) | PHP_extensions_(openSUSE_11.3) | No | Yes 2 | Packman_11.3 | Packman_11.3 | Yes | Yes 3 | Updates for openSUSE 11.3 11.3-1.82 | Updates for openSUSE 11.3 11.3-1.82 | Yes | Yes 4 | openSUSE_11.3_OSS | openSUSE_11.3_OSS | Yes | Yes 5 | openSUSE_11.3_Updates | openSUSE_11.3_Updates | Yes | Yes 6 | openSUSE_BuildService_-_devel:languages:perl | openSUSE_BuildService_-_devel:languages:perl | No | Yes 7 | repo-debug | openSUSE-11.3-Debug | No | Yes 8 | repo-non-oss | openSUSE-11.3-Non-Oss | Yes | Yes 9 | repo-oss | openSUSE-11.3-Oss | Yes | Yes 10 | repo-source | openSUSE-11.3-Source | No | Yes BTW, I did try building PHP without cURL, however it broke a lot of things, so apparently I really need cURL. My question: how can I install libcurl-devl (or just install cURL) so that I can build PHP?

    Read the article

  • Ubuntu 12.04 KVM running Ubuntu 12.04 with linux-image-virtual crash on boot

    - by D.Mill
    One of my VMs is stuck on "pause" in virsh. If I destroy and restart it, it will go to pause after a bit of time as "running". I can at best enter my username at login if I'm quick but it'll then shutdown. I don't know where to start with this so any help would be great!! I can access the VMs files via guestfish. the kern.log and syslog don't populate new lines. This is the last input I get from kern.log: Dec 13 11:21:08 soft201 kernel: imklog 5.8.6, log source = /proc/kmsg started. Dec 13 11:21:08 soft201 kernel: [ 0.000000] Initializing cgroup subsys cpuset Dec 13 11:21:08 soft201 kernel: [ 0.000000] Initializing cgroup subsys cpu Dec 13 11:21:08 soft201 kernel: [ 0.000000] Linux version 3.2.0-34-virtual (buildd@allspice) (gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5) ) #53-Ubuntu SMP Thu Nov 15 11:08:40 UTC 2012 (Ubuntu 3.2.0-34.53-virtual 3.2.33) Dec 13 11:21:08 soft201 kernel: [ 0.000000] Command line: root=UUID=61d48b48-a06a-48fb-842e-b38014086a93 ro quiet splash Dec 13 11:21:08 soft201 kernel: [ 0.000000] KERNEL supported cpus: Dec 13 11:21:08 soft201 kernel: [ 0.000000] Intel GenuineIntel Dec 13 11:21:08 soft201 kernel: [ 0.000000] AMD AuthenticAMD Dec 13 11:21:08 soft201 kernel: [ 0.000000] Centaur CentaurHauls Dec 13 11:21:08 soft201 kernel: [ 0.000000] BIOS-provided physical RAM map: Dec 13 11:21:08 soft201 kernel: [ 0.000000] BIOS-e820: 00000000000f0000 - 0000000000100000 (reserved) Dec 13 11:21:08 soft201 kernel: [ 0.000000] BIOS-e820: 0000000000100000 - 00000000dfffc000 (usable) Dec 13 11:21:08 soft201 kernel: [ 0.000000] BIOS-e820: 00000000dfffc000 - 00000000e0000000 (reserved) Dec 13 11:21:08 soft201 kernel: [ 0.000000] BIOS-e820: 00000000feffc000 - 00000000ff000000 (reserved) Dec 13 11:21:08 soft201 kernel: [ 0.000000] BIOS-e820: 00000000fffc0000 - 0000000100000000 (reserved) Dec 13 11:21:08 soft201 kernel: [ 0.000000] BIOS-e820: 0000000100000000 - 0000000a20000000 (usable) Dec 13 11:21:08 soft201 kernel: [ 0.000000] NX (Execute Disable) protection: active Dec 13 11:21:08 soft201 kernel: [ 0.000000] DMI 2.4 present. Dec 13 11:21:08 soft201 kernel: [ 0.000000] DMI: Bochs Bochs, BIOS Bochs 01/01/2007 Dec 13 11:21:08 soft201 kernel: [ 0.000000] e820 update range: 0000000000000000 - 0000000000010000 (usable) ==> (reserved) Dec 13 11:21:08 soft201 kernel: [ 0.000000] e820 remove range: 00000000000a0000 - 0000000000100000 (usable) Dec 13 As you can see the last line gets cut off. I don't even know if this is that relevant. dmesg logs are empty. The qemu log for the VM returns this: 2012-12-13 12:29:47.584+0000: starting up LC_ALL=C PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin QEMU_AUDIO_DRV=none /usr/bin/kvm -S -M pc-1.0 -enable-kvm -m 40960 -smp 14,sockets=14,cores=1,threads=1 -name numerink201 -uuid f4a889ed-a089-05d0-cc9d-9825ab1faeba -nodefconfig -nodefaults -chardev socket,id=charmonitor,path=/var/lib/libvirt/qemu/numerink201.monitor,server,nowait -mon chardev=charmonitor,id=monitor,mode=control -rtc base=utc -no-shutdown -drive file=/var/lib/libvirt/images/client.soft.fr/tmpcZAD9U.qcow2,if=none,id=drive-ide0-0-0,format=qcow2 -device ide-drive,bus=ide.0,unit=0,drive=drive-ide0-0-0,id=ide0-0-0,bootindex=1 -fsdev local,security_model=none,id=fsdev-fs0,path=/home/shared_folders/soft201 -device virtio-9p-pci,id=fs0,fsdev=fsdev-fs0,mount_tag=hostshare,bus=pci.0,addr=0x5 -netdev tap,fd=18,id=hostnet0 -device virtio-net-pci,netdev=hostnet0,id=net0,mac=02:00:00:1d:b9:e7,bus=pci.0,addr=0x3 -chardev pty,id=charserial0 -device isa-serial,chardev=charserial0,id=serial0 -usb -vnc 127.0.0.1:0 -vga cirrus -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x4 char device redirected to /dev/pts/3 qemu: terminating on signal 15 from pid 28248 2012-12-13 12:30:14.455+0000: shutting down I've added more logging, libvirt.log gives me this: 2012-12-13 13:24:38.525+0000: 27694: info : libvirt version: 0.9.8 2012-12-13 13:24:38.525+0000: 27694: error : virExecWithHook:328 : Cannot find 'pm-is-supported' in path: No such file or directory 2012-12-13 13:24:38.525+0000: 27694: warning : qemuCapsInit:856 : Failed to get host power management capabilities 2012-12-13 13:24:39.865+0000: 27694: error : virExecWithHook:328 : Cannot find 'pm-is-supported' in path: No such file or directory 2012-12-13 13:24:39.865+0000: 27694: warning : lxcCapsInit:77 : Failed to get host power management capabilities 2012-12-13 13:24:39.866+0000: 27694: error : virExecWithHook:328 : Cannot find 'pm-is-supported' in path: No such file or directory 2012-12-13 13:24:39.866+0000: 27694: warning : umlCapsInit:87 : Failed to get host power management capabilities I don't really know where to go from here. I'll post whatever info you require

    Read the article

  • Nginx + PHP-FPM = "Random" 502 Bad Gateway

    - by david
    I am running Nginx and proxying php requests via FastCGI to PHP-FPM for processing. I will randomly receive 502 Bad Gateway error pages - I can reproduce this issue by clicking around my PHP websites very rapidly/refreshing a page for a minute or two. When I get the 502 error page all I have to do is refresh the browser and the page refreshes properly. Here is my setup: nginx/0.7.64 PHP 5.3.2 (fpm-fcgi) (built: Apr 1 2010 06:42:04) Ubuntu 9.10 (Latest 2.6 Paravirt) I compiled PHP-FPM using this ./configure directive ./configure --enable-fpm --sysconfdir=/etc/php5/conf.d --with-config-file-path=/etc/php5/conf.d/php.ini --with-zlib --with-openssl --enable-zip --enable-exif --enable-ftp --enable-mbstring --enable-mbregex --enable-soap --enable-sockets --disable-cgi --with-curl --with-curlwrappers --with-gd --with-mcrypt --enable-memcache --with-mhash --with-jpeg-dir=/usr/local/lib --with-mysql=/usr/bin/mysql --with-mysqli=/usr/bin/mysql_config --enable-pdo --with-pdo-mysql=/usr/bin/mysql --with-pdo-sqlite --with-pspell --with-snmp --with-sqlite --with-tidy --with-xmlrpc --with-xsl My php-fpm.conf looks like this (the relevant parts): ... <value name="pm"> <value name="max_children">3</value> ... <value name="request_terminate_timeout">60s</value> <value name="request_slowlog_timeout">30s</value> <value name="slowlog">/var/log/php-fpm.log.slow</value> <value name="rlimit_files">1024</value> <value name="rlimit_core">0</value> <value name="chroot"></value> <value name="chdir"></value> <value name="catch_workers_output">yes</value> <value name="max_requests">500</value> ... I've tried increasing the max_children to 10 and it makes no difference. I've also tried setting it to 'dynamic' and setting max_children to 50, and start_server to '5' without any difference. I have tried using both 1 and 5 nginx worker processes. My fastcgi_params conf looks like: fastcgi_connect_timeout 60; fastcgi_send_timeout 180; fastcgi_read_timeout 180; fastcgi_buffer_size 128k; fastcgi_buffers 4 256k; fastcgi_busy_buffers_size 256k; fastcgi_temp_file_write_size 256k; fastcgi_intercept_errors on; fastcgi_param QUERY_STRING $query_string; fastcgi_param REQUEST_METHOD $request_method; fastcgi_param CONTENT_TYPE $content_type; fastcgi_param CONTENT_LENGTH $content_length; fastcgi_param SCRIPT_NAME $fastcgi_script_name; fastcgi_param REQUEST_URI $request_uri; fastcgi_param DOCUMENT_URI $document_uri; fastcgi_param DOCUMENT_ROOT $document_root; fastcgi_param SERVER_PROTOCOL $server_protocol; fastcgi_param GATEWAY_INTERFACE CGI/1.1; fastcgi_param SERVER_SOFTWARE nginx/$nginx_version; fastcgi_param REMOTE_ADDR $remote_addr; fastcgi_param REMOTE_PORT $remote_port; fastcgi_param SERVER_ADDR $server_addr; fastcgi_param SERVER_PORT $server_port; fastcgi_param SERVER_NAME $server_name; fastcgi_param REDIRECT_STATUS 200; Nginx logs the error as: [error] 3947#0: *10530 connect() failed (111: Connection refused) while connecting to upstream, client: 68.40.xxx.xxx, server: www.domain.com, request: "GET /favicon.ico HTTP/1.1", upstream: "fastcgi://127.0.0.1:9000", host: "www.domain.com" PHP-FPM logs the follow at the time of the error: [NOTICE] pid 17161, fpm_unix_init_main(), line 255: getrlimit(nofile): max:1024, cur:1024 [NOTICE] pid 17161, fpm_event_init_main(), line 93: libevent: using epoll [NOTICE] pid 17161, fpm_init(), line 50: fpm is running, pid 17161 [DEBUG] pid 17161, fpm_children_make(), line 403: [pool default] child 17162 started [DEBUG] pid 17161, fpm_children_make(), line 403: [pool default] child 17163 started [DEBUG] pid 17161, fpm_children_make(), line 403: [pool default] child 17164 started [NOTICE] pid 17161, fpm_event_loop(), line 111: ready to handle connections My CPU usage maxes out around 10-15% when I recreate the issue. My Free mem (free -m) is 130MB I had this intermittent 502 Bad Gateway issue when in was using php5-cgi to service my php requests as well. Does anyone know how to fix this?

    Read the article

  • Exchange Server 2007 Setup

    - by AlamedaDad
    Hi, I'm working on a upgrade to Exchange 2007 and I wanted to get some advise on hardware choices. We currently have an Exchange 2003 STD server with 400 users split between 6 AD Sites, that is housed on a single server. We need to move to a redundant, fault tolerant system to support our users. I'm planning on installing 2 Dell 1950 servers with W2k8-std to act as CAS and Hub servers, with NLB to allow abstraction of the actual server name to the users. There won't be an edge system since we have a Barracuda box already that will handle in/out spam/virus filtering. Backend I'm planning on 2 mailbox servers which will be Dell 2950s with 16GB RAM, 2 either dual-core or quad-core CPUs and 6 300GB SAS drives in some RAID config. These systems will be clustered using W2k8 Ent clustering and running CCR in Exchange. My questions are as follows: Is 16GB enough RAM for serving that many mailboxes along with the windows clustering and ccr? I'm trying to figure out disk layouts and I'm unsure of whether to use all local disk or some local and some SAN, via an OpenFiler iSCSI server. The SAN would be a Dell 2850 with 6 - 300GB SCSI drives and a PERC controller to slice as I want, with 8GB RAM. Option 1: 2 drives, RAID 1 - OS 2 drives, RAID 1 - Logs 2 drives, RAID 1 - Mail stores Option 2: 2 drives, RAID 1 - OS and logs 4 drives, RAID 5 - Mail Stores and scratch space for eseutil. Option 3: 2 drives, RAID 1 - OS 2 drives, RAID 1 - Logs 2 drives, RAID 0 - scratch space ~300GB iSCSI volume for mail stores Option 4: 2 drives, RAID 1 - OS 4 drives, RAID 5 - scratch space ~300GB iSCSI volume for mail stores ~300GB iSCSI volume for logs I have 2 sockets for CPUs and need to chose between dual and quad cores. The dual core have faster clocks but less cache and I'm thinking older architecture. Am I better off with more cores and cache while sacraficing clock speed? I am planning on adding the new E2K7 cluster to the E2K3 server and then move each mailbox over, all at once, then remove the old server. This seems more complicated than simply getting rid of the 2003 server and then adding the 2007 cluster and restoring the mailboxes using PowerControls or exmerge. The migration option lets me do this on my time, where a cutover means it all needs to work at once. If I go with the cutover method, how can I prebuild the servers and add them to the domain right after removing the 2003 server, or can't I? I think the answer is no and the migration is my only real option if I want to prebuild. I need to also migrate about 30GB of Public Folders. Is there anything special about this, other than specifying in the E2K7 install that I want older Outlook clients and PF's setup? I guess I could even keep the E2K3 server to host just the PFs? Lastly, if I have a mix of Outlook 200, 2003 and 2007 what do I need to do to make sure they all have access to the GAL and OAB? At time of cutover, we'll be at like 90% 2007, but we will have some older stuff around. My plan is to use Outlook Anywhere on laptops that are used outside the physical network. Are there any gotchas involved in that? I'm even thinking about using is for all Outlook clients, does anyone do that? The reason I'm considering it is that our WAN is really VPN tunnels over internet connections, so not a fully messhed, stable WAN. Thank you all very much for the assistance in advance and I look forward to discussion of these points! Regards...Michael

    Read the article

  • MySQL Cluster 7.2: Over 8x Higher Performance than Cluster 7.1

    - by Mat Keep
    0 0 1 893 5092 Homework 42 11 5974 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Summary The scalability enhancements delivered by extensions to multi-threaded data nodes enables MySQL Cluster 7.2 to deliver over 8x higher performance than the previous MySQL Cluster 7.1 release on a recent benchmark What’s New in MySQL Cluster 7.2 MySQL Cluster 7.2 was released as GA (Generally Available) in February 2012, delivering many enhancements to performance on complex queries, new NoSQL Key / Value API, cross-data center replication and ease-of-use. These enhancements are summarized in the Figure below, and detailed in the MySQL Cluster New Features whitepaper Figure 1: Next Generation Web Services, Cross Data Center Replication and Ease-of-Use Once of the key enhancements delivered in MySQL Cluster 7.2 is extensions made to the multi-threading processes of the data nodes. Multi-Threaded Data Node Extensions The MySQL Cluster 7.2 data node is now functionally divided into seven thread types: 1) Local Data Manager threads (ldm). Note – these are sometimes also called LQH threads. 2) Transaction Coordinator threads (tc) 3) Asynchronous Replication threads (rep) 4) Schema Management threads (main) 5) Network receiver threads (recv) 6) Network send threads (send) 7) IO threads Each of these thread types are discussed in more detail below. MySQL Cluster 7.2 increases the maximum number of LDM threads from 4 to 16. The LDM contains the actual data, which means that when using 16 threads the data is more heavily partitioned (this is automatic in MySQL Cluster). Each LDM thread maintains its own set of data partitions, index partitions and REDO log. The number of LDM partitions per data node is not dynamically configurable, but it is possible, however, to map more than one partition onto each LDM thread, providing flexibility in modifying the number of LDM threads. The TC domain stores the state of in-flight transactions. This means that every new transaction can easily be assigned to a new TC thread. Testing has shown that in most cases 1 TC thread per 2 LDM threads is sufficient, and in many cases even 1 TC thread per 4 LDM threads is also acceptable. Testing also demonstrated that in some instances where the workload needed to sustain very high update loads it is necessary to configure 3 to 4 TC threads per 4 LDM threads. In the previous MySQL Cluster 7.1 release, only one TC thread was available. This limit has been increased to 16 TC threads in MySQL Cluster 7.2. The TC domain also manages the Adaptive Query Localization functionality introduced in MySQL Cluster 7.2 that significantly enhanced complex query performance by pushing JOIN operations down to the data nodes. Asynchronous Replication was separated into its own thread with the release of MySQL Cluster 7.1, and has not been modified in the latest 7.2 release. To scale the number of TC threads, it was necessary to separate the Schema Management domain from the TC domain. The schema management thread has little load, so is implemented with a single thread. The Network receiver domain was bound to 1 thread in MySQL Cluster 7.1. With the increase of threads in MySQL Cluster 7.2 it is also necessary to increase the number of recv threads to 8. This enables each receive thread to service one or more sockets used to communicate with other nodes the Cluster. The Network send thread is a new thread type introduced in MySQL Cluster 7.2. Previously other threads handled the sending operations themselves, which can provide for lower latency. To achieve highest throughput however, it has been necessary to create dedicated send threads, of which 8 can be configured. It is still possible to configure MySQL Cluster 7.2 to a legacy mode that does not use any of the send threads – useful for those workloads that are most sensitive to latency. The IO Thread is the final thread type and there have been no changes to this domain in MySQL Cluster 7.2. Multiple IO threads were already available, which could be configured to either one thread per open file, or to a fixed number of IO threads that handle the IO traffic. Except when using compression on disk, the IO threads typically have a very light load. Benchmarking the Scalability Enhancements The scalability enhancements discussed above have made it possible to scale CPU usage of each data node to more than 5x of that possible in MySQL Cluster 7.1. In addition, a number of bottlenecks have been removed, making it possible to scale data node performance by even more than 5x. Figure 2: MySQL Cluster 7.2 Delivers 8.4x Higher Performance than 7.1 The flexAsynch benchmark was used to compare MySQL Cluster 7.2 performance to 7.1 across an 8-node Intel Xeon x5670-based cluster of dual socket commodity servers (6 cores each). As the results demonstrate, MySQL Cluster 7.2 delivers over 8x higher performance per data nodes than MySQL Cluster 7.1. More details of this and other benchmarks will be published in a new whitepaper – coming soon, so stay tuned! In a following blog post, I’ll provide recommendations on optimum thread configurations for different types of server processor. You can also learn more from the Best Practices Guide to Optimizing Performance of MySQL Cluster Conclusion MySQL Cluster has achieved a range of impressive benchmark results, and set in context with the previous 7.1 release, is able to deliver over 8x higher performance per node. As a result, the multi-threaded data node extensions not only serve to increase performance of MySQL Cluster, they also enable users to achieve significantly improved levels of utilization from current and future generations of massively multi-core, multi-thread processor designs.

    Read the article

  • how to make bridge networking with KVM work in Fedora19

    - by netllama
    I'm attempting to get several virtual machines setup on a Fedora-19 host system, with the traditional bridge network devices (br0, br1, etc). I've done this many times before with older versions of Fedora (16, 14, etc), and it just works. However, for reasons that I cannot figure out, the bridge doesn't seem to be working in Fedora19. While I can successfully connect to the outside world (local network + internet) from inside a VM, nothing can communicate with the VM from outside (local network). I'm referring to something as trivial as pinging. From inside the VM, I can ping anything successfully (0% packet loss). However, from outside the VM (on the host, or any other system on the same network), I see 100% packet loss when pinging the IP address of the VM. My first question is simply, does anyone else have this working successfully in F19? And if so, what steps did you need to follow? I'm not using NetworkManager at all, its all the network service. There are no firewalls involved anywhere (iptables & firewall services are currently disabled). Here's the current host configuration: # brctl show bridge name bridge id STP enabled interfaces br0 8000.38eaa792efe5 no em2 vnet1 br1 8000.38eaa792efe6 no em3 br2 8000.38eaa792efe7 no em4 vnet0 virbr0 8000.525400db3ebf yes virbr0-nic # more /etc/sysconfig/network-scripts/ifcfg-em2 TYPE=Ethernet BRIDGE="br0" NAME=em2 DEVICE="em2" UUID=aeaa839e-c89c-4d6e-9daa-79b6a1b919bd ONBOOT=yes HWADDR=38:EA:A7:92:EF:E5 NM_CONTROLLED="no" # more /etc/sysconfig/network-scripts/ifcfg-br0 TYPE=Bridge NM_CONTROLLED="no" BOOTPROTO=dhcp NAME=br0 DEVICE="br0" ONBOOT=yes # ifconfig em2 ;ifconfig br0 em2: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet6 fe80::3aea:a7ff:fe92:efe5 prefixlen 64 scopeid 0x20<link> ether 38:ea:a7:92:ef:e5 txqueuelen 1000 (Ethernet) RX packets 100093 bytes 52354831 (49.9 MiB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 25321 bytes 15791341 (15.0 MiB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 device memory 0xf7d00000-f7e00000 br0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 10.31.99.226 netmask 255.255.252.0 broadcast 10.31.99.255 inet6 fe80::3aea:a7ff:fe92:efe5 prefixlen 64 scopeid 0x20<link> ether 38:ea:a7:92:ef:e5 txqueuelen 0 (Ethernet) RX packets 19619 bytes 1963328 (1.8 MiB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 11 bytes 1074 (1.0 KiB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 Relevant section from /etc/libvirt/qemu/foo.xml (one of the VMs with this problem): <interface type='bridge'> <mac address='52:54:00:26:22:9d'/> <source bridge='br0'/> <model type='virtio'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </interface> # ps -ef | grep qemu qemu 1491 1 82 13:25 ? 00:42:09 /usr/bin/qemu-system-x86_64 -machine accel=kvm -name cuda-linux64-build5 -S -machine pc-0.13,accel=kvm,usb=off -cpu SandyBridge,+pdpe1gb,+osxsave,+dca,+pcid,+pdcm,+xtpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme -m 16384 -smp 6,sockets=6,cores=1,threads=1 -uuid 6e930234-bdfd-044d-2787-22d4bbbe30b1 -no-user-config -nodefaults -chardev socket,id=charmonitor,path=/var/lib/libvirt/qemu/cuda-linux64-build5.monitor,server,nowait -mon chardev=charmonitor,id=monitor,mode=control -rtc base=localtime -no-shutdown -device piix3-usb-uhci,id=usb,bus=pci.0,addr=0x1.0x2 -drive file=/var/lib/libvirt/images/cuda-linux64-build5.img,if=none,id=drive-virtio-disk0,format=raw,cache=writeback -device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x4,drive=drive-virtio-disk0,id=virtio-disk0,bootindex=1 -netdev tap,fd=25,id=hostnet0,vhost=on,vhostfd=26 -device virtio-net-pci,netdev=hostnet0,id=net0,mac=52:54:00:26:22:9d,bus=pci.0,addr=0x3 -chardev pty,id=charserial0 -device isa-serial,chardev=charserial0,id=serial0 -vnc 127.0.0.1:1 -vga cirrus -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x5 I can provide additional information, if requested. thanks!

    Read the article

  • Improving TCP performance over a gigabit network with lots of connections and high traffic of small packets

    - by MinimeDJ
    I’m trying to improve my TCP throughput over a “gigabit network with lots of connections and high traffic of small packets”. My server OS is Ubuntu 11.10 Server 64bit. There are about 50.000 (and growing) clients connected to my server through TCP Sockets (all on the same port). 95% of of my packets have size of 1-150 bytes (TCP header and payload). The rest 5% vary from 150 up to 4096+ bytes. With the config below my server can handle traffic up to 30 Mbps (full duplex). Can you please advice best practice to tune OS for my needs? My /etc/sysctl.cong looks like this: kernel.pid_max = 1000000 net.ipv4.ip_local_port_range = 2500 65000 fs.file-max = 1000000 # net.core.netdev_max_backlog=3000 net.ipv4.tcp_sack=0 # net.core.rmem_max = 16777216 net.core.wmem_max = 16777216 net.core.somaxconn = 2048 # net.ipv4.tcp_rmem = 4096 87380 16777216 net.ipv4.tcp_wmem = 4096 65536 16777216 # net.ipv4.tcp_synack_retries = 2 net.ipv4.tcp_syncookies = 1 net.ipv4.tcp_mem = 50576 64768 98152 # net.core.wmem_default = 65536 net.core.rmem_default = 65536 net.ipv4.tcp_window_scaling=1 # net.ipv4.tcp_mem= 98304 131072 196608 # net.ipv4.tcp_timestamps = 0 net.ipv4.tcp_rfc1337 = 1 net.ipv4.ip_forward = 0 net.ipv4.tcp_congestion_control=cubic net.ipv4.tcp_tw_recycle = 0 net.ipv4.tcp_tw_reuse = 0 # net.ipv4.tcp_orphan_retries = 1 net.ipv4.tcp_fin_timeout = 25 net.ipv4.tcp_max_orphans = 8192 Here are my limits: $ ulimit -a core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 193045 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1000000 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) 1000000 [ADDED] My NICs are the following: $ dmesg | grep Broad [ 2.473081] Broadcom NetXtreme II 5771x 10Gigabit Ethernet Driver bnx2x 1.62.12-0 (2011/03/20) [ 2.477808] bnx2x 0000:02:00.0: eth0: Broadcom NetXtreme II BCM57711E XGb (A0) PCI-E x4 5GHz (Gen2) found at mem fb000000, IRQ 28, node addr d8:d3:85:bd:23:08 [ 2.482556] bnx2x 0000:02:00.1: eth1: Broadcom NetXtreme II BCM57711E XGb (A0) PCI-E x4 5GHz (Gen2) found at mem fa000000, IRQ 40, node addr d8:d3:85:bd:23:0c [ADDED 2] ethtool -k eth0 Offload parameters for eth0: rx-checksumming: on tx-checksumming: on scatter-gather: on tcp-segmentation-offload: on udp-fragmentation-offload: off generic-segmentation-offload: on generic-receive-offload: on large-receive-offload: on rx-vlan-offload: on tx-vlan-offload: on ntuple-filters: off receive-hashing: off [ADDED 3] sudo ethtool -S eth0|grep -vw 0 NIC statistics: [1]: rx_bytes: 17521104292 [1]: rx_ucast_packets: 118326392 [1]: tx_bytes: 35351475694 [1]: tx_ucast_packets: 191723897 [2]: rx_bytes: 16569945203 [2]: rx_ucast_packets: 114055437 [2]: tx_bytes: 36748975961 [2]: tx_ucast_packets: 194800859 [3]: rx_bytes: 16222309010 [3]: rx_ucast_packets: 109397802 [3]: tx_bytes: 36034786682 [3]: tx_ucast_packets: 198238209 [4]: rx_bytes: 14884911384 [4]: rx_ucast_packets: 104081414 [4]: rx_discards: 5828 [4]: rx_csum_offload_errors: 1 [4]: tx_bytes: 35663361789 [4]: tx_ucast_packets: 194024824 [5]: rx_bytes: 16465075461 [5]: rx_ucast_packets: 110637200 [5]: tx_bytes: 43720432434 [5]: tx_ucast_packets: 202041894 [6]: rx_bytes: 16788706505 [6]: rx_ucast_packets: 113123182 [6]: tx_bytes: 38443961940 [6]: tx_ucast_packets: 202415075 [7]: rx_bytes: 16287423304 [7]: rx_ucast_packets: 110369475 [7]: rx_csum_offload_errors: 1 [7]: tx_bytes: 35104168638 [7]: tx_ucast_packets: 184905201 [8]: rx_bytes: 12689721791 [8]: rx_ucast_packets: 87616037 [8]: rx_discards: 2638 [8]: tx_bytes: 36133395431 [8]: tx_ucast_packets: 196547264 [9]: rx_bytes: 15007548011 [9]: rx_ucast_packets: 98183525 [9]: rx_csum_offload_errors: 1 [9]: tx_bytes: 34871314517 [9]: tx_ucast_packets: 188532637 [9]: tx_mcast_packets: 12 [10]: rx_bytes: 12112044826 [10]: rx_ucast_packets: 84335465 [10]: rx_discards: 2494 [10]: tx_bytes: 36562151913 [10]: tx_ucast_packets: 195658548 [11]: rx_bytes: 12873153712 [11]: rx_ucast_packets: 89305791 [11]: rx_discards: 2990 [11]: tx_bytes: 36348541675 [11]: tx_ucast_packets: 194155226 [12]: rx_bytes: 12768100958 [12]: rx_ucast_packets: 89350917 [12]: rx_discards: 2667 [12]: tx_bytes: 35730240389 [12]: tx_ucast_packets: 192254480 [13]: rx_bytes: 14533227468 [13]: rx_ucast_packets: 98139795 [13]: tx_bytes: 35954232494 [13]: tx_ucast_packets: 194573612 [13]: tx_bcast_packets: 2 [14]: rx_bytes: 13258647069 [14]: rx_ucast_packets: 92856762 [14]: rx_discards: 3509 [14]: rx_csum_offload_errors: 1 [14]: tx_bytes: 35663586641 [14]: tx_ucast_packets: 189661305 rx_bytes: 226125043936 rx_ucast_packets: 1536428109 rx_bcast_packets: 351 rx_discards: 20126 rx_filtered_packets: 8694 rx_csum_offload_errors: 11 tx_bytes: 548442367057 tx_ucast_packets: 2915571846 tx_mcast_packets: 12 tx_bcast_packets: 2 tx_64_byte_packets: 35417154 tx_65_to_127_byte_packets: 2006984660 tx_128_to_255_byte_packets: 373733514 tx_256_to_511_byte_packets: 378121090 tx_512_to_1023_byte_packets: 77643490 tx_1024_to_1522_byte_packets: 43669214 tx_pause_frames: 228 Some info about SACK: When to turn TCP SACK off?

    Read the article

  • PHP install sqlite3 extension

    - by Kevin
    We are using PHP 5.3.6 here, but we used the --without-sqlite3 command when compiling PHP. (It stands in the 'Configure Command' column). But, it is very risky to recompile PHP on that server; there are many visitors. How can we install/use sqlite3? Regards, Kevin [EDIT] yum repolist gives: Loaded plugins: fastestmirror Loading mirror speeds from cached hostfile * base: mirror.nl.leaseweb.net * extras: mirror.nl.leaseweb.net * updates: mirror.nl.leaseweb.net repo id repo name status base CentOS-5 - Base 3,566 extras CentOS-5 - Extras 237 updates CentOS-5 - Updates 376 repolist: 4,179 rpm -qa | grep php gives: php-pdo-5.3.6-1.w5 php-mysql-5.3.6-1.w5 psa-php5-configurator-1.5.3-cos5.build95101022.10 php-mbstring-5.3.6-1.w5 php-imap-5.3.6-1.w5 php-cli-5.3.6-1.w5 php-gd-5.3.6-1.w5 php-5.3.6-1.w5 php-common-5.3.6-1.w5 php-xml-5.3.6-1.w5 php -i | grep sqlite gives: PHP Warning: PHP Startup: Unable to load dynamic library '/usr/lib64/php/modules/sqlite3.so' - /usr/lib64/php/modules/sqlite3.so: cannot open shared object file: No such file or directory in Unknown on line 0 Configure Command => './configure' '--build=x86_64-redhat-linux-gnu' '--host=x86_64-redhat-linux-gnu' '--target=x86_64-redhat-linux-gnu' '--program-prefix=' '--prefix=/usr' '--exec-prefix=/usr' '--bindir=/usr/bin' '--sbindir=/usr/sbin' '--sysconfdir=/etc' '--datadir=/usr/share' '--includedir=/usr/include' '--libdir=/usr/lib64' '--libexecdir=/usr/libexec' '--localstatedir=/var' '--sharedstatedir=/usr/com' '--mandir=/usr/share/man' '--infodir=/usr/share/info' '--cache-file=../config.cache' '--with-libdir=lib64' '--with-config-file-path=/etc' '--with-config-file-scan-dir=/etc/php.d' '--disable-debug' '--with-pic' '--disable-rpath' '--without-pear' '--with-bz2' '--with-exec-dir=/usr/bin' '--with-freetype-dir=/usr' '--with-png-dir=/usr' '--with-xpm-dir=/usr' '--enable-gd-native-ttf' '--without-gdbm' '--with-gettext' '--with-gmp' '--with-iconv' '--with-jpeg-dir=/usr' '--with-openssl' '--with-pcre-regex=/usr' '--with-zlib' '--with-layout=GNU' '--enable-exif' '--enable-ftp' '--enable-magic-quotes' '--enable-sockets' '--enable-sysvsem' '--enable-sysvshm' '--enable-sysvmsg' '--with-kerberos' '--enable-ucd-snmp-hack' '--enable-shmop' '--enable-calendar' '--without-mime-magic' '--without-sqlite' '--without-sqlite3' '--with-libxml-dir=/usr' '--enable-xml' '--with-system-tzdata' '--enable-force-cgi-redirect' '--enable-pcntl' '--with-imap=shared' '--with-imap-ssl' '--enable-mbstring=shared' '--enable-mbregex' '--with-gd=shared' '--enable-bcmath=shared' '--enable-dba=shared' '--with-db4=/usr' '--with-xmlrpc=shared' '--with-ldap=shared' '--with-ldap-sasl' '--with-mysql=shared,/usr' '--with-mysqli=shared,/usr/bin/mysql_config' '--enable-dom=shared' '--with-pgsql=shared' '--enable-wddx=shared' '--with-snmp=shared,/usr' '--enable-soap=shared' '--with-xsl=shared,/usr' '--enable-xmlreader=shared' '--enable-xmlwriter=shared' '--with-curl=shared,/usr' '--enable-fastcgi' '--enable-pdo=shared' '--with-pdo-odbc=shared,unixODBC,/usr' '--with-pdo-mysql=shared,/usr' '--with-pdo-pgsql=shared,/usr' '--with-pdo-sqlite=shared,/usr' '--with-pdo-dblib=shared,/usr' '--enable-json=shared' '--enable-zip=shared' '--with-readline' '--with-pspell=shared' '--enable-phar=shared' '--with-mcrypt=shared,/usr' '--with-tidy=shared,/usr' '--with-mssql=shared,/usr' '--enable-sysvmsg=shared' '--enable-sysvshm=shared' '--enable-sysvsem=shared' '--enable-posix=shared' '--with-unixODBC=shared,/usr' '--enable-fileinfo=shared' '--enable-intl=shared' '--with-icu-dir=/usr' '--with-recode=shared,/usr' /etc/php.d/pdo_sqlite.ini, /etc/php.d/sqlite3.ini, PHP Warning: Unknown: It is not safe to rely on the system's timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected 'Europe/Berlin' for 'CET/1.0/no DST' instead in Unknown on line 0 PDO drivers => mysql, sqlite pdo_sqlite PWD => /root/sqlite _SERVER["PWD"] => /root/sqlite _ENV["PWD"] => /root/sqlite

    Read the article

  • Automatically starting svnserve on Snow Leopard

    - by Cleggy
    Note: I originally asked this question on Server Fault (http://serverfault.com/questions/148052/automatically-starting-svnserve-on-snow-leopard), but I thought this may be a more appropriate place to ask. I have installed Subversion onto my iMac running Snow Leopard, but am having trouble getting svnserve to start up automatically. As I understand it (I'm still fairly green with OSX), the best way to do that is to utilize launchd. To that end, I have created the following .plist file in the /Library/LaunchDaemons folder. If I use launchctl to execute this file, svnserve starts as expected, but it doesn't automatically start when the system starts up or I log in. <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>Disabled</key> <false/> <key>Label</key> <string>org.tigris.subversion.svnserve</string> <key>UserName</key> <string>Dave</string> <key>ProgramArguments</key> <array> <string>/opt/subversion/bin/svnserve</string> <string>--inetd</string> <string>--root=/Users/Shared/SVNrep</string> </array> <key>ServiceDescription</key> <string>Subversion Standalone Server</string> <key>Sockets</key> <dict> <key>Listeners</key> <array> <dict> <key>SockFamily</key> <string>IPv4</string> <key>SockServiceName</key> <string>svn</string> <key>SockType</key> <string>stream</string> </dict> <dict> <key>SockFamily</key> <string>IPv6</string> <key>SockServiceName</key> <string>svn</string> <key>SockType</key> <string>stream</string> </dict> </array> </dict> <key>inetdCompatibility</key> <dict> <key>Wait</key> <false/> </dict> </dict> </plist> I have tried many different configs in the .plist, including auto-starting, simplifying the listeners section, removing dependence on inetd, but they all show the same symptom. The files work when started using launchctl load, but do not automatically start up svnserve if the iMac is rebooted. If anyone here could provide any suggestions as to how to get this to work, I'd really appreciate it.

    Read the article

  • Library like ENet, but for TCP?

    - by Milo
    I'm not looking to use boost::asio, it is overly complex for my needs. I'm building a game that is cross platform, for desktop, iPhone and Android. I found a library called ENet which is pretty much what I need, but it uses UDP which does not seem to support encryption and a few other things. Given that the game is an event driven card game, TCP seems like the right fit. However, all I have found is WINSOCK / berkley sockets and bost::asio. Here is a sample client server application with ENet: #include <enet/enet.h> #include <stdlib.h> #include <string> #include <iostream> class Host { ENetAddress address; ENetHost * server; ENetHost* client; ENetEvent event; public: Host() :server(NULL) { enet_initialize(); setupServer(); } void setupServer() { if(server) { enet_host_destroy(server); server = NULL; } address.host = ENET_HOST_ANY; /* Bind the server to port 1234. */ address.port = 1721; server = enet_host_create (& address /* the address to bind the server host to */, 32 /* allow up to 32 clients and/or outgoing connections */, 2 /* allow up to 2 channels to be used, 0 and 1 */, 0 /* assume any amount of incoming bandwidth */, 0 /* assume any amount of outgoing bandwidth */); } void daLoop() { while(true) { /* Wait up to 1000 milliseconds for an event. */ while (enet_host_service (server, & event, 5000) > 0) { ENetPacket * packet; switch (event.type) { case ENET_EVENT_TYPE_CONNECT: printf ("A new client connected from %x:%u.\n", event.peer -> address.host, event.peer -> address.port); /* Store any relevant client information here. */ event.peer -> data = "Client information"; /* Create a reliable packet of size 7 containing "packet\0" */ packet = enet_packet_create ("packet", strlen ("packet") + 1, ENET_PACKET_FLAG_RELIABLE); /* Extend the packet so and append the string "foo", so it now */ /* contains "packetfoo\0" */ enet_packet_resize (packet, strlen ("packetfoo") + 1); strcpy ((char*)& packet -> data [strlen ("packet")], "foo"); /* Send the packet to the peer over channel id 0. */ /* One could also broadcast the packet by */ /* enet_host_broadcast (host, 0, packet); */ enet_peer_send (event.peer, 0, packet); /* One could just use enet_host_service() instead. */ enet_host_flush (server); break; case ENET_EVENT_TYPE_RECEIVE: printf ("A packet of length %u containing %s was received from %s on channel %u.\n", event.packet -> dataLength, event.packet -> data, event.peer -> data, event.channelID); /* Clean up the packet now that we're done using it. */ enet_packet_destroy (event.packet); break; case ENET_EVENT_TYPE_DISCONNECT: printf ("%s disconected.\n", event.peer -> data); /* Reset the peer's client information. */ event.peer -> data = NULL; } } } } ~Host() { if(server) { enet_host_destroy(server); server = NULL; } atexit (enet_deinitialize); } }; class Client { ENetAddress address; ENetEvent event; ENetPeer *peer; ENetHost* client; public: Client() :peer(NULL) { enet_initialize(); setupPeer(); } void setupPeer() { client = enet_host_create (NULL /* create a client host */, 1 /* only allow 1 outgoing connection */, 2 /* allow up 2 channels to be used, 0 and 1 */, 57600 / 8 /* 56K modem with 56 Kbps downstream bandwidth */, 14400 / 8 /* 56K modem with 14 Kbps upstream bandwidth */); if (client == NULL) { fprintf (stderr, "An error occurred while trying to create an ENet client host.\n"); exit (EXIT_FAILURE); } /* Connect to some.server.net:1234. */ enet_address_set_host (& address, "192.168.2.13"); address.port = 1721; /* Initiate the connection, allocating the two channels 0 and 1. */ peer = enet_host_connect (client, & address, 2, 0); if (peer == NULL) { fprintf (stderr, "No available peers for initiating an ENet connection.\n"); exit (EXIT_FAILURE); } /* Wait up to 5 seconds for the connection attempt to succeed. */ if (enet_host_service (client, & event, 20000) > 0 && event.type == ENET_EVENT_TYPE_CONNECT) { std::cout << "Connection to some.server.net:1234 succeeded." << std::endl; } else { /* Either the 5 seconds are up or a disconnect event was */ /* received. Reset the peer in the event the 5 seconds */ /* had run out without any significant event. */ enet_peer_reset (peer); puts ("Connection to some.server.net:1234 failed."); } } void daLoop() { ENetPacket* packet; /* Create a reliable packet of size 7 containing "packet\0" */ packet = enet_packet_create ("backet", strlen ("backet") + 1, ENET_PACKET_FLAG_RELIABLE); /* Extend the packet so and append the string "foo", so it now */ /* contains "packetfoo\0" */ enet_packet_resize (packet, strlen ("backetfoo") + 1); strcpy ((char*)& packet -> data [strlen ("backet")], "foo"); /* Send the packet to the peer over channel id 0. */ /* One could also broadcast the packet by */ /* enet_host_broadcast (host, 0, packet); */ enet_peer_send (event.peer, 0, packet); /* One could just use enet_host_service() instead. */ enet_host_flush (client); while(true) { /* Wait up to 1000 milliseconds for an event. */ while (enet_host_service (client, & event, 1000) > 0) { ENetPacket * packet; switch (event.type) { case ENET_EVENT_TYPE_RECEIVE: printf ("A packet of length %u containing %s was received from %s on channel %u.\n", event.packet -> dataLength, event.packet -> data, event.peer -> data, event.channelID); /* Clean up the packet now that we're done using it. */ enet_packet_destroy (event.packet); break; } } } } ~Client() { atexit (enet_deinitialize); } }; int main() { std::string a; std::cin >> a; if(a == "host") { Host host; host.daLoop(); } else { Client c; c.daLoop(); } return 0; } I looked at some socket tutorials and they seemed a bit too low level. I just need something that abstracts away the platform (eg, no WINSOCKS) and that has basic ability to keep track of connected clients and send them messages. Thanks

    Read the article

  • Disable error_log. Error_log flooding

    - by user36646
    Hello, i got an webserver running and old version of gambio (xt:commerce fork). The error_log in the dir over the public_html is flooding with errors. About 30mb in 15min. How can I disable this log? I can't fix all the errors. Here are a few examples of the errors: [warn] mod_fcgid: stderr: PHP Notice: Undefined variable: key in /usr/www/users/foo//includes/classes/class.inputfilter.php on line 98 [warn] mod_fcgid: stderr: PHP Notice: Undefined index: in /usr/www/users/foo/templ [warn] mod_fcgid: stderr: in /usr/www/users/foo/templates/gambio/source/inc/xtc_show_category_sectionc.inc.php on line 47 They are all errors of: "mod_fcgid: stderr". I tried to grep "error_log" and "error_report" in the public html dir, but i did not find anything. Here is a part from the phpinfo(): PHP Version 4.4.9 System Linux foobar.com 2.6.26-2-686-bigmem #1 SMP Sat Dec 26 09:26:36 UTC 2009 i686 Build Date Feb 11 2010 13:00:33 Configure Command './configure' '--prefix=/usr/local/php4' '--with-config-file-path=/etc/php4/cgi' '--with-gd' '--with-jpeg-dir' '--with-png-dir' '--with-tiff-dir' '--with-ttf' '--enable-force-cgi-redirect' '--enable-safe-mode' '--with-zlib' '--enable-ftp' '--enable-url-includes' '--enable-gd-native-ttf' '--enable-trans-sid' '--enable-dbase' '--with-db4' '--with-ldap' '--enable-bcmath' '--enable-calendar' '--enable-memory-limit' '--with-mcal=/usr' '--with-bz2' '--with-mod-dav' '--enable-sockets' '--with-kerberos' '--with-imap-ssl' '--enable-gd-imgstrttf' '--with-freetype-dir' '--with-curl' '--with-mysql' '--with-mhash' '--with-gdbm' '--with-pgsql' '--with-gettext' '--with-xml' '--with-mcrypt' '--with-openssl' '--with-dom' '--without-pear' '--enable-exif' '--with-zip' '--enable-wddx' '--disable-cli' '--enable-fastcgi' '--with-imap' '--enable-xslt' '--with-xslt-sablot=/usr/local/lib' '--enable-mbstring' '--with-dom-xslt' '--with-dom-exslt' Server API CGI/FastCGI Virtual Directory Support disabled Configuration File (php.ini) Path /home/httpd/php-ini/foo/php.ini PHP API 20020918 PHP Extension 20020429 Zend Extension 20050606 Debug Build no Zend Memory Manager enabled Thread Safety disabled Registered PHP Streams php, http, ftp, https, ftps, compress.bzip2, compress.zlib **Configuration PHP Core** Directive Local Value Master Value allow_call_time_pass_reference On On allow_url_fopen Off Off always_populate_raw_post_data Off Off arg_separator.input & & arg_separator.output & & asp_tags Off Off auto_append_file no value no value auto_prepend_file no value no value browscap no value no value default_charset no value no value default_mimetype text/html text/html define_syslog_variables Off Off disable_classes no value no value disable_functions no value no value display_errors On On display_startup_errors Off Off doc_root no value no value docref_ext no value no value docref_root no value no value enable_dl On On error_append_string no value no value error_log no value no value error_prepend_string no value no value error_reporting 2039 2039 expose_php On On extension_dir /usr/local/php4/lib/php/extensions/no-debug-non-zts-20020429 /usr/local/php4/lib/php/extensions/no-debug-non-zts-20020429 file_uploads On On gpc_order GPC GPC highlight.bg #FFFFFF #FFFFFF highlight.comment #FF8000 #FF8000 highlight.default #0000BB #0000BB highlight.html #000000 #000000 highlight.keyword #007700 #007700 highlight.string #DD0000 #DD0000 html_errors On On ignore_repeated_errors Off Off ignore_repeated_source Off Off ignore_user_abort Off Off implicit_flush Off Off include_path .:/usr/local/lib/php/ .:/usr/local/lib/php/ log_errors Off Off log_errors_max_len 1024 1024 magic_quotes_gpc On On magic_quotes_runtime Off Off magic_quotes_sybase Off Off max_execution_time 120 120 max_input_nesting_level 500 500 max_input_time -1 -1 memory_limit 128000000 128000000 open_basedir /usr/www/users/foo:/usr/home/foo:/tmp:/usr/local/lib/php:/usr/local/rmagic:/usr/www/users/he/_system_ /usr/www/users/foo:/usr/home/foo:/tmp:/usr/local/lib/php:/usr/local/rmagic:/usr/www/users/he/_system_ output_buffering no value no value output_handler no value no value post_max_size 128000000 128000000 precision 14 14 register_argc_argv On On register_globals Off Off report_memleaks On On safe_mode Off Off safe_mode_exec_dir no value no value safe_mode_gid Off Off safe_mode_include_dir no value no value sendmail_from no value no value sendmail_path /usr/sbin/sendmail -t /usr/sbin/sendmail -t serialize_precision 100 100 short_open_tag On On SMTP localhost localhost smtp_port 25 25 sql.safe_mode Off Off track_errors Off Off unserialize_callback_func no value no value upload_max_filesize 128000000 128000000 upload_tmp_dir /usr/foo/foo/.tmp /usr/foo/.tmp user_dir no value no value variables_order EGPCS EGPCS xmlrpc_error_number 0 0 xmlrpc_errors Off Off y2k_compliance Off Off

    Read the article

  • Cost Comparison Hard Disk Drive to Solid State Drive on Price per Gigabyte - dispelling a myth!

    - by tonyrogerson
    It is often said that Hard Disk Drive storage is significantly cheaper per GiByte than Solid State Devices – this is wholly inaccurate within the database space. People need to look at the cost of the complete solution and not just a single component part in isolation to what is really required to meet the business requirement. Buying a single Hitachi Ultrastar 600GB 3.5” SAS 15Krpm hard disk drive will cost approximately £239.60 (http://scan.co.uk, 22nd March 2012) compared to an OCZ 600GB Z-Drive R4 CM84 PCIe costing £2,316.54 (http://scan.co.uk, 22nd March 2012); I’ve not included FusionIO ioDrive because there is no public pricing available for it – something I never understand and personally when companies do this I immediately think what are they hiding, luckily in FusionIO’s case the product is proven though is expensive compared to OCZ enterprise offerings. On the face of it the single 15Krpm hard disk has a price per GB of £0.39, the SSD £3.86; this is what you will see in the press and this is what sales people will use in comparing the two technologies – do not be fooled by this bullshit people! What is the requirement? The requirement is the database will have a static size of 400GB kept static through archiving so growth and trim will balance the database size, the client requires resilience, there will be several hundred call centre staff querying the database where queries will read a small amount of data but there will be no hot spot in the data so the randomness will come across the entire 400GB of the database, estimates predict that the IOps required will be approximately 4,000IOps at peak times, because it’s a call centre system the IO latency is important and must remain below 5ms per IO. The balance between read and write is 70% read, 30% write. The requirement is now defined and we have three of the most important pieces of the puzzle – space required, estimated IOps and maximum latency per IO. Something to consider with regard SQL Server; write activity requires synchronous IO to the storage media specifically the transaction log; that means the write thread will wait until the IO is completed and hardened off until the thread can continue execution, the requirement has stated that 30% of the system activity will be write so we can expect a high amount of synchronous activity. The hardware solution needs to be defined; two possible solutions: hard disk or solid state based; the real question now is how many hard disks are required to achieve the IO throughput, the latency and resilience, ditto for the solid state. Hard Drive solution On a test on an HP DL380, P410i controller using IOMeter against a single 15Krpm 146GB SAS drive, the throughput given on a transfer size of 8KiB against a 40GiB file on a freshly formatted disk where the partition is the only partition on the disk thus the 40GiB file is on the outer edge of the drive so more sectors can be read before head movement is required: For 100% sequential IO at a queue depth of 16 with 8 worker threads 43,537 IOps at an average latency of 2.93ms (340 MiB/s), for 100% random IO at the same queue depth and worker threads 3,733 IOps at an average latency of 34.06ms (34 MiB/s). The same test was done on the same disk but the test file was 130GiB: For 100% sequential IO at a queue depth of 16 with 8 worker threads 43,537 IOps at an average latency of 2.93ms (340 MiB/s), for 100% random IO at the same queue depth and worker threads 528 IOps at an average latency of 217.49ms (4 MiB/s). From the result it is clear random performance gets worse as the disk fills up – I’m currently writing an article on short stroking which will cover this in detail. Given the work load is random in nature looking at the random performance of the single drive when only 40 GiB of the 146 GB is used gives near the IOps required but the latency is way out. Luckily I have tested 6 x 15Krpm 146GB SAS 15Krpm drives in a RAID 0 using the same test methodology, for the same test above on a 130 GiB for each drive added the performance boost is near linear, for each drive added throughput goes up by 5 MiB/sec, IOps by 700 IOps and latency reducing nearly 50% per drive added (172 ms, 94 ms, 65 ms, 47 ms, 37 ms, 30 ms). This is because the same 130GiB is spread out more as you add drives 130 / 1, 130 / 2, 130 / 3 etc. so implicit short stroking is occurring because there is less file on each drive so less head movement required. The best latency is still 30 ms but we have the IOps required now, but that’s on a 130GiB file and not the 400GiB we need. Some reality check here: a) the drive randomness is more likely to be 50/50 and not a full 100% but the above has highlighted the effect randomness has on the drive and the more a drive fills with data the worse the effect. For argument sake let us assume that for the given workload we need 8 disks to do the job, for resilience reasons we will need 16 because we need to RAID 1+0 them in order to get the throughput and the resilience, RAID 5 would degrade performance. Cost for hard drives: 16 x £239.60 = £3,833.60 For the hard drives we will need disk controllers and a separate external disk array because the likelihood is that the server itself won’t take the drives, a quick spec off DELL for a PowerVault MD1220 which gives the dual pathing with 16 disks 146GB 15Krpm 2.5” disks is priced at £7,438.00, note its probably more once we had two controller cards to sit in the server in, racking etc. Minimum cost taking the DELL quote as an example is therefore: {Cost of Hardware} / {Storage Required} £7,438.60 / 400 = £18.595 per GB £18.59 per GiB is a far cry from the £0.39 we had been told by the salesman and the myth. Yes, the storage array is composed of 16 x 146 disks in RAID 10 (therefore 8 usable) giving an effective usable storage availability of 1168GB but the actual storage requirement is only 400 and the extra disks have had to be purchased to get the  IOps up. Solid State Drive solution A single card significantly exceeds the IOps and latency required, for resilience two will be required. ( £2,316.54 * 2 ) / 400 = £11.58 per GB With the SSD solution only two PCIe sockets are required, no external disk units, no additional controllers, no redundant controllers etc. Conclusion I hope by showing you an example that the myth that hard disk drives are cheaper per GiB than Solid State has now been dispelled - £11.58 per GB for SSD compared to £18.59 for Hard Disk. I’ve not even touched on the running costs, compare the costs of running 18 hard disks, that’s a lot of heat and power compared to two PCIe cards!Just a quick note: I've left a fair amount of information out due to this being a blog! If in doubt, email me :)I'll also deal with the myth that SSD's wear out at a later date as well - that's just way over done still, yes, 5 years ago, but now - no.

    Read the article

  • The SPARC SuperCluster

    - by Karoly Vegh
    Oracle has been providing a lead in the Engineered Systems business for quite a while now, in accordance with the motto "Hardware and Software Engineered to Work Together." Indeed it is hard to find a better definition of these systems.  Allow me to summarize the idea. It is:  Build a compute platform optimized to run your technologies Develop application aware, intelligently caching storage components Take an impressively fast network technology interconnecting it with the compute nodes Tune the application to scale with the nodes to yet unseen performance Reduce the amount of data moving via compression Provide this all in a pre-integrated single product with a single-pane management interface All these ideas have been around in IT for quite some time now. The real Oracle advantage is adding the last one to put these all together. Oracle has built quite a portfolio of Engineered Systems, to run its technologies - and run those like they never ran before. In this post I'll focus on one of them that serves as a consolidation demigod, a multi-purpose engineered system.  As you probably have guessed, I am talking about the SPARC SuperCluster. It has many great features inherited from its predecessors, and it adds several new ones. Allow me to pick out and elaborate about some of the most interesting ones from a technological point of view.  I. It is the SPARC SuperCluster T4-4. That is, as compute nodes, it includes SPARC T4-4 servers that we learned to appreciate and respect for their features: The SPARC T4 CPUs: Each CPU has 8 cores, each core runs 8 threads. The SPARC T4-4 servers have 4 sockets. That is, a single compute node can in parallel, simultaneously  execute 256 threads. Now, a full-rack SPARC SuperCluster has 4 of these servers on board. Remember the keyword demigod.  While retaining the forerunner SPARC T3's exceptional throughput, the SPARC T4 CPUs raise the bar with single performance too - a humble 5x better one than their ancestors.  actually, the SPARC T4 CPU cores run in both single-threaded and multi-threaded mode, and switch between these two on-the-fly, fulfilling not only single-threaded OR multi-threaded applications' needs, but even mixed requirements (like in database workloads!). Data security, anyone? Every SPARC T4 CPU core has a built-in encryption engine, that is, encryption algorithms cast into silicon.  A PCI controller right on the chip for customers who need I/O performance.  Built-in, no-cost Virtualization:  Oracle VM for SPARC (the former LDoms or Logical Domains) is not a server-emulation virtualization technology but rather a serverpartitioning one, the hypervisor runs in the server firmware, and all the VMs' HW resources (I/O, CPU, memory) are accessed natively, without performance overhead.  This enables customers to run a number of Solaris 10 and Solaris 11 VMs separated, independent of each other within a physical server II. For Database performance, it includes Exadata Storage Cells - one of the main reasons why the Exadata Database Machine performs at diabolic speed. What makes them important? They provide DB backend storage for your Oracle Databases to run on the SPARC SuperCluster, that is what they are built and tuned for DB performance.  These storage cells are SQL-aware.  That is, if a SPARC T4 database compute node executes a query, it doesn't simply request tons of raw datablocks from the storage, filters the received data, and throws away most of it where the statement doesn't apply, but provides the SQL query to the storage node too. The storage cell software speaks SQL, that is, it is able to prefilter and through that transfer only the relevant data. With this, the traffic between database nodes and storage cells is reduced immensely. Less I/O is a good thing - as they say, all the CPUs of the world do one thing just as fast as any other - and that is waiting for I/O.  They don't only pre-filter, but also provide data preprocessing features - e.g. if a DB-node requests an aggregate of data, they can calculate it, and handover only the results, not the whole set. Again, less data to transfer.  They support the magical HCC, (Hybrid Columnar Compression). That is, data can be stored in a precompressed form on the storage. Less data to transfer.  Of course one can't simply rely on disks for performance, there is Flash Storage included there for caching.  III. The low latency, high-speed backbone network: InfiniBand, that interconnects all the members with: Real High Speed: 40 Gbit/s. Full Duplex, of course. Oh, and a really low latency.  RDMA. Remote Direct Memory Access. This technology allows the DB nodes to do exactly that. Remotely, directly placing SQL commands into the Memory of the storage cells. Dodging all the network-stack bottlenecks, avoiding overhead, placing requests directly into the process queue.  You can also run IP over InfiniBand if you please - that's the way the compute nodes can communicate with each other.  IV. Including a general-purpose storage too: the ZFSSA, which is a unified storage, providing NAS and SAN access too, with the following features:  NFS over RDMA over InfiniBand. Nothing is faster network-filesystem-wise.  All the ZFS features onboard, hybrid storage pools, compression, deduplication, snapshot, replication, NFS and CIFS shares Storageheads in a HA-Cluster configuration providing availability of the data  DTrace Live Analytics in a web-based Administration UI Being a general purpose application data storage for your non-database applications running on the SPARC SuperCluster over whichever protocol they prefer, easily replicating, snapshotting, cloning data for them.  There's a lot of great technology included in Oracle's SPARC SuperCluster, we have talked its interior through. As for external scalability: you can start with a half- of full- rack SPARC SuperCluster, and scale out to several racks - that is, stacking not separate full-rack SPARC SuperClusters, but extending always one large instance of the size of several full-racks. Yes, over InfiniBand network. Add racks as you grow.  What technologies shall run on it? SPARC SuperCluster is a general purpose scaleout consolidation/cloud environment. You can run Oracle Databases with RAC scaling, or Oracle Weblogic (end enjoy the SPARC T4's advantages to run Java). Remember, Oracle technologies have been integrated with the Oracle Engineered Systems - this is the Oracle on Oracle advantage. But you can run other software environments such as SAP if you please too. Run any application that runs on Oracle Solaris 10 or Solaris 11. Separate them in Virtual Machines, or even Oracle Solaris Zones, monitor and manage those from a central UI. Here the key takeaways once again: The SPARC SuperCluster: Is a pre-integrated Engineered System Contains SPARC T4-4 servers with built-in virtualization, cryptography, dynamic threading Contains the Exadata storage cells that intelligently offload the burden of the DB-nodes  Contains a highly available ZFS Storage Appliance, that provides SAN/NAS storage in a unified way Combines all these elements over a high-speed, low-latency backbone network implemented with InfiniBand Can grow from a single half-rack to several full-rack size Supports the consolidation of hundreds of applications To summarize: All these technologies are great by themselves, but the real value is like in every other Oracle Engineered System: Integration. All these technologies are tuned to perform together. Together they are way more than the sum of all - and a careful and actually very time consuming integration process is necessary to orchestrate all these for performance. The SPARC SuperCluster's goal is to enable infrastructure operations and offer a pre-integrated solution that can be architected and delivered in hours instead of months of evaluations and tests. The tedious and most importantly time and resource consuming part of the work - testing and evaluating - has been done.  Now go, provide services.   -- charlie  

    Read the article

  • Cannot get official CentOS 5.4 BIND package to start

    - by Brian Cline
    Yesterday I installed CentOS 5.4 on one of my servers, and it appears that the official BIND/named package has trouble starting for reasons I cannot deduce. Here is what happens: [root@hal init.d]# service named start Starting named: Error in named configuration: /etc/named.conf:57: open: named.root.hints: permission denied [FAILED] The line in question, with the directory option for context: // further up in the file: directory "/var/named"; // line 57: include "named.root.hints"; Like you, my first reaction was to check permissions on /var/named/named.root.hints, /var/named, and /var to make sure the named user would be able to read it. Here are the permissions at each level: drwxr-xr-x 19 root root 4096 Nov 3 02:05 var drwxr-x--- 5 root named 4096 Nov 3 02:36 named -rw-r--r-- 1 named named 524 Mar 29 2006 named.root.hints Everything appears to be fine permission-wise. The same error occurs if the /var/named directory is writable by the named user. I've even temporarily allowed the named user to log in via bash, su'ed from root to named, and checked that I was, in fact, able to cat /var/named/named.root.hints successfully. (Yes, don't worry: I changed the shell back to nologin). My last endeavor showed that BIND is able to run under the named user account and start up just fine, if done so manually: [root@hal ~]# named -u named -g 03-Nov-2009 16:31:02.021 starting BIND 9.3.6-P1-RedHat-9.3.6-4.P1.el5 -u named -g 03-Nov-2009 16:31:02.021 adjusted limit on open files from 1024 to 1048576 03-Nov-2009 16:31:02.021 found 2 CPUs, using 2 worker threads 03-Nov-2009 16:31:02.021 using up to 4096 sockets 03-Nov-2009 16:31:02.028 loading configuration from '/etc/named.conf' 03-Nov-2009 16:31:02.030 using default UDP/IPv4 port range: [1024, 65535] 03-Nov-2009 16:31:02.031 using default UDP/IPv6 port range: [1024, 65535] 03-Nov-2009 16:31:02.034 listening on IPv4 interface lo, 127.0.0.1#53 03-Nov-2009 16:31:02.034 listening on IPv4 interface eth0, 10.0.0.5#53 03-Nov-2009 16:31:02.034 listening on IPv4 interface eth1, ww.xx.yy.zz#53 03-Nov-2009 16:31:02.040 command channel listening on 127.0.0.1#953 03-Nov-2009 16:31:02.040 command channel listening on ::1#953 03-Nov-2009 16:31:02.040 ignoring config file logging statement due to -g option 03-Nov-2009 16:31:02.041 zone 0.in-addr.arpa/IN/localhost_resolver: loaded serial 42 03-Nov-2009 16:31:02.042 zone 0.0.127.in-addr.arpa/IN/localhost_resolver: loaded serial 1997022700 03-Nov-2009 16:31:02.042 zone 255.in-addr.arpa/IN/localhost_resolver: loaded serial 42 03-Nov-2009 16:31:02.042 zone 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.arpa/IN/localhost_resolver: loaded serial 1997022700 03-Nov-2009 16:31:02.043 zone localdomain/IN/localhost_resolver: loaded serial 42 03-Nov-2009 16:31:02.043 zone localhost/IN/localhost_resolver: loaded serial 42 03-Nov-2009 16:31:02.043 zone x.y.z.in-addr.arpa/IN/internal: loaded serial 1 03-Nov-2009 16:31:02.044 zone x.y.z/IN/internal: loaded serial 2 03-Nov-2009 16:31:02.045 running What type and size of firearm should I use to resolve this? I'd prefer something with automatic ammunition, and, at worst, it should be able to fit on my shoulder. Of course I am open to suggestions.

    Read the article

  • Automatically starting svnserve on Snow Leopard

    - by Cleggy
    I have installed Subversion onto my iMac running Snow Leopard, but am having trouble getting svnserve to start up automatically. As I understand it (I'm still fairly green with OSX), the best way to do that is to utilize launchd. To that end, I have created the following .plist file in the /Library/LaunchDaemons folder. If I use launchctl to execute this file, svnserve starts as expected, but it doesn't automatically start when the system starts up or I log in. <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>Disabled</key> <false/> <key>Label</key> <string>org.tigris.subversion.svnserve</string> <key>UserName</key> <string>Dave</string> <key>ProgramArguments</key> <array> <string>/opt/subversion/bin/svnserve</string> <string>--inetd</string> <string>--root=/Users/Shared/SVNrep</string> </array> <key>ServiceDescription</key> <string>Subversion Standalone Server</string> <key>Sockets</key> <dict> <key>Listeners</key> <array> <dict> <key>SockFamily</key> <string>IPv4</string> <key>SockServiceName</key> <string>svn</string> <key>SockType</key> <string>stream</string> </dict> <dict> <key>SockFamily</key> <string>IPv6</string> <key>SockServiceName</key> <string>svn</string> <key>SockType</key> <string>stream</string> </dict> </array> </dict> <key>inetdCompatibility</key> <dict> <key>Wait</key> <false/> </dict> </dict> </plist> If anyone here could provide any suggestions as to how to get this to work, I'd really appreciate it.

    Read the article

  • Benchmarking MySQL Replication with Multi-Threaded Slaves

    - by Mat Keep
    0 0 1 1145 6530 Homework 54 15 7660 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} The objective of this benchmark is to measure the performance improvement achieved when enabling the Multi-Threaded Slave enhancement delivered as a part MySQL 5.6. As the results demonstrate, Multi-Threaded Slaves delivers 5x higher replication performance based on a configuration with 10 databases/schemas. For real-world deployments, higher replication performance directly translates to: · Improved consistency of reads from slaves (i.e. reduced risk of reading "stale" data) · Reduced risk of data loss should the master fail before replicating all events in its binary log (binlog) The multi-threaded slave splits processing between worker threads based on schema, allowing updates to be applied in parallel, rather than sequentially. This delivers benefits to those workloads that isolate application data using databases - e.g. multi-tenant systems deployed in cloud environments. Multi-Threaded Slaves are just one of many enhancements to replication previewed as part of the MySQL 5.6 Development Release, which include: · Global Transaction Identifiers coupled with MySQL utilities for automatic failover / switchover and slave promotion · Crash Safe Slaves and Binlog · Optimized Row Based Replication · Replication Event Checksums · Time Delayed Replication These and many more are discussed in the “MySQL 5.6 Replication: Enabling the Next Generation of Web & Cloud Services” Developer Zone article  Back to the benchmark - details are as follows. Environment The test environment consisted of two Linux servers: · one running the replication master · one running the replication slave. Only the slave was involved in the actual measurements, and was based on the following configuration: - Hardware: Oracle Sun Fire X4170 M2 Server - CPU: 2 sockets, 6 cores with hyper-threading, 2930 MHz. - OS: 64-bit Oracle Enterprise Linux 6.1 - Memory: 48 GB Test Procedure Initial Setup: Two MySQL servers were started on two different hosts, configured as replication master and slave. 10 sysbench schemas were created, each with a single table: CREATE TABLE `sbtest` (    `id` int(10) unsigned NOT NULL AUTO_INCREMENT,    `k` int(10) unsigned NOT NULL DEFAULT '0',    `c` char(120) NOT NULL DEFAULT '',    `pad` char(60) NOT NULL DEFAULT '',    PRIMARY KEY (`id`),    KEY `k` (`k`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 10,000 rows were inserted in each of the 10 tables, for a total of 100,000 rows. When the inserts had replicated to the slave, the slave threads were stopped. The slave data directory was copied to a backup location and the slave threads position in the master binlog noted. 10 sysbench clients, each configured with 10 threads, were spawned at the same time to generate a random schema load against each of the 10 schemas on the master. Each sysbench client executed 10,000 "update key" statements: UPDATE sbtest set k=k+1 WHERE id = <random row> In total, this generated 100,000 update statements to later replicate during the test itself. Test Methodology: The number of slave workers to test with was configured using: SET GLOBAL slave_parallel_workers=<workers> Then the slave IO thread was started and the test waited for all the update queries to be copied over to the relay log on the slave. The benchmark clock was started and then the slave SQL thread was started. The test waited for the slave SQL thread to finish executing the 100k update queries, doing "select master_pos_wait()". When master_pos_wait() returned, the benchmark clock was stopped and the duration calculated. The calculated duration from the benchmark clock should be close to the time it took for the SQL thread to execute the 100,000 update queries. The 100k queries divided by this duration gave the benchmark metric, reported as Queries Per Second (QPS). Test Reset: The test-reset cycle was implemented as follows: · the slave was stopped · the slave data directory replaced with the previous backup · the slave restarted with the slave threads replication pointer repositioned to the point before the update queries in the binlog. The test could then be repeated with identical set of queries but a different number of slave worker threads, enabling a fair comparison. The Test-Reset cycle was repeated 3 times for 0-24 number of workers and the QPS metric calculated and averaged for each worker count. MySQL Configuration The relevant configuration settings used for MySQL are as follows: binlog-format=STATEMENT relay-log-info-repository=TABLE master-info-repository=TABLE As described in the test procedure, the slave_parallel_workers setting was modified as part of the test logic. The consequence of changing this setting is: 0 worker threads:    - current (i.e. single threaded) sequential mode    - 1 x IO thread and 1 x SQL thread    - SQL thread both reads and executes the events 1 worker thread:    - sequential mode    - 1 x IO thread, 1 x Coordinator SQL thread and 1 x Worker thread    - coordinator reads the event and hands it to the worker who executes 2+ worker threads:    - parallel execution    - 1 x IO thread, 1 x Coordinator SQL thread and 2+ Worker threads    - coordinator reads events and hands them to the workers who execute them Results Figure 1 below shows that Multi-Threaded Slaves deliver ~5x higher replication performance when configured with 10 worker threads, with the load evenly distributed across our 10 x schemas. This result is compared to the current replication implementation which is based on a single SQL thread only (i.e. zero worker threads). Figure 1: 5x Higher Performance with Multi-Threaded Slaves The following figure shows more detailed results, with QPS sampled and reported as the worker threads are incremented. The raw numbers behind this graph are reported in the Appendix section of this post. Figure 2: Detailed Results As the results above show, the configuration does not scale noticably from 5 to 9 worker threads. When configured with 10 worker threads however, scalability increases significantly. The conclusion therefore is that it is desirable to configure the same number of worker threads as schemas. Other conclusions from the results: · Running with 1 worker compared to zero workers just introduces overhead without the benefit of parallel execution. · As expected, having more workers than schemas adds no visible benefit. Aside from what is shown in the results above, testing also demonstrated that the following settings had a very positive effect on slave performance: relay-log-info-repository=TABLE master-info-repository=TABLE For 5+ workers, it was up to 2.3 times as fast to run with TABLE compared to FILE. Conclusion As the results demonstrate, Multi-Threaded Slaves deliver significant performance increases to MySQL replication when handling multiple schemas. This, and the other replication enhancements introduced in MySQL 5.6 are fully available for you to download and evaluate now from the MySQL Developer site (select Development Release tab). You can learn more about MySQL 5.6 from the documentation  Please don’t hesitate to comment on this or other replication blogs with feedback and questions. Appendix – Detailed Results

    Read the article

  • iptables - quick safety eval & limit max conns over time

    - by Peter Hanneman
    Working on locking down a *nix server box with some fancy iptable(v1.4.4) rules. I'm approaching the matter with a "paranoid, everyone's out to get me" style, not necessarily because I expect the box to be a hacker magnet but rather just for the sake of learning iptables and *nix security more throughly. Everything is well commented - so if anyone sees something I missed please let me know! The *nat table's "--to-ports" point to the only ports with actively listening services. (aside from pings) Layer 2 apps listen exclusively on chmod'ed sockets bridged by one of the layer 1 daemons. Layers 3+ inherit from layer 2 in a similar fashion. The two lines giving me grief are commented out at the very bottom of the *filter rules. The first line runs fine but it's all or nothing. :) Many thanks, Peter H. *nat #Flush previous rules, chains and counters for the 'nat' table -F -X -Z #Redirect traffic to alternate internal ports -I PREROUTING --src 0/0 -p tcp --dport 80 -j REDIRECT --to-ports 8080 -I PREROUTING --src 0/0 -p tcp --dport 443 -j REDIRECT --to-ports 8443 -I PREROUTING --src 0/0 -p udp --dport 53 -j REDIRECT --to-ports 8053 -I PREROUTING --src 0/0 -p tcp --dport 9022 -j REDIRECT --to-ports 8022 COMMIT *filter #Flush previous settings, chains and counters for the 'filter' table -F -X -Z #Set default behavior for all connections and protocols -P INPUT DROP -P OUTPUT DROP -A FORWARD -j DROP #Only accept loopback traffic originating from the local NIC -A INPUT -i lo -j ACCEPT -A INPUT ! -i lo -d 127.0.0.0/8 -j DROP #Accept all outgoing non-fragmented traffic having a valid state -A OUTPUT ! -f -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT #Drop fragmented incoming packets (Not always malicious - acceptable for use now) -A INPUT -f -j DROP #Allow ping requests rate limited to one per second (burst ensures reliable results for high latency connections) -A INPUT -p icmp --icmp-type 8 -m limit --limit 1/sec --limit-burst 2 -j ACCEPT #Declaration of custom chains -N INSPECT_TCP_FLAGS -N INSPECT_STATE -N INSPECT #Drop incoming tcp connections with invalid tcp-flags -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL ALL -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL NONE -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,FIN FIN -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,PSH PSH -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ACK,URG URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL FIN,PSH,URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags FIN,RST FIN,RST -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags SYN,RST SYN,RST -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j DROP -A INSPECT_TCP_FLAGS -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG -j DROP #Accept incoming traffic having either an established or related state -A INSPECT_STATE -m state --state ESTABLISHED,RELATED -j ACCEPT #Drop new incoming tcp connections if they aren't SYN packets -A INSPECT_STATE -m state --state NEW -p tcp ! --syn -j DROP #Drop incoming traffic with invalid states -A INSPECT_STATE -m state --state INVALID -j DROP #INSPECT chain definition -A INSPECT -p tcp -j INSPECT_TCP_FLAGS -A INSPECT -j INSPECT_STATE #Route incoming traffic through the INSPECT chain -A INPUT -j INSPECT #Accept redirected HTTP traffic via HA reverse proxy -A INPUT -p tcp --dport 8080 -j ACCEPT #Accept redirected HTTPS traffic via STUNNEL SSH gateway (As well as tunneled HTTPS traffic destine for other services) -A INPUT -p tcp --dport 8443 -j ACCEPT #Accept redirected DNS traffic for NSD authoritative nameserver -A INPUT -p udp --dport 8053 -j ACCEPT #Accept redirected SSH traffic for OpenSSH server #Temp solution: -A INPUT -p tcp --dport 8022 -j ACCEPT #Ideal solution: #Limit new ssh connections to max 10 per 10 minutes while allowing an "unlimited" (or better reasonably limited?) number of established connections. #-A INPUT -p tcp --dport 8022 --state NEW,ESTABLISHED -m recent --set -j ACCEPT #-A INPUT -p tcp --dport 8022 --state NEW -m recent --update --seconds 600 --hitcount 11 -j DROP COMMIT *mangle #Flush previous rules, chains and counters in the 'mangle' table -F -X -Z COMMIT

    Read the article

  • libvirt upgrade caused vms to not see drives (boot media not found)

    - by bias
    I upgraded to Ubuntu 12.04.1 and now libvirt (via open nebula) successfully runs vms but they aren't finding the 2 drives (specifically, the boot drive). One is "hd" the other is "cdrom". The machine boots but fails and displays something like "boot media not found hd" (this was in a vnc terminal and I didn't copy the output anywhere so that's not the verbatim message). I tried constructing a new disk using the new version of qemu (via vmbuilder) and this new machine has the same problem as the old machine. In case it matters (I can't see why it would) I'm using open nebula to manage the machines. There's nothing relevant in any of the logs: syslog, libvirtd, oned. Which is to say nothing interesting/anomalous is reported when the machine is brought up. Versions libvirt 0.9.8-2ubuntu17.4 qemu-kvm 1.0+noroms-0ubuntu14.3 The libvirt xml config portions (relavent) <os> <type arch='x86_64' machine='pc-1.0'>hvm</type> <boot dev='hd'/> </os> ... <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='qcow2'/> <source file='/var/lib/one//203/images/disk.0'/> <target dev='sda' bus='scsi'/> <alias name='scsi0-0-0'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <disk type='file' device='cdrom'> <driver name='qemu' type='raw'/> <source file='/var/lib/one//203/images/disk.1'/> <target dev='sdc' bus='scsi'/> <readonly/> <alias name='scsi0-0-2'/> <address type='drive' controller='0' bus='0' unit='2'/> </disk> <controller type='scsi' index='0'> <alias name='scsi0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/> </controller> <memballoon model='virtio'> <alias name='balloon0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/> </memballoon> ... </devices> The libvirt/qemu log contains 2012-11-25 22:19:24.328+0000: starting up LC_ALL=C PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin QEMU_AUDIO_DRV=none /usr/bin/kvm -S -M pc-1.0 -enable-kvm -m 256 -smp 1,sockets=1,cores=1,threads=1 -name one-204 -uuid 4be6c276-19e8-bdc2-e9c9-9ca5352f2be3 -nodefconfig -nodefaults -chardev socket,id=charmonitor,path=/var/lib/libvirt/qemu/one-204.monitor,server,nowait -mon chardev=charmonitor,id=monitor,mode=control -rtc base=utc -no-shutdown -device lsi,id=scsi0,bus=pci.0,addr=0x5 -drive file=/var/lib/one//204/images/disk.0,if=none,id=drive-scsi0-0-0,format=qcow2 -device scsi-disk,bus=scsi0.0,scsi-id=0,drive=drive-scsi0-0-0,id=scsi0-0-0,bootindex=1 -drive file=/var/lib/one//204/images/disk.1,if=none,media=cdrom,id=drive-scsi0-0-2,readonly=on,format=raw -device scsi-disk,bus=scsi0.0,scsi-id=2,drive=drive-scsi0-0-2,id=scsi0-0-2 -netdev tap,fd=18,id=hostnet0 -device rtl8139,netdev=hostnet0,id=net0,mac=02:00:c0:a8:00:68,bus=pci.0,addr=0x3 -netdev tap,fd=19,id=hostnet1 -device rtl8139,netdev=hostnet1,id=net1,mac=02:00:ad:f0:1b:94,bus=pci.0,addr=0x4 -usb -vnc 0.0.0.0:204 -vga cirrus -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x6 kvm: -device rtl8139,netdev=hostnet0,id=net0,mac=02:00:c0:a8:00:68,bus=pci.0,addr=0x3: pci_add_option_rom: failed to find romfile "pxe-rtl8139.rom" kvm: -device rtl8139,netdev=hostnet1,id=net1,mac=02:00:ad:f0:1b:94,bus=pci.0,addr=0x4: pci_add_option_rom: failed to find romfile "pxe-rtl8139.rom"

    Read the article

  • Java EE 7 Survey Results!

    - by reza_rahman
    On November 8th, the Java EE EG posted a survey to gather broad community feedback on a number of critical open issues. For reference, you can find the original survey here. We kept the survey open for about three weeks until November 30th. To our delight, over 1100 developers took time out of their busy lives to let their voices be heard! The results of the survey were sent to the EG on December 12th. The subsequent EG discussion is available here. The exact summary sent to the EG is available here. We would like to take this opportunity to thank each and every one the individuals who took the survey. It is very appreciated, encouraging and worth it's weight in gold. In particular, I tried to capture just some of the high-quality, intelligent, thoughtful and professional comments in the summary to the EG. I highly encourage you to continue to stay involved, perhaps through the Adopt-a-JSR program. We would also like to sincerely thank java.net, JavaLobby, TSS and InfoQ for helping spread the word about the survey. Below is a brief summary of the results... APIs to Add to Java EE 7 Full/Web Profile The first question asked which of the four new candidate APIs (WebSocket, JSON-P, JBatch and JCache) should be added to the Java EE 7 Full and Web profile respectively. As the following graph shows, there was significant support for adding all the new APIs to the full profile: Support is relatively the weakest for Batch 1.0, but still good. A lot of folks saw WebSocket 1.0 as a critical technology with comments such as this one: "A modern web application needs Web Sockets as first class citizens" While it is clearly seen as being important, a number of commenters expressed dissatisfaction with the lack of a higher-level JSON data binding API as illustrated by this comment: "How come we don't have a Data Binding API for JSON" JCache was also seen as being very important as expressed with comments like: "JCache should really be that foundational technology on which other specs have no fear to depend on" The results for the Web Profile is not surprising. While there is strong support for adding WebSocket 1.0 and JSON-P 1.0 to the Web Profile, support for adding JCache 1.0 and Batch 1.0 is relatively weak. There was actually significant opposition to adding Batch 1. 0 (with 51.8% casting a 'No' vote). Enabling CDI by Default The second question asked was whether CDI should be enabled in Java EE environments by default. A significant majority of 73.3% developers supported enabling CDI, only 13.8% opposed. Comments such as these two reflect a strong general support for CDI as well as a desire for better Java EE alignment with CDI: "CDI makes Java EE quite valuable!" "Would prefer to unify EJB, CDI and JSF lifecycles" There is, however, a palpable concern around the performance impact of enabling CDI by default as exemplified by this comment: "Java EE projects in most cases use CDI, hence it is sensible to enable CDI by default when creating a Java EE application. However, there are several issues if CDI is enabled by default: scanning can be slow - not all libs use CDI (hence, scanning is not needed)" Another significant concern appears to be around backwards compatibility and conflict with other JSR 330 implementations like Spring: "I am leaning towards yes, however can easily imagine situations where errors would be caused by automatically activating CDI, especially in cases of backward compatibility where another DI engine (such as Spring and the like) happens to use the same mechanics to inject dependencies and in that case there would be an overlap in injections and probably an uncertain outcome" Some commenters such as this one attempt to suggest solutions to these potential issues: "If you have Spring in use and use javax.inject.Inject then you might get some unexpected behavior that could be equally confusing. I guess there will be a way to switch CDI off. I'm tempted to say yes but am cautious for this reason" Consistent Usage of @Inject The third question was around using CDI/JSR 330 @Inject consistently vs. allowing JSRs to create their own injection annotations. A slight majority of 53.3% developers supported using @Inject consistently across JSRs. 28.8% said using custom injection annotations is OK, while 18.0% were not sure. The vast majority of commenters were strongly supportive of CDI and general Java EE alignment with CDI as illistrated by these comments: "Dependency Injection should be standard from now on in EE. It should use CDI as that is the DI mechanism in EE and is quite powerful. Having a new JSR specific DI mechanism to deal with just means more reflection, more proxies. JSRs should also be constructed to allow some of their objects Injectable. @Inject @TransactionalCache or @Inject @JMXBean etc...they should define the annotations and stereotypes to make their code less procedural. Dog food it. If there is a shortcoming in CDI for a JSR fix it and we will all be grateful" "We're trying to make this a comprehensive platform, right? Injection should be a fundamental part of the platform; everything else should build on the same common infrastructure. Each-having-their-own is just a recipe for chaos and having to learn the same thing 10 different ways" Expanding the Use of @Stereotype The fourth question was about expanding CDI @Stereotype to cover annotations across Java EE beyond just CDI. A significant majority of 62.3% developers supported expanding the use of @Stereotype, only 13.3% opposed. A majority of commenters supported the idea as well as the theme of general CDI/Java EE alignment as expressed in these examples: "Just like defining new types for (compositions of) existing classes, stereotypes can help make software development easier" "This is especially important if many EJB services are decoupled from the EJB component model and can be applied via individual annotations to Java EE components. @Stateless is a nicely compact annotation. Code will not improve if that will have to be applied in the future as @Transactional, @Pooled, @Secured, @Singlethreaded, @...." Some, however, expressed concerns around increased complexity such as this commenter: "Could be very convenient, but I'm afraid if it wouldn't make some important class annotations less visible" Expanding Interceptor Use The final set of questions was about expanding interceptors further across Java EE... A very solid 96.3% of developers wanted to expand interceptor use to all Java EE components. 35.7% even wanted to expand interceptors to other Java EE managed classes. Most developers (54.9%) were not sure if there is any place that injection is supported that should not support interceptors. 32.8% thought any place that supports injection should also support interceptors. Only 12.2% were certain that there are places where injection should be supported but not interceptors. The comments reflected the diversity of opinions, generally supportive of interceptors: "I think interceptors are as fundamental as injection and should be available anywhere in the platform" "The whole usage of interceptors still needs to take hold in Java programming, but it is a powerful technology that needs some time in the Sun. Basically it should become part of Java SE, maybe the next step after lambas?" A distinct chain of thought separated interceptors from filters and listeners: "I think that the Servlet API already provides a rich set of possibilities to hook yourself into different Servlet container events. I don't find a need to 'pollute' the Servlet model with the Interceptors API"

    Read the article

  • MySQL is hogging my server resources

    - by Reacen
    Does anyone have any idea of what can cause this weird behaviour and how I go about fixing it? This is all coming from MySQL only (both RAM and CPU usage), for about 10 minutes after I reboot my Java game server (that has a pool of 256 connections). There are not that many queries and I think it may be more of a MySQL misconfiguration problem. My server: 3.20 GHz * 6 core / 24 GB RAM / 64 bit Windows Server 2003. My game server: Java server, with 256 MySQL connections pool (MyISAM engine), about 500,000 accounts, and 9 million rows of game items in database and about 3,000 players are connected. After about 15 minutes of the game server reboot, the server resumes its stability and CPU usage drop down to 1% ~ 5% and memory to 6 GB. Here is a copy of my MySQL configuration. Also, any advice about my MySQL configuration will be appreciated. I really set it up almost at random. # Example MySQL config file for very large systems. # # This is for a large system with memory of 1G-2G where the system runs mainly # MySQL. # # You can copy this file to # /etc/my.cnf to set global options, # mysql-data-dir/my.cnf to set server-specific options (in this # installation this directory is C:\mysql\data) or # ~/.my.cnf to set user-specific options. # # In this file, you can use all long options that a program supports. # If you want to know which options a program supports, run the program # with the "--help" option. # The following options will be passed to all MySQL clients [client] #password = your_password port = 3306 socket = /tmp/mysql.sock # Here follows entries for some specific programs # The MySQL server [mysqld] #log=c:\mysql.log port = 3306 socket = /tmp/mysql.sock skip-locking key_buffer_size = 2572M max_allowed_packet = 64M table_open_cache = 512 sort_buffer_size = 128M read_buffer_size = 128M read_rnd_buffer_size = 128M myisam_sort_buffer_size = 500M thread_cache_size = 32 query_cache_size = 1948M # Try number of CPU's*2 for thread_concurrency thread_concurrency = 12 max_connections = 5000 # Don't listen on a TCP/IP port at all. This can be a security enhancement, # if all processes that need to connect to mysqld run on the same host. # All interaction with mysqld must be made via Unix sockets or named pipes. # Note that using this option without enabling named pipes on Windows # (via the "enable-named-pipe" option) will render mysqld useless! # #skip-networking # Replication Master Server (default) # binary logging is required for replication log-bin=mysql-bin # required unique id between 1 and 2^32 - 1 # defaults to 1 if master-host is not set # but will not function as a master if omitted server-id = 1 # Replication Slave (comment out master section to use this) # # To configure this host as a replication slave, you can choose between # two methods : # # 1) Use the CHANGE MASTER TO command (fully described in our manual) - # the syntax is: # # CHANGE MASTER TO MASTER_HOST=<host>, MASTER_PORT=<port>, # MASTER_USER=<user>, MASTER_PASSWORD=<password> ; # # where you replace <host>, <user>, <password> by quoted strings and # <port> by the master's port number (3306 by default). # # Example: # # CHANGE MASTER TO MASTER_HOST='125.564.12.1', MASTER_PORT=3306, # MASTER_USER='joe', MASTER_PASSWORD='secret'; # # OR # # 2) Set the variables below. However, in case you choose this method, then # start replication for the first time (even unsuccessfully, for example # if you mistyped the password in master-password and the slave fails to # connect), the slave will create a master.info file, and any later # change in this file to the variables' values below will be ignored and # overridden by the content of the master.info file, unless you shutdown # the slave server, delete master.info and restart the slaver server. # For that reason, you may want to leave the lines below untouched # (commented) and instead use CHANGE MASTER TO (see above) # # required unique id between 2 and 2^32 - 1 # (and different from the master) # defaults to 2 if master-host is set # but will not function as a slave if omitted #server-id = 2 # # The replication master for this slave - required #master-host = <hostname> # # The username the slave will use for authentication when connecting # to the master - required #master-user = <username> # # The password the slave will authenticate with when connecting to # the master - required #master-password = <password> # # The port the master is listening on. # optional - defaults to 3306 #master-port = <port> # # binary logging - not required for slaves, but recommended #log-bin=mysql-bin # # binary logging format - mixed recommended #binlog_format=mixed # Point the following paths to different dedicated disks #tmpdir = /tmp/ #log-update = /path-to-dedicated-directory/hostname # Uncomment the following if you are using InnoDB tables #innodb_data_home_dir = C:\mysql\data/ #innodb_data_file_path = ibdata1:2000M;ibdata2:10M:autoextend #innodb_log_group_home_dir = C:\mysql\data/ # You can set .._buffer_pool_size up to 50 - 80 % # of RAM but beware of setting memory usage too high #innodb_buffer_pool_size = 384M #innodb_additional_mem_pool_size = 20M # Set .._log_file_size to 25 % of buffer pool size #innodb_log_file_size = 100M #innodb_log_buffer_size = 8M #innodb_flush_log_at_trx_commit = 1 #innodb_lock_wait_timeout = 50 [mysqldump] quick max_allowed_packet = 64M [mysql] no-auto-rehash # Remove the next comment character if you are not familiar with SQL #safe-updates [myisamchk] key_buffer_size = 256M sort_buffer_size = 256M read_buffer = 8M write_buffer = 8M [mysqlhotcopy] interactive-timeout

    Read the article

  • php crashes with no core file and this message : apc_mmap failed

    - by greg0ire
    Description of the problem Regularly, cron php processes crash on our production server, which result in mails with the following body : PHP Fatal error: PHP Startup: apc_mmap: mmap failed: in Unknown on line 0 Segmentation fault (core dumped) I think the Segmentation fault (core dumped) should result in core files being handled by apport and then written in /var/crashes, but the files I can see there are there since yesterday, although the last crash occured today : -rw-r----- 1 root whoopsie 1138528 mai 22 04:09 _usr_bin_php5.0.crash -rw-r----- 1 frontoffice whoopsie 1166373 mai 20 18:00 _usr_bin_php5.1005.crash -rw-r----- 1 frontoffice whoopsie 81622658 mai 22 00:05 _usr_sbin_php5-fpm.1005.crash I tried to download the last one anyway, and ran gdb /usr/sbin/php5-fpm /tmp/_usr_sbin_php5-fpm.1005.crash, only to be told that the file is not a core file (its format was not recognized). Here is the server's apc configuration : cat /etc/php5/cli/conf.d/20-apc.ini extension=apc.so apc.shm_size=512M apc.ttl=3600 apc.user_ttl=3600 apc.enable_cli=1 I'm mostly worried about the apc.shm_size… isn't it too high or too low ? I understand it has to do with the size of memory segments. Question(s) What could be the problem ? How can I troubleshoot it (how can I get a valid core file ?) ? System information free total used free shared buffers cached Mem: 5081296 4354684 726612 0 374744 959968 -/+ buffers/cache: 3019972 2061324 Swap: 522236 516888 5348 cat /etc/lsb-release DISTRIB_ID=Ubuntu DISTRIB_RELEASE=12.04 DISTRIB_CODENAME=precise DISTRIB_DESCRIPTION="Ubuntu 12.04.2 LTS" php -v PHP 5.4.17-1~precise+1 (cli) (built: Jul 17 2013 18:14:06) Copyright (c) 1997-2013 The PHP Group Zend Engine v2.4.0, Copyright (c) 1998-2013 Zend Technologies php -i excerpt : Configuration apc APC Support => enabled Version => 3.1.13 APC Debugging => Disabled MMAP Support => Enabled MMAP File Mask => Locking type => pthread mutex Locks Serialization Support => php Revision => $Revision: 327136 $ Build Date => Nov 20 2012 18:41:36 Directive => Local Value => Master Value apc.cache_by_default => On => On apc.canonicalize => On => On apc.coredump_unmap => Off => Off apc.enable_cli => On => On apc.enabled => On => On apc.file_md5 => Off => Off apc.file_update_protection => 2 => 2 apc.filters => no value => no value apc.gc_ttl => 3600 => 3600 apc.include_once_override => Off => Off apc.lazy_classes => Off => Off apc.lazy_functions => Off => Off apc.max_file_size => 1M => 1M apc.mmap_file_mask => no value => no value apc.num_files_hint => 1000 => 1000 apc.preload_path => no value => no value apc.report_autofilter => Off => Off apc.rfc1867 => Off => Off apc.rfc1867_freq => 0 => 0 apc.rfc1867_name => APC_UPLOAD_PROGRESS => APC_UPLOAD_PROGRESS apc.rfc1867_prefix => upload_ => upload_ apc.rfc1867_ttl => 3600 => 3600 apc.serializer => default => default apc.shm_segments => 1 => 1 apc.shm_size => 512M => 512M apc.shm_strings_buffer => 4M => 4M apc.slam_defense => On => On apc.stat => On => On apc.stat_ctime => Off => Off apc.ttl => 3600 => 3600 apc.use_request_time => On => On apc.user_entries_hint => 4096 => 4096 apc.user_ttl => 3600 => 3600 apc.write_lock => On => On php -m [PHP Modules] apc bcmath bz2 calendar Core ctype curl date dba dom ereg exif fileinfo filter ftp gd gettext hash iconv imagick intl json ldap libxml mbstring memcache memcached mhash mysql mysqli openssl pcntl pcre PDO pdo_mysql pdo_pgsql pdo_sqlite pgsql Phar posix Reflection session shmop SimpleXML soap sockets SPL sqlite3 standard sysvmsg sysvsem sysvshm tidy tokenizer wddx xml xmlreader xmlwriter zip zlib [Zend Modules] ulimit -a core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 39531 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) 39531 virtual memory (kbytes, -v) unlimited file locks (-x) unlimited

    Read the article

  • Can't log in via SSH to any accounts set to use /bin/bash as a default shell

    - by Gui Ambros
    I'm trying to install bash as the default shell on a ARM Linux running on an embedded device (Synology DS212+ NAS). But there's something really wrong, and I can't figure out what it is. Symptoms: 1) Root has /bin/bash as default shell, and can log in normally via SSH: $ grep root /etc/passwd root:x:0:0:root:/root:/bin/bash $ ssh root@NAS root@NAS's password: Last login: Sun Dec 16 14:06:56 2012 from desktop # 2) joeuser has /bin/bash as default shell, and receives "Permission denied" when trying to log in via SSH: $ grep joeuser /etc/passwd joeuser:x:1029:100:Joe User:/home/joeuser:/bin/bash $ ssh joeuser@localhost joeuser@NAS's password: Last login: Sun Dec 16 14:07:22 2012 from desktop Permission denied, please try again. Connection to localhost closed. 3) changing joeuser's shell back to /bin/sh: $ grep joeuser /etc/passwd joeuser:x:1029:100:Joe User:/home/joeuser:/bin/sh $ ssh joeuser@localhost Last login: Sun Dec 16 15:50:52 2012 from localhost $ To make things even more strange, I can log in as joeuser using /bin/bash using the serial console (!). Also a su - joeuser as root works fine, so the bash binary itself is working fine. In an act of despair, I changed joeuser's uid to 0 on /etc/passwd, but also didn't work, so it doesn't seem to be anything permission related. Seems that bash is doing some extra checking that sshd didn't like, and blocking the connections for non-root users. Maybe some sort of sanity checking - or terminal emulation - that is triggering the SIGCHLD, but only when called via ssh. I already went through every single item on sshd_config, and also put SSHD in debug mode, but didn't find anything strange. Here's my /etc/ssh/sshd_config: LogLevel DEBUG LoginGraceTime 2m PermitRootLogin yes RSAAuthentication yes PubkeyAuthentication yes AuthorizedKeysFile %h/.ssh/authorized_keys ChallengeResponseAuthentication no UsePAM yes AllowTcpForwarding no ChrootDirectory none Subsystem sftp internal-sftp -f DAEMON -u 000 And here's the output from /usr/syno/sbin/sshd -d, showing the failed attempt of joeuser trying to log in, with /bin/bash as the shell: debug1: Config token is loglevel debug1: Config token is logingracetime debug1: Config token is permitrootlogin debug1: Config token is rsaauthentication debug1: Config token is pubkeyauthentication debug1: Config token is authorizedkeysfile debug1: Config token is challengeresponseauthentication debug1: Config token is usepam debug1: Config token is allowtcpforwarding debug1: Config token is chrootdirectory debug1: Config token is subsystem debug1: HPN Buffer Size: 87380 debug1: sshd version OpenSSH_5.8p1-hpn13v11 debug1: read PEM private key done: type RSA debug1: private host key: #0 type 1 RSA debug1: read PEM private key done: type DSA debug1: private host key: #1 type 2 DSA debug1: read PEM private key done: type ECDSA debug1: private host key: #2 type 3 ECDSA debug1: rexec_argv[0]='/usr/syno/sbin/sshd' debug1: rexec_argv[1]='-d' Set /proc/self/oom_adj from 0 to -17 debug1: Bind to port 22 on ::. debug1: Server TCP RWIN socket size: 87380 debug1: HPN Buffer Size: 87380 Server listening on :: port 22. debug1: Bind to port 22 on 0.0.0.0. debug1: Server TCP RWIN socket size: 87380 debug1: HPN Buffer Size: 87380 Server listening on 0.0.0.0 port 22. debug1: Server will not fork when running in debugging mode. debug1: rexec start in 6 out 6 newsock 6 pipe -1 sock 9 debug1: inetd sockets after dupping: 4, 4 Connection from 127.0.0.1 port 52212 debug1: HPN Disabled: 0, HPN Buffer Size: 87380 debug1: Client protocol version 2.0; client software version OpenSSH_5.8p1-hpn13v11 SSH: Server;Ltype: Version;Remote: 127.0.0.1-52212;Protocol: 2.0;Client: OpenSSH_5.8p1-hpn13v11 debug1: match: OpenSSH_5.8p1-hpn13v11 pat OpenSSH* debug1: Enabling compatibility mode for protocol 2.0 debug1: Local version string SSH-2.0-OpenSSH_5.8p1-hpn13v11 debug1: permanently_set_uid: 1024/100 debug1: MYFLAG IS 1 debug1: list_hostkey_types: ssh-rsa,ssh-dss,ecdsa-sha2-nistp256 debug1: SSH2_MSG_KEXINIT sent debug1: SSH2_MSG_KEXINIT received debug1: AUTH STATE IS 0 debug1: REQUESTED ENC.NAME is 'aes128-ctr' debug1: kex: client->server aes128-ctr hmac-md5 none SSH: Server;Ltype: Kex;Remote: 127.0.0.1-52212;Enc: aes128-ctr;MAC: hmac-md5;Comp: none debug1: REQUESTED ENC.NAME is 'aes128-ctr' debug1: kex: server->client aes128-ctr hmac-md5 none debug1: expecting SSH2_MSG_KEX_ECDH_INIT debug1: SSH2_MSG_NEWKEYS sent debug1: expecting SSH2_MSG_NEWKEYS debug1: SSH2_MSG_NEWKEYS received debug1: KEX done debug1: userauth-request for user joeuser service ssh-connection method none SSH: Server;Ltype: Authname;Remote: 127.0.0.1-52212;Name: joeuser debug1: attempt 0 failures 0 debug1: Config token is loglevel debug1: Config token is logingracetime debug1: Config token is permitrootlogin debug1: Config token is rsaauthentication debug1: Config token is pubkeyauthentication debug1: Config token is authorizedkeysfile debug1: Config token is challengeresponseauthentication debug1: Config token is usepam debug1: Config token is allowtcpforwarding debug1: Config token is chrootdirectory debug1: Config token is subsystem debug1: PAM: initializing for "joeuser" debug1: PAM: setting PAM_RHOST to "localhost" debug1: PAM: setting PAM_TTY to "ssh" debug1: userauth-request for user joeuser service ssh-connection method password debug1: attempt 1 failures 0 debug1: do_pam_account: called Accepted password for joeuser from 127.0.0.1 port 52212 ssh2 debug1: monitor_child_preauth: joeuser has been authenticated by privileged process debug1: PAM: establishing credentials User child is on pid 9129 debug1: Entering interactive session for SSH2. debug1: server_init_dispatch_20 debug1: server_input_channel_open: ctype session rchan 0 win 65536 max 16384 debug1: input_session_request debug1: channel 0: new [server-session] debug1: session_new: session 0 debug1: session_open: channel 0 debug1: session_open: session 0: link with channel 0 debug1: server_input_channel_open: confirm session debug1: server_input_global_request: rtype [email protected] want_reply 0 debug1: server_input_channel_req: channel 0 request pty-req reply 1 debug1: session_by_channel: session 0 channel 0 debug1: session_input_channel_req: session 0 req pty-req debug1: Allocating pty. debug1: session_new: session 0 debug1: session_pty_req: session 0 alloc /dev/pts/1 debug1: server_input_channel_req: channel 0 request shell reply 1 debug1: session_by_channel: session 0 channel 0 debug1: session_input_channel_req: session 0 req shell debug1: Setting controlling tty using TIOCSCTTY. debug1: Received SIGCHLD. debug1: session_by_pid: pid 9130 debug1: session_exit_message: session 0 channel 0 pid 9130 debug1: session_exit_message: release channel 0 debug1: session_by_tty: session 0 tty /dev/pts/1 debug1: session_pty_cleanup: session 0 release /dev/pts/1 Received disconnect from 127.0.0.1: 11: disconnected by user debug1: do_cleanup debug1: do_cleanup debug1: PAM: cleanup debug1: PAM: closing session debug1: PAM: deleting credentials Here you have the full output of sshd -dd, together with ssh -vv. Bash: # bash --version GNU bash, version 3.2.49(1)-release (arm-none-linux-gnueabi) Copyright (C) 2007 Free Software Foundation, Inc. The bash binary was cross compiled from source. I also tried using a pre-compiled binary from the Optware distribution, but had the exact same problem. I checked for missing shared libraries using objdump -x, but they're all there. Any ideas what could be causing this "Permission denied, please try again."? I'm almost diving in the bash source code to investigate, but trying to avoid hours chasing something that may be silly.

    Read the article

  • KVM Guest installed from console. But how to get to the guest's console?

    - by badbishop
    I'm trying to install a fully virtualized guest (Fedora 14 x86_64) on KVM (RHEL 6), using command-line only (both hypervisor and guest). It goes without errors, and without a tangible result . I'd like to know how to do a text-only installation. So, here's what I've done: # virt-install \ --name=FE --ram=756 --vcpus=1 \ --file=/var/lib/libvirt/images/FE.img --network bridge:br0 \ --nographics --os-type=linux \ --extra-args='console=tty0' -v \ --cdrom=/media/usb/Fedora-14-x86_64-Live-Desktop.iso Starting install... Creating domain... | 0 B 00:00 Connected to domain FE Escape character is ^] ÿ Now what? As I understand after googling for a couple of days, I should see the guest's output from the text installation, but nothing happens. virt-viewer cannot connect to it, kindly suggesting that I explore all the options by adding --help (which I did). If I reconnect with virsh, I see this: Domain installation still in progress. You can reconnect to the console to complete the installation process. [root@v ~] # virsh console FEConnected to domain FE Escape character is ^] This shows that VM is running # virsh list Id Name State ---------------------------------- 8 FE running Qemu log: LC_ALL=C PATH=/sbin:/usr/sbin:/bin:/usr/bin /usr/libexec/qemu-kvm -S -M rhel6.0.0 -enable-kvm -m 756 -smp 1,sockets=1,cores=1,threads=1 -name FE -uuid 6989d008-7c89-424c-d2d3-f41235c57a18 -nographic -nodefconfig -nodefaults -chardev socket,id=monitor,path=/var/lib/libvirt/qemu/FE.monitor,server,nowait -mon chardev=monitor,mode=control -rtc base=utc -no-reboot -boot d -drive file=/var/lib/libvirt/images/FE.img,if=none,id=drive-ide0-0-0,format=raw,cache=none -device ide-drive,bus=ide.0,unit=0,drive=drive-ide0-0-0,id=ide0-0-0 -drive file=/media/usb/Fedora-14-x86_64-Live-Desktop.iso,if=none,media=cdrom,id=drive-ide0-1-0,readonly=on,format=raw -device ide-drive,bus=ide.1,unit=0,drive=drive-ide0-1-0,id=ide0-1-0 -netdev tap,fd=20,id=hostnet0 -device rtl8139,netdev=hostnet0,id=net0,mac=52:54:00:0a:65:8d,bus=pci.0,addr=0x2 -chardev pty,id=serial0 -device isa-serial,chardev=serial0 -usb -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x3 char device redirected to /dev/pts/1 Output of /etc/libvirt/qemu/FE.xml # cat /etc/libvirt/qemu/FE.xml <domain type='kvm'> <name>FE</name> <uuid>6989d008-7c89-424c-d2d3-f41235c57a18</uuid> <memory>774144</memory> <currentMemory>774144</currentMemory> <vcpu>1</vcpu> <os> <type arch='x86_64' machine='rhel6.0.0'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/libexec/qemu-kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw' cache='none'/> <source file='/var/lib/libvirt/images/FE.img'/> <target dev='hda' bus='ide'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <disk type='block' device='cdrom'> <driver name='qemu' type='raw'/> <target dev='hdc' bus='ide'/> <readonly/> <address type='drive' controller='0' bus='1' unit='0'/> </disk> <controller type='ide' index='0'> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/> </controller> <interface type='bridge'> <mac address='52:54:00:0a:65:8d'/> <source bridge='br0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target port='0'/> </console> <memballoon model='virtio'> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </memballoon> </devices> </domain> I'm obviously missing something that many others don't, but what is it? Thanx in advance!

    Read the article

< Previous Page | 61 62 63 64 65 66 67 68  | Next Page >