Search Results

Search found 5991 results on 240 pages for 'iwork numbers'.

Page 65/240 | < Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >

  • network configuration

    - by carlcroom
    Hello all. I have just inherited a network at my work- 1 primary server and about 65 computers running XP. All machines have Gigabit ethernet cards and all are connected through Gigabit switches and cat. 6 cables. The workstations send large numbers of image files to the server where they are held until they need to go to a printer. And I'm talking Gigs of files. We get a network slowdown when large number of files are coming from the workstations at the same time large numbers are also going the the printers. All machines have to be on the same subnet because of some proprietary software. Is there anything I can do to lessen this logjam? Any help would be greatly appreciated.

    Read the article

  • What function should I use in Excel for searching a (multiple) text string?

    - by Alenanno
    The title is a bit unclear, but I'll be explaining it now for better clarity. I have this: When I type in the Input field, I'd like Excel to show me the result in the Output field. For example, if I write Four, I'd like it to output 20, or if I write one of the other three words, then 12. The problem is that... I can't make it to work. The formula I tried is "=CERCA(C2;G:G;H:H)" (cerca means search), so I'm saying "Take what I write in the cell C2, search through the column G and give me what you find from the column H", but the result is always N.D. (Not available). I've tried other combinations and: Text strings, does not work; Single numbers, works (if I search 1, it says 2, which is what I expect); multiple numbers, does not work (if I search 4, nothing happens). What function should I use?

    Read the article

  • TDE Tablespace Encryption 11.2.0.1 Certified with EBS 12

    - by Steven Chan
    Oracle Advanced Security is an optional licenced Oracle 11g Database add-on.  Oracle Advanced Security Transparent Data Encryption (TDE) offers two different features:  column encryption and tablespace encryption.  11.2.0.1 TDE Column encryption was certified with E-Business Suite 12 as part of our overall 11.2.0.1 database certification.  As of today, 11.2.0.1 TDE Tablespace encryption is now certified with Oracle E-Business Suite Release 12. What is Transparent Data Encryption (TDE) ? Oracle Advanced Security Transparent Data Encryption (TDE) allows you to protect data at rest. TDE helps address privacy and PCI requirements by encrypting personally identifiable information (PII) such as Social Security numbers and credit card numbers. TDE is completely transparent to existing applications with no triggers, views or other application changes required. Data is transparently encrypted when written to disk and transparently decrypted after an application user has successfully authenticated and passed all authorization checks. Authorization checks include verifying the user has the necessary select and update privileges on the application table and checking Database Vault, Label Security and Virtual Private Database enforcement policies.

    Read the article

  • Project Euler 51: Ruby

    - by Ben Griswold
    In my attempt to learn Ruby out in the open, here’s my solution for Project Euler Problem 51.  I know I started back up with Python this week, but I have three more Ruby solutions in the hopper and I wanted to share. For the record, Project Euler 51 was the second hardest Euler problem for me thus far. Yeah. As always, any feedback is welcome. # Euler 51 # http://projecteuler.net/index.php?section=problems&id=51 # By replacing the 1st digit of *3, it turns out that six # of the nine possible values: 13, 23, 43, 53, 73, and 83, # are all prime. # # By replacing the 3rd and 4th digits of 56**3 with the # same digit, this 5-digit number is the first example # having seven primes among the ten generated numbers, # yielding the family: 56003, 56113, 56333, 56443, # 56663, 56773, and 56993. Consequently 56003, being the # first member of this family, is the smallest prime with # this property. # # Find the smallest prime which, by replacing part of the # number (not necessarily adjacent digits) with the same # digit, is part of an eight prime value family. timer_start = Time.now require 'mathn' def eight_prime_family(prime) 0.upto(9) do |repeating_number| # Assume mask of 3 or more repeating numbers if prime.count(repeating_number.to_s) >= 3 ctr = 1 (repeating_number + 1).upto(9) do |replacement_number| family_candidate = prime.gsub(repeating_number.to_s, replacement_number.to_s) ctr += 1 if (family_candidate.to_i).prime? end return true if ctr >= 8 end end false end # Wanted to loop through primes using Prime.each # but it took too long to get to the starting value. n = 9999 while n += 2 next if !n.prime? break if eight_prime_family(n.to_s) end puts n puts "Elapsed Time: #{(Time.now - timer_start)*1000} milliseconds"

    Read the article

  • Imperative vs. LINQ Performance on WP7

    - by Bil Simser
    Jesse Liberty had a nice post presenting the concepts around imperative, LINQ and fluent programming to populate a listbox. Check out the post as it’s a great example of some foundational things every .NET programmer should know. I was more interested in what the IL code that would be generated from imperative vs. LINQ was like and what the performance numbers are and how they differ. The code at the instruction level is interesting but not surprising. The imperative example with it’s creating lists and loops weighs in at about 60 instructions. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void ImperativeMethod() cil managed 2: { 3: .maxstack 3 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.List`1<int32> inLoop, 7: [2] int32 n, 8: [3] class [mscorlib]System.Collections.Generic.IEnumerator`1<int32> CS$5$0000, 9: [4] bool CS$4$0001) 10: L_0000: nop 11: L_0001: ldc.i4.1 12: L_0002: ldc.i4.s 50 13: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 14: L_0009: stloc.0 15: L_000a: newobj instance void [mscorlib]System.Collections.Generic.List`1<int32>::.ctor() 16: L_000f: stloc.1 17: L_0010: nop 18: L_0011: ldloc.0 19: L_0012: callvirt instance class [mscorlib]System.Collections.Generic.IEnumerator`1<!0> [mscorlib]System.Collections.Generic.IEnumerable`1<int32>::GetEnumerator() 20: L_0017: stloc.3 21: L_0018: br.s L_003a 22: L_001a: ldloc.3 23: L_001b: callvirt instance !0 [mscorlib]System.Collections.Generic.IEnumerator`1<int32>::get_Current() 24: L_0020: stloc.2 25: L_0021: nop 26: L_0022: ldloc.2 27: L_0023: ldc.i4.5 28: L_0024: cgt 29: L_0026: ldc.i4.0 30: L_0027: ceq 31: L_0029: stloc.s CS$4$0001 32: L_002b: ldloc.s CS$4$0001 33: L_002d: brtrue.s L_0039 34: L_002f: ldloc.1 35: L_0030: ldloc.2 36: L_0031: ldloc.2 37: L_0032: mul 38: L_0033: callvirt instance void [mscorlib]System.Collections.Generic.List`1<int32>::Add(!0) 39: L_0038: nop 40: L_0039: nop 41: L_003a: ldloc.3 42: L_003b: callvirt instance bool [mscorlib]System.Collections.IEnumerator::MoveNext() 43: L_0040: stloc.s CS$4$0001 44: L_0042: ldloc.s CS$4$0001 45: L_0044: brtrue.s L_001a 46: L_0046: leave.s L_005a 47: L_0048: ldloc.3 48: L_0049: ldnull 49: L_004a: ceq 50: L_004c: stloc.s CS$4$0001 51: L_004e: ldloc.s CS$4$0001 52: L_0050: brtrue.s L_0059 53: L_0052: ldloc.3 54: L_0053: callvirt instance void [mscorlib]System.IDisposable::Dispose() 55: L_0058: nop 56: L_0059: endfinally 57: L_005a: nop 58: L_005b: ldarg.0 59: L_005c: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB1 60: L_0061: ldloc.1 61: L_0062: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 62: L_0067: nop 63: L_0068: ret 64: .try L_0018 to L_0048 finally handler L_0048 to L_005a 65: } 66:   67: Compare that to the IL generated for the LINQ version which has about half of the instructions and just gets the job done, no fluff. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void LINQMethod() cil managed 2: { 3: .maxstack 4 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> queryResult) 7: L_0000: nop 8: L_0001: ldc.i4.1 9: L_0002: ldc.i4.s 50 10: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 11: L_0009: stloc.0 12: L_000a: ldloc.0 13: L_000b: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 14: L_0010: brtrue.s L_0025 15: L_0012: ldnull 16: L_0013: ldftn bool PerfTest.MainPage::<LINQProgramming>b__4(int32) 17: L_0019: newobj instance void [System.Core]System.Func`2<int32, bool>::.ctor(object, native int) 18: L_001e: stsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 19: L_0023: br.s L_0025 20: L_0025: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 21: L_002a: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0> [System.Core]System.Linq.Enumerable::Where<int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, bool>) 22: L_002f: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 23: L_0034: brtrue.s L_0049 24: L_0036: ldnull 25: L_0037: ldftn int32 PerfTest.MainPage::<LINQProgramming>b__5(int32) 26: L_003d: newobj instance void [System.Core]System.Func`2<int32, int32>::.ctor(object, native int) 27: L_0042: stsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 28: L_0047: br.s L_0049 29: L_0049: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 30: L_004e: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!1> [System.Core]System.Linq.Enumerable::Select<int32, int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, !!1>) 31: L_0053: stloc.1 32: L_0054: ldarg.0 33: L_0055: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB2 34: L_005a: ldloc.1 35: L_005b: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 36: L_0060: nop 37: L_0061: ret 38: } Again, not surprising here but a good indicator that you should consider using LINQ where possible. In fact if you have ReSharper installed you’ll see a squiggly (technical term) in the imperative code that says “Hey Dude, I can convert this to LINQ if you want to be c00L!” (or something like that, it’s the 2010 geek version of Clippy). What about the fluent version? As Jon correctly pointed out in the comments, when you compare the IL for the LINQ code and the IL for the fluent code it’s the same. LINQ and the fluent interface are just syntactical sugar so you decide what you’re most comfortable with. At the end of the day they’re both the same. Now onto the numbers. Again I expected the imperative version to be better performing than the LINQ version (before I saw the IL that was generated). Call it womanly instinct. A gut feel. Whatever. Some of the numbers are interesting though. For Jesse’s example of 50 items, the numbers were interesting. The imperative sample clocked in at 7ms while the LINQ version completed in 4. As the number of items went up, the elapsed time didn’t necessarily climb exponentially. At 500 items they were pretty much the same and the results were similar up to about 50,000 items. After that I tried 500,000 items where the gap widened but not by much (2.2 seconds for imperative, 2.3 for LINQ). It wasn’t until I tried 5,000,000 items where things were noticeable. Imperative filled the list in 20 seconds while LINQ took 8 seconds longer (although personally I wouldn’t suggest you put 5 million items in a list unless you want your users showing up at your door with torches and pitchforks). Here’s the table with the full results. Method/Items 50 500 5,000 50,000 500,000 5,000,000 Imperative 7ms 7ms 38ms 223ms 2230ms 20974ms LINQ/Fluent 4ms 6ms 41ms 240ms 2310ms 28731ms Like I said, at the end of the day it’s not a huge difference and you really don’t want your users waiting around for 30 seconds on a mobile device filling lists. In fact if Windows Phone 7 detects you’re taking more than 10 seconds to do any one thing, it considers the app hung and shuts it down. The results here are for Windows Phone 7 but frankly they're the same for desktop and web apps so feel free to apply it generally. From a programming perspective, choose what you like. Some LINQ statements can get pretty hairy so I usually fall back with my simple mind and write it imperatively. If you really want to impress your friends, write it old school then let ReSharper do the hard work for! Happy programming!

    Read the article

  • LINQ and conversion operators

    - by vik20000in
    LINQ has a habit of returning things as IEnumerable. But we have all been working with so many other format of lists like array ilist, dictionary etc that most of the time after having the result set we want to get them converted to one of our known format. For this reason LINQ has come up with helper method which can convert the result set in the desired format. Below is an example var sortedDoubles =         from d in doubles         orderby d descending         select d;     var doublesArray = sortedDoubles.ToArray(); This way we can also transfer the data to IList and Dictionary objects. Let’s say we have an array of Objects. The array contains all different types of data like double, int, null, string etc and we want only one type of data back then also we can use the helper function ofType. Below is an example     object[] numbers = { null, 1.0, "two", 3, "four", 5, "six", 7.0 };     var doubles = numbers.OfType<double>(); Vikram

    Read the article

  • How to negotiate with software vendors who do not follow HL7 standards

    - by Peter Turner
    Take, for instance the "", I'd hope that anyone who has spent any time in dealing with HL7 messages knows that the "" signifies that something should be deleted. "" is not an empty string, it's not a filler etc... But occasionally, one may meet a vendor who persists in sending "" instead of just sending nothing at all. Since, I work for a small business and have an extremely flexible HL7 interface, I can ignore ""'s in received messages. But these things are adding up. Some vendors like to send custom formatted fields with psuedo-components that they leave others to interpret themselves. Some vendors send all their information in note segments and assume you're going to only show users the information they send in a monospace font. Some vendors even have the audacity to send Carriage Return Line Feeds at the end of each line of a file interface. Some vendors absolutely refuse to send decimal numbers and in-so-doing refuse to send any numbers. So, with all this crippling humanity against the simple plastic software man, how does one bend without breaking*? Or better yet, how does one fight back and still make money? *my answer is usually to create an interface for the interface and keep the HL7 processing pure, but I don't think this is the best solution

    Read the article

  • C#/.NET Little Wonders: The Predicate, Comparison, and Converter Generic Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last three weeks, we examined the Action family of delegates (and delegates in general), the Func family of delegates, and the EventHandler family of delegates and how they can be used to support generic, reusable algorithms and classes. This week I will be completing my series on the generic delegates in the .NET Framework with a discussion of three more, somewhat less used, generic delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>. These are older generic delegates that were introduced in .NET 2.0, mostly for use in the Array and List<T> classes.  Though older, it’s good to have an understanding of them and their intended purpose.  In addition, you can feel free to use them yourself, though obviously you can also use the equivalents from the Func family of delegates instead. Predicate<T> – delegate for determining matches The Predicate<T> delegate was a very early delegate developed in the .NET 2.0 Framework to determine if an item was a match for some condition in a List<T> or T[].  The methods that tend to use the Predicate<T> include: Find(), FindAll(), FindLast() Uses the Predicate<T> delegate to finds items, in a list/array of type T, that matches the given predicate. FindIndex(), FindLastIndex() Uses the Predicate<T> delegate to find the index of an item, of in a list/array of type T, that matches the given predicate. The signature of the Predicate<T> delegate (ignoring variance for the moment) is: 1: public delegate bool Predicate<T>(T obj); So, this is a delegate type that supports any method taking an item of type T and returning bool.  In addition, there is a semantic understanding that this predicate is supposed to be examining the item supplied to see if it matches a given criteria. 1: // finds first even number (2) 2: var firstEven = Array.Find(numbers, n => (n % 2) == 0); 3:  4: // finds all odd numbers (1, 3, 5, 7, 9) 5: var allEvens = Array.FindAll(numbers, n => (n % 2) == 1); 6:  7: // find index of first multiple of 5 (4) 8: var firstFiveMultiplePos = Array.FindIndex(numbers, n => (n % 5) == 0); This delegate has typically been succeeded in LINQ by the more general Func family, so that Predicate<T> and Func<T, bool> are logically identical.  Strictly speaking, though, they are different types, so a delegate reference of type Predicate<T> cannot be directly assigned to a delegate reference of type Func<T, bool>, though the same method can be assigned to both. 1: // SUCCESS: the same lambda can be assigned to either 2: Predicate<DateTime> isSameDayPred = dt => dt.Date == DateTime.Today; 3: Func<DateTime, bool> isSameDayFunc = dt => dt.Date == DateTime.Today; 4:  5: // ERROR: once they are assigned to a delegate type, they are strongly 6: // typed and cannot be directly assigned to other delegate types. 7: isSameDayPred = isSameDayFunc; When you assign a method to a delegate, all that is required is that the signature matches.  This is why the same method can be assigned to either delegate type since their signatures are the same.  However, once the method has been assigned to a delegate type, it is now a strongly-typed reference to that delegate type, and it cannot be assigned to a different delegate type (beyond the bounds of variance depending on Framework version, of course). Comparison<T> – delegate for determining order Just as the Predicate<T> generic delegate was birthed to give Array and List<T> the ability to perform type-safe matching, the Comparison<T> was birthed to give them the ability to perform type-safe ordering. The Comparison<T> is used in Array and List<T> for: Sort() A form of the Sort() method that takes a comparison delegate; this is an alternate way to custom sort a list/array from having to define custom IComparer<T> classes. The signature for the Comparison<T> delegate looks like (without variance): 1: public delegate int Comparison<T>(T lhs, T rhs); The goal of this delegate is to compare the left-hand-side to the right-hand-side and return a negative number if the lhs < rhs, zero if they are equal, and a positive number if the lhs > rhs.  Generally speaking, null is considered to be the smallest value of any reference type, so null should always be less than non-null, and two null values should be considered equal. In most sort/ordering methods, you must specify an IComparer<T> if you want to do custom sorting/ordering.  The Array and List<T> types, however, also allow for an alternative Comparison<T> delegate to be used instead, essentially, this lets you perform the custom sort without having to have the custom IComparer<T> class defined. It should be noted, however, that the LINQ OrderBy(), and ThenBy() family of methods do not support the Comparison<T> delegate (though one could easily add their own extension methods to create one, or create an IComparer() factory class that generates one from a Comparison<T>). So, given this delegate, we could use it to perform easy sorts on an Array or List<T> based on custom fields.  Say for example we have a data class called Employee with some basic employee information: 1: public sealed class Employee 2: { 3: public string Name { get; set; } 4: public int Id { get; set; } 5: public double Salary { get; set; } 6: } And say we had a List<Employee> that contained data, such as: 1: var employees = new List<Employee> 2: { 3: new Employee { Name = "John Smith", Id = 2, Salary = 37000.0 }, 4: new Employee { Name = "Jane Doe", Id = 1, Salary = 57000.0 }, 5: new Employee { Name = "John Doe", Id = 5, Salary = 60000.0 }, 6: new Employee { Name = "Jane Smith", Id = 3, Salary = 59000.0 } 7: }; Now, using the Comparison<T> delegate form of Sort() on the List<Employee>, we can sort our list many ways: 1: // sort based on employee ID 2: employees.Sort((lhs, rhs) => Comparer<int>.Default.Compare(lhs.Id, rhs.Id)); 3:  4: // sort based on employee name 5: employees.Sort((lhs, rhs) => string.Compare(lhs.Name, rhs.Name)); 6:  7: // sort based on salary, descending (note switched lhs/rhs order for descending) 8: employees.Sort((lhs, rhs) => Comparer<double>.Default.Compare(rhs.Salary, lhs.Salary)); So again, you could use this older delegate, which has a lot of logical meaning to it’s name, or use a generic delegate such as Func<T, T, int> to implement the same sort of behavior.  All this said, one of the reasons, in my opinion, that Comparison<T> isn’t used too often is that it tends to need complex lambdas, and the LINQ ability to order based on projections is much easier to use, though the Array and List<T> sorts tend to be more efficient if you want to perform in-place ordering. Converter<TInput, TOutput> – delegate to convert elements The Converter<TInput, TOutput> delegate is used by the Array and List<T> delegate to specify how to convert elements from an array/list of one type (TInput) to another type (TOutput).  It is used in an array/list for: ConvertAll() Converts all elements from a List<TInput> / TInput[] to a new List<TOutput> / TOutput[]. The delegate signature for Converter<TInput, TOutput> is very straightforward (ignoring variance): 1: public delegate TOutput Converter<TInput, TOutput>(TInput input); So, this delegate’s job is to taken an input item (of type TInput) and convert it to a return result (of type TOutput).  Again, this is logically equivalent to a newer Func delegate with a signature of Func<TInput, TOutput>.  In fact, the latter is how the LINQ conversion methods are defined. So, we could use the ConvertAll() syntax to convert a List<T> or T[] to different types, such as: 1: // get a list of just employee IDs 2: var empIds = employees.ConvertAll(emp => emp.Id); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.ConvertAll(emp => (int)emp.Salary); Note that the expressions above are logically equivalent to using LINQ’s Select() method, which gives you a lot more power: 1: // get a list of just employee IDs 2: var empIds = employees.Select(emp => emp.Id).ToList(); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.Select(emp => (int)emp.Salary).ToList(); The only difference with using LINQ is that many of the methods (including Select()) are deferred execution, which means that often times they will not perform the conversion for an item until it is requested.  This has both pros and cons in that you gain the benefit of not performing work until it is actually needed, but on the flip side if you want the results now, there is overhead in the behind-the-scenes work that support deferred execution (it’s supported by the yield return / yield break keywords in C# which define iterators that maintain current state information). In general, the new LINQ syntax is preferred, but the older Array and List<T> ConvertAll() methods are still around, as is the Converter<TInput, TOutput> delegate. Sidebar: Variance support update in .NET 4.0 Just like our descriptions of Func and Action, these three early generic delegates also support more variance in assignment as of .NET 4.0.  Their new signatures are: 1: // comparison is contravariant on type being compared 2: public delegate int Comparison<in T>(T lhs, T rhs); 3:  4: // converter is contravariant on input and covariant on output 5: public delegate TOutput Contravariant<in TInput, out TOutput>(TInput input); 6:  7: // predicate is contravariant on input 8: public delegate bool Predicate<in T>(T obj); Thus these delegates can now be assigned to delegates allowing for contravariance (going to a more derived type) or covariance (going to a less derived type) based on whether the parameters are input or output, respectively. Summary Today, we wrapped up our generic delegates discussion by looking at three lesser-used delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>.  All three of these tend to be replaced by their more generic Func equivalents in LINQ, but that doesn’t mean you shouldn’t understand what they do or can’t use them for your own code, as they do contain semantic meanings in their names that sometimes get lost in the more generic Func name.   Tweet Technorati Tags: C#,CSharp,.NET,Little Wonders,delegates,generics,Predicate,Converter,Comparison

    Read the article

  • Election 2012: Twitter Breaks Records with MySQL

    - by Bertrand Matthelié
    Twitter VP of Infrastructure Operations Engineering Mazen Rawashdeh shared news and numbers yesterday on his blog: "Last night, the world tuned in to Twitter to share the election results as U.S. voters chose a president and settled many other campaigns. Throughout the day, people sent more than 31 million election-related Tweets (which contained certain key terms and relevant hashtags). And as results rolled in, we tracked the surge in election-related Tweets at 327,452 Tweets per minute (TPM). These numbers reflect the largest election-related Twitter conversation during our 6 years of existence, though they don’t capture the total volume of all Tweets yesterday." "Last night, Twitter averaged about 9,965 TPS from 8:11pm to 9:11pm PT, with a one-second peak of 15,107 TPS at 8:20pm PT and a one-minute peak of 874,560 TPM. Seeing a sustained peak over the course of an entire event is a change from the way people have previously turned to Twitter during live events. Now, rather than brief spikes, we are seeing sustained peaks for hours." Congrats to Jeremy Cole, Davi Arnaut and the rest of the team at Twitter for their excellent work! Jeremy recently held a keynote presentation at MySQL Connect describing how MySQL powers Twitter, and why they chose and continue to rely on MySQL for their operations. You can watch the presentation here. He also went into more details during another presentation later that day and you can access the slides here. Below a couple of tweets from Jeremy after what have surely been hectic days...  Keep up the good work guys!

    Read the article

  • TRADACOMS Support in B2B

    - by Dheeraj Kumar
    TRADACOMS is an initial standard for EDI. Predominantly used in the retail sector of United Kingdom. This is similar to EDIFACT messaging system, involving ecs file for translation and validation of messages. The slight difference between EDIFACT and TRADACOMS is, 1. TRADACOMS is a simpler version than EDIFACT 2. There is no Functional Acknowledgment in TRADACOMS 3. Since it is just a business message to be sent to the trading partner, the various reference numbers at STX, BAT, MHD level need not be persisted in B2B as there is no Business logic gets derived out of this. Considering this, in AS11 B2B, this can be handled out of the box using Positional Flat file document plugin. Since STX, BAT segments which define the envelope details , and part of transaction, has to be sent from the back end application itself as there is no Document protocol parameters defined in B2B. These would include some of the identifiers like SenderCode, SenderName, RecipientCode, RecipientName, reference numbers. Additionally the batching in this case be achieved by sending all the messages of a batch in a single xml from backend application, containing total number of messages in Batch as part of EOB (Batch trailer )segment. In the case of inbound scenario, we can identify the document based on start position and end position of the incoming document. However, there is a plan to identify the incoming document based on Tradacom standard instead of start/end position. Please email to [email protected] if you need a working sample.

    Read the article

  • AceCypher is an Addictive Cypher Slide Puzzle Game

    - by Akemi Iwaya
    Are you ready for a game that will test your logical thinking skills while providing hours of fun? Then you may want to have a look at this awesome cypher slide puzzler! AceCypher is great puzzle game for those times when you only have a few minutes to play or want a fun way to pass the time while relaxing. The overall premise and style of game play for AceCypher is simple. You move individual rows (left, right) or columns (up, down) one space at a time in order to shift the positions of numbers on the game board through ’round-a-bout’ trading. The goal is to make the four numbers in the red square match the code shown in the upper right corner (including positions). Sounds simple so far, right? But the challenge comes from the random boards you will be given to work with…some will not be too hard to solve while others will tax your brain (and patience!) quite well.     

    Read the article

  • Extreme Optimization Numerical Libraries for .NET – Part 1 of n

    - by JoshReuben
    While many of my colleagues are fascinated in constructing the ultimate ViewModel or ServiceBus, I feel that this kind of plumbing code is re-invented far too many times – at some point in the near future, it will be out of the box standard infra. How many times have you been to a customer site and built a different variation of the same kind of code frameworks? How many times can you abstract Prism or reliable and discoverable WCF communication? As the bar is raised for whats bundled with the framework and more tasks become declarative, automated and configurable, Information Systems will expose a higher level of abstraction, forcing software engineers to focus on more advanced computer science and algorithmic tasks. I've spent the better half of the past decade building skills in .NET and expanding my mathematical horizons by working through the Schaums guides. In this series I am going to examine how these skillsets come together in the implementation provided by ExtremeOptimization. Download the trial version here: http://www.extremeoptimization.com/downloads.aspx Overview The library implements a set of algorithms for: linear algebra, complex numbers, numerical integration and differentiation, solving equations, optimization, random numbers, regression, ANOVA, statistical distributions, hypothesis tests. EONumLib combines three libraries in one - organized in a consistent namespace hierarchy. Mathematics Library - Extreme.Mathematics namespace Vector and Matrix Library - Extreme.Mathematics.LinearAlgebra namespace Statistics Library - Extreme.Statistics namespace System Requirements -.NET framework 4.0  Mathematics Library The classes are organized into the following namespace hierarchy: Extreme.Mathematics – common data types, exception types, and delegates. Extreme.Mathematics.Calculus - numerical integration and differentiation of functions. Extreme.Mathematics.Curves - points, lines and curves, including polynomials and Chebyshev approximations. curve fitting and interpolation. Extreme.Mathematics.Generic - generic arithmetic & linear algebra. Extreme.Mathematics.EquationSolvers - root finding algorithms. Extreme.Mathematics.LinearAlgebra - vectors , matrices , matrix decompositions, solvers for simultaneous linear equations and least squares. Extreme.Mathematics.Optimization – multi-d function optimization + linear programming. Extreme.Mathematics.SignalProcessing - one and two-dimensional discrete Fourier transforms. Extreme.Mathematics.SpecialFunctions

    Read the article

  • How should I implement a command processing application?

    - by Nini Michaels
    I want to make a simple, proof-of-concept application (REPL) that takes a number and then processes commands on that number. Example: I start with 1. Then I write "add 2", it gives me 3. Then I write "multiply 7", it gives me 21. Then I want to know if it is prime, so I write "is prime" (on the current number - 21), it gives me false. "is odd" would give me true. And so on. Now, for a simple application with few commands, even a simple switch would do for processing the commands. But if I want extensibility, how would I need to implement the functionality? Do I use the command pattern? Do I build a simple parser/interpreter for the language? What if I want more complex commands, like "multiply 5 until >200" ? What would be an easy way to extend it (add new commands) without recompiling? Edit: to clarify a few things, my end goal would not be to make something similar to WolframAlpha, but rather a list (of numbers) processor. But I want to start slowly at first (on single numbers). I'm having in mind something similar to the way one would use Haskell to process lists, but a very simple version. I'm wondering if something like the command pattern (or equivalent) would suffice, or if I have to make a new mini-language and a parser for it to achieve my goals?

    Read the article

  • How do I get Google to crawl my content when it's only displayed when you fill in a form?

    - by Sarang Patil
    I have a webpage. It has a form and the "results" section is blank. When the user searches for items, and a list that pops up, he/she chooses one option from list and then the corresponding results are displayed in results section. I once decided to log every ip,url of person with time that visits my page. One ip was 66.249.73.26, and on doing google search I came to know it is ip of google bot. link for whatmyipaddress google bot Now when I searched for the links that this ip visited, it was like this: search?id=100 search?id=110 ... search?id=200 ... then afterwards it incremented in steps of 1, like 400,401.. But people search for strings and not numbers. And because googlebot searches for numbers like this, I think the corresponding content is never displayed and so my page content is never indexed, even though it has rich content. So I want to ask you is that in order to show google bot all the content that the webpage has, should I list all the results in index page and ask users to enter string to filter results?

    Read the article

  • Correct configuration of multiple Analytics trackers per page, spanning domains and subdomains

    - by Eliot Shepard
    My company publishes sites on a somewhat convoluted domain structure, and we're having trouble getting accurate numbers in Analytics when we have multiple trackers on the page. We publish under two brands (A, B). Each brand has a "national" site at A.com, B.com, as well as per-city "local" sites at eg. ny.A.com, la.A.com, sf.A.com, etc. Right now we're trying to track in these dimensions: Full network (A.com, ny.A.com, B.com, la.B.com, etc.) All sites in brand (A.com, ny.A.com, la.A.com, etc.) Inidividual site (ny.A.com) Here are the commands we're using on an individual site: _gaq.push( ['t0._setAccount', 'UA-XXXXXX-1'], // full network ['t0._setDomainName', 'none'], ['t0._setAllowLinker', true], ['t0._trackPageview'], ['t1._trackPageLoadTime'], ['t1._setAccount', 'UA-XXXXXX-2'], // brand ['t1._setDomainName', 'none'], ['t1._setAllowLinker', true], ['t1._trackPageview'], ['t1._trackPageLoadTime'], ['t2._setAccount', 'UA-XXXXXX-3'], // individual ['t2._setDomainName', 'none'], ['t2._setAllowLinker', true], ['t2._trackPageview'], ['t2._trackPageLoadTime'] ); We send the same commands to each account because we've had strange results when trackers were configured differently in the past. However, right now we're seeing inflated numbers for uniques on all three trackers. What is the correct way to configure this setup? Thanks for your time.

    Read the article

  • How to indicate reliability when reporting availability of competencies

    - by Jan Doggen
    We have employees with competencies: Pete Welder Carpenter Melissa Carpenter Assume they both work 40 hours/week, and have not yet been assigned work. We need to report the availability of these competencies, expressed in hours. As far as I can see now, we can report this in two ways: Method A. When someone has multiple competencies, count them both. Welder 40 hours Carpenter 80 hours Method B. When someone has multiple competencies, count an equal division of hours for each Welder 20 hours Carpenter 60 hours Method A has our preference: - A good planner will know to plan the least available competency first. If 30 hours of welding is planned, we will be left with 10 welder, 50 carpenter. - Method B has the disadvantage that the planner thinks he cannot plan the job when 30 hours of welding is required. However, if we report this we would like to give an estimate of the reliability of the numbers for each competency, i.e. how much are these over-reported? In my example A, would I say that carpenter is 100% over-reported, or 50%, or maybe another number? How would I calculate this for large numbers of competencies? I'm sure we are not the first ones dealing with this, is there a 'usual' way of doing this in planning? Additionally: - Would there be an even better method than A or B? - Optionally, we also have an preference order of competencies (like: use him/her in this order), Pete could be 1. welder 2. carpenter. Does this introduce new options?

    Read the article

  • Direct IO enhancements in OVM Server for SPARC 2.2(a.k.a LDoms2.2)

    - by user12611315
    The Direct I/O feature has been available for LDoms customers since LDoms2.0. Apart from the latest SR-IOV feature in LDoms2.2, it is worth noting a few enhancements to the Direct I/O feature. These are: Support for Metis-Q and Metis-E cards. These cards are highly requested for support and are worth mentioning because they are the only combo cards containing both FibreChannel and Ethernet in the same card. With this support, a customer can have both SAN storage and network access with just one card and one PCIe slot assigned to a logical domain. This reduces cost and helps when there are less number of slots in a given platform. The following are the part numbers for these cards. I have tried to put the platforms on which each card is supported, but this information can get quickly outdated. The accurate information can be found at the Support Document.  Card Name  Part Number  Platforms Metis-Q: StorageTek Dual 8Gb Fibre Channel Dual GbE ExpressModule HBA, QLogic SG-XPCIEFCGBE-Q8-N  SPARC T3-4, T4-4 Metis-E: StorageTek Dual 8Gb Fibre Chanel Dual GbE ExpressModule HBA, Emulex SG-XPCIEFCGBE-E8-N SPARC T3-4, T4-4  Additional cards added to the portfolio of supported cards. This is mainly Powerville based Ethernet cards, the part numbers for these cards as below:  Part Number  Description  7100477 Sun Quad Port GbE PCI Express 2.0 Low Profile Adapter, UTP  7100481 Sun Dual Port GbE PCI Express 2.0 Low Profile Adapter, MMF  7100483 Sun Quad Port GbE PCI Express 2.0 ExpressModule, UTP  7110486 Sun Quad Port GbE PCI Express 2.0 ExpressModule, MMF    Note:  Direct IO feature has a hard dependency on the Root domain(PCIe bus owner, here Primary domain). That is, rebooting the Root domain for any reason may impact the logical domains having PCIe slots assigned with Direct IO feature. So rebooting a root domain need to be carefully managed. Also apply the failure-policy settings as described in the admin guide and release notes to deal with unexpected cases.

    Read the article

  • learn the programming language for computing functions about integers

    - by asd
    Hi I know something about Pascal, Mathematica and Matlab, but I dont have any idea about C,C++,C# languages. I want to learn one of the languages that they they are fast and exact to compute some arithmetic functions for large numbers(for example larger than $10^3000$). I asked somebody and he said he used C++ and he said I computed this sequence in less than 10 min. I want to know C, C++, C# and visual kind of theses programs and know which is better for my goal. Let $f$ be an arithmetic function and A={k1,k2,...,kn} are integers in increasing order. Now I want to start with k1 and compare f(ki) with f(k1). If f(ki)f(k1), put ki as k1. Now start with ki, and compare f(kj) with f(ki), for ji. If f(kj)f(ki), put kj as ki, and repeat this procedure. At the end we will have a sub sequence B={L1,...,Lm} of A by this property: f(L(i+1))f(L(i)), for any 1<=i<=m-1 I have written a code for this program with Mathematica, and it take some hours to compute f of ki's or the set B for large numbers. For example, let f is the divisor function of integers. Do you know how to write the code for my purpose in Mathematica or Matlab. Mathematica is preferable.

    Read the article

  • Japanese Multiplication simulation - is a program actually capable of improving calculation speed?

    - by jt0dd
    On SuperUser, I asked a (possibly silly) question about processors using mathematical shortcuts and would like to have a look at the possibility at the software application of that concept. I'd like to write a simulation of Japanese Multiplication to get benchmarks on large calculations utilizing the shortcut vs traditional CPU multiplication. I'm curious as to whether it makes sense to try this. My Question: I'd like to know whether or not a software math shortcut, as described above is actually a shortcut at all. This is a question of programming concept. By utilizing the simulation of Japanese Multiplication, is a program actually capable of improving calculation speed? Or am I doomed from the start? The answer to this question isn't required to determine whether or not the experiment will succeed, but rather whether or not it's logically possible for such a thing to occur in any program, using this concept as an example. My theory is that since addition is computed faster than multiplication, a simulation of Japanese multiplication may actually allow a program to multiply (large) numbers faster than the CPU arithmetic unit can. I think this would be a very interesting finding, if it proves to be true. If, in the multiplication of numbers of any immense size, the shortcut were to calculate the result via less instructions (or faster) than traditional ALU multiplication, I would consider the experiment a success.

    Read the article

  • How to create a copy of an instance without having access to private variables

    - by Jamie
    Im having a bit of a problem. Let me show you the code first: public class Direction { private CircularList xSpeed, zSpeed; private int[] dirSquare = {-1, 0, 1, 0}; public Direction(int xSpeed, int zSpeed){ this.xSpeed = new CircularList(dirSquare, xSpeed); this.zSpeed = new CircularList(dirSquare, zSpeed); } public Direction(Point dirs){ this(dirs.x, dirs.y); } public void shiftLeft(){ xSpeed.shiftLeft(); zSpeed.shiftRight(); } public void shiftRight(){ xSpeed.shiftRight(); zSpeed.shiftLeft(); } public int getXSpeed(){ return this.xSpeed.currentValue(); } public int getZSpeed(){ return this.zSpeed.currentValue(); } } Now lets say i have an instance of Direction: Direction dir = new Direction(0, 0); As you can see in the code of Direction, the arguments fed to the constructor, are passed directly to some other class. One cannot be sure if they stay the same because methods shiftRight() and shiftLeft could have been called, which changes thos numbers. My question is, how do i create a completely new instance of Direction, that is basically copy(not by reference) of dir? The only way i see it, is to create public methods in both CircularList(i can post the code of this class, but its not relevant) and Direction that return the variables needed to create a copy of the instance, but this solution seems really dirty since those numbers are not supposed to be touched after beeing fed to the constructor, and therefore they are private.

    Read the article

  • Strategy for versioning on a public repo

    - by biril
    Suppose I'm developing a (javascript) library which is hosted on a public repo (e.g. github). My aim in terms of how version numbers are assigned and incremented is to follow the guidelines of semantic versioning. Now, there's a number of files in my project which compose the actual lib and a number of files that 'support it', the latter being docs, a test suite, etc. My perspective this far has been that version numbers should only apply to the actual lib - not the project as a whole - since the lib alone is 'the unit' that defines the public API. However I'm not satisfied with this approach as, for example, a fix in the test suite constitutes an 'improvement' in my project, which will not be reflected in the version number (or the docs which contain a reference to it). On a more practical level, various tools, such as package managers, may (understandably) not play along with this strategy. For example, when trying to publish a change which is not reflected in the version number, npm publish fails with the suggestion "Bump the 'version' field set the --force flag, or npm unpublish". Am I doing it wrong?

    Read the article

  • Geekswithblogs.net | Screen Resolutions of our Readers

    - by Jeff Julian
    Yesterday I talked about the Browsers we see being used by our readers driven off of our Google Analytics traffic and today I want to share with you the Screen Resolutions we see.  As a web developer most of my life, it is hard to decide how large you should build your application because typically you have a couple huge high resolution monitors on your desk, but you typical end user is thought to have 1024x768.  With HTML5/CSS3 out, it is a little better coming up with a design that will scale to all resolutions, but it is still nice to know the numbers when it comes to how much real estate do I have on my clients. If you look at these numbers for Geekswithblogs.net, we have a lot of high resolution monitors from users that visit the site.  After a little more investigation of the number you will notice we do not have as much height available as we do width.  If the primary goal of a site is to deliver as much data in the viewable area without scrolling, this becomes a challenge when most of our pages have long pieces of formatted data.  So our challenge is to build skins that use up more of the sides of the content toward the top on larger resolution browsers and then entice the reader to scroll to get the goodies embedded in the content of the posts.  Going to be an interesting battle for sure, but we really need more skin offerings on the site. Technorati Tags: Resolution Statistics,Geekswithblogs.net

    Read the article

  • Visually and audibly unambiguous subset of the Latin alphabet?

    - by elliot42
    Imagine you give someone a card with the code "5SBDO0" on it. In some fonts, the letter "S" is difficult to visually distinguish from the number five, (as with number zero and letter "O"). Reading the code out loud, it might be difficult to distinguish "B" from "D", necessitating saying "B as in boy," "D as in dog," or using a "phonetic alphabet" instead. What's the biggest subset of letters and numbers that will, in most cases, both look unambiguous visually and sound unambiguous when read aloud? Background: We want to generate a short string that can encode as many values as possible while still being easy to communicate. Imagine you have a 6-character string, "123456". In base 10 this can encode 10^6 values. In hex "1B23DF" you can encode 16^6 values in the same number of characters, but this can sound ambiguous when read aloud. ("B" vs. "D") Likewise for any string of N characters, you get (size of alphabet)^N values. The string is limited to a length of about six characters, due to wanting to fit easily within the capacity of human working memory capacity. Thus to find the max number of values we can encode, we need to find that largest unambiguous set of letters/numbers. There's no reason we can't consider the letters G-Z, and some common punctuation, but I don't want to have to go manually pairwise compare "does G sound like A?", "does G sound like B?", "does G sound like C" myself. As we know this would be O(n^2) linguistic work to do =)...

    Read the article

  • How do I separate model positions from view positions in MVC?

    - by tieTYT
    Using MVC in games (as opposed to web apps) always confuses me when it comes to the view. How am I supposed to keep the model agnostic of how the view is presenting things? I always end up giving the Model a position that holds x and y but invariably, these values end up being in units of pixels and that feels wrong. I can see the advantage* of avoiding that but how am I supposed to? This idea was suggested: Don't think of it in units of pixels, think of them in arbitrary distance units that just happen map to pixels at a 1:1 ratio. Oh, the resolution is half of what it was? We are now taking the x/y coordinates at 50% value for screen display, and your spells casting range is still 300 units long, which now is 150 pixels. But those numbers conveniently work out. What do I do if the numbers divide in such a way that I get decimal places? Floating points are unsafe. I think allowing decimal places would eventually cause really weird bugs in my game. *It'd let me write the model once and write different views depending on the device.

    Read the article

  • visit counts in advanced segments not consistant

    - by user671201
    My organization has recently noticed an issue when applying advanced segments to visit counts during different time ranges. With no advanced segments turned on, here are the visit counts for Oct 1st - Oct 4th during the time range Sept 8th - Oct 8th: Oct 1 - 7 Oct 2 - 7 Oct 3 - 8 Oct 4 - 5 Again, with no advanced segments turned on, here are the visit counts for Oct 1st - Oct 4th but I've changed the time range to Oct 1st - Oct 4th. As expected, the numbers are the exact same as above: Oct 1 - 7 Oct 2 - 7 Oct 3 - 8 Oct 4 - 5 Now, I turn on the "Non paid search traffic" advanced segment. Here are the visit counts for Oct 1st - Oct 4th during the time range Sept 8th - Oct 8th: Oct 1 - 0 Oct 2 - 0 Oct 3 - 0 Oct 4 - 2 Here is where it gets weird. I keep the advanced segment on, and change the time range to Oct 1st - Oct 4th. This is what I get for the exact same dates as above: Oct 1 - 4 Oct 2 - 2 Oct 3 - 6 Oct 4 - 5 We've found the same inconsistency in our other GA profiles that get much more traffic (the above numbers come from one of our specialized topic blogs), but the inconsistency is less pronounced where there are more visits. My question is: why are the visit counts different for different time ranges when advanced segments are turned on, but exactly the same when no advanced segments are applied? Is this a GA bug or am I missing something about how the advanced segments work?

    Read the article

< Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >