Search Results

Search found 47799 results on 1912 pages for 'class attributes'.

Page 65/1912 | < Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • Using reflection to retrieve constructor used to instantiate attribute

    - by summatix
    How can I retrieve information about how an attribute was instantiated? Consider I have the following class definitions: [AttributeUsage(AttributeTargets.Class)] public class ExampleAttribute : Attribute { public ExampleAttribute(string value) { Value = value; } public string Value { get; private set; } } [ExampleAttribute("test")] public class Test { } The new .NET 4.0 MemberInfo.GetCustomAttributesData method: foreach (var attribute in typeof(Test).GetCustomAttributesData()) { Console.WriteLine(attribute); } outputs [Example.ExampleAttribute("test")]. Is there another way to retrieve this same information, preferably using the MemberInfo.GetCustomAttributes method?

    Read the article

  • BlackBerry/J2ME - SAX parse collection of objects with attributes

    - by Changqi Guo
    I have a problem with using the SAX parser to parse a XML file. It is a complex XML file, it is like the following. <Objects> <Object no="1"> <field name="PID">ilives:87877</field> <field name="dc.coverage">Charlottetown</field> <field name="fgs.ownerId">fedoraAdmin</field> </Object> <Object no="2">...... I am confused how to get the names in each field, and how to store the information of each object. import java.util.Enumeration; import java.util.Hashtable; public class XMLObject { private Hashtable mFields = new Hashtable(); private int mN = -1; public int getN() { return mN; } public void setN(int n) { mN = n; } public String getStringField(String key) { return (String) mFields.get(key); } public void setStringField(String key, String value) { mFields.put(key, value); } public String getPID() { return getStringField("PID"); } public void setPID(String pid) { setStringField("PID", pid); } public String getDcCoverage() { return getStringField("dc.coverage"); } public void setDcCoverage(String dcCoverage) { setStringField("dc.coverage", dcCoverage); } public String getFgsOwnerId() { return getStringField("fgs.ownerId"); } public void setFgsOwnerId(String fgsOwnerId) { setStringField("fgs.ownerId", fgsOwnerId); } public String dccreator() { return getStringField("dc.creator"); } public void dccreator(String dccreator) { setStringField("dc.creator", dccreator); } public String getdcformat() { return getStringField("dc.format"); } public void setdcformat(String dcformat) { setStringField("dc.format", dcformat); } public String getdcidentifier() { return getStringField("dc.identifier"); } public void setdcidentifier(String dcidentifier) { setStringField("dc.identifier", dcidentifier); } public String getdclanguage() { return getStringField("dc.language"); } public void setdclanguage(String dclanguage) { setStringField("dc.language", dclanguage); } public String getdcpublisher() { return getStringField("dc.publisher"); } public void setdcpublisher(String dcpublisher) { setStringField("dc.publisher",dcpublisher); } public String getdcsubject() { return getStringField("dc.subject"); } public void setdcsubject(String dcsubject) { setStringField("dc.subject",dcsubject); } public String getdctitle() { return getStringField("dc.title"); } public void setdctitle(String dctitle) { setStringField("dc.title",dctitle); } public String getdctype() { return getStringField("dc.type"); } public void setdctype(String dctype) { setStringField("dc.type",dctype); } public String toString() { StringBuffer sb = new StringBuffer(); sb.append("N:"+mN+";"); Enumeration keys = mFields.keys(); while (keys.hasMoreElements()) { String key = (String) keys.nextElement(); sb.append(key+":"+mFields.get(key)+";"); } return sb.toString(); } } i used the same handler class you provided import java.io.*; import net.rim.device.api.system.Bitmap; import javax.xml.parsers.ParserConfigurationException; import javax.xml.parsers.SAXParser; import javax.xml.parsers.SAXParserFactory; import java.io.InputStream; import net.rim.device.api.ui.component.*; import net.rim.device.api.ui.container.MainScreen; import net.rim.device.api.xml.parsers.*; import org.w3c.dom.*; import org.xml.sax.*; import org.xml.sax.helpers.DefaultHandler; public class xmlparsermainscreen extends MainScreen{ private static String xmlres = "/xml/xml1.xml"; private RichTextField textOutputField; public xmlparsermainscreen() throws ParserConfigurationException, net.rim.device.api.xml.parsers.ParserConfigurationException, IOException { InputStream inputStream = getClass().getResourceAsStream(xmlres); ByteArrayOutputStream baos = new ByteArrayOutputStream(); byte[] buffer = new byte[10000]; int bytesRead = inputStream.read(buffer); while (bytesRead > 0) { baos.write(buffer, 0, bytesRead); bytesRead = inputStream.read(buffer); } baos.close(); String result=baos.toString(); ByteArrayInputStream bais = new ByteArrayInputStream(result.getBytes()); XMLObject[] xmlObjects = getXMLObjects(bais); for (int i = 0; i < xmlObjects.length; i++) { XMLObject o = xmlObjects[i]; textOutputField = new RichTextField(); add(textOutputField); textOutputField.setText(o.toString()); // add(new LabelField(o.toString())); } LabelField resultdis=new LabelField("resultdisplay"); add(resultdis); //textOutputField = new RichTextField(); //add(textOutputField); //textOutputField.setText(result); } static XMLObject[] getXMLObjects(InputStream is) throws ParserConfigurationException { XMLObjectHandler xmlObjectHandler = new XMLObjectHandler(); try { SAXParser parser = SAXParserFactory.newInstance() .newSAXParser(); parser.parse(is, xmlObjectHandler); } catch (ParserConfigurationException e) { e.printStackTrace(); } catch (SAXException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } return xmlObjectHandler.getXMLObjects(); } } import java.io.IOException; import javax.xml.parsers.ParserConfigurationException; import net.rim.device.api.ui.UiApplication; public class xmlparser extends UiApplication { private xmlparser() throws ParserConfigurationException, net.rim.device.api.xml.parsers.ParserConfigurationException, IOException { pushScreen( new xmlparsermainscreen() ); } public static void main( String[] args ) throws ParserConfigurationException, net.rim.device.api.xml.parsers.ParserConfigurationException, IOException { new xmlparser().enterEventDispatcher(); } }

    Read the article

  • Class Design - Returning a List<Object> From <Object>

    - by Mike
    Given a simple class: public class Person { public string FirstName; public string LastName; public string GetFullName() { return FirstName + LastName; } } The user of this class will populate a List<Person> object by reading an Xml file or some other data source. Should the logic for populating the List be in the Person class or should it just remain in the calling class? In other words, should there be a public List<Persons> GetPersons() method in the Person class or in the calling class? Or should the data accessor be in another class altogether? I know this is a rather simplistic question but I'm just curious how others typically do it.

    Read the article

  • Objective-C Interface Builder don't see renamed class

    - by Jerve
    Hi, I've renamed a UITableViewController class in Xcode, which was used as a parent class in a XIB. The Interface Builder still uses the old name for that class and it compiles and works fine. Interface Builder doesn't see the new name of the class and when I try to type in manually, it compiles and gives me an exception at the runtime: "Unknown class ... in Interface Builder file." Is there a way to update the class name in the Interface Builder? Thanks

    Read the article

  • Accessing "Public" methods from "Private" methods in javascript class

    - by mon4goos
    Is there a way to call "public" javascript functions from "private" ones within a class? Check out the class below: function Class() { this.publicMethod = function() { alert("hello"); } privateMethod = function() { publicMethod(); } this.test = function() { privateMethod(); } } Here is the code I run: var class = new Class(); class.test(); Firebug gives this error: publicMethod is not defined: [Break on this error] publicMethod(); Is there some other way to call publicMethod() within privateMethod() without accessing the global class variable [i.e. class.publicMethod()]?

    Read the article

  • load class not in classpath dynamically in web application - without using custom classloader

    - by swdeveloper
    I am developing a web application. The web application generates java classes on the fly. For example it generates class com.people.Customer.java In my code, I dynamically compile this to get com.people.Customer.class and store in some directory say repository/com/people/Customer.class which is not on the classpath of my application server.My application server(I am using WebSphere Application Server/Apache Tomcat etc) picks up the classes from the WEB-INF/classes directory. The Classloader would use this to load the classes. After compilation I need to load this class so that it becomes accessible to other classes using it after its creation. 4.When I use Thread.currentThread().getContextClassLoader().loadClass(com.people.Customer) obviously the Classloader is not able to load the class, since its not on the classpath(not in WEB-INF/classes). Due to similar reasons, getResource(..) or getResourceAsStream(..) also does not work. I need a way to : Read the class Customer.class maybe as a stream (or any other way would do) and then load it. Following are the constraints: I cannot add the repository folder to the WEB-INF/classes folder. I cannot create a new Custom ClassLoader. If I create a new ClassLoader and this loads the class, it will not be accessible to its parent ClassLoader. Is there any way of achieving this? If not this, in the worse case, is there a way of overriding the default class loader with a custom class loader for web applications the same classloader should be used to load applications throughout entire lifecycle of my web application. Appreciate any solution :)

    Read the article

  • how to deep copy a class without marking it as serializable

    - by Gaddigesh
    I came across many questions on deep copy but non of them helped me I have a class say class A { ... public List<B> ListB; .... } where B is again another class which inturn may inherit/contain some other classes Take this scenario A is a very huge class and contain many reference types I can not mark B as serializable as i don't have access to source code of B(Though I can Mark A as serializable) Problem:below methods to perform deep copy does not work because I can not use Iclonable, memberwise clone technique as class A conatins many reference types I can not write a copy constructor for A , as the class is huge and keeps growing and contained classes (Like B) can't be deep copied I can't use serialization technique as i can not mark conatined class(like B, for which no source code avilaable) as serializable So how can I deep copy the object of Class A? (I read about "surrogate serialization" technique some where but not clear)

    Read the article

  • How do I get the member to which my custom attribute was applied?

    - by Sarah Vessels
    I'm creating a custom attribute in C# and I want to do different things based on whether the attribute is applied to a method versus a property. At first I was going to do new StackTrace().GetFrame(1).GetMethod() in my custom attribute constructor to see what method called the attribute constructor, but now I'm unsure what that will give me. What if the attribute was applied to a property? Would GetMethod() return a MethodBase instance for that property? Is there a different way of getting the member to which an attribute was applied in C#? [AttributeUsage(AttributeTargets.Method | AttributeTargets.Property, AllowMultiple = true)] public class MyCustomAttribute : Attribute Update: okay, I might have been asking the wrong question. From within a custom attribute class, how do I get the member (or the class containing the member) to which my custom attribute was applied? Aaronaught suggested against walking up the stack to find the class member to which my attribute was applied, but how else would I get this information from within the constructor of my attribute?

    Read the article

  • What does template<class key, class type> mean before a method in C++?

    - by zengr
    Hi, I have got this code and I am trying to understand the convention followed, all the method defined in the .cpp file have template<class KeyType, class DataType> written before them. What does that mean? Example: //Constructor template<class key, class type> MyOperation<key, type>::MyOperation() { //method implementation } //A method template<class key, class type> MyOperation<key, type>::otherOperation() { //method implementation } Thanks

    Read the article

  • Extending a singleton class

    - by cakyus
    i used to create an instance of a singleton class like this: $Singleton = SingletonClassName::GetInstance(); and for non singleton class: $NonSingleton = new NonSingletonClassName; i think we should not differentiate how we create an instance of a class whether this is a singleton or not. if i look in perception of other class, i don't care whether the class we need a singleton class or not. so, i still not comfortable with how php treat a singleton class. i think and i always want to write: $Singleton = new SingletonClassName; just another non singleton class, is there a solution to this problem ?

    Read the article

  • C# - Determine if class initializaion causes infinite recursion?

    - by John M
    I am working on porting a VB6 application to C# (Winforms 3.5) and while doing so I'm trying to break up the functionality into various classes (ie database class, data validation class, string manipulation class). Right now when I attempt to run the program in Debug mode the program pauses and then crashes with a StackOverFlowException. VS 2008 suggests a infinite recursion cause. I have been trying to trace what might be causing this recursion and right now my only hypothesis is that class initializations (which I do in the header(?) of each class). My thought is this: mainForm initializes classA classA initializes classB classB initializes classA .... Does this make sense or should I be looking elsewhere? UPDATE1 (a code sample): mainForm namespace john { public partial class frmLogin : Form { stringCustom sc = new sc(); stringCustom namespace john { class stringCustom { retrieveValues rv = new retrieveValues(); retrieveValues namespace john { class retrieveValues { stringCustom sc = new stringCustom();

    Read the article

  • Wondering why DisplayName attribute is ignored in LabelFor on an overridden property

    - by Lasse Krantz
    Hi, today I got confused when doing a couple of <%=Html.LabelFor(m=>m.MyProperty)%> in ASP.NET MVC 2 and using the [DisplayName("Show this instead of MyProperty")] attribute from System.ComponentModel. As it turned out, when I put the attribute on an overridden property, LabelFor didn't seem to notice it. However, the [Required] attribute works fine on the overridden property, and the generated errormessage actually uses the DisplayNameAttribute. This is some trivial examplecode, the more realistic scenario is that I have a databasemodel separate from the viewmodel, but for convenience, I'd like to inherit from the databasemodel, add View-only properties and decorating the viewmodel with the attributes for the UI. public class POCOWithoutDataAnnotations { public virtual string PleaseOverrideMe { get; set; } } public class EditModel : POCOWithoutDataAnnotations { [Required] [DisplayName("This should be as label for please override me!")] public override string PleaseOverrideMe { get { return base.PleaseOverrideMe; } set { base.PleaseOverrideMe = value; } } [Required] [DisplayName("This property exists only in EditModel")] public string NonOverriddenProp { get; set; } } The strongly typed ViewPage<EditModel> contains: <div class="editor-label"> <%= Html.LabelFor(model => model.PleaseOverrideMe) %> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.PleaseOverrideMe) %> <%= Html.ValidationMessageFor(model => model.PleaseOverrideMe) %> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.NonOverriddenProp) %> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.NonOverriddenProp) %> <%= Html.ValidationMessageFor(model => model.NonOverriddenProp) %> </div> The labels are then displayed as "PleaseOverrideMe" (not using the DisplayNameAttribute) and "This property exists only in EditModel" (using the DisplayNameAttribute) when viewing the page. If I post with empty values, triggering the validation with this ActionMethod: [HttpPost] public ActionResult Edit(EditModel model) { if (!ModelState.IsValid) return View(model); return View("Thanks"); } the <%= Html.ValidationMessageFor(model => model.PleaseOverrideMe) %> actually uses [DisplayName("This should be as label for please override me!")] attribute, and produces the default errortext "The This should be as label for please override me! field is required." Would some friendly soul shed some light on this?

    Read the article

  • Why is Collection<String>.class Illegal?

    - by Peter
    I am puzzled by generics. You can declare a field like: Class<Collection<String>> clazz = ... It seems logical that you could assign this field with: Class<Collection<String>> clazz = Collection<String>.class; However, this generates an error: Syntax error on token ">", void expected after this token So it looks like the .class operator does not work with generics. So I tried: class A<S> {} class B extends A<String> {} Class<A<String>> c = B.class; Also does not work, generates: Type mismatch: cannot convert from Class<Test.StringCollection> to Class<Collection<String>> Now, I really fail to see why this should not work. I know generic types are not reified but in both cases it seems to be fully type safe without having access to runtime generic types. Anybody an idea? Peter Kriens

    Read the article

  • Arbitrary attributes error with has_one association and Factory Girl

    - by purpletonic
    I'm trying to build a basic shopping cart for a Rails app I'm working on. Nothing special, - the shopping cart has many line_items - each line_item has_one product associated and a quantity with it class Cart < ActiveRecord::Base attr_accessible :line_items has_many :line_items, :dependent => :destroy end class LineItem < ActiveRecord::Base attr_accessible :quantity, :product belongs_to :cart has_one :product end I'm trying to use RSpec to test this association, but i'm doing something wrong as I'm getting an error that says: DEPRECATION WARNING: You're trying to create an attribute 'line_item_id'. Writing arbitrary attributes on a model is deprecated, and I'm not sure why. In my factories.rb file I'm defining the line_item factory as follows: factory :line_item do quantity { Random.rand(1..5) } product end factory :cart do factory :cart_with_two_line_items do ignore do line_item_count 2 end after(:create) do |cart, evaluator| FactoryGirl.create_list(:line_item, evaluator.line_item_count, cart_id: cart) end end end Any pointers where I'm going wrong, it's probably something basic, but I'm still quite new to Rspec. Thanks in advance.

    Read the article

  • How color attributes work in VBO?

    - by Jayesh
    I am coding to OpenGL ES 2.0 (Webgl). I am using VBOs to draw primitives. I have vertex array, color array and array of indices. I have looked at sample codes, books and tutorial, but one thing I don't get - if color is defined per vertex how does it affect the polygonal surfaces adjacent to those vertices? (I am a newbie to OpenGL(ES)) I will explain with an example. I have a cube to draw. From what I read in OpenGLES book, the color is defined as an vertex attribute. In that case, if I want to draw 6 faces of the cube with 6 different colors how should I define the colors. The source of my confusion is: each vertex is common to 3 faces, then how will it help defining a color per vertex? (Or should the color be defined per index?). The fact that we need to subdivide these faces into triangles, makes it harder for me to understand how this relationship works. The same confusion goes for edges. Instead of drawing triangles, let's say I want to draw edges using LINES primitives. Each edge of different color. How am I supposed to define color attributes in that case? I have seen few working examples. Specifically this tutorial: http://learningwebgl.com/blog/?p=370 I see how color array is defined in the above example to draw a cube with 6 different colored faces, but I don't understand why is defined that way. (Why is each color copied 4 times into unpackedColors for instance?) Can someone explain how color attributes work in VBO? [The link above seems inaccessible, so I will post the relevant code here] cubeVertexPositionBuffer = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, cubeVertexPositionBuffer); vertices = [ // Front face -1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, // Back face -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, // Top face -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, // Bottom face -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, -1.0, -1.0, 1.0, // Right face 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, // Left face -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0, ]; gl.bufferData(gl.ARRAY_BUFFER, new WebGLFloatArray(vertices), gl.STATIC_DRAW); cubeVertexPositionBuffer.itemSize = 3; cubeVertexPositionBuffer.numItems = 24; cubeVertexColorBuffer = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, cubeVertexColorBuffer); var colors = [ [1.0, 0.0, 0.0, 1.0], // Front face [1.0, 1.0, 0.0, 1.0], // Back face [0.0, 1.0, 0.0, 1.0], // Top face [1.0, 0.5, 0.5, 1.0], // Bottom face [1.0, 0.0, 1.0, 1.0], // Right face [0.0, 0.0, 1.0, 1.0], // Left face ]; var unpackedColors = [] for (var i in colors) { var color = colors[i]; for (var j=0; j < 4; j++) { unpackedColors = unpackedColors.concat(color); } } gl.bufferData(gl.ARRAY_BUFFER, new WebGLFloatArray(unpackedColors), gl.STATIC_DRAW); cubeVertexColorBuffer.itemSize = 4; cubeVertexColorBuffer.numItems = 24; cubeVertexIndexBuffer = gl.createBuffer(); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, cubeVertexIndexBuffer); var cubeVertexIndices = [ 0, 1, 2, 0, 2, 3, // Front face 4, 5, 6, 4, 6, 7, // Back face 8, 9, 10, 8, 10, 11, // Top face 12, 13, 14, 12, 14, 15, // Bottom face 16, 17, 18, 16, 18, 19, // Right face 20, 21, 22, 20, 22, 23 // Left face ] gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new WebGLUnsignedShortArray(cubeVertexIndices), gl.STATIC_DRAW); cubeVertexIndexBuffer.itemSize = 1; cubeVertexIndexBuffer.numItems = 36;

    Read the article

  • characteristics of the abstract class

    - by Harsha
    Hello All, I like to know what makes a class to be called as absract class. I believe, abract key word definetly make a class class, but if one takes out the keyword, then we can create the instance of the class. In otherwords, what are the characteristics of the abstract class. Thanks in advance. -Harsha

    Read the article

  • Binding functions of derived class with luabind

    - by Anamon
    I am currently developing a plugin-based system in C++ which provides a Lua scripting interface, for which I chose to use luabind. I'm using Lua 5 and luabind 0.9, both statically linked and compiled with MSVC++ 8. I am now having trouble binding functions with luabind when they are defined in a derived class, but not its parent class. More specifically, I have an abstract base class called 'IPlugin' from which all plugin classes inherit. When the plugin manager initialises, it registers that class and its functions like this: luabind::open(L); luabind::module(L) [ luabind::class_("IPlugin") .def("start", (void(IPlugin::*)())&IPlugin::start) ]; As it is only known at runtime what effective plugin classes are available, I had to solve loading plugins in a kind of roundabout way. The plugin manager exposes a factory function to Lua, which takes the name of a plugin class and a desired object name. The factory then creates the object, registers the plugin's class as inheriting from the 'IPlugin' base class, and immediately calls a function on the created object that registers itself as a global with the Lua state, like this: void PluginExample::registerLuaObject(lua_State *L, string a_name) { luabind::globals(L)[a_name] = (PluginExample*)this; } I initially did this because I had problems with Lua determining the most derived class of the object, as if I register it from the StreamManager it is only known as a subtype of 'IPlugin' and not the specific subtype. I'm not sure anymore if this is even necessary though, but it works and the created object is subsequently accessible from Lua under 'a_name'. The problem I have, though, is that functions defined in the derived class, which were not declared at all in the parent class, cannot be used. Virtual functions defined in the base class, such as 'start' above, work fine, and calling them from Lua on the new object runs the respective redefined code from the 'PluginExample' class. But if I add a new function to 'PluginExample', here for example a function taking no arguments and returning void, and register it like this: luabind::module(L) [ luabind::class_("PluginExample") .def(luabind::constructor()) .def("func", &PluginExample::func) ]; calling 'func' on the new object yields the following Lua runtime error: No matching overload found, candidates: void func(PluginExample&) I am correctly using the ':' syntax so the 'self' argument is not needed and it seems suddenly Lua cannot determine the derived type of the object anymore. I am sure I am doing something wrong, probably having to do with the two-step binding required by my system architecture, but I can't figure out where. I'd much appreciate some help =)

    Read the article

  • Classification: Dealing with Abstain/Rejected Class

    - by abner.ayala
    I am asking for your input and/help on a classification problem. If anyone have any references that I can read to help me solve my problem even better. I have a classification problem of four discrete and very well separated classes. However my input is continuous and has a high frequency (50Hz), since its a real-time problem. The circles represent the clusters of the classes, the blue line the decision boundary and Class 5 equals the (neutral/resting do nothing class). This class is the rejected class. However the problem is that when I move from one class to the other I activate a lot of false positives in the transition movements, since the movement is clearly non-linear. For example, every time I move from class 5 (neutral class) to 1 I first see a lot of 3's before getting to the 1 class. Ideally, I will want my decision boundary to look like the one in the picture below where the rejected class is Class =5. Has a higher decision boundary than the others classes to avoid misclassification during transition. I am currently implementing my algorithm in Matlab using naive bayes, kNN, and SVMs optimized algorithms using Matlab. Question: What is the best/common way to handle abstain/rejected classes classes? Should I use (fuzzy logic, loss function, should I include resting cluster in the training)?

    Read the article

  • How to "escape" the JavaScript class keyword to specify a CSS class value.

    - by Robert Claypool
    C# allows a reserved word to be used as a property name via the ampersand. e.g. // In ASP.NET MVC, we use @class to define // the css class attribute for some HtmlHelper methods. var htmlObject = new { readonly = "readonly", @class = "ui-state-highlight" } I want to do the same in JavaScript. e.g. function makeGrid(grid, pager) { grid.jqGrid({ caption: 'Configurations', colNames: ['Id', 'Name'], colModel: [ { name: 'Id', index: 'Id' }, { name: 'Name', index: 'Name', editable: true, editoptions: { readonly: 'readonly', class: 'FormElement readonly' } }, ], pager: pager, url: 'www.example.com/app/configurations") %>', editurl: 'www.example.com/app/configurations/edit") %>' }).navGrid(pager, { edit: true, add: false, del: false, search: false }, {}, {}, {}); } Note class: 'FormElement readonly' is supposed to set the css class value on jqGrid's edit dialog, but IE errors out on the reserved word. Is there an escape character in JavaScript too? #class? @class? &class? Otherwise, how might I tell jqGrid to set the css class on the popup editor? Thank you.

    Read the article

  • Formatting a string in Java using class attributes

    - by Jason R. Coombs
    I have a class with an attribute and getter method: public Class MyClass { private String myValue = "foo"; public String getMyValue(); } I would like to be able to use the value of foo in a formatted string as such: String someString = "Your value is {myValue}." String result = Formatter.format(someString, new MyClass()); // result is now "Your value is foo." That is, I would like to have some function like .format above which takes a format string specifying properties on some object, and an instance with those properties, and formats the string accordingly. Is it possible to do accomplish this feat in Java?

    Read the article

  • Scala - Enumeration vs. Case-Classes

    - by tzofia
    I've created akka actor called LogActor. The LogActors's receive method handling messages from other actors and logging them to the specified log level. I can distinguish between the different levels in 2 ways. The first one: import LogLevel._ object LogLevel extends Enumeration { type LogLevel = Value val Error, Warning, Info, Debug = Value } case class LogMessage(level : LogLevel, msg : String) The second: (EDIT) abstract class LogMessage(msg : String) case class LogMessageError(msg : String) extends LogMessage(msg) case class LogMessageWarning(msg : String) extends LogMessage(msg) case class LogMessageInfo(msg : String) extends LogMessage(msg) case class LogMessageDebug(msg : String) extends LogMessage(msg) Which way is more efficient? does it take less time to match case class or to match enum value? (I read this question but there isn't any answer referring to the runtime issue)

    Read the article

< Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >