Search Results

Search found 4429 results on 178 pages for 'exchange transport agents'.

Page 65/178 | < Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >

  • Windows 7 extremely slow login, exchange performance, printer enumeration, etc...

    - by Jeff
    Background: I have a fresh copy of Windows 7 Professional x64 on a Dell Latitude E6500. The laptop has 8GB RAM, 250GB drive, and all Intel peripherals (net/wifi/graphics). All available Windows updates, as well as hardware drivers are installed. The IT folks where I work joined the computer to our Windows 2003-based Active Directory domain. There are no errors in any logs that we've looked at, and Group Policy templates appear to have applied properly. Problem: Every time I turn on or reboot the computer, it takes between 2 to 10 (all times are actual) minutes after successfully typing my username/password to get to my desktop. My login script does not always run. Sometimes I get a black screen, and a couple of minutes later the login script will pop up and take up to 10 minutes to complete. I can get around this by hitting cntrl-shift-esc and running explorer.exe from the Task Manager. The login script continues to hang, but I can minimize it and go on about my business. Either way, it generally throws errors prior to completing. I often get slow or failed connectivity to Exchange via Outlook. When I bring up printer dialogs, they take several minutes to populate, and block the calling app while doing so. Copies to SMB shares are very slow. On my home network, everything works fine. On both the work network and home network, I can use remote internet resources just fine. Web pages pull up, remote VPN's are fine, I can max out bandwidth on SpeakEasy Speed Test. I can get almost max bandwidth transferring FTP/HTTP over a LAN. Another symptom of the problem is that when I first log in, the work network shows as "Identifying" for a long time in the Network and Sharing Center, and will often then change to the name of the work domain, but say "Unauthenticated Network". Note that this computer previously ran Windows Vista with none of these problems. Attempts to Fix: Installed the Win7 admin pack Uninstalled/reinstalled all hardware drivers Verified Active Directory DNS settings (Vista works relatively well on the same network) Reset all TCP/IP settings on all adapters using the netsh commands to do so Disabled ipv6 on all adapters Disable wifi adapter while on work network Locked the network card to 100/Full, 1000/Full; also tried Auto Added various important addresses to hosts file (exchange, dns, ad) -- removed when didn't help My background is a jpeg (sounds unrelated but there is apparently a win7 login bug related to solid color background) More I have forgotten The IT staff at my company indicated they believe this is due to having Windows 2003 AD servers and not having any Windows 2008 R2 AD servers. Other than that, they have no advice or assistance to offer other than a rebuild (already tried that once with similar symptoms), or downgrade to Vista. Any thoughts out there?

    Read the article

  • Resources for a new SysAdmin? (Emphasis on Windows SBS, Exchange, networking and general SysAdmin in

    - by 80bower
    I've recently taken over management of a Windows 2003 Small Business Server and network for a small, less than ten person company. I have some (antiquated) sysadmin experience, but I've little experience with Exchange. The documentation of the existing infrastructure leaves much to be desired, and I was wondering if there's any sort of "So you've just become sysadmin" guides that anyone could recommend.

    Read the article

  • XMLPULLPARSEREXCEPTION...in KSOAP2

    - by aka47
    iam using KSOAP2 for web services. my client is BlackBerry Phone and Server is KeyRingLabs.com. i am using php page for connection...i have taken this code form a Forum.and modified it according to my requirements...but I am having XMLPULLPARSER EXCEPTION...can any body help??? here is my code.... import net.rim.device.api.ui.; import net.rim.device.api.ui.component.; import net.rim.device.api.ui.container.; import net.rim.device.api.system.; import java.util.; import org.ksoap2.; import org.ksoap2.serialization.; import org.ksoap2.transport.; import java.io.IOException; import org.ksoap2.SoapEnvelope; import org.ksoap2.SoapFault; import org.ksoap2.serialization.SoapObject; import org.ksoap2.serialization.SoapSerializationEnvelope; import org.ksoap2.transport.HttpTransport; import org.xmlpull.v1.XmlPullParserException; final class StockQuoteDemo extends UiApplication { public static void main (String[] args) { StockQuoteDemo theApp = new StockQuoteDemo (); theApp.enterEventDispatcher (); } public StockQuoteDemo () { pushScreen (new StockQuoteScreen ()); //doSOAP(); } final class StockQuoteScreen extends MainScreen { public static final String action = "http://keyringlabs.com/Login"; public static final String namespaceRoot = "bbpointofsale.com"; //public static final String webroot = "http://192.168.1.2/bbpointofsale.com/"; public static final String webroot = "http://192.168.0.35/"; //public static final String webroot = "http://www.bbpointofsale.com"; public String errorMessage; public String key; public String transactionID; private HttpTransport transport; private SoapSerializationEnvelope envelope; public StockQuoteScreen () { //transport = new HttpTransport(webroot + "bb/service/index.php"); transport = new HttpTransport(webroot+"Disk/rashid11/index4.php"); transport.debug = true; envelope = new SoapSerializationEnvelope(SoapEnvelope.VER12); key = null; envelope.encodingStyle = SoapSerializationEnvelope.XSD1999; ProcessLogin("[email protected]","123456"); //Dialog.alert("GEN 1"); //Dialog.alert("Warr Gai Vai!!!"); } public boolean onClose () { Dialog.alert ("Goodbye!"); System.exit (0); return true; } public boolean ProcessLogin(String email, String password) { System.err.println("Starting The Process"); errorMessage = ""; String namespace = "urn:" + namespaceRoot + ":login"; //System.err.println("LINK:"+namespace); // SoapObject message = new SoapObject(namespace, "login"); SoapObject message = new SoapObject(namespaceRoot, "login"); message.addProperty("email", email); message.addProperty("password", password); envelope.bodyOut = message; // System.err.println("KSOAP:"+ envelope.toString()); //String soapAction = namespace + "#login"; String soapAction = "http://bbpointofsale.com/login"; // System.err.println("Action : "+soapAction); try { //transport.setXmlVersionTag(""); transport.call(soapAction, envelope); } catch (IOException e) { e.printStackTrace(); System.out.println("error: "+e.getMessage()); errorMessage = e.getMessage(); System.out.println("response1: "+transport.responseDump); return false; } catch (XmlPullParserException e) { e.printStackTrace(); errorMessage = e.getMessage(); System.out.println("request2: "+transport.requestDump); System.out.println("response2: "+transport.responseDump); return false; } try { SoapObject result = (SoapObject) ((SoapObject)envelope.getResponse()).getProperty(0); key = hackToGetResponse("serviceToken", result.toString()); if (key.length() > 0) { System.out.println("KEY:" + key); return true; } else { } } catch (SoapFault e) { errorMessage = e.getMessage(); System.out.println("response3: "+transport.responseDump); return false; } catch (Exception e) { errorMessage = e.getMessage(); System.err.println("response4: "+transport.responseDump); return false; } return false; } public String hackToGetResponse(String key, String response) { System.out.println("hackToGetResponse:" + response); String start = "anyType{key=" + key + "; value="; String end = "; }"; if (response.indexOf(start) == -1 || response.indexOf(end) == -1) return ""; System.out.println("hackToGetResponse:" + "response.substring(0, " + response.indexOf(start) + ").substring(0, " + response.indexOf(end) + ");"); response = response.substring(response.indexOf(start) + start.length()); response = response.substring(0, response.indexOf(end)); if (response.indexOf("anyType{}") != -1) return ""; return response; } } } //******************PHP FILE************************ $server = new SoapServer(null, array('uri' = "urn:keyringlabs.com")); //$server = new SoapServer(null, array('uri' = "urn: bbpointofsale.com")); $server-addFunction("login"); //$email='[email protected]'; //$pass='123456'; function login($email, $pass) { if (strlen($email) == 0) { return Array('serviceToken' => ''); } elseif (strlen($pass) == 0) { return Array('serviceToken' => ''); } else { $objMerchant = Merchant::LoadByEmailPassword($email, $pass); if ($objMerchant == null || $objMerchant->Id &lt==1) { return Array('serviceToken' => ''); } else { $key = uniqid(); $objSess = new Merchantsessions(); $objSess->MerchantID = $objMerchant->Id; $objSess->ServiceToken = $key; $objSess->Save(); } } $result = Array('serviceToken' => $key); //print $result; return $result; } ? ///**************************************** is there any need of an XML page or something..to run it perfectly...please help thank you for your time!

    Read the article

  • How to configure maximum number of transport channels in WCF using basicHttpBinding?

    - by Hemant
    Consider following code which is essentially a WCF host: [ServiceContract (Namespace = "http://www.mightycalc.com")] interface ICalculator { [OperationContract] int Add (int aNum1, int aNum2); } [ServiceBehavior (InstanceContextMode = InstanceContextMode.PerCall)] class Calculator: ICalculator { public int Add (int aNum1, int aNum2) { Thread.Sleep (2000); //Simulate a lengthy operation return aNum1 + aNum2; } } class Program { static void Main (string[] args) { try { using (var serviceHost = new ServiceHost (typeof (Calculator))) { var httpBinding = new BasicHttpBinding (BasicHttpSecurityMode.None); serviceHost.AddServiceEndpoint (typeof (ICalculator), httpBinding, "http://172.16.9.191:2221/calc"); serviceHost.Open (); Console.WriteLine ("Service is running. ENJOY!!!"); Console.WriteLine ("Type 'stop' and hit enter to stop the service."); Console.ReadLine (); if (serviceHost.State == CommunicationState.Opened) serviceHost.Close (); } } catch (Exception e) { Console.WriteLine (e); Console.ReadLine (); } } } Also the WCF client program is: class Program { static int COUNT = 0; static Timer timer = null; static void Main (string[] args) { var threads = new Thread[10]; for (int i = 0; i < threads.Length; i++) { threads[i] = new Thread (Calculate); threads[i].Start (null); } timer = new Timer (o => Console.WriteLine ("Count: {0}", COUNT), null, 1000, 1000); Console.ReadLine (); timer.Dispose (); } static void Calculate (object state) { var c = new CalculatorClient ("BasicHttpBinding_ICalculator"); c.Open (); while (true) { try { var sum = c.Add (2, 3); Interlocked.Increment (ref COUNT); } catch (Exception ex) { Console.WriteLine ("Error on thread {0}: {1}", Thread.CurrentThread.Name, ex.GetType ()); break; } } c.Close (); } } Basically, I am creating 10 proxy clients and then repeatedly calling Add service method. Now if I run both applications and observe opened TCP connections using netstat, I find that: If both client and server are running on same machine, number of tcp connections are equal to number of proxy objects. It means all requests are being served in parallel. Which is good. If I run server on a separate machine, I observed that maximum 2 TCP connections are opened regardless of the number of proxy objects I create. Only 2 requests run in parallel. It hurts the processing speed badly. If I switch to net.tcp binding, everything works fine (a separate TCP connection for each proxy object even if they are running on different machines). I am very confused and unable to make the basicHttpBinding use more TCP connections. I know it is a long question, but please help!

    Read the article

  • How to force client to switch RTP transport from UDP to TCP?

    - by Cipi
    If the client wants to watch a stream that is on my RTSP server, it first tries to setup a stream through the UDP protocol. How can I tell it that my server only supports RTP/AVP/TCP and that it should switch transports? I want to terminate the UDP support on my server, but all the clients first try to SETUP the session over UDP, and later they do so over TCP... and I want to switch them to TCP as soon as possible in RTSP protocol. How can I do that?

    Read the article

  • What is the functionality of "sync contacts" in Exchange account in Email application?

    - by santhosh
    Hi i am testing android E-mail application . I have configured an Exchange account where in i could find an option "Sync Contacts from this account" in Account settings. According to my understanding if i check "sync contacts from the account" option , i must be able to access contacts in the exchange account i have configured. But i don't know how to get/access these contacts in android email application. Can any one who have used this functionality or know about it can suggest to me how to make use of "Sync contacts" functionality. Or if you have any idea about, how i can test this functionality, i am very eager to here to you. Kinds & Regards Santhosh Kumar H.E

    Read the article

  • How may I teach that SOAP is not a reliable transport?

    - by Eduardo
    I need to teach that a HTTP SOAP call may be received but the caller may not get the response due to a network failure (among other problems). (This problem made WS-ReliableMessaging be developed) How would you guys show this problem to a web service developer so they can develop taking into account that duplicate messages may be received?

    Read the article

  • Can you transport a Javascript object to server and receive it in the same state?

    - by zorglub76
    I'm considering creating a simple remote debugging application for Javascript. Actually, I want to provide an object to Firebug Lite and let it do all the job. So, can I get an object from one page, serialize it, send it to server and then to another browser and finally see the same results in Firebug Lite (on that other client) as I would see on the first browser (with doing "console.dir(obj)")? Is it possible to do?

    Read the article

  • ESB Toolkit 2.0 EndPointConfig (HTTPS with WCF-BasicHttp and the ESB Toolkit 2.0)

    - by Andy Morrison
    Earlier this week I had an ESB endpoint (Off-Ramp in ESB parlance) that I was sending to over http using WCF-BasicHttp.  I needed to switch the protocol to https: which I did by changing my UDDI Binding over to https:  No problem from a management perspective; however, when I tried to run the process I saw this exception: Event Type:                     Error Event Source:                BizTalk Server 2009 Event Category:            BizTalk Server 2009 Event ID:   5754 Date:                                    3/10/2010 Time:                                   2:58:23 PM User:                                    N/A Computer:                       XXXXXXXXX Description: A message sent to adapter "WCF-BasicHttp" on send port "SPDynamic.XXX.SR" with URI "https://XXXXXXXXX.com/XXXXXXX/whatever.asmx" is suspended.  Error details: System.ArgumentException: The provided URI scheme 'https' is invalid; expected 'http'. Parameter name: via    at System.ServiceModel.Channels.TransportChannelFactory`1.ValidateScheme(Uri via)    at System.ServiceModel.Channels.HttpChannelFactory.ValidateCreateChannelParameters(EndpointAddress remoteAddress, Uri via)    at System.ServiceModel.Channels.HttpChannelFactory.OnCreateChannel(EndpointAddress remoteAddress, Uri via)    at System.ServiceModel.Channels.ChannelFactoryBase`1.InternalCreateChannel(EndpointAddress address, Uri via)    at System.ServiceModel.Channels.ChannelFactoryBase`1.CreateChannel(EndpointAddress address, Uri via)    at System.ServiceModel.Channels.ServiceChannelFactory.ServiceChannelFactoryOverRequest.CreateInnerChannelBinder(EndpointAddress to, Uri via)    at System.ServiceModel.Channels.ServiceChannelFactory.CreateServiceChannel(EndpointAddress address, Uri via)    at System.ServiceModel.Channels.ServiceChannelFactory.CreateChannel(Type channelType, EndpointAddress address, Uri via)    at System.ServiceModel.ChannelFactory`1.CreateChannel(EndpointAddress address, Uri via)    at System.ServiceModel.ChannelFactory`1.CreateChannel()    at Microsoft.BizTalk.Adapter.Wcf.Runtime.WcfClient`2.GetChannel[TChannel](IBaseMessage bizTalkMessage, ChannelFactory`1& cachedFactory)    at Microsoft.BizTalk.Adapter.Wcf.Runtime.WcfClient`2.SendMessage(IBaseMessage bizTalkMessage)  MessageId:  {1170F4ED-550F-4F7E-B0E0-1EE92A25AB10}  InstanceID: {1640C6C6-CA9C-4746-AEB0-584FDF7BB61E} I knew from a previous experience that I likely needed to set the SecurityMode setting for my Send Port.  But how do you do this for a Dynamic port (which I was using since this is an ESB solution)? Within the UDDI portal you have to add an additional Instance Info to your Binding named: EndPointConfig  Then you have to set its value to:  SecurityMode=Transport Like this:    The EndPointConfig is how the ESB Toolkit 2.0 provides extensibility for the various transports.  To see what the key-value pair options are for a given transport, open up an itinerary and change one of your resolvers to a “static” resolver by setting the “Resolver Implementation” to Static.  Then select a “Transport Name” ”, for instance to WCF-BasicHttp.  At this point you can then click on the “EndPoint Configuration” property for to see an adapter/ramp specific properties dialog (key-value pairs.)    Here’s the dialog that popped up for WCF-BasicHttp:   I simply set the SecurityMode to Transport.  Please note that you will get different properties within the window depending on the Transport Name you select for the resolver. When you are done with your settings, export the itinerary to disk and find that xml; then find that resolver’s xml within that file.  It will look like endpointConfig=SecurityMode=Transport in this case.  Note that if you set additional properties you will have additional key-value pairs after endpointConfig= Copy that string and paste it into the UDDI portal for you Binding’s EndPointConfig Instance Info value.

    Read the article

  • What HTML and CSS markup is best for SEO for a list of questions (like on Stack Exchange sites)

    - by Oleg9
    On the StackOverflow a question block (in the q-list on the index page and so on) represented by the following html code: <div class="question-summary narrow tagged-interesting" id="question-summary-19832613"> <div onclick="window.location.href='/questions/19832613/how-to-display-only-transit-routesfor-trains-in-google-maps-api'" class="cp"> <div class="votes"> <div class="mini-counts">0</div> <div>votes</div> </div> <div class="status unanswered"> <div class="mini-counts">0</div> <div>answers</div> </div> <div class="views"> <div class="mini-counts">3</div> <div>views</div> </div> </div> <div class="summary"> <h3>...</h3> <div class="tags t-javascript t-google-maps t-google t-google-maps-api-3"> </div> <div class="started"> <a href="/questions/19832613/how-to-display-only-transit-routesfor-trains-in-google-maps-api" class="started-link"><span title="2013-11-07 09:52:29Z" class="relativetime">1 min ago</span></a> <a href="/users/1309392/shirish">Shirish</a> <span class="reputation-score" title="reputation score " dir="ltr">189</span> </div> </div> </div> It uses float positioning. My questions is: Would use of css styled tables be a better choice? (It's a table, isn't it?) Or it just depends on what are you prefer to use and doesn't affect the technical side (search engines or something)? The background information (such as number of views, votes etc.) comes first in the code. And I know that search engines have a limit at viewing each page. So would it better to place div's depending on their importance and then markup them on the page using css methods (like negative margins and absolute positioning)? Or it isn't so important in this instance?

    Read the article

  • IIS SMTP server (Installed on local server) in parallel to Google Apps

    - by shaharru
    I am currently using free version of Google Apps for hosting my email.It works great for my official mails my email on Google is [email protected]. In addition I'm sending out high volume mails (registrations, forgotten passwords, newsletters etc) from the website (www.mydomain.com) using IIS SMTP installed on my windows machine. These emails are sent from [email protected] My problem is that when I send email from the website using IIS SMTP to a mail address [email protected] I don’t receive the email to Google apps. (I only receive these emails if I install a pop service on the server with the [email protected] email box). It seems that the IIS SMTP is ignoring the domain MX records and just delivers these emails to my local server. Here are my DNS records for domain.com: mydomain.com A 82.80.200.20 3600s mydomain.com TXT v=spf1 ip4: 82.80.200.20 a mx ptr include:aspmx.googlemail.com ~all mydomain.com MX preference: 10 exchange: aspmx2.googlemail.com 3600s mydomain.com MX preference: 10 exchange: aspmx3.googlemail.com 3600s mydomain.com MX preference: 10 exchange: aspmx4.googlemail.com 3600s mydomain.com MX preference: 10 exchange: aspmx5.googlemail.com 3600s mydomain.com MX preference: 1 exchange: aspmx.l.google.com 3600s mydomain.com MX preference: 5 exchange: alt1.aspmx.l.google.com 3600s mydomain.com MX preference: 5 exchange: alt2.aspmx.l.google.com 3600s Please help! Thanks.

    Read the article

  • apache2 doesn't start with location

    - by Geod24
    I have a small domain, which I use only for personal purposes. I'm the main user, and have at most 3-4 users at the same time. I use apache2 with passenger to serve redmine. So I start with an empty apache2: root@xxxxx:/home/# service apache2 start [ ok ] Starting web server: apache2. root@xxxxx:/home/# a2dissite Your choices are: Which site(s) do you want to disable (wildcards ok)? Then enable my site, and restart (not reload) apache2: root@xxxxx:/home/# a2ensite 200-redmine Enabling site 200-redmine. To activate the new configuration, you need to run: service apache2 reload root@xxxxx:/home/# service apache2 restart [FAIL] Restarting web server: apache2 failed! [warn] The apache2 instance did not start within 20 seconds. Please read the log files to discover problems ... (warning). root@xxxxx:/home/# service apache2 restart [FAIL] Restarting web server: apache2 failed! [warn] There are processes named 'apache2' running which do not match your pid file which are left untouched in the name of safety, Please review the situation by hand. ... (warning). root@xxxxx:/home/# pidof apache2 20948 Here's my 200-redmine.conf: PerlLoadModule Apache::Redmine <VirtualHost *:80> ServerName redmine.xxxxx.xxx DocumentRoot /var/www/redmine/public/ ErrorLog ${APACHE_LOG_DIR}/redmine.error.log CustomLog ${APACHE_LOG_DIR}/redmine.access.log common MaxRequestLen 20971520 <Directory "/var/www/redmine/public/"> Options Indexes ExecCGI FollowSymLinks Order allow,deny Allow from all AllowOverride all </Directory> SetEnv GIT_PROJECT_ROOT /opt/git/ SetEnv GIT_HTTP_EXPORT_ALL ScriptAlias /git/ /usr/lib/git-core/git-http-backend/ <Location /git> PerlAuthenHandler Apache::Authn::Redmine::authen_handler PerlAccessHandler Apache::Authn::Redmine::access_handler AuthType Basic Require valid-user AuthName "Redmine Git Repository" RedmineDSN "DBI:mysql:database=redmine;host=localhost:3306" RedmineDbUser "redmine" RedmineDbPass "password" RedmineCacheCredsMax 50 </Location> </VirtualHost> Now if I comment out the ScriptAlias / stuff, it works ! In addition, starting the server with 200-redmine disabled, then enabling it works. But apache2 will die randomly. Plus the location doesn't work. The logs show nothing: root@xxxxx:/home/# ll /var/log/apache2/ total 8 drwxr-xr-x 2 root root 4096 Oct 30 07:52 coredump -rw-r--r-- 1 root root 0 Nov 4 02:39 default.access.log -rw-r--r-- 1 root root 2356 Nov 4 02:39 default.error.log -rw-r--r-- 1 root root 0 Nov 4 02:39 other_vhosts_access.log -rw-r--r-- 1 root root 0 Nov 4 02:39 redmine.access.log -rw-r--r-- 1 root root 0 Nov 4 02:39 redmine.error.log root@xxxxx:/home/# ll /var/log/apache2/coredump/ total 0 root@xxxxx:/home/# cat /var/log/apache2/default.error.log [ 2013-11-04 02:39:36.0130 21471/7fcf090f4740 agents/Watchdog/Main.cpp:452 ]: Options: { 'analytics_log_user' => 'nobody', 'default_group' => 'nogroup', 'default_python' => 'python', 'default_ruby' => '/usr/bin/ruby', 'default_user' => 'nobody', 'log_level' => '0', 'max_instances_per_app' => '0', 'max_pool_size' => '6', 'passenger_root' => '/usr/lib/ruby/vendor_ruby/phusion_passenger/locations.ini', 'pool_idle_time' => '300', 'temp_dir' => '/tmp', 'union_station_gateway_address' => 'gateway.unionstationapp.com', 'union_station_gateway_port' => '443', 'user_switching' => 'true', 'web_server_pid' => '21470', 'web_server_type' => 'apache', 'web_server_worker_gid' => '33', 'web_server_worker_uid' => '33' } [ 2013-11-04 02:39:36.0255 21474/7f9a99fda740 agents/HelperAgent/Main.cpp:597 ]: PassengerHelperAgent online, listening at unix:/tmp/passenger.1.0.21470/generation-0/request [ 2013-11-04 02:39:36.0507 21479/7f8316b0f740 agents/LoggingAgent/Main.cpp:330 ]: PassengerLoggingAgent online, listening at unix:/tmp/passenger.1.0.21470/generation-0/logging [ 2013-11-04 02:39:36.0511 21471/7fcf090f4740 agents/Watchdog/Main.cpp:635 ]: All Phusion Passenger agents started! [ 2013-11-04 02:39:36.3158 21495/7fba6f686740 agents/Watchdog/Main.cpp:452 ]: Options: { 'analytics_log_user' => 'nobody', 'default_group' => 'nogroup', 'default_python' => 'python', 'default_ruby' => '/usr/bin/ruby', 'default_user' => 'nobody', 'log_level' => '0', 'max_instances_per_app' => '0', 'max_pool_size' => '6', 'passenger_root' => '/usr/lib/ruby/vendor_ruby/phusion_passenger/locations.ini', 'pool_idle_time' => '300', 'temp_dir' => '/tmp', 'union_station_gateway_address' => 'gateway.unionstationapp.com', 'union_station_gateway_port' => '443', 'user_switching' => 'true', 'web_server_pid' => '21491', 'web_server_type' => 'apache', 'web_server_worker_gid' => '33', 'web_server_worker_uid' => '33' } [ 2013-11-04 02:39:36.3304 21498/7f0106d9b740 agents/HelperAgent/Main.cpp:597 ]: PassengerHelperAgent online, listening at unix:/tmp/passenger.1.0.21491/generation-0/request [ 2013-11-04 02:39:36.3522 21503/7f92ad392740 agents/LoggingAgent/Main.cpp:330 ]: PassengerLoggingAgent online, listening at unix:/tmp/passenger.1.0.21491/generation-0/logging [ 2013-11-04 02:39:36.3525 21495/7fba6f686740 agents/Watchdog/Main.cpp:635 ]: All Phusion Passenger agents started! And at last: root@xxxxx:/home/# apache2ctl -t -D DUMP_VHOSTS VirtualHost configuration: *:80 is a NameVirtualHost default server redmine.xxxx.xxx (/etc/apache2/sites-enabled/200-redmine.conf:5) port 80 namevhost redmine.xxxx.xxx (/etc/apache2/sites-enabled/200-redmine.conf:5) port 80 namevhost redmine.xxxxx.xxx (/etc/apache2/sites-enabled/200-redmine.conf:5) root@xxxxx:/home/# uname -a Linux xxxx.xxx 3.2.0-4-amd64 #1 SMP Debian 3.2.51-1 x86_64 GNU/Linux root@xxxxx:/home/# dpkg --list | grep apache2 ii apache2 2.4.6-3 amd64 Apache HTTP Server ii apache2-bin 2.4.6-3 amd64 Apache HTTP Server (binary files and modules) ii apache2-data 2.4.6-3 all Apache HTTP Server (common files) ii apache2-utils 2.4.6-3 amd64 Apache HTTP Server (utility programs for web servers) ii libapache2-mod-fcgid 1:2.3.9-1 amd64 FastCGI interface module for Apache 2 ii libapache2-mod-passenger 4.0.10-1 amd64 Rails and Rack support for Apache2 ii libapache2-mod-perl2 2.0.8+httpd24-r1449661-6+b1 amd64 Integration of perl with the Apache2 web server ii libapache2-mod-perl2-dev 2.0.8+httpd24-r1449661-6 all Integration of perl with the Apache2 web server - development files ii libapache2-mod-perl2-doc 2.0.8+httpd24-r1449661-6 all Integration of perl with the Apache2 web server - documentation ii libapache2-mod-proxy-html 1:2.4.6-3 amd64 Transitional package for apache2-bin ii libapache2-mod-svn 1.7.13-2 amd64 Apache Subversion server modules for Apache httpd ii libapache2-reload-perl 0.12-2 all module for reloading Perl modules when changed on disk ii libapache2-svn 1.7.13-2 all Apache Subversion server modules for Apache httpd (dummy package) root@xxxxx:/home/# a2dismod Your choices are: access_compat alias auth_basic authn_core authn_file authz_core authz_host authz_svn authz_user autoindex dav dav_svn deflate dir env fcgid filter mime mpm_event negotiation passenger perl proxy proxy_http rewrite setenvif status Which module(s) do you want to disable (wildcards ok)?

    Read the article

  • Email Discovery from Fairly Large Mailbox (15gig) Exchange 2003.

    - by nysingh
    I have a request from our legal team to search a users' mailbox. the mailbox is 15gig and it is on exchange 2003. I am trying to run windows desktop search and google desktop. I have gotten them to index mailbox but getting the results into a folder to backup on cd is getting bit difficult. Windows desktop search and google desktop search does not allow you to copy results to another folder. Can anyone point me to right direction? What is the best way to index and copy the results of pst, mailbox or edb file? What is the best discovery methods? Thanks

    Read the article

  • How to exchange the HDD of a MacBook Pro?

    - by Another Registered User
    I've bought an Solid State Drive (SSD) for my MacBook Pro, and now I need to exchange it somehow. Would this strategy work? 1) Create an backup with Time Machine (Snow Leopard) 2) Then replace the old HDD 3) Insert the new HDD 4) Install Snow Leopard (same version as previously used) 5) Open up Time Machine, and recover from the last backup I'm not sure about how to do the last part. Is that hard? What are the neccessary steps? Or is there a better way? Maybe I don't need to re-install Snow Leopard completely? Maybe the Install CD already offers an option to recover from Backup?

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Postfix: Modify sender address based on recipient

    - by PJ P
    We have a Postfix server that receives mail from our application servers. Senders are in the form [email protected] (where host.fqdn can vary, depending on source server) and recipients can be internal or external users. Messages going to external users should have the sender changed to [email protected]. I have tried using canonical maps, but since that is handled by the cleanup daemon, before any transport decisions are made, it would affect all sender addresses. I have also tried creating a custom smtp transport with generic mappings and configuring transport_maps to use that custom smtp transport for external domains. However, generic mappings affect both sender and recipient addresses. Lastly, I've tried the following: Create a custom smtpd daemon that specifies sender canonical maps and a unique transport table. Send all externally addressed mail to that custom daemon. Ideally, sender canonical maps would transform the sender address and the unique transport table would relay messages to the internet. However, evidently, only one transport table can be used per Postfix instance. I want to avoid creating an entirely new Postfix instance to accommodate this rewriting. Any suggestions? (and thanks in advance)

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • SunTlsRsaPremasterSecret KeyGenerator not available

    - by Jill
    Hi, I encountered an error when my application tries to load a RSA Algorithm provider class from JAVA. The exception stack is as follow: javax.jms.JMSException: RSA premaster secret error at org.apache.activemq.util.JMSExceptionSupport.create(JMSExceptionSupport.java:49) at org.apache.activemq.ActiveMQConnection.syncSendPacket(ActiveMQConnection.java:1255) at org.apache.activemq.ActiveMQConnection.ensureConnectionInfoSent(ActiveMQConnection.java:1350) at org.apache.activemq.ActiveMQConnection.setClientID(ActiveMQConnection.java:388) at com.trendmicro.tmsm.TMSMAgent.open(TMSMAgent.java:63) Caused by: javax.net.ssl.SSLKeyException: RSA premaster secret error at com.sun.net.ssl.internal.ssl.RSAClientKeyExchange.<init>(RSAClientKeyExchange.java:97) at com.sun.net.ssl.internal.ssl.ClientHandshaker.serverHelloDone(ClientHandshaker.java:634) at com.sun.net.ssl.internal.ssl.ClientHandshaker.processMessage(ClientHandshaker.java:226) at com.sun.net.ssl.internal.ssl.Handshaker.processLoop(Handshaker.java:516) at com.sun.net.ssl.internal.ssl.Handshaker.process_record(Handshaker.java:454) at com.sun.net.ssl.internal.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:884) at com.sun.net.ssl.internal.ssl.SSLSocketImpl.performInitialHandshake(SSLSocketImpl.java:1112) at com.sun.net.ssl.internal.ssl.SSLSocketImpl.writeRecord(SSLSocketImpl.java:623) at com.sun.net.ssl.internal.ssl.AppOutputStream.write(AppOutputStream.java:59) at org.apache.activemq.transport.tcp.TcpBufferedOutputStream.flush(TcpBufferedOutputStream.java:115) at java.io.DataOutputStream.flush(DataOutputStream.java:106) at org.apache.activemq.transport.tcp.TcpTransport.oneway(TcpTransport.java:167) at org.apache.activemq.transport.InactivityMonitor.oneway(InactivityMonitor.java:237) at org.apache.activemq.transport.WireFormatNegotiator.sendWireFormat(WireFormatNegotiator.java:168) at org.apache.activemq.transport.WireFormatNegotiator.sendWireFormat(WireFormatNegotiator.java:84) at org.apache.activemq.transport.WireFormatNegotiator.start(WireFormatNegotiator.java:74) at org.apache.activemq.transport.failover.FailoverTransport.doReconnect(FailoverTransport.java:715) at org.apache.activemq.transport.failover.FailoverTransport$2.iterate(FailoverTransport.java:115) at org.apache.activemq.thread.PooledTaskRunner.runTask(PooledTaskRunner.java:122) at org.apache.activemq.thread.PooledTaskRunner$1.run(PooledTaskRunner.java:43) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:637) Caused by: java.security.NoSuchAlgorithmException: SunTlsRsaPremasterSecret KeyGenerator not available at javax.crypto.KeyGenerator.<init>(DashoA13*..) at javax.crypto.KeyGenerator.getInstance(DashoA13*..) at com.sun.net.ssl.internal.ssl.JsseJce.getKeyGenerator(JsseJce.java:223) at com.sun.net.ssl.internal.ssl.RSAClientKeyExchange.<init>(RSAClientKeyExchange.java:89) ... 22 more I've googled the error message and most of posts says it's because JVM cannot find sunjce_provider.jar. However, I can find the file in /Library/Java/Home/lib/ext folder. The platform is Mac OS X 10.6 and Java version is 1.6.0_17. My questions are: Why JVM does not search /Library/Java/Home/lib/ext for jar files? Can we change CLASSPATH or java.ext.dirs property by modify any config file? Any suggestion to solve this problem? Thanks in advance.

    Read the article

  • JAX-WS errors when SOAP body contains UTF-8 BOM

    - by Vinny Carpenter
    I have developed a Web Service using JAX-WS (v2.1.3 - Sun JDK 1.6.0_05) deployed on WebLogic 10.3 that works just fine when I use a Java client or SoapUI or other Web Services testing tools. I need to consume this service using 2005 Microsoft SQL Server Reporting Services and I get the following error Couldn't create SOAP message due to exception: XML reader error: unexpected character content SEVERE: Couldn't create SOAP message due to exception: XML reader error: unexpected character content: "?" com.sun.xml.ws.protocol.soap.MessageCreationException: Couldn't create SOAP message due to exception: XML reader error: unexpected character content: "?" at com.sun.xml.ws.encoding.SOAPBindingCodec.decode(SOAPBindingCodec.java:292) at com.sun.xml.ws.transport.http.HttpAdapter.decodePacket(HttpAdapter.java:276) at com.sun.xml.ws.transport.http.HttpAdapter.access$500(HttpAdapter.java:93) at com.sun.xml.ws.transport.http.HttpAdapter$HttpToolkit.handle(HttpAdapter.java:432) at com.sun.xml.ws.transport.http.HttpAdapter.handle(HttpAdapter.java:244) at com.sun.xml.ws.transport.http.servlet.ServletAdapter.handle(ServletAdapter.java:134) at com.sun.xml.ws.transport.http.servlet.WSServletDelegate.doGet(WSServletDelegate.java:129) at com.sun.xml.ws.transport.http.servlet.WSServletDelegate.doPost(WSServletDelegate.java:160) at com.sun.xml.ws.transport.http.servlet.WSServlet.doPost(WSServlet.java:75) at javax.servlet.http.HttpServlet.service(HttpServlet.java:727) at javax.servlet.http.HttpServlet.service(HttpServlet.java:820) at weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSecurityHelper.java:227) at weblogic.servlet.internal.StubSecurityHelper.invokeServlet(StubSecurityHelper.java:125) at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:292) at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:175) at weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:3498) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321) at weblogic.security.service.SecurityManager.runAs(Unknown Source) at weblogic.servlet.internal.WebAppServletContext.securedExecute(WebAppServletContext.java:2180) at weblogic.servlet.internal.WebAppServletContext.execute(WebAppServletContext.java:2086) at weblogic.servlet.internal.ServletRequestImpl.run(ServletRequestImpl.java:1406) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:201) at weblogic.work.ExecuteThread.run(ExecuteThread.java:173) Caused by: com.sun.xml.ws.streaming.XMLStreamReaderException: XML reader error: unexpected character content: "?" at com.sun.xml.ws.streaming.XMLStreamReaderUtil.nextElementContent(XMLStreamReaderUtil.java:102) at com.sun.xml.ws.encoding.StreamSOAPCodec.decode(StreamSOAPCodec.java:174) at com.sun.xml.ws.encoding.StreamSOAPCodec.decode(StreamSOAPCodec.java:296) at com.sun.xml.ws.encoding.StreamSOAPCodec.decode(StreamSOAPCodec.java:128) at com.sun.xml.ws.encoding.SOAPBindingCodec.decode(SOAPBindingCodec.java:287) ... 22 more If I use a HTTP proxy to sniff out what SSRS is sending to JAX-WS, I see EF BB BF as the beginning of the post body and JAX-WS doesn't like that. If I remove the special characters and resubmit the request using Fiddler, then the web-service invocation works. Why does JAX-WS blow up with the standard UTF-8 BOM? Is there a workaround to get past this issue? Any suggestions would be greatly appreciated. Thanks --Vinny

    Read the article

  • how can i overriding the inbound message validation with cxf?

    - by user1648330
    when i input a non-numeric content to a Integer types of field, i have got a fault mesasge 'Not a number: 0.012A'. How to do ability to in prior to the Unmarshal for schema validation and output custom error messages? I used cxf 2.6.1 and also configuration with <entry key="schema-validation-enabled" value="true" ></entry> in cxf-spring.xml. java.lang.RuntimeException: Not a number: 0.012A at com.jiemai.jmservice.handlers.ValidationEventHandler.handleEvent(ValidationEventHandler.java:19) at org.apache.cxf.jaxb.io.DataReaderImpl$WSUIDValidationHandler.handleEvent(DataReaderImpl.java:78) at com.sun.xml.bind.v2.runtime.unmarshaller.UnmarshallingContext.handleEvent(UnmarshallingContext.java:655) at com.sun.xml.bind.v2.runtime.unmarshaller.UnmarshallingContext.handleError(UnmarshallingContext.java:691) at com.sun.xml.bind.v2.runtime.unmarshaller.UnmarshallingContext.handleError(UnmarshallingContext.java:687) at com.sun.xml.bind.v2.runtime.unmarshaller.Loader.handleParseConversionException(Loader.java:271) at com.sun.xml.bind.v2.runtime.unmarshaller.LeafPropertyLoader.text(LeafPropertyLoader.java:69) at com.sun.xml.bind.v2.runtime.unmarshaller.UnmarshallingContext.text(UnmarshallingContext.java:514) at com.sun.xml.bind.v2.runtime.unmarshaller.InterningXmlVisitor.text(InterningXmlVisitor.java:93) at com.sun.xml.bind.v2.runtime.unmarshaller.StAXStreamConnector.processText(StAXStreamConnector.java:338) at com.sun.xml.bind.v2.runtime.unmarshaller.StAXStreamConnector.handleEndElement(StAXStreamConnector.java:216) at com.sun.xml.bind.v2.runtime.unmarshaller.StAXStreamConnector.bridge(StAXStreamConnector.java:185) at com.sun.xml.bind.v2.runtime.unmarshaller.UnmarshallerImpl.unmarshal0(UnmarshallerImpl.java:370) at com.sun.xml.bind.v2.runtime.unmarshaller.UnmarshallerImpl.unmarshal(UnmarshallerImpl.java:349) at org.apache.cxf.jaxb.JAXBEncoderDecoder.doUnmarshal(JAXBEncoderDecoder.java:784) at org.apache.cxf.jaxb.JAXBEncoderDecoder.access$100(JAXBEncoderDecoder.java:97) at org.apache.cxf.jaxb.JAXBEncoderDecoder$1.run(JAXBEncoderDecoder.java:812) at java.security.AccessController.doPrivileged(Native Method) at org.apache.cxf.jaxb.JAXBEncoderDecoder.unmarshall(JAXBEncoderDecoder.java:810) at org.apache.cxf.jaxb.JAXBEncoderDecoder.unmarshall(JAXBEncoderDecoder.java:644) at org.apache.cxf.jaxb.io.DataReaderImpl.read(DataReaderImpl.java:157) at org.apache.cxf.interceptor.DocLiteralInInterceptor.handleMessage(DocLiteralInInterceptor.java:108) at org.apache.cxf.phase.PhaseInterceptorChain.doIntercept(PhaseInterceptorChain.java:262) at org.apache.cxf.transport.ChainInitiationObserver.onMessage(ChainInitiationObserver.java:122) at org.apache.cxf.transport.http.AbstractHTTPDestination.invoke(AbstractHTTPDestination.java:211) at org.apache.cxf.transport.servlet.ServletController.invokeDestination(ServletController.java:213) at org.apache.cxf.transport.servlet.ServletController.invoke(ServletController.java:193) at org.apache.cxf.transport.servlet.CXFNonSpringServlet.invoke(CXFNonSpringServlet.java:129) at org.apache.cxf.transport.servlet.AbstractHTTPServlet.handleRequest(AbstractHTTPServlet.java:187) at org.apache.cxf.transport.servlet.AbstractHTTPServlet.doPost(AbstractHTTPServlet.java:110) at javax.servlet.http.HttpServlet.service(HttpServlet.java:710) at org.apache.cxf.transport.servlet.AbstractHTTPServlet.service(AbstractHTTPServlet.java:166) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:175) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:128) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:263) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:844) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:584) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:447) at java.lang.Thread.run(Unknown Source)

    Read the article

  • Can't access Elements previously created by innerHTML with Javascript/Prototype

    - by Joe Hopfgartner
    I am setting the innerHTML variable of a div with contents from an ajax request: new Ajax.Request('/search/ajax/allakas/?ext_id='+extid, { method:'get', onSuccess: function(transport){ var response = transport.responseText || "no response text"; $('admincovers_content').innerHTML=response; }, onFailure: function(){ alert('Something went wrong...') } }); The response text cotains a form: <form id="akas-admin" method="post" action="/search/ajax/modifyakas/"> <input type="text" name="formfield" value="i am a form field"/> </form> Then I call a functiont that should submit that form: $('akas-admin').request({ onComplete: function(transport){ //alert('Form data saved! '+transport.responseText) $('admincovers_content').innerHTML=transport.responseText; } }); The problem is $('akas-admin) returns null , I tried to put the form with this id in the original document, which works. Question: Can I somehow "revalidate" the dom or access elements that have been inserted with innerHTML? Edit Info: document.getElementById("akas-admin").submit() works just fine, problem is i don't want to reload the whole page but post the form over ajax and get the response text in a callback function. Edit: Based on the answers provided, i replaced my function that does the request with the following observer: Event.observe(document.body, 'click', function(event) { var e = Event.element(event); if ('aka-savelink' == e.identify()) { alert('savelink clicked!'); if (el = e.findElement('#akas-admin')) { alert('found form to submit it has id: '+el.identify()); el.request({ onComplete: function(transport){ alert('Form data saved! '+transport.responseText) $('admincovers_content').innerHTML=transport.responseText; } }); } } }); problem is that i get as far as alert('savelink clicked!'); . findelement doesnt return the form. i tried to place the save link above and under the form. both doesnt work. i also think this approach is a bit clumsy and i am doing it wrong. could anyone point me in the right direction?

    Read the article

  • stringindexoutofbounds with currency converter java program

    - by user1795926
    I am have trouble with a summary not showing up. I am supposed to modify a previous Java assignment by by adding an array of objects. Within the loop, instantiate each individual object. Make sure the user cannot keep adding another Foreign conversion beyond your array size. After the user selects quit from the menu, prompt if the user want to display a summary report. If they select ‘Y’ then, using your array of objects, display the following report: Item Conversion Dollars Amount 1 Japanese Yen 100.00 32,000.00 2 Mexican Peso 400.00 56,000.00 3 Canadian Dollar 100.00 156.00 etc. Number of Conversions = 3 There are no errors when I compile..but when I run the program it is fine until I hit 0 to end the conversion and have it ask if i want to see a summary. This error displays: Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String index out of range: 0 at java.lang.String.charAt(String.java:658) at Lab8.main(Lab8.java:43) my code: import java.util.Scanner; import java.text.DecimalFormat; public class Lab8 { public static void main(String[] args) { final int Max = 10; String a; char summary; int c = 0; Foreign[] Exchange = new Foreign[Max]; Scanner Keyboard = new Scanner(System.in); Foreign.opening(); do { Exchange[c] = new Foreign(); Exchange[c].getchoice(); Exchange[c].dollars(); Exchange[c].amount(); Exchange[c].vertical(); System.out.println("\n" + Exchange[c]); c++; System.out.println("\n" + "Please select 1 through 4, or 0 to quit" + >"\n"); c= Keyboard.nextInt(); } while (c != 0); System.out.print("\nWould you like a summary of your conversions? (Y/N): "); a = Keyboard.nextLine(); summary = a.charAt(0); summary = Character.toUpperCase(summary); if (summary == 'Y') { System.out.println("\nCountry\t\tRate\t\tDollars\t\tAmount"); System.out.println("========\t\t=======\t\t=======\t\t========="); for (int i=0; i < Exchange.length; i++) System.out.println(Exchange[i]); Foreign.counter(); } } } I looked at line 43 and its this line: summary = a.charAt(0); But I am not sure what's wrong with it, can anyone point it out? Thank you.

    Read the article

< Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >