Search Results

Search found 55941 results on 2238 pages for 'jqgrid asp net mvc'.

Page 65/2238 | < Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >

  • Best way to escape characters before jquery post ASP.NET MVC

    - by Darcy
    Hello, I am semi-new to ASP.NET MVC. I am building an app that is used internally for my company. The scenario is this: There are two Html.Listbox's. One has all database information, and the other is initally empty. The user would add items from the database listbox to the empty listbox. Every time the user adds a command, I call a js function that calls an ActionResult "AddCommand" in my EditController. In the controller, the selected items that are added are saved to another database table. Here is the code (this gets called every time an item is added): function Add(listbox) { ... //skipping initializing code for berevity var url = "/Edit/AddCommand/" + cmd; $.post(url); } So the problem occurs when the 'cmd' is an item that has a '/', ':', '%', '?', etc (some kind of special character) So what I'm wondering is, what's the best way to escape these characters? Right now I'm checking the database's listbox item's text, and rebuilding the string, then in the Controller, I'm taking that built string and turning it back into its original state. So for example, if the item they are adding is 'Cats/Dogs', I am posting 'Cats[SLASH]Dogs' to the controller, and in the controller changing it back to 'Cats/Dogs'. Obviously this is a horrible hack, so I must be missing something. Any help would be greatly appreciated.

    Read the article

  • Using a custom MvcHttpHandler v2.0 Breaking change from 1.0 to 2.0 ?

    - by Myster
    Hi I have a site where part is webforms (Umbraco CMS) and part is MVC This is the HttpHandler to deal with the MVC functionality: public class Mvc : MvcHttpHandler { protected override void ProcessRequest(HttpContext httpContext) { httpContext.Trace.Write("Mvc.ashx", "Begin ProcessRequest"); string originalPath = httpContext.Request.Path; string newPath = httpContext.Request.QueryString["mvcRoute"]; if (string.IsNullOrEmpty(newPath)) newPath = "/"; httpContext.Trace.Write("Mvc.ashx", "newPath = "+newPath ); HttpContext.Current.RewritePath(newPath, false); base.ProcessRequest(HttpContext.Current); HttpContext.Current.RewritePath(originalPath, false); } } Full details of how this is implemented here This method works well in an MVC 1.0 website. However when I upgrade this site to MVC 2.0 following the steps in Microsoft's upgrade documentation; everything compiles, except at runtime I get this exception: Server Error in '/' Application. The resource cannot be found. Description: HTTP 404. The resource you are looking for (or one of its dependencies) could have been removed, had its name changed, or is temporarily unavailable. Please review the following URL and make sure that it is spelled correctly. Requested URL: /mvc.ashx Version Information: Microsoft .NET Framework Version:2.0.50727.4927; ASP.NET Version:2.0.50727.4927 This resource and it's dependencies are found fine in MVC 1.0 but not in MVC 2.0, is there an extra dependency I'd need to add? Is there something I'm missing? Is there a change in the way MVC 2.0 works?

    Read the article

  • MVC Areas - View not found

    - by user314827
    Hi, I have a project that is using MVC areas. The area has the entire project in it while the main "Views/Controllers/Models" folders outside the Areas are empty barring a dispatch controller I have setup that routes default incoming requests to the Home Controller in my area. This controller has one method as follows:- public ActionResult Index(string id) { return RedirectToAction("Index", "Home", new {area = "xyz"}); } I also have a default route setup to use this controller as follows:- routes.MapRoute( "Default", // Default route "{controller}/{action}/{id}", new { controller = "Dispatch", action = "Index", id = UrlParameter.Optional } ); Any default requests to my site are appropriately routed to the relevant area. The Area's "RegisterArea" method has a single route:- context.MapRoute( "xyz_default", "xyz/{controller}/{action}/{id}", new { action = "Index", id = UrlParameter.Optional } My area has multiple controllers with a lot of views. Any call to a specific view in these controller methods like "return View("blah"); renders the correct view. However whenever I try and return a view along with a model object passed in as a parameter I get the following error:- Server Error in '/DeveloperPortal' Application. The view 'blah' or its master was not found. The following locations were searched: ~/Views/Profile/blah.aspx ~/Views/Profile/blah.ascx ~/Views/Shared/blah.aspx ~/Views/Shared/blah.ascx It looks like whenever a model object is passed in as a param. to the "View()" method [e.g. return View("blah",obj) ] it searches for the view in the root of the project instead of in the area specific view folder. What am I missing here ? Thanks in advance.

    Read the article

  • asp.net mvc - How to create fake test objects quickly and efficiently

    - by Simon G
    Hi, I'm currently testing the controller in my mvc app and I'm creating a fake repository for testing. However I seem to be writing more code and spending more time for the fakes than I do on the actual repositories. Is this right? The code I have is as follows: Controller public partial class SomeController : Controller { IRepository repository; public SomeController(IRepository rep) { repository = rep; } public virtaul ActionResult Index() { // Some logic var model = repository.GetSomething(); return View(model); } } IRepository public interface IRepository { Something GetSomething(); } Fake Repository public class FakeRepository : IRepository { private List<Something> somethingList; public FakeRepository(List<Something> somethings) { somthingList = somthings; } public Something GetSomething() { return somethingList; } } Fake Data class FakeSomethingData { public static List<Something> CreateSomethingData() { var somethings = new List<Something>(); for (int i = 0; i < 100; i++) { somethings.Add(new Something { value1 = String.Format("value{0}", i), value2 = String.Format("value{0}", i), value3 = String.Format("value{0}", i) }); } return somethings; } } Actual Test [TestClass] public class SomethingControllerTest { SomethingController CreateSomethingController() { var testData = FakeSomethingData.CreateSomethingData(); var repository = new FakeSomethingRepository(testData); SomethingController controller = new SomethingController(repository); return controller; } [TestMethod] public void SomeTest() { // Arrange var controller = CreateSomethingController(); // Act // Some test here // Arrange } } All this seems to be a lot of extra code, especially as I have more than one repository. Is there a more efficient way of doing this? Maybe using mocks? Thanks

    Read the article

  • MVC UI with Mock Controllers?

    - by Jaimal Chohan
    I'm working with Aspnet MVC 2 (R2) and at the same time playing about with the whole alt.net stack. One of this things I would like to be able todo is basically write my Views, and be able to interact with them without having to write the controller logic. E.g. I have a view that displays a list of orders and I can click on an order which redirects to another view where I can edit it, but I don't want to get into the nitty gritty of writing the code to actually get a list of orders, or update an existing ordes. I want to do so I can write UI tests in WaitN/AOT/Selenium without having to worry about whats happening underneath, and also It would help drive my controller logic on a need basis as opposed to guess work based of of the supplied screenshots How do you guys accomplish this atm? Can you provide links ot useful blog posts/tools/framework/articles with information on how to accomplish this p.s. I primarly use Rhino Mocks & NUnit but can happliy change to other tools if they support the above better.

    Read the article

  • ASP.NET MVC 2 DisplayFor()

    - by ZombieSheep
    I'm looking at the new version of ASP.NET MVC (see here for more details if you haven't seen it already) and I'm having some pretty basic trouble displaying the content of an object. In my control I have an object of type "Person", which I am passing to the view in ViewData.Model. All is well so far, and I can extact the object in the view ready for display. What I don't get, though, is how I need to call the Html.DisplayFor() method in order to get the data to screen. I've tried the following... <% MVC2test.Models.Person p = ViewData.Model as MVC2test.Models.Person; %> // snip <%= Html.DisplayFor(p => p) %> but I get the following message: CS0136: A local variable named 'p' cannot be declared in this scope because it would give a different meaning to 'p', which is already used in a 'parent or current' scope to denote something else I know this is not what I should be doing - I know that redefining a variable will producte this error, but I don't know how to access the object from the controller. So my question is, how do I pass the object to the view in order to display its properties? (I should add that I am reading up on this in my limited spare time, so it is entirely possible I have missed something fundamental) TIA

    Read the article

  • server caching problem on ASP.NET MVC page

    - by Rita
    Hi I have server caching error on ASP.NET MVC Pages. The scenario is like this. I have two applications (1).External Website and (2).Internal Adminsite, both pointing to the same Database. There is one page called EditProfile Page on the External Website that registered customer can update his profile information like Firstname, Lastname and Address…etc. Similarly there is similar functionality on the Internal Adminsite on the page called CustomerProfile Page where the Site Admin can update all these fields. When the user updates the profile information from the Adminsite, those updates are not reflecting back to the Website. Now I tried restarting the Website on IIS and that din’t help. Again I tried both restarting the Website on IIS and opening a new browser, then those updates are reflecting back. I am wondering how I can come out of this caching problem without restarting the site and open a new browser window everytime? Are there any IIS settings that could help? This caching is happening only on couple of tables only and all the updates are showing up in the database. Appreciate your responses. Thanks

    Read the article

  • get and set for class in model - MVC 2 asp.net

    - by bergin
    Hi there, I want to improve the program so it has a proper constructor but also works with the models environment of MVC. I currently have: public void recordDocument(int order_id, string filename, string physical_path, string slug, int bytes) { ArchiveDocument doc = new ArchiveDocument(); doc.order_id = order_id; doc.filename = filename; doc.physical_path = physical_path; doc.slug = slug; doc.bytes = bytes; db.ArchiveDocuments.InsertOnSubmit(doc); } This obviously should be a constructor and should change to the leaner: public void recordDocument(ArchiveDocument doc) { db.ArchiveDocuments.InsertOnSubmit(doc); } with a get & set somewhere else - not sure of the syntax - do I create a partial class? so: creating in the somewhere repository - ArchiveDocument doc = new ArchiveDocument(order_id, idTaggedFilename, physical_path, slug, bytes); and then: namespace ordering.Models { public partial class ArchiveDocument { int order_id, string filename, string physical_path, string slug, int bytes; public archiveDocument(int order_id, string filename, string physical_path, string slug, int bytes){ this.order_id = order_id; etc } } How should I alter the code?

    Read the article

  • MVC OnActionExecuting to Redirect

    - by Aligned
    Originally posted on: http://geekswithblogs.net/Aligned/archive/2014/08/12/mvc-onactionexecuting-to-redirect.aspxI recently had the following requirements in an MVC application: Given a new user that still has the default password When they first login Then the user must change their password and optionally provide contact information I found that I can override the OnActionExecuting method in a BaseController class.public class BaseController : Controller { [Inject] public ISessionManager SessionManager { get; set; } protected override void OnActionExecuting(ActionExecutingContext filterContext) { // call the base method first base.OnActionExecuting(filterContext); // if the user hasn't changed their password yet, force them to the welcome page if (!filterContext.RouteData.Values.ContainsValue("WelcomeNewUser")) { var currentUser = this.SessionManager.GetCurrentUser(); if (currentUser.FusionUser.IsPasswordChangeRequired) { filterContext.Result = new RedirectResult("/welcome"); } } } } Better yet, you can use an ActionFilterAttribute (and here) and apply the attribute to the Base or individual controllers./// <summary> /// Redirect the user to the WelcomePage if the FusionUser.IsPasswordChangeRequired is true; /// </summary> public class WelcomePageRedirectActionFilterAttribute : ActionFilterAttribute { [Inject] public ISessionManager SessionManager { get; set; } public override void OnActionExecuting(ActionExecutingContext actionContext) { base.OnActionExecuting(actionContext); // if the user hasn't changed their password yet, force them to the welcome page if (actionContext.RouteData.Values.ContainsValue("WelcomeNewUser")) { return; } var currentUser = this.SessionManager.GetCurrentUser(); if (currentUser.FusionUser.IsPasswordChangeRequired) { actionContext.Result = new RedirectResult("/welcome"); } } }  [WelcomePageRedirectActionFilterAttribute] public class BaseController : Controller { ... } The requirement is now met.

    Read the article

  • ASP.NET AJAX and my axe!

    - by Marlon
    So, I'm seriously considering axing ASP.NET AJAX from my future projects as I honestly feel it's too bloated, and at times convoluted. I'm also starting to feel it is a dying library in the .NET framework as I hardly see any quality components from the open-source community. All the kick-ass components are usually equally bloated commercial components... It was cool at first, but now I tend to get annoyed with it more than anything else. I'm planning on switching over to the jQuery library as just about everything in ASP.NET AJAX is often easily achievable with jQuery, and, more often than not, more graceful of a solution that ASP.NET AJAX and it has a much stronger open-source community. Perhaps, it's just me, but do you feel the same way about ASP.NET AJAX? How was/is your experience working with ASP.NET AJAX?

    Read the article

  • ASP.NET MVC WebService - Security for Industrial Android Clients

    - by Chris Nevill
    I'm trying to design a system that will allow a bunch of Android devices to securely log into an ASP.NET MVC REST Web service. At present neither side are implemented. However there is an ASP.NET MVC website which the web service will site along side. This is currently using forms authentication. The idea will be that the Android devices will download data from the web service and then be able to work offline storing data in their own local databases, where users will be able to make updates to that data, and then syncing updates back to the main server where possible. The web service will be using HTTPS to prevent calls being intercepted and reduce the risk of calls being intercepted. The system is an industrial system and will not be in used by the general Android population. Instead only authorized Android devices will be authorized by the Web Service to make calls. As such I was thinking of using the Android devices serial number as a username and then a generated long password which the device will be able to pick up - once the device has been authorized server side. The device will also have user logins - but these will not be to log into the web service - just the device itself - since the device and user must be able to work offline. So usernames and passwords will be downloaded and stored on the devices themselves. My question is... what form of security is best setup on the web service? Should it use forms Authentication? Should the username and password just be passed in with each GET/POST call or should it start a session as I have with the website? The Android side causes more confusion. There seems to be a number of options here Spring-Android, Volley, Retrofit, LoopJ, Robo Spice which seems to use the aforementioned Spring, Retrofit or Google HttpClient. I'm struggling to find a simple example which authenticates with a forms based authentication system. Is this because I'm going about this wrong? Is there another option that would better suite this?

    Read the article

  • Why is testing MVC Views frowned upon?

    - by Peter Bernier
    I'm currently setting the groundwork for an ASP.Net MVC application and I'm looking into what sort of unit-tests I should be prepared to write. I've seen in multiple places people essentially saying 'don't bother testing your views, there's no logic and it's trivial and will be covered by an integration test'. I don't understand how this has become the accepted wisdom. Integration tests serve an entirely different purpose than unit tests. If I break something, I don't want to know a half-hour later when my integration tests break, I want to know immediately. Sample Scenario : Lets say we're dealing with a standard CRUD app with a Customer entity. The customer has a name and an address. At each level of testing, I want to verify that the Customer retrieval logic gets both the name and the address properly. To unit-test the repository, I write an integration test to hit the database. To unit-test the business rules, I mock out the repository, feed the business rules appropriate data, and verify my expected results are returned. What I'd like to do : To unit-test the UI, I mock out the business rules, setup my expected customer instance, render the view, and verify that the view contains the appropriate values for the instance I specified. What I'm stuck doing : To unit-test the repository, I write an integration test, setup an appropriate login, create the required data in the database, open a browser, navigate to the customer, and verify the resulting page contains the appropriate values for the instance I specified. I realize that there is overlap between the two scenarios discussed above, but the key difference it time and effort required to setup and execute the tests. If I (or another dev) removes the address field from the view, I don't want to wait for the integration test to discover this. I want is discovered and flagged in a unit-test that gets multiple times daily. I get the feeling that I'm just not grasping some key concept. Can someone explain why wanting immediate test feedback on the validity of an MVC view is a bad thing? (or if not bad, then not the expected way to get said feedback)

    Read the article

  • A plan to study ASP.NET + C# + SQL + SQL Server [closed]

    - by ali saleem
    Possible Duplicates: Should I be a professional in C# programming in order to build good web applications using ASP.NET? Is there a combination of language and database that is both great to use and free/cheap? C# for web development? or C# as general purpose programming? ASP.NET MVC book for absolute beginners Will it cost me a lot if I chose ASP.NET and IIS? Is it possible to use MySQL in ASP.NET? Best books to start with ASP.NET MVC / C# and Visual Studio Is it enough for me to learn the above technologies to become a professional web developer? If so then how can I learn them? together or to start with C# for example at first? If there is another thing I should learn please tell me about it.

    Read the article

  • Using MVC with a retained mode renderer

    - by David Gouveia
    I am using a retained mode renderer similar to the display lists in Flash. In other words, I have a scene graph data structure called the Stage to which I add the graphical primitives I would like to see rendered, such as images, animations, text. For simplicity I'll refer to them as Sprites. Now I'm implementing an architecture which is becoming very similar to MVC, but I feel that that instead of having to create View classes, that the sprites already behave pretty much like Views (except for not being explicitly connected to the Model). And since the Model is only changed through the Controller, I could simply update the view together with the Model in the controller, as in the example below: Example 1 class Controller { Model model; Sprite view; void TeleportTo(Vector2 position) { model.Position = view.Position = position; } } The alternative, I think, would be to create View classes that wrap the sprites, make the model observable, and make the view react to changes on the model. This seems like a lot of extra work and boilerplate code, and I'm not seeing the benefits if I'm just going to have one view per controller. Example 2 class Controller { Model model; View view; void TeleportTo(Vector2 position) { model.Position = position; } } class View { Model model; Sprite sprite; View() { model.PropertyChanged += UpdateView; } void UpdateView() { sprite.Position = model.Position; } } So, how is MVC or more specifically, the View, usually implemented when using a retained-mode renderer? And is there any reason why I shouldn't stick with example 1?

    Read the article

  • Clean MVC design when there is viewer latency

    - by Tony Suffolk 66
    It isn't clear if this question has already been answered, so apologies in advance if this is a duplicate : I am implementing a game and trying to design around a clean MVC pattern - so my Control plane will implement the rules of the game (but not how the game is displayed), and the View plane implements how the game is displayed, and user iteraction - i.e. what game items or controls the user has activated. The challenge that I have is this : In my game the Control Plane can move game items more or less instaneously (The decision about what item to place where - and some of the initial consequences of that placement are reasonably trivial to calculate), but I want to design the Control Plane so that the View plane can display these movements either instaneously or using movement animations. The other complication is that player interaction must be locked out while those game items are moving (similar to chess - you can't attack an opposing piece as it moves past one of your pieces) So do I : Implement all the logic in the Control Plane asynchronously - and separate the descision making from the actions - so the Control plane decides piece 'A' needs to move to a given place - tells the view plane, and but does not implement the move in data until the view plane informs the control plane that the move/animation is complete. A lot of interlock points between the two layers. Implement all the control plane logic in one place - decisions and movement (keeping track of what moved where), and pass all the movements in one go to the View plane to do with what it will. Control Plane is almost fire and forget here. A hybrid of 1 & 2 - The control plane implements all the moves in a temporary data store - but maintains a second store which reflects what is actually visible to the viewer, based on calls and feedback from the View plane. All 3 are relatively easy to implement (target language is python), but having never done a clean MVC pattern with view latency before - I am not sure which design is best

    Read the article

  • Javascript MVC in principle

    - by Michael
    Suppose I want to implement MVC in JavaScript. I am not asking about MVC frameworks. I am asking how to build it in principle. Let's consider a search page of an e-commerce site, which works s follows: User chooses a product and its attributes and press a "search" button. Application sends the search request to the server, receives a list of products. Application displays the list in the web page. I think the Model holds a Query and list of Product objects and "publishes" such events as "query updated", "list of products updated", etc. The Model is not aware of DOM and server, or course. View holds the entire DOM tree and "subscribes" to the Model events to update the DOM. Besides, it "publishes" such events as "user chose a product", "user pressed the search button" etc. Controller does not hold any data. It "subscribes" to the View events, calls the server and updates the Model. Does it make sense?

    Read the article

  • Silverlight Developer needs ASP.NET MVC Training [on hold]

    - by Peet Brits
    With Silverlight on the way out, our company wants to embrace HTML5 and related technologies. Background: Our Silverlight project did everything from generating its own models (or data contracts), sending it over WCF, tracking changes, with a whole deal of back-end code to make the ride smoother, but often also cluttered and more complex. Most of the original developers for this project are gone, and we want to embrace something new for future projects. Having done this very useful MVC Jump Start course at Microsoft Virtual Academy, we are all fired up for the next project. The problem is that we have very little in-depth knowledge of all the many different components. The most important hereof is probably Entity Framework, and (for later) Web API. I suppose the best place to start is at the Microsoft ASP.NET websites. Are there any other suggestions for learning from more experienced developers? I am a senior developer, but my knowledge of ASP.NET MVC (and related) is very limited. PS: We have a project deadline at the end of this month.

    Read the article

  • Newbie in ASP.Net

    - by dnvThai
    I am learning ASP.Net and I am confusing between ASP.Net WebPages, ASP.Net WebForms and ASP.Net MVC. I have read a lot of articles and known the simple difference of their functions, but I don't know the differences of their code. E.g: When I look at int* p = new int(); ... I know that it's C++ style. and Dim A as String it have to be Visual Basic. [?1] I'm not able to detect like that in ASP.Net. How do they different in codes? I use Visual Studio 2010 Express Edition.I like to use C# (I also was learned VisualBasic in shool, but I don't like him). When I create a new project, there're too many types of project, then, I don't know which I should choose (I just want to make a simple site). [?2] What are they used to? Thanks

    Read the article

  • MVC design patterns

    - by insane-36
    I have an application and it does not use a very good structure. However it seems to me that I have tried to stick to mvc design pattern but a senior engineer claims that I have no design patterns and code are mesh. How I have structured the code : I have couple of nsmanagedobject model classes which represents model in my case and a reskit library which encapsulates the nsurlconnection and url request. I fetch the request from the view controller itself and then when the request get completed I create predicate and then populate it in tableview. Wherever I need custom view either I create it in nib or create in a custom subclass of UIView. I have use delegation pattern and notification to communication to view controller, views and block callback with restkit. But, the senior engineer is very new to ios. He has been doing it for 2 months now but he is a good java programmer. So, what is mvc pattern ? Is core data model not working as a model objects, view controller as controller and views. I dont seem to find any other places or any other cases to create my own model object since the most of the models are used as NSManagedObject subclass.

    Read the article

  • Combining a content management system with ASP.NET

    - by Ek0nomik
    I am going to be creating a site that seems like it requires a blend of a content management system (CMS) and some custom web development (which is done in ASP.NET MVC). I have plenty of web development experience to understand the ASP.NET MVC side of the fence, but, I don't have a lot of CMS knowledge aside from getting one stood up. Right now my biggest question is around integrating security from ASP.NET with the CMS. I currently have an ASP.NET MVC site that handles the authentication for multiple production sites and creates an authentication cookie under our domain (*.example.com). The page acts like a single sign on page since the cookie is a wildcard and can be used in any other applications of the same domain. I'd really like to avoid having users put in their credentials twice. Is there a CMS that will play well with the ASP.NET Forms Authentication given how I have these existing applications structured? As an aside, right now I am leaning towards Drupal, but, that isn't finalized.

    Read the article

  • asp.net MVC: binary deployment of mvc views

    - by user287107
    Hi, how can I deploy an mvc application, without publishing the aspx view files. Is there a way to publish the generated dll assemblies? In the project file is an option "MvcBuildViews", which builds these dll files. But they are build in a temp directory and not used in the publishment process. Is there a way to include these files? best regards

    Read the article

  • Returning date from Stored procedure in ASP.Net/VB.Net

    - by Mo
    Hi, I want to execute a method on VB.Net to return a date which is in the stored procedure. I tried using ExecuteScalar but it doesnt work it retruns error 'Implicit conversion from data type datetime to int is not allowed. Use the CONVERT function to run this query' Any help would be much appreciated please? thank you below is the code Public Function GetHolidaydate(ByVal struserID as String) As DateTime Dim objArgs1 As New clsSQLStoredProcedureParams objArgs1.Add("@userID", Me.Tag) objArgs1.Add("@Date", 0, 0, ParameterDirection.Output) Return (CDate(ExecuteScalar(clsLibrary.MyStoredProcedure.GetHolidayDate, objArgs1))) End Function

    Read the article

  • ASP.NET MVC 2 JSONP with MVC Futures

    - by mighty_man
    I´m using mvc futures 2 with WebApiEnabled for XML and JSON support. But due to cross domain issues with jQuery $.ajax I´m lookin in to JSONP. Is there a simple way to extend futures rest function for JSONP or should I do something else. Do anyone have some hints on this subject ?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

< Previous Page | 61 62 63 64 65 66 67 68 69 70 71 72  | Next Page >