Search Results

Search found 20883 results on 836 pages for 'wont say'.

Page 652/836 | < Previous Page | 648 649 650 651 652 653 654 655 656 657 658 659  | Next Page >

  • Symfony2 same form, different entities NOT related

    - by user1381537
    I'm trying to write one form for submitting against MySQL DB, but I can't get it working, I've tried a lot of things (separate forms, create an ->add('foo', new foo()) to a field, and trying to parse plain SQL with a normal HTML form is my only solution, which is obviously not the best. This is my DB structure: As you can see I need to insert the comments textarea to ticketcomments among the user who wrote it, etc. On crmentity the description field. Then on ticketcf the fields that I need to submit from form, are this (because you wont know if I don't tell you because of the field names): tcf.cf594 AS Type, tcf.cf675 AS Suscription, tcf.cf770 AS ID_PRODUCT, tcf.cf746 AS NotificationDate, tcf.cf747 AS ResponseDate, tcf.cf748 AS ResolutionDate, And, of course, every table needs to have the same ticketid id for the submitted form, so we can retrieve it with one simple query. It will be easy to do with plain SQL instead of using DQL and Symfony2 forms, but is not a good way to do it. Also, here's my "Ticket list" query, if you need it to have it more clear... SELECT t.ticketNo AS Ticket, t.title AS Asunto, t.status AS Estado, t.updateLog AS LOG, t.hours AS Horas, t.solution AS Solucion, t.priority AS Prioridad, tcf.cf594 AS Tipo, tcf.cf675 AS Suscripcion, tcf.cf770 AS IDPROD, tcf.cf746 AS F_Noti, tcf.cf747 AS F_Resp, tcf.cf748 AS F_Reso, CONCAT (cd.firstname, cd.lastname) AS Contacto, crm.description AS Descripcion, crm.crmid AS id FROM WbsGoclientsBundle:VtigerTroubletickets t INNER JOIN WbsGoclientsBundle:VtigerTicketcf tcf WITH t.ticketid = tcf.ticketid INNER JOIN WbsGoclientsBundle:VtigerContactdetails cd WITH t.parentId = cd.contactid INNER JOIN WbsGoclientsBundle:VtigerCrmentity crm WITH t.ticketid = crm.crmid WHERE t.parentId IN ( SELECT cd1.contactid FROM WbsGoclientsBundle:VtigerContactdetails cd1 WHERE cd1.accountid = ( SELECT cd2.accountid FROM WbsGoclientsBundle:VtigerContactdetails cd2 WHERE cd2.contactid = :contactid)) AND t.status <> \'Closed\' And also "Ticket details" query (which is not in DQL format yet, only SQL) is so simple, it only retrieve the comments field and createdtime from ticketcomments appended to this query so we have all the fields... Thank you. This is a test form, using troubletickets and ticketcomments, it's returning errores because I can't set a comments field because troubletickets doesn't has it, but I need that field to be submitted to ticketcomments ... VtigerTicketcommentsType <?php namespace WbsGo\clientsBundle\Form\Type; use Symfony\Component\Form\AbstractType, Symfony\Component\Form\FormBuilderInterface; use Symfony\Component\OptionsResolver\OptionsResolverInterface; class VtigerTicketcommentsType extends AbstractType { public function buildForm(FormBuilderInterface $builder, array $options) { $builder ->add('ticketid') ->add('comments') ->add('ownerid') ->add('ownertype') ->add('createdtype') ; } public function setDefaultOptions(OptionsResolverInterface $resolver) { $resolver->setDefaults(array( 'data_class' => 'WbsGo\clientsBundle\Entity\VtigerTicketcomments' )); } public function getName() { return 'comments'; } } OpenTicketType.php <?php namespace WbsGo\clientsBundle\Form; use Symfony\Component\Form\AbstractType, Symfony\Component\Form\FormBuilderInterface ; use WbsGo\clientsBundle\Form\Type\VtigerTicketcommentsType; use Symfony\Component\OptionsResolver\OptionsResolverInterface; class OpenTicketType extends AbstractType { public function buildForm(FormBuilderInterface $builder, array $options) { $builder ->add('title') ->add('priority') ->add('solution') ->add('comments', 'collection', array( 'type' => new VtigerTicketcommentsType() )) ; } public function setDefaultOptions(OptionsResolverInterface $resolver) { $resolver->setDefaults(array( 'data_class' => 'WbsGo\clientsBundle\Entity\VtigerTroubletickets' )); } public function getName() { return 'ticket'; } } TicketController.php <?php namespace WbsGo\clientsBundle\Controller; use Symfony\Bundle\FrameworkBundle\Controller\Controller; use WbsGo\clientsBundle\Entity\VtigerTroubletickets; use WbsGo\clientsBundle\Entity\VtigerTicketcomments; use WbsGo\clientsBundle\Form\OpenTicketType; use Symfony\Component\HttpFoundation\Request; class TicketController extends Controller { public function indexAction() { $em = $this->getDoctrine()->getManager(); $tickets = $em ->getRepository('WbsGoclientsBundle:VtigerTroubletickets') ->findAllOpenByCustomerId($this->getUser()->getId()); $userdata = $this->getDoctrine()->getManager() ->getRepository('WbsGoclientsBundle:VtigerContactdetails') ->findContact($this->getUser()->getId()); return $this ->render('WbsGoclientsBundle:Ticket:index.html.twig', array('tickets' => $tickets, 'userdata' => $userdata)); } public function addAction() { $assets = $this->getDoctrine()->getManager() ->getRepository('WbsGoclientsBundle:VtigerAssets') ->findAssetByAccountId($this->getUser()->getId()); $assetlist = array(); foreach ($assets as $key => $v) { $assetlist[$key] = $key; } $form = $this->createForm(new OpenTicketType(), new VtigerTroubletickets()); return $this ->render('WbsGoclientsBundle:Ticket:add.html.twig', array('form' => $form->createView(), 'assets' => $assets,)); } } This is the error Symfony2 is returning Neither the property "comments" nor one of the methods "getComments()", "isComments()", "hasComments()", "_get()" or "_call()" exist and have public access in class "WbsGo\clientsBundle\Entity\VtigerTroubletickets". EDIT 2 This code is actually rendering my forms, but I need help in order to submit each XXXType form to its corresponding table. public function buildForm(FormBuilderInterface $builder, array $options) { $builder ->add('descripcion') ->add('prioridad') ->add('solucion') ->add('comment', new VtigerTicketcommentsType() ) ->add('contacto') ->add('suscripcion') ->add('producto', 'entity', array( 'class' => 'WbsGo\clientsBundle\Entity\VtigerAssets', 'property' => 'assetname', 'empty_value' => '--SELECT--', 'query_builder' => function(\WbsGo\clientsBundle\Entity\VtigerAssetsRepository $repository) { //return $repository->findAssetByAccountId($this->customerId); return $repository->createQueryBuilder('a') ->select('a') ->where('a.account = (SELECT cd.accountid FROM WbsGoclientsBundle:VtigerContactdetails cd WHERE cd.contactid = ?1)') ->setParameter(1, $this->customerId); } ) ) ->add('hardware') ->add('backup') ->add('web') ->add('restore') ->add('customerId') ; } I also removed ->add('ticketid') from VtigerTicketcommentsType.php because it has relationship and is not needed. it's auto_incremental and must be generated once everything is submitted.

    Read the article

  • Using the West Wind Web Toolkit to set up AJAX and REST Services

    - by Rick Strahl
    I frequently get questions about which option to use for creating AJAX and REST backends for ASP.NET applications. There are many solutions out there to do this actually, but when I have a choice - not surprisingly - I fall back to my own tools in the West Wind West Wind Web Toolkit. I've talked a bunch about the 'in-the-box' solutions in the past so for a change in this post I'll talk about the tools that I use in my own and customer applications to handle AJAX and REST based access to service resources using the West Wind West Wind Web Toolkit. Let me preface this by saying that I like things to be easy. Yes flexible is very important as well but not at the expense of over-complexity. The goal I've had with my tools is make it drop dead easy, with good performance while providing the core features that I'm after, which are: Easy AJAX/JSON Callbacks Ability to return any kind of non JSON content (string, stream, byte[], images) Ability to work with both XML and JSON interchangeably for input/output Access endpoints via POST data, RPC JSON calls, GET QueryString values or Routing interface Easy to use generic JavaScript client to make RPC calls (same syntax, just what you need) Ability to create clean URLS with Routing Ability to use standard ASP.NET HTTP Stack for HTTP semantics It's all about options! In this post I'll demonstrate most of these features (except XML) in a few simple and short samples which you can download. So let's take a look and see how you can build an AJAX callback solution with the West Wind Web Toolkit. Installing the Toolkit Assemblies The easiest and leanest way of using the Toolkit in your Web project is to grab it via NuGet: West Wind Web and AJAX Utilities (Westwind.Web) and drop it into the project by right clicking in your Project and choosing Manage NuGet Packages from anywhere in the Project.   When done you end up with your project looking like this: What just happened? Nuget added two assemblies - Westwind.Web and Westwind.Utilities and the client ww.jquery.js library. It also added a couple of references into web.config: The default namespaces so they can be accessed in pages/views and a ScriptCompressionModule that the toolkit optionally uses to compress script resources served from within the assembly (namely ww.jquery.js and optionally jquery.js). Creating a new Service The West Wind Web Toolkit supports several ways of creating and accessing AJAX services, but for this post I'll stick to the lower level approach that works from any plain HTML page or of course MVC, WebForms, WebPages. There's also a WebForms specific control that makes this even easier but I'll leave that for another post. So, to create a new standalone AJAX/REST service we can create a new HttpHandler in the new project either as a pure class based handler or as a generic .ASHX handler. Both work equally well, but generic handlers don't require any web.config configuration so I'll use that here. In the root of the project add a Generic Handler. I'm going to call this one StockService.ashx. Once the handler has been created, edit the code and remove all of the handler body code. Then change the base class to CallbackHandler and add methods that have a [CallbackMethod] attribute. Here's the modified base handler implementation now looks like with an added HelloWorld method: using System; using Westwind.Web; namespace WestWindWebAjax { /// <summary> /// Handler implements CallbackHandler to provide REST/AJAX services /// </summary> public class SampleService : CallbackHandler { [CallbackMethod] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } } } Notice that the class inherits from CallbackHandler and that the HelloWorld service method is marked up with [CallbackMethod]. We're done here. Services Urlbased Syntax Once you compile, the 'service' is live can respond to requests. All CallbackHandlers support input in GET and POST formats, and can return results as JSON or XML. To check our fancy HelloWorld method we can now access the service like this: http://localhost/WestWindWebAjax/StockService.ashx?Method=HelloWorld&name=Rick which produces a default JSON response - in this case a string (wrapped in quotes as it's JSON): (note by default JSON will be downloaded by most browsers not displayed - various options are available to view JSON right in the browser) If I want to return the same data as XML I can tack on a &format=xml at the end of the querystring which produces: <string>Hello Rick. Time is: 11/1/2011 12:11:13 PM</string> Cleaner URLs with Routing Syntax If you want cleaner URLs for each operation you can also configure custom routes on a per URL basis similar to the way that WCF REST does. To do this you need to add a new RouteHandler to your application's startup code in global.asax.cs one for each CallbackHandler based service you create: protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); } With this code in place you can now add RouteUrl properties to any of your service methods. For the HelloWorld method that doesn't make a ton of sense but here is what a routed clean URL might look like in definition: [CallbackMethod(RouteUrl="stocks/HelloWorld/{name}")] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } The same URL I previously used now becomes a bit shorter and more readable with: http://localhost/WestWindWebAjax/HelloWorld/Rick It's an easy way to create cleaner URLs and still get the same functionality. Calling the Service with $.getJSON() Since the result produced is JSON you can now easily consume this data using jQuery's getJSON method. First we need a couple of scripts - jquery.js and ww.jquery.js in the page: <!DOCTYPE html> <html> <head> <link href="Css/Westwind.css" rel="stylesheet" type="text/css" /> <script src="scripts/jquery.min.js" type="text/javascript"></script> <script src="scripts/ww.jquery.min.js" type="text/javascript"></script> </head> <body> Next let's add a small HelloWorld example form (what else) that has a single textbox to type a name, a button and a div tag to receive the result: <fieldset> <legend>Hello World</legend> Please enter a name: <input type="text" name="txtHello" id="txtHello" value="" /> <input type="button" id="btnSayHello" value="Say Hello (POST)" /> <input type="button" id="btnSayHelloGet" value="Say Hello (GET)" /> <div id="divHelloMessage" class="errordisplay" style="display:none;width: 450px;" > </div> </fieldset> Then to call the HelloWorld method a little jQuery is used to hook the document startup and the button click followed by the $.getJSON call to retrieve the data from the server. <script type="text/javascript"> $(document).ready(function () { $("#btnSayHelloGet").click(function () { $.getJSON("SampleService.ashx", { Method: "HelloWorld", name: $("#txtHello").val() }, function (result) { $("#divHelloMessage") .text(result) .fadeIn(1000); }); });</script> .getJSON() expects a full URL to the endpoint of our service, which is the ASHX file. We can either provide a full URL (SampleService.ashx?Method=HelloWorld&name=Rick) or we can just provide the base URL and an object that encodes the query string parameters for us using an object map that has a property that matches each parameter for the server method. We can also use the clean URL routing syntax, but using the object parameter encoding actually is safer as the parameters will get properly encoded by jQuery. The result returned is whatever the result on the server method is - in this case a string. The string is applied to the divHelloMessage element and we're done. Obviously this is a trivial example, but it demonstrates the basics of getting a JSON response back to the browser. AJAX Post Syntax - using ajaxCallMethod() The previous example allows you basic control over the data that you send to the server via querystring parameters. This works OK for simple values like short strings, numbers and boolean values, but doesn't really work if you need to pass something more complex like an object or an array back up to the server. To handle traditional RPC type messaging where the idea is to map server side functions and results to a client side invokation, POST operations can be used. The easiest way to use this functionality is to use ww.jquery.js and the ajaxCallMethod() function. ww.jquery wraps jQuery's AJAX functions and knows implicitly how to call a CallbackServer method with parameters and parse the result. Let's look at another simple example that posts a simple value but returns something more interesting. Let's start with the service method: [CallbackMethod(RouteUrl="stocks/{symbol}")] public StockQuote GetStockQuote(string symbol) { Response.Cache.SetExpires(DateTime.UtcNow.Add(new TimeSpan(0, 2, 0))); StockServer server = new StockServer(); var quote = server.GetStockQuote(symbol); if (quote == null) throw new ApplicationException("Invalid Symbol passed."); return quote; } This sample utilizes a small StockServer helper class (included in the sample) that downloads a stock quote from Yahoo's financial site via plain HTTP GET requests and formats it into a StockQuote object. Lets create a small HTML block that lets us query for the quote and display it: <fieldset> <legend>Single Stock Quote</legend> Please enter a stock symbol: <input type="text" name="txtSymbol" id="txtSymbol" value="msft" /> <input type="button" id="btnStockQuote" value="Get Quote" /> <div id="divStockDisplay" class="errordisplay" style="display:none; width: 450px;"> <div class="label-left">Company:</div> <div id="stockCompany"></div> <div class="label-left">Last Price:</div> <div id="stockLastPrice"></div> <div class="label-left">Quote Time:</div> <div id="stockQuoteTime"></div> </div> </fieldset> The final result looks something like this:   Let's hook up the button handler to fire the request and fill in the data as shown: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").show().fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, HH:mm EST")); }, onPageError); }); So we point at SampleService.ashx and the GetStockQuote method, passing a single parameter of the input symbol value. Then there are two handlers for success and failure callbacks.  The success handler is the interesting part - it receives the stock quote as a result and assigns its values to various 'holes' in the stock display elements. The data that comes back over the wire is JSON and it looks like this: { "Symbol":"MSFT", "Company":"Microsoft Corpora", "OpenPrice":26.11, "LastPrice":26.01, "NetChange":0.02, "LastQuoteTime":"2011-11-03T02:00:00Z", "LastQuoteTimeString":"Nov. 11, 2011 4:20pm" } which is an object representation of the data. JavaScript can evaluate this JSON string back into an object easily and that's the reslut that gets passed to the success function. The quote data is then applied to existing page content by manually selecting items and applying them. There are other ways to do this more elegantly like using templates, but here we're only interested in seeing how the data is returned. The data in the object is typed - LastPrice is a number and QuoteTime is a date. Note about the date value: JavaScript doesn't have a date literal although the JSON embedded ISO string format used above  ("2011-11-03T02:00:00Z") is becoming fairly standard for JSON serializers. However, JSON parsers don't deserialize dates by default and return them by string. This is why the StockQuote actually returns a string value of LastQuoteTimeString for the same date. ajaxMethodCallback always converts dates properly into 'real' dates and the example above uses the real date value along with a .formatDate() data extension (also in ww.jquery.js) to display the raw date properly. Errors and Exceptions So what happens if your code fails? For example if I pass an invalid stock symbol to the GetStockQuote() method you notice that the code does this: if (quote == null) throw new ApplicationException("Invalid Symbol passed."); CallbackHandler automatically pushes the exception message back to the client so it's easy to pick up the error message. Regardless of what kind of error occurs: Server side, client side, protocol errors - any error will fire the failure handler with an error object parameter. The error is returned to the client via a JSON response in the error callback. In the previous examples I called onPageError which is a generic routine in ww.jquery that displays a status message on the bottom of the screen. But of course you can also take over the error handling yourself: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); }, function (error, xhr) { $("#divErrorDisplay").text(error.message).fadeIn(1000); }); }); The error object has a isCallbackError, message and  stackTrace properties, the latter of which is only populated when running in Debug mode, and this object is returned for all errors: Client side, transport and server side errors. Regardless of which type of error you get the same object passed (as well as the XHR instance optionally) which makes for a consistent error retrieval mechanism. Specifying HttpVerbs You can also specify HTTP Verbs that are allowed using the AllowedHttpVerbs option on the CallbackMethod attribute: [CallbackMethod(AllowedHttpVerbs=HttpVerbs.GET | HttpVerbs.POST)] public string HelloWorld(string name) { … } If you're building REST style API's this might be useful to force certain request semantics onto the client calling. For the above if call with a non-allowed HttpVerb the request returns a 405 error response along with a JSON (or XML) error object result. The default behavior is to allow all verbs access (HttpVerbs.All). Passing in object Parameters Up to now the parameters I passed were very simple. But what if you need to send something more complex like an object or an array? Let's look at another example now that passes an object from the client to the server. Keeping with the Stock theme here lets add a method called BuyOrder that lets us buy some shares for a stock. Consider the following service method that receives an StockBuyOrder object as a parameter: [CallbackMethod] public string BuyStock(StockBuyOrder buyOrder) { var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } public class StockBuyOrder { public string Symbol { get; set; } public int Quantity { get; set; } public DateTime BuyOn { get; set; } public StockBuyOrder() { BuyOn = DateTime.Now; } } This is a contrived do-nothing example that simply echoes back what was passed in, but it demonstrates how you can pass complex data to a callback method. On the client side we now have a very simple form that captures the three values on a form: <fieldset> <legend>Post a Stock Buy Order</legend> Enter a symbol: <input type="text" name="txtBuySymbol" id="txtBuySymbol" value="GLD" />&nbsp;&nbsp; Qty: <input type="text" name="txtBuyQty" id="txtBuyQty" value="10" style="width: 50px" />&nbsp;&nbsp; Buy on: <input type="text" name="txtBuyOn" id="txtBuyOn" value="<%= DateTime.Now.ToString("d") %>" style="width: 70px;" /> <input type="button" id="btnBuyStock" value="Buy Stock" /> <div id="divStockBuyMessage" class="errordisplay" style="display:none"></div> </fieldset> The completed form and demo then looks something like this:   The client side code that picks up the input values and assigns them to object properties and sends the AJAX request looks like this: $("#btnBuyStock").click(function () { // create an object map that matches StockBuyOrder signature var buyOrder = { Symbol: $("#txtBuySymbol").val(), Quantity: $("#txtBuyQty").val() * 1, // number Entered: new Date() } ajaxCallMethod("SampleService.ashx", "BuyStock", [buyOrder], function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError); }); The code creates an object and attaches the properties that match the server side object passed to the BuyStock method. Each property that you want to update needs to be included and the type must match (ie. string, number, date in this case). Any missing properties will not be set but also not cause any errors. Pass POST data instead of Objects In the last example I collected a bunch of values from form variables and stuffed them into object variables in JavaScript code. While that works, often times this isn't really helping - I end up converting my types on the client and then doing another conversion on the server. If lots of input controls are on a page and you just want to pick up the values on the server via plain POST variables - that can be done too - and it makes sense especially if you're creating and filling the client side object only to push data to the server. Let's add another method to the server that once again lets us buy a stock. But this time let's not accept a parameter but rather send POST data to the server. Here's the server method receiving POST data: [CallbackMethod] public string BuyStockPost() { StockBuyOrder buyOrder = new StockBuyOrder(); buyOrder.Symbol = Request.Form["txtBuySymbol"]; ; int qty; int.TryParse(Request.Form["txtBuyQuantity"], out qty); buyOrder.Quantity = qty; DateTime time; DateTime.TryParse(Request.Form["txtBuyBuyOn"], out time); buyOrder.BuyOn = time; // Or easier way yet //FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } Clearly we've made this server method take more code than it did with the object parameter. We've basically moved the parameter assignment logic from the client to the server. As a result the client code to call this method is now a bit shorter since there's no client side shuffling of values from the controls to an object. $("#btnBuyStockPost").click(function () { ajaxCallMethod("SampleService.ashx", "BuyStockPost", [], // Note: No parameters - function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError, // Force all page Form Variables to be posted { postbackMode: "Post" }); }); The client simply calls the BuyStockQuote method and pushes all the form variables from the page up to the server which parses them instead. The feature that makes this work is one of the options you can pass to the ajaxCallMethod() function: { postbackMode: "Post" }); which directs the function to include form variable POST data when making the service call. Other options include PostNoViewState (for WebForms to strip out WebForms crap vars), PostParametersOnly (default), None. If you pass parameters those are always posted to the server except when None is set. The above code can be simplified a bit by using the FormVariableBinder helper, which can unbind form variables directly into an object: FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); which replaces the manual Request.Form[] reading code. It receives the object to unbind into, a string of properties to skip, and an optional prefix which is stripped off form variables to match property names. The component is similar to the MVC model binder but it's independent of MVC. Returning non-JSON Data CallbackHandler also supports returning non-JSON/XML data via special return types. You can return raw non-JSON encoded strings like this: [CallbackMethod(ReturnAsRawString=true,ContentType="text/plain")] public string HelloWorldNoJSON(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } Calling this method results in just a plain string - no JSON encoding with quotes around the result. This can be useful if your server handling code needs to return a string or HTML result that doesn't fit well for a page or other UI component. Any string output can be returned. You can also return binary data. Stream, byte[] and Bitmap/Image results are automatically streamed back to the client. Notice that you should set the ContentType of the request either on the CallbackMethod attribute or using Response.ContentType. This ensures the Web Server knows how to display your binary response. Using a stream response makes it possible to return any of data. Streamed data can be pretty handy to return bitmap data from a method. The following is a method that returns a stock history graph for a particular stock over a provided number of years: [CallbackMethod(ContentType="image/png",RouteUrl="stocks/history/graph/{symbol}/{years}")] public Stream GetStockHistoryGraph(string symbol, int years = 2,int width = 500, int height=350) { if (width == 0) width = 500; if (height == 0) height = 350; StockServer server = new StockServer(); return server.GetStockHistoryGraph(symbol,"Stock History for " + symbol,width,height,years); } I can now hook this up into the JavaScript code when I get a stock quote. At the end of the process I can assign the URL to the service that returns the image into the src property and so force the image to display. Here's the changed code: $("#btnStockQuote").click(function () { var symbol = $("#txtSymbol").val(); ajaxCallMethod("SampleService.ashx", "GetStockQuote", [symbol], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); // display a stock chart $("#imgStockHistory").attr("src", "stocks/history/graph/" + symbol + "/2"); },onPageError); }); The resulting output then looks like this: The charting code uses the new ASP.NET 4.0 Chart components via code to display a bar chart of the 2 year stock data as part of the StockServer class which you can find in the sample download. The ability to return arbitrary data from a service is useful as you can see - in this case the chart is clearly associated with the service and it's nice that the graph generation can happen off a handler rather than through a page. Images are common resources, but output can also be PDF reports, zip files for downloads etc. which is becoming increasingly more common to be returned from REST endpoints and other applications. Why reinvent? Obviously the examples I've shown here are pretty basic in terms of functionality. But I hope they demonstrate the core features of AJAX callbacks that you need to work through in most applications which is simple: return data, send back data and potentially retrieve data in various formats. While there are other solutions when it comes down to making AJAX callbacks and servicing REST like requests, I like the flexibility my home grown solution provides. Simply put it's still the easiest solution that I've found that addresses my common use cases: AJAX JSON RPC style callbacks Url based access XML and JSON Output from single method endpoint XML and JSON POST support, querystring input, routing parameter mapping UrlEncoded POST data support on callbacks Ability to return stream/raw string data Essentially ability to return ANYTHING from Service and pass anything All these features are available in various solutions but not together in one place. I've been using this code base for over 4 years now in a number of projects both for myself and commercial work and it's served me extremely well. Besides the AJAX functionality CallbackHandler provides, it's also an easy way to create any kind of output endpoint I need to create. Need to create a few simple routines that spit back some data, but don't want to create a Page or View or full blown handler for it? Create a CallbackHandler and add a method or multiple methods and you have your generic endpoints.  It's a quick and easy way to add small code pieces that are pretty efficient as they're running through a pretty small handler implementation. I can have this up and running in a couple of minutes literally without any setup and returning just about any kind of data. Resources Download the Sample NuGet: Westwind Web and AJAX Utilities (Westwind.Web) ajaxCallMethod() Documentation Using the AjaxMethodCallback WebForms Control West Wind Web Toolkit Home Page West Wind Web Toolkit Source Code © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  jQuery  AJAX   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • AutoMapper is not working for a Container class

    - by rboarman
    Hello, I have an AutoMapper issue that has been driving me crazy for way too long now. A similar question was also posted on the AutoMapper user site but has not gotten much love. The summary is that I have a container class that holds a Dictionary of components. The components are a derived object of a common base class. I also have a parallel structure that I am using as DTO objects to which I want to map. The error that gets generated seems to say that the mapper cannot map between two of the classes that I have included in the CreateMap calls. I think the error has to do with the fact that I have a Dictionary of objects that are not part of the container‘s hierarchy. I apologize in advance for the length of the code below. My simple test cases work. Needless to say, it’s only the more complex case that is failing. Here are the classes: #region Dto objects public class ComponentContainerDTO { public Dictionary<string, ComponentDTO> Components { get; set; } public ComponentContainerDTO() { this.Components = new Dictionary<string, ComponentDTO>(); } } public class EntityDTO : ComponentContainerDTO { public int Id { get; set; } } public class ComponentDTO { public EntityDTO Owner { get; set; } public int Id { get; set; } public string Name { get; set; } public string ComponentType { get; set; } } public class HealthDTO : ComponentDTO { public decimal CurrentHealth { get; set; } } public class PhysicalLocationDTO : ComponentDTO { public Point2D Location { get; set; } } #endregion #region Domain objects public class ComponentContainer { public Dictionary<string, Component> Components { get; set; } public ComponentContainer() { this.Components = new Dictionary<string, Component>(); } } public class Entity : ComponentContainer { public int Id { get; set; } } public class Component { public Entity Owner { get; set; } public int Id { get; set; } public string Name { get; set; } public string ComponentType { get; set; } } public class Health : Component { public decimal CurrentHealth { get; set; } } public struct Point2D { public decimal X; public decimal Y; public Point2D(decimal x, decimal y) { X = x; Y = y; } } public class PhysicalLocation : Component { public Point2D Location { get; set; } } #endregion The code: var entity = new Entity() { Id = 1 }; var healthComponent = new Health() { CurrentHealth = 100, Owner = entity, Name = "Health", Id = 2 }; entity.Components.Add("1", healthComponent); var locationComponent = new PhysicalLocation() { Location = new Point2D() { X = 1, Y = 2 }, Owner = entity, Name = "PhysicalLocation", Id = 3 }; entity.Components.Add("2", locationComponent); Mapper.CreateMap<ComponentContainer, ComponentContainerDTO>() .Include<Entity, EntityDTO>(); Mapper.CreateMap<Entity, EntityDTO>(); Mapper.CreateMap<Component, ComponentDTO>() .Include<Health, HealthDTO>() .Include<PhysicalLocation, PhysicalLocationDTO>(); Mapper.CreateMap<Component, ComponentDTO>(); Mapper.CreateMap<Health, HealthDTO>(); Mapper.CreateMap<PhysicalLocation, PhysicalLocationDTO>(); Mapper.AssertConfigurationIsValid(); var targetEntity = Mapper.Map<Entity, EntityDTO>(entity); The error when I call Map() (abbreviated stack crawls): AutoMapper.AutoMapperMappingException was unhandled Message=Trying to map MapperTest1.Entity to MapperTest1.EntityDTO. Using mapping configuration for MapperTest1.Entity to MapperTest1.EntityDTO Exception of type 'AutoMapper.AutoMapperMappingException' was thrown. Source=AutoMapper StackTrace: at AutoMapper.MappingEngine.AutoMapper.IMappingEngineRunner.Map(ResolutionContext context) . . . InnerException: AutoMapper.AutoMapperMappingException Message=Trying to map System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[MapperTest1.Component, ElasticTest1, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]] to System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[MapperTest1.ComponentDTO, ElasticTest1, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]]. Using mapping configuration for MapperTest1.Entity to MapperTest1.EntityDTO Destination property: Components Exception of type 'AutoMapper.AutoMapperMappingException' was thrown. Source=AutoMapper StackTrace: at AutoMapper.Mappers.TypeMapObjectMapperRegistry.PropertyMapMappingStrategy.MapPropertyValue(ResolutionContext context, IMappingEngineRunner mapper, Object mappedObject, PropertyMap propertyMap) . . InnerException: AutoMapper.AutoMapperMappingException Message=Trying to map System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[MapperTest1.Component, ElasticTest1, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]] to System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[MapperTest1.ComponentDTO, ElasticTest1, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]]. Using mapping configuration for MapperTest1.Entity to MapperTest1.EntityDTO Destination property: Components Exception of type 'AutoMapper.AutoMapperMappingException' was thrown. Source=AutoMapper StackTrace: at AutoMapper.MappingEngine.AutoMapper.IMappingEngineRunner.Map(ResolutionContext context) . InnerException: AutoMapper.AutoMapperMappingException Message=Trying to map MapperTest1.Component to MapperTest1.ComponentDTO. Using mapping configuration for MapperTest1.Health to MapperTest1.HealthDTO Destination property: Components Exception of type 'AutoMapper.AutoMapperMappingException' was thrown. Source=AutoMapper StackTrace: at AutoMapper.MappingEngine.AutoMapper.IMappingEngineRunner.Map(ResolutionContext context) . . InnerException: AutoMapper.AutoMapperMappingException Message=Trying to map System.Decimal to System.Decimal. Using mapping configuration for MapperTest1.Health to MapperTest1.HealthDTO Destination property: CurrentHealth Exception of type 'AutoMapper.AutoMapperMappingException' was thrown. Source=AutoMapper StackTrace: at AutoMapper.Mappers.TypeMapObjectMapperRegistry.PropertyMapMappingStrategy.MapPropertyValue(ResolutionContext context, IMappingEngineRunner mapper, Object mappedObject, PropertyMap propertyMap) . . InnerException: System.InvalidCastException Message=Unable to cast object of type 'MapperTest1.ComponentDTO' to type 'MapperTest1.HealthDTO'. Source=Anonymously Hosted DynamicMethods Assembly StackTrace: at SetCurrentHealth(Object , Object ) . . Thank you in advance. Rick

    Read the article

  • How to use Koala Facebook Graph API?

    - by reko
    I am a Rails newbie. I want to use Koala's Graph API. In my controller @graph = Koala::Facebook::API.new('myFacebookAccessToken') @hello = @graph.get_object("my.Name") When I do this, I get something like this { "id"=>"123456", "name"=>"First Middle Last", "first_name"=>"First", "middle_name"=>"Middle", "last_name"=>"Last", "link"=>"http://www.facebook.com/MyName", "username"=>"my.name", "birthday"=>"12/12/1212", "hometown"=>{"id"=>"115200305133358163", "name"=>"City, State"}, "location"=>{"id"=>"1054648928202133335", "name"=>"City, State"}, "bio"=>"This is my awesome Bio.", "quotes"=>"I am the master of my fate; I am the captain of my soul. - William Ernest Henley\r\n\r\n"Don't go around saying the world owes you a living. The world owes you nothing. It was here first.\" - Mark Twain", "work"=>[{"employer"=>{"id"=>"100751133333", "name"=>"Company1"}, "position"=>{"id"=>"105763693332790962", "name"=>"Position1"}, "start_date"=>"2010-08", "end_date"=>"2011-07"}], "sports"=>[{"id"=>"104019549633137", "name"=>"Sport1"}, {"id"=>"103992339636529", "name"=>"Sport2"}], "favorite_teams"=>[{"id"=>"105467226133353743", "name"=>"Fav1"}, {"id"=>"19031343444432369133", "name"=>"Fav2"}, {"id"=>"98027790139333", "name"=>"Fav3"}, {"id"=>"104055132963393331", "name"=>"Fav4"}, {"id"=>"191744431437533310", "name"=>"Fav5"}], "favorite_athletes"=>[{"id"=>"10836600585799922", "name"=>"Fava1"}, {"id"=>"18995689436787722", "name"=>"Fava2"}, {"id"=>"11156342219404022", "name"=>"Fava4"}, {"id"=>"11169998212279347", "name"=>"Fava5"}, {"id"=>"122326564475039", "name"=>"Fava6"}], "inspirational_people"=>[{"id"=>"16383141733798", "name"=>"Fava7"}, {"id"=>"113529011990793335", "name"=>"fava8"}, {"id"=>"112032333138809855566", "name"=>"Fava9"}, {"id"=>"10810367588423324", "name"=>"Fava10"}], "education"=>[{"school"=>{"id"=>"13478880321332322233663", "name"=>"School1"}, "type"=>"High School", "with"=>[{"id"=>"1401052755", "name"=>"Friend1"}]}, {"school"=>{"id"=>"11482777188037224", "name"=>"School2"}, "year"=>{"id"=>"138383069535219", "name"=>"2005"}, "type"=>"High School"}, {"school"=>{"id"=>"10604484633093514", "name"=>"School3"}, "year"=>{"id"=>"142963519060927", "name"=>"2010"}, "concentration"=>[{"id"=>"10407695629335773", "name"=>"c1"}], "type"=>"College"}, {"school"=>{"id"=>"22030497466330708", "name"=>"School4"}, "degree"=>{"id"=>"19233130157477979", "name"=>"c3"}, "year"=>{"id"=>"201638419856163", "name"=>"2011"}, "type"=>"Graduate School"}], "gender"=>"male", "interested_in"=>["female"], "relationship_status"=>"Single", "religion"=>"Religion1", "political"=>"Political1", "email"=>"[email protected]", "timezone"=>-8, "locale"=>"en_US", "languages"=>[{"id"=>"10605952233759137", "name"=>"English"}, {"id"=>"10337617475934611", "name"=>"L2"}, {"id"=>"11296944428713061", "name"=>"L3"}], "verified"=>true, "updated_time"=>"2012-02-24T04:18:05+0000" } How do I show this entire hash in the view in a good format? This is what I did from what ever I learnt.. In my view <% @hello.each do |key, value| %> <li><%=h "#{key.to_s} : #{value.to_s}" %></li> <% end %> This will get the entire thing converted to a list... It works awesome if its just one key.. but how to work with multiple keys and show only the information... something like when it outputs hometown : City, State rather than something like hometown : {"id"=>"115200305133358163", "name"=>"City, State"} Also for education if I just say education[school][name] to display list of schools attended? The error i get is can't convert String into Integer I also tried to do this in my controller, but I get the same error.. @fav_teams = @hello["favorite_teams"]["name"] Also, how can I save all these to the database.. something like just the list of all schools.. not their id no's? Update: The way I plan to save to my database is.. lets say for a user model, i want to save to database as :facebook_id, :facebook_name, :facebook_firstname, ...., :facebook_hometown .. here I only want to save name... when it comes to education.. I want to save.. school, concentration and type.. I have no idea on how to achieve this.. Looking forward for help! thanks!

    Read the article

  • Would anyone tell me how to fetch the media:thumb element's attribute from a json feed?

    - by ash
    I made a yahoo pipe that pulls up the atoms as json format; however, I can fetch and display all the elements in my html page except for the element's attribute. Would anyone tell me how to fetch the media:thumb element's attribute from a json feed? I am pasting the html page's code with javascript. If you save the html page and then view it in browser, you will see that all the necessary elements get output at html page except for the media:thumb as I cannot display the attribute of media:thumb when the feed is formatted as json. I am also pasting the some portion of the json feed so that you can have an idea what i am talking about. Please tell me how to retrieve attribute from media:thumb element of a json feed by using plain javascript but no server side code or javascript library. Thank you. function getFeed(feed){ var newScript = document.createElement('script'); newScript.type = 'text/javascript'; newScript.src = 'http://pipes.yahoo.com/pipes/pipe.run?_id=40616620df99780bceb3fe923cecd216&_render=json&_callback=piper'; document.getElementsByTagName("head")[0].appendChild(newScript); } function piper(feed){ var tmp=''; for (var i=0; i'; tmp+=feed.value.items[i].title+''; tmp+=feed.value.items[i].author.name+''; tmp+=feed.value.items[i].published+''; if (feed.value.items[i].description) { tmp+=feed.value.items[i].description+''; } tmp+='<hr>'; } document.getElementById('rssLayer').innerHTML=tmp; } </script> bchnbc .............................................................. Some portion of the json feed that gets generated by yahoo pipe .............................................................. piper({"count":2,"value":{"title":"myPipe","description":"Pipes Output","link":"http:\/\/pipes.yahoo.com\/pipes\/pipe.info?_id=f7f4175d493cf1171aecbd3268fea5ee","pubDate":"Fri, 02 Apr 2010 17:59:22 -0700","generator":"http:\/\/pipes.yahoo.com\/pipes\/","callback":"piper", "items": [{ "rights":"Attribution - Noncommercial - No Derivative Works", "link":"http:\/\/vodo.net\/mixtape1", "y:id":{"value":null,"permalink":"true"}, "content":{"content":"We're proud to be releasing this first VODO MIXTAPE. Actual tape might be a thing of the past, but before P2P, mixtapes were the most popular way of sharing popular culture the world had known -- and once called the 'most widely practiced American art form'. We want to resuscitate the spirit of the mixtape for this VODO MIXTAPE series: compilations of our favourite shorts, the weird, the wild and the wonky, all brought together in a temporary and uncomfortable company.","type":"text"}, "author": {"name":"Various"}, "description":"We're proud to be releasing this first VODO MIXTAPE. Actual tape might be a thing of the past, but before P2P, mixtapes were the most popular way of sharing popular culture the world had known -- and once called the 'most widely practiced American art form'. We want to resuscitate the spirit of the mixtape for this VODO MIXTAPE series: compilations of our favourite shorts, the weird, the wild and the wonky, all brought together in a temporary and uncomfortable company.", "media:thumbnail": { "url":"http:\/\/vodo.net\/\/thumbnails\/Mixtape1.jpg" }, "published":"2010-03-08-09:20:20 PM", "format": { "audio_bitrate":null, "width":"608", "xmlns":"http:\/\/xmlns.transmission.cc\/FileFormat", "channels":"2", "samplerate":"44100.0", "duration":"3092.36", "height":"352", "size":"733925376.0", "framerate":"25.0", "audio_codec":"mp3", "video_bitrate":"1898.0", "video_codec":"XVID", "pixel_aspect_ratio":"16:9" }, "y:title":"Mixtape #1: VODO's favourite short films", "title":"Mixtape #1: VODO's favourite short films", "id":null, "pubDate":"2010-03-08-09:20:20 PM", "y:published":{"hour":"3","timezone":"UTC","second":"0","month":"4","minute":"10","utime":"1270264200","day":"3","day_of_week":"6","year":"2010" }}, {"rights":"Attribution - Noncommercial - No Derivative Works","link":"http:\/\/vodo.net\/gilbert","y:id":{"value":"cd6584e06ea4ce7fcd34172f4bbd919e295f8680","permalink":"true"},"content":{"content":"A documentary short about Gilbert, the Beacon Hill \"town crier.\" For the last 9 years, since losing his job and becoming homeless, Gilbert has delivered the weather, sports, and breaking headlines from his spot on the Boston Common. Music (used with permission) in this piece is called \"Blue Bicycle\" by Dusseldorf-based pianist \/ composer Volker Bertelmann also known as Hauschka. Artistic Statement: This is the first in a series of profiles of people who I think are interesting, and who I see on almost a daily basis. I don't want to limit the series to people who live \"on the fringe,\" but it would be appropriate to say that most of the people I interview are eclectic, eccentric, and just a little bit unique. The art is in the viewing - but I hope to turn my lens on individuals that don't always color in the lines, whether they can help it or not.","type":"text"},"author":{"name":"Nathaniel Hansen"},"description":"A documentary short about Gilbert, the Beacon Hill \"town crier.\" For the last 9 years, since losing his job and becoming homeless, Gilbert has delivered the weather, sports, and breaking headlines from his spot on the Boston Common. Music (used with permission) in this piece is called \"Blue Bicycle\" by Dusseldorf-based pianist \/ composer Volker Bertelmann also known as Hauschka. Artistic Statement: This is the first in a series of profiles of people who I think are interesting, and who I see on almost a daily basis. I don't want to limit the series to people who live \"on the fringe,\" but it would be appropriate to say that most of the people I interview are eclectic, eccentric, and just a little bit unique. The art is in the viewing - but I hope to turn my lens on individuals that don't always color in the lines, whether they can help it or not.","media:thumbnail":{"url":"http:\/\/vodo.net\/\/thumbnails\/gilbert.jpeg"},"published":"2010-03-03-10:37:05 AM","format":{"audio_bitrate":null,"width":"624","xmlns":"http:\/\/xmlns.transmission.cc\/FileFormat","channels":"2","samplerate":null,"duration":"373.673","height":"352","size":"123321266.0","framerate":null,"audio_codec":"mp3","video_bitrate":null,"video_codec":"XVID","pixel_aspect_ratio":"16:9"},"y:title":"Gilbert","title":"Gilbert","id":"cd6584e06ea4ce7fcd34172f4bbd919e295f8680","pubDate":"2010-03-03-10:37:05 AM","y:published":{"hour":"3","timezone":"UTC","second":"0","month":"4","minute":"10","utime":"1270264200","day":"3","day_of_week":"6","year":"2010" }} ] }})

    Read the article

  • @ContextConfiguration in Spring 3.0 give me No default constructor found

    - by atomsfat
    I have already do the test using AbstractDependencyInjectionSpringContextTests and it works but in spring 3 it is deprecated, so I decided to try @ContextConfiguration but spring say that default constructor is not found, I check and the class doesn't have any constructor. If I use this test spring give the object. package atoms.portales.servicios.impl; import atoms.portales.model.Cliente; import atoms.portales.servicios.ClienteService; import java.util.List; import javax.persistence.EntityManager; import org.springframework.test.AbstractDependencyInjectionSpringContextTests; /** * * @author tsalazar */ public class ClienteServiceImplDeTest extends AbstractDependencyInjectionSpringContextTests{ private ClienteService clienteService; public ClienteService getClienteService() { return clienteService; } public void setClienteService(ClienteService clienteService) { this.clienteService = clienteService; } public ClienteServiceImplDeTest(String testName) { super(testName); } @Override protected String[] getConfigLocations() { return new String[]{"PersistenceAppCtx.xml", "ServicesAppCtx.xml"}; } /** * Test of buscaCliente method, of class ClienteServiceImplDeTest. */ public void testBuscaCliente() { System.out.println("======================================="); System.out.println("buscaCliente"); String nombre = ""; System.out.println(clienteService); System.out.println("======================================="); } } But if I use this, spring say that default constructor is not found. package atoms.config.portales.servicios.impl; import atoms.portales.model.Cliente; import atoms.portales.servicios.ClienteService; import org.junit.runner.RunWith; import org.junit.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.test.context.ContextConfiguration; import org.springframework.test.context.junit4.SpringJUnit4ClassRunner; import org.springframework.test.context.transaction.TransactionConfiguration; import org.springframework.transaction.annotation.Transactional; /** * * @author tsalazar */ @RunWith(SpringJUnit4ClassRunner.class) @ContextConfiguration(locations = {"/PersistenceAppCtx.xml", "/ServicesAppCtx.xml"}) @TransactionConfiguration(transactionManager = "transactionManager") @Transactional public class ClienteServiceImplTest { @Autowired private ClienteService clienteService; /** * Test of buscaCliente method, of class ClienteServiceImpl. */ @Test public void testBuscaCliente() { System.out.println("======================================="); System.out.println("buscaCliente"); System.out.println(clienteService); System.out.println("======================================="); } } This how I do the implementacion: package atoms.portales.servicios; import atoms.portales.model; /** * Una interface para obtener clientes, con sus surcursales, servicios, layouts * y contratos. Tambien soporta operaciones CRUD. * @author tsalazar */ public interface ClienteService { /** * Busca clientes a partir del nombre * @param nombre */ public Cliente buscaCliente(String nombre); } the implemetacion package atoms.portales..servicios.impl; import atoms.portales.model.Cliente; import atoms.portales.servicios.ClienteService; import javax.persistence.EntityManager; import javax.persistence.PersistenceContext; import org.springframework.stereotype.Repository; import org.springframework.stereotype.Service; import org.springframework.transaction.annotation.Transactional; /** * A JPA-based implementation.Delegates to a JPA entity manager to issue data access calls * against the backing repository. The EntityManager reference is provided by the managing container (Spring) * automatically. */ @Service("clienteSerivice") @Repository public class ClienteServiceImpl implements ClienteService { public ClienteServiceImpl() { } private EntityManager em; @PersistenceContext public void setEntityManager(EntityManager em) { this.em = em; } @Transactional(readOnly = true) public Cliente buscaCliente(String nombre) { Cliente cliente = em.getReference(Cliente.class, 1l); return cliente; } } spring configuration: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd"> <!-- Instructs Spring to perfrom declarative transaction management on annotated classes --> <tx:annotation-driven /> <!-- Drives transactions using local JPA APIs --> <bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager"> <property name="entityManagerFactory" ref="entityManagerFactory" /> </bean> <!-- Creates a EntityManagerFactory for use with the Hibernate JPA provider and a simple in-memory data source populated with test data --> <bean id="entityManagerFactory" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"> <property name="dataSource" ref="dataSource" /> <property name="jpaVendorAdapter"> <bean class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter" /> </property> </bean> <!-- Deploys a in-memory "booking" datasource populated --> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="org.hsqldb.jdbcDriver" /> <property name="url" value="jdbc:hsqldb:hsql://localhost/test" /> <property name="username" value="sa" /> <property name="password" value="" /> </bean> <context:component-scan base-package="atoms.portales.servicios" /> </beans> This is the persistence.xml <?xml version="1.0" encoding="UTF-8"?> <persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0"> <persistence-unit name="configuradorPortales" transaction-type="RESOURCE_LOCAL"> <provider>org.hibernate.ejb.HibernatePersistence</provider> <class>atoms.portales.model.Cliente</class> <properties> <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/> <property name="hibernate.hbm2ddl.auto" value="create-drop"/> <property name="hibernate.show_sql" value="true"/> <property name="hibernate.cache.provider_class" value="org.hibernate.cache.HashtableCacheProvider"/> </properties> </persistence-unit> </persistence> This is the error that give me:

    Read the article

  • (PHP) Validation, Security and Speed - Does my app have these?

    - by Devner
    Hi all, I am currently working on a building community website in PHP. This contains forms that a user can fill right from registration to lot of other functionality. I am not an Object-oriented guy, so I am using functions most of the time to handle my application. I know I have to learn OOPS, but currently need to develop this website and get it running soon. Anyway, here's a sample of what I let my app. do: Consider a page (register.php) that has a form where a user has 3 fields to fill up, say: First Name, Last Name and Email. Upon submission of this form, I want to validate the form and show the corresponding errors to the users: <form id="form1" name="form1" method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>"> <label for="name">Name:</label> <input type="text" name="name" id="name" /><br /> <label for="lname">Last Name:</label> <input type="text" name="lname" id="lname" /><br /> <label for="email">Email:</label> <input type="text" name="email" id="email" /><br /> <input type="submit" name="submit" id="submit" value="Submit" /> </form> This form will POST the info to the same page. So here's the code that will process the POST'ed info: <?php require("functions.php"); if( isset($_POST['submit']) ) { $errors = fn_register(); if( count($errors) ) { //Show error messages } else { //Send welcome mail to the user or do database stuff... } } ?> <?php //functions.php page: function sql_quote( $value ) { if( get_magic_quotes_gpc() ) { $value = stripslashes( $value ); } else { $value = addslashes( $value ); } if( function_exists( "mysql_real_escape_string" ) ) { $value = mysql_real_escape_string( $value ); } return $value; } function clean($str) { $str = strip_tags($str, '<br>,<br />'); $str = trim($str); $str = sql_quote($str); return $str; } foreach ($_POST as &$value) { if (!is_array($value)) { $value = clean($value); } else { clean($value); } } foreach ($_GET as &$value) { if (!is_array($value)) { $value = clean($value); } else { clean($value); } } function validate_name( $fld, $min, $max, $rule, $label ) { if( $rule == 'required' ) { if ( trim($fld) == '' ) { $str = "$label: Cannot be left blank."; return $str; } } if ( isset($fld) && trim($fld) != '' ) { if ( isset($fld) && $fld != '' && !preg_match("/^[a-zA-Z\ ]+$/", $fld)) { $str = "$label: Invalid characters used! Only Lowercase, Uppercase alphabets and Spaces are allowed"; } else if ( strlen($fld) < $min or strlen($fld) > $max ) { $curr_char = strlen($fld); $str = "$label: Must be atleast $min character &amp; less than $max char. Entered characters: $curr_char"; } else { $str = 0; } } else { $str = 0; } return $str; } function validate_email( $fld, $min, $max, $rule, $label ) { if( $rule == 'required' ) { if ( trim($fld) == '' ) { $str = "$label: Cannot be left blank."; return $str; } } if ( isset($fld) && trim($fld) != '' ) { if ( !eregi('^[a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.([a-zA-Z]{2,4})$', $fld) ) { $str = "$label: Invalid format. Please check."; } else if ( strlen($fld) < $min or strlen($fld) > $max ) { $curr_char = strlen($fld); $str = "$label: Must be atleast $min character &amp; less than $max char. Entered characters: $curr_char"; } else { $str = 0; } } else { $str = 0; } return $str; } function val_rules( $str, $val_type, $rule='required' ){ switch ($val_type) { case 'name': $val = validate_name( $str, 3, 20, $rule, 'First Name'); break; case 'lname': $val = validate_name( $str, 10, 20, $rule, 'Last Name'); break; case 'email': $val = validate_email( $str, 10, 60, $rule, 'Email'); break; } return $val; } function fn_register() { $errors = array(); $val_name = val_rules( $_POST['name'], 'name' ); $val_lname = val_rules( $_POST['lname'], 'lname', 'optional' ); $val_email = val_rules( $_POST['email'], 'email' ); if ( $val_name != '0' ) { $errors['name'] = $val_name; } if ( $val_lname != '0' ) { $errors['lname'] = $val_lname; } if ( $val_email != '0' ) { $errors['email'] = $val_email; } return $errors; } //END of functions.php page ?> OK, now it might look like there's a lot, but lemme break it down target wise: 1. I wanted the foreach ($_POST as &$value) and foreach ($_GET as &$value) loops to loop through the received info from the user submission and strip/remove all malicious input. I am calling a function called clean on the input first to achieve the objective as stated above. This function will process each of the input, whether individual field values or even arrays and allow only tags and remove everything else. The rest of it is obvious. Once this happens, the new/cleaned values will be processed by the fn_register() function and based on the values returned after the validation, we get the corresponding errors or NULL values (as applicable). So here's my questions: 1. This pretty much makes me feel secure as I am forcing the user to correct malicious data and won't process the final data unless the errors are corrected. Am I correct? Does the method that I follow guarantee the speed (as I am using lots of functions and their corresponding calls)? The fields of a form differ and the minimum number of fields I may have at any given point of time in any form may be 3 and can go upto as high as 100 (or even more, I am not sure as the website is still being developed). Will having 100's of fields and their validation in the above way, reduce the speed of application (say upto half a million users are accessing the website at the same time?). What can I do to improve the speed and reduce function calls (if possible)? 3, Can I do something to improve the current ways of validation? I am holding off object oriented approach and using FILTERS in PHP for the later. So please, I request you all to suggest me way to improve/tweak the current ways and suggest me if the script is vulnerable or safe enough to be used in a Live production environment. If not, what I can do to be able to use it live? Thank you all in advance.

    Read the article

  • Am I just not understanding TDD unit testing (Asp.Net MVC project)?

    - by KallDrexx
    I am trying to figure out how to correctly and efficiently unit test my Asp.net MVC project. When I started on this project I bought the Pro ASP.Net MVC, and with that book I learned about TDD and unit testing. After seeing the examples, and the fact that I work as a software engineer in QA in my current company, I was amazed at how awesome TDD seemed to be. So I started working on my project and went gun-ho writing unit tests for my database layer, business layer, and controllers. Everything got a unit test prior to implementation. At first I thought it was awesome, but then things started to go downhill. Here are the issues I started encountering: I ended up writing application code in order to make it possible for unit tests to be performed. I don't mean this in a good way as in my code was broken and I had to fix it so the unit test pass. I mean that abstracting out the database to a mock database is impossible due to the use of linq for data retrieval (using the generic repository pattern). The reason is that with linq-sql or linq-entities you can do joins just by doing: var objs = select p from _container.Projects select p.Objects; However, if you mock the database layer out, in order to have that linq pass the unit test you must change the linq to be var objs = select p from _container.Projects join o in _container.Objects on o.ProjectId equals p.Id select o; Not only does this mean you are changing your application logic just so you can unit test it, but you are making your code less efficient for the sole purpose of testability, and getting rid of a lot of advantages using an ORM has in the first place. Furthermore, since a lot of the IDs for my models are database generated, I proved to have to write additional code to handle the non-database tests since IDs were never generated and I had to still handle those cases for the unit tests to pass, yet they would never occur in real scenarios. Thus I ended up throwing out my database unit testing. Writing unit tests for controllers was easy as long as I was returning views. However, the major part of my application (and the one that would benefit most from unit testing) is a complicated ajax web application. For various reasons I decided to change the app from returning views to returning JSON with the data I needed. After this occurred my unit tests became extremely painful to write, as I have not found any good way to write unit tests for non-trivial json. After pounding my head and wasting a ton of time trying to find a good way to unit test the JSON, I gave up and deleted all of my controller unit tests (all controller actions are focused on this part of the app so far). So finally I was left with testing the Service layer (BLL). Right now I am using EF4, however I had this issue with linq-sql as well. I chose to do the EF4 model-first approach because to me, it makes sense to do it that way (define my business objects and let the framework figure out how to translate it into the sql backend). This was fine at the beginning but now it is becoming cumbersome due to relationships. For example say I have Project, User, and Object entities. One Object must be associated to a project, and a project must be associated to a user. This is not only a database specific rule, these are my business rules as well. However, say I want to do a unit test that I am able to save an object (for a simple example). I now have to do the following code just to make sure the save worked: User usr = new User { Name = "Me" }; _userService.SaveUser(usr); Project prj = new Project { Name = "Test Project", Owner = usr }; _projectService.SaveProject(prj); Object obj = new Object { Name = "Test Object" }; _objectService.SaveObject(obj); // Perform verifications There are many issues with having to do all this just to perform one unit test. There are several issues with this. For starters, if I add a new dependency, such as all projects must belong to a category, I must go into EVERY single unit test that references a project, add code to save the category then add code to add the category to the project. This can be a HUGE effort down the road for a very simple business logic change, and yet almost none of the unit tests I will be modifying for this requirement are actually meant to test that feature/requirement. If I then add verifications to my SaveProject method, so that projects cannot be saved unless they have a name with at least 5 characters, I then have to go through every Object and Project unit test to make sure that the new requirement doesn't make any unrelated unit tests fail. If there is an issue in the UserService.SaveUser() method it will cause all project, and object unit tests to fail and it the cause won't be immediately noticeable without having to dig through the exceptions. Thus I have removed all service layer unit tests from my project. I could go on and on, but so far I have not seen any way for unit testing to actually help me and not get in my way. I can see specific cases where I can, and probably will, implement unit tests, such as making sure my data verification methods work correctly, but those cases are few and far between. Some of my issues can probably be mitigated but not without adding extra layers to my application, and thus making more points of failure just so I can unit test. Thus I have no unit tests left in my code. Luckily I heavily use source control so I can get them back if I need but I just don't see the point. Everywhere on the internet I see people talking about how great TDD unit tests are, and I'm not just talking about the fanatical people. The few people who dismiss TDD/Unit tests give bad arguments claiming they are more efficient debugging by hand through the IDE, or that their coding skills are amazing that they don't need it. I recognize that both of those arguments are utter bullocks, especially for a project that needs to be maintainable by multiple developers, but any valid rebuttals to TDD seem to be few and far between. So the point of this post is to ask, am I just not understanding how to use TDD and automatic unit tests?

    Read the article

  • "Parse Error : There is a problem parsing the package" while installing Android application

    - by Raghavendra
    I got this error while installing the android application (Parse Error : There is a problem parsing the package.). I did the following steps. First time I installed the application and it works fine. I made changes to the existing application and change the version no in Manifest file. <manifest xmlns:android="http://schemas.android.com/apk/res/android" package="org.openintents.samples.BasicOpenARDemo" android:versionCode="2" android:versionName="1.0.1"> Then I export the application and finish the code signing process. For this, Right Click your Project node select Export. There you will see a wizard. Follow the steps and finish the code signing also. I got the ARDemo.apk file, Then I changed it’s name to ARDemo1.apk Then I shipped this apk file to mobiles SD Card and started the installation I got the above error. I googled, they say that problem with unpacking manifest file. Can anyone tell me what could be wrong with me?

    Read the article

  • WPF MVVM ComboBox SelectedItem or SelectedValue not working

    - by cjibo
    Update After a bit of investigating. What seems to be the issue is that the SelectedValue/SelectedItem is occurring before the Item source is finished loading. If I sit in a break point and weight a few seconds it works as expected. Don't know how I'm going to get around this one. End Update I have an application using in WPF using MVVM with a ComboBox. Below is the ViewModel Example. The issue I'm having is when we leave our page and migrate back the ComboBox is not selecting the current Value that is selected. View Model public class MyViewModel { private MyObject _selectedObject; private Collection<Object2> _objects; private IModel _model; public MyViewModel(IModel model) { _model = model; _objects = _model.GetObjects(); } public Collection<MyObject> Objects { get { return _objects; } private set { _objects = value; } } public MyObject SelectedObject { get { return _selectedObject; } set { _selectedObject = value; } } } For the sake of this example lets say MyObject has two properties (Text and Id). My XAML for the ComboBox looks like this. XAML <ComboBox Name="MyComboBox" Height="23" Width="auto" SelectedItem="{Binding Path=SelectedObject,Mode=TwoWay}" ItemsSource="{Binding Objects}" DisplayMemberPath="Text" SelectedValuePath="Id"> No matter which way I configure this when I come back to the page and the object is reassembled the ComboBox will not select the value. The object is returning the correct object via the get in the property though. I'm not sure if this is just an issue with the way the ComboBox and MVVM pattern works. The text box binding we are doing works correctly.

    Read the article

  • C# creating a queue to handle jobs triggered by FileSystemWatcher

    - by John S
    I have built a small tray app that will watch a folder and when a new file is added it runs a job. The job is to watch for video files and convert them to .mp4 using handBrakeCli. I have all this logic worked out. The problem I run into is that if there is more than one file I want it to queue the job til the prior one is complete. I am fairly new to c# and I am not sure of the best way to handle this. one idea is to create a queue somehow, a file to store the commands in order maybe, then execute the next one after the process is complete. We are dealing with large movie files here so it can take a while. I am doing this on a quad core with 8gb of RAM and it seems to generally take about 30mins to complete a full length movie. here is the code I have so far. there are some bits in here that are for future functionality so it refers to some classes that you wont see but it doesnt matter as they arent used here. any suggestions are welcome. using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using System.IO; using System.Diagnostics; using System.Threading; namespace movie_converter { public partial class Form1 : Form { public Form1() { InitializeComponent(); } string hbCli; string cmd; string file; string strfilter = "*.*"; string[] filter = new string[3] { ".mkv", ".avi", ".wmv" }; //static list of types List<string> Ext = new List<string>(); //list of extensions to watch (dynamic) NotifyIcon notifyIcon = new System.Windows.Forms.NotifyIcon(); private void SetUpTrayIcon() { notifyIcon.BalloonTipText = "Movie Converter is running minimized."; notifyIcon.BalloonTipTitle = "I'm still here"; notifyIcon.Text = "John's movie converter"; notifyIcon.Icon = new Icon(@"C:\\Users\\John\\Pictures\\appicon.ico"); notifyIcon.Click += new EventHandler(notifyIcon_Click); if (notifyIcon != null) { notifyIcon.Visible = true; notifyIcon.ShowBalloonTip(2000); } } private void Form_Resize(object sender, EventArgs e) { if (WindowState == FormWindowState.Minimized) { this.Hide(); SetUpTrayIcon(); } } private void notifyIcon_Click(object sender, EventArgs e) { this.Show(); this.WindowState = FormWindowState.Normal; notifyIcon.Visible = false; } public void Watcher() { FileSystemWatcher watcher = new FileSystemWatcher(); watcher.Path = textBox1.Text + "\\"; //path to watch watcher.Filter = strfilter; //what types to look for set to * and i will filter later as it cant accept an array watcher.NotifyFilter = NotifyFilters.FileName | NotifyFilters.DirectoryName; //properties to look at watcher.IncludeSubdirectories = true; //scan subdirs watcher.Created += new FileSystemEventHandler(OnChanged); //TODO: make this only run if the files are of a certain type watcher.EnableRaisingEvents = true; // start the watcher } static bool IsFileLocked(FileInfo file) { FileStream stream = null; try { stream = file.Open(FileMode.Open, FileAccess.ReadWrite, FileShare.None); } catch (IOException) { //the file is unavailable because it is: //still being written to //or being processed by another thread //or does not exist (has already been processed) return true; } finally { if (stream != null) stream.Close(); } //file is not locked return false; } // Define the event handlers. private void OnChanged(object source, FileSystemEventArgs e) { string sFile = e.FullPath; //check that file is available FileInfo fileInfo = new FileInfo(sFile); while (IsFileLocked(fileInfo)) { Thread.Sleep(500); } if (System.Diagnostics.Process.GetProcessesByName("HandBrakeCLI").Length != 0) { Thread.Sleep(500); } else { //hbOptions hbCl = new hbOptions(); //hbCli = hbCl.HbCliOptions(); if (textBox3.Text != "") { hbCli = textBox3.Text.ToString(); } else { hbCli = "-e x264 -q 20 -B 160"; } string t = e.Name; string s = t.Substring(0, t.Length - 4); //TODO: fix this its not reliable file = e.FullPath; string opath = textBox1.Text.ToString(); cmd = "-i \"" + file + "\" -o \"" + opath + "\\" + s + ".mp4\" " + hbCli; try { for (int i = 0; i < Ext.Count(); i++) { if (e.Name.Contains(Ext[i])) { Process hb = new Process(); hb.StartInfo.FileName = "D:\\Apps\\Handbrake\\Install\\Handbrake\\HandBrakeCLI.exe"; hb.StartInfo.Arguments = cmd; notifyIcon.BalloonTipTitle = "Now Converting"; notifyIcon.BalloonTipText = file; notifyIcon.ShowBalloonTip(2000); hb.Start(); } } } catch (Exception ex) { MessageBox.Show(ex.Message); } } } private void button1_Click(object sender, EventArgs e) //ok button { //add each array item to the list for (int i = 0; i < filter.Count(); i++) { Ext.Add(filter[i]); } if (textBox1.Text != "" && textBox1.Text.Length > 2) { Watcher(); //call watcher to run } this.WindowState = FormWindowState.Minimized; } private void button2_Click(object sender, EventArgs e) //browse button { //broswe button DialogResult result = folderBrowserDialog1.ShowDialog(); if (result == DialogResult.OK) { textBox1.Text = folderBrowserDialog1.SelectedPath; } } private void button3_Click(object sender, EventArgs e) //commands button { Process np = new Process(); np.StartInfo.FileName = "notepad.exe"; np.StartInfo.Arguments = "hbCLI.txt"; np.Start(); } private void button4_Click(object sender, EventArgs e) //options button { hbOptions options = new hbOptions(); options.ShowDialog(); } private void button5_Click(object sender, EventArgs e) //exit button { this.Close(); } private void Form1_Load(object sender, EventArgs e) { this.Resize += Form_Resize; } } }

    Read the article

  • Encryption is hard: AES encryption to Hex

    - by Rob Cameron
    So, I've got an app at work that encrypts a string using ColdFusion. ColdFusion's bulit-in encryption helpers make it pretty simple: encrypt('string_to_encrypt','key','AES','HEX') What I'm trying to do is use Ruby to create the same encrypted string as this ColdFusion script is creating. Unfortunately encryption is the most confusing computer science subject known to man. I found a couple helper methods that use the openssl library and give you a really simple encryption/decryption method. Here's the resulting string: "\370\354D\020\357A\227\377\261G\333\314\204\361\277\250" Which looks unicode-ish to me. I've tried several libraries to convert this to hex but they all say it contains invalid characters. Trying to unpack it results in this: string = "\370\354D\020\357A\227\377\261G\333\314\204\361\277\250" string.unpack('U') ArgumentError: malformed UTF-8 character from (irb):19:in `unpack' from (irb):19 At the end of the day it's supposed to look like this (the output of the ColdFusion encrypt method): F8E91A689565ED24541D2A0109F201EF Of course that's assuming that all the padding, initialization vectors, salts, cypher types and a million other possible differences all line up. Here's the simple script I'm using to encrypt/decrypt: def aes(m,k,t) (aes = OpenSSL::Cipher::Cipher.new('aes-256-cbc').send(m)).key = Digest::SHA256.digest(k) aes.update(t) << aes.final end def encrypt(key, text) aes(:encrypt, key, text) end def decrypt(key, text) aes(:decrypt, key, text) end Any help? Maybe just a simple option I can pass to OpenSSL::Cipher::Cipher that will tell it to hex-encode the final string?

    Read the article

  • jqGrid (Delete row) - How to send additional POST data???

    - by ronanray
    Hi experts, I'm having problem with jqGrid delete mechanism as it only send "oper" and "id" parameters in form of POST data (id is the primary key of the table). The problem is, I need to delete a row based on the id and another column value, let's say user_id. How to add this user_id to the POST data??? I can summarize the issue as the following: How to get the cell value (user_id) of the selected row? AND, how to add that user_id to the POST data so it can be retrieved from the code behind where the actual delete process takes place. Sample codes: jQuery("#tags").jqGrid({ url: "subgrid.process.php, editurl: "subgrid.process.php?, datatype: "json", mtype: "POST", colNames:['id','user_id','status_type_id'], colModel:[{name:'id', index:'id', width:100, editable:true}, {name:'user_id', index:'user_id', width:200, editable:true}, {name:'status_type_id', index:'status_type_id', width:200} ], pager: '#pagernav2', rowNum:10, rowList:[10,20,30,40,50,100], sortname: 'id', sortorder: "asc", caption: "Test", height: 200 }); jQuery("#tags").jqGrid('navGrid','#pagernav2', {add:true,edit:false,del:true,search:false}, {}, {mtype:"POST",closeAfterAdd:true,reloadAfterSubmit:true}, // add options {mtype:"POST",reloadAfterSubmit:true}, // del options {} // search options ); Help....

    Read the article

  • Ajax call from a form rendered as Ajax response (jQuery + Grails: chaining ajax requests)

    - by bsreekanth
    Hello, I was expecting the below scenario common, but couldn't find much help online. I have a form loaded through Ajax (say, create entity form). It is loaded through a button click (load) event $("#bt-create").click(function(){ $ ('#pid').load('/controller/vehicleModel/create3'); return false; }); the response (a form) is written in to the pid element. The name and id of the form is ajax-form, and the submit event is attached to an ajax post request $(function() { $("#ajax-form").submit(function(){ // do something... var url = "/app/controller/save" $.post(url, $(this).serialize(), function(data) { alert( data ) ; /// alert data from server }); I could make the above ajax operations individually. That is the ajax post operation succeeds if it calls from a static html file. But if I chain the requests (after completing the first), so that it calls from the output form generated by the first request, nothing happens. I could see the post method is called through firebug. Is there a better way to handle above flow? One more interesting thing I noticed. As you could see, I use grails as my platform. If I keep the javascripts in the main.gsp (master layout), the submit event would not register as the breakpoint is not hit in firebug. But, if I define the javascript in the template file (which renders the form above), the breakpoint is hit, but as I explained, the action is not called at the controller. I changes the javascript to the head section but same result. any help greatly appreciated. thanks, Babu.

    Read the article

  • NServiceBus and NHibernate - Message Handler and Transactions

    - by mattcodes
    From my understanding NServiceBus executes the Handle method of an IMessageHandler within a transaction, if an exception propagates out of this method, then NServiceBus will ensure the message is put back on the message queue (up X amount of times before error queue) etc.. so we have an atomic operation so to speak. Now when if I inside my NServiceBus Message Handle method I do something like this using(var trans = session.BeginTransaction()) { person.Age = 10; session.Update<Person>(person); trans.Commit() } using(var trans2 = session.BeginTransaction()) { person.Age = 20; session.Update<Person>(person); // throw new ApplicationException("Oh no"); trans2.Commit() } What is the effect of this on the transaction scope? Is trans1 now counted as a nested transaction in terms of its relationship with the Nservicebus transaction even though we have done nothing to marry them up? (if not how would one link onto the transaction of NServiceBus? Looking at the second block (trans2), if I uncomment the throw statement, will the NServiceBus transaction then rollback trans1 as well? In basic scenarios, say I dump the above into a console app, then trans1 is independent, commit, flushed and won't rollback. I'm trying to clarify what happens now we sit in someone else's transaction like NServiceBus? The above is just example code, im wouldnt be working directly with session, more like through a uow pattern.

    Read the article

  • Need help understanding WPF MeasureOverride and ArrangeOverride infinity and 0 sizes

    - by Scott Bilas
    I'm trying to build a simple panel that contains one child and will snap it to nearest grid sizes. I'm having a hard time figuring out how to do this by overriding MeasureOverride and ArrangeOverride. Here's what I'm after: I want my panel to tell its owner that (a) it wants to be as large as possible, then (b) when it finds out what that size is, it will size itself and its child UIElement according to the nearest smaller snap point. So if we're snapping to 10's, and I can be in a region no bigger than 192x184, the panel will tell its parent container "my actual size is going to be 190x180". That way anything bordering my control will be able to align to its edges, as opposed to the potential space. When I put my panel inside of a Grid, I get either 0 or PositiveInfinity (I forget) for the incoming size in the overrides, but what I need to know is "how big can my space actually get?" not infinities.. Part of the problem I think is what WPF considers magic values of PositiveInfinity and 0 for size. I need a way to say, via MeasureOverride "I can be as big as you will allow me" and in ArrangeOverride to actually size to the snapped size. Or am I going about this the completely wrong way? Measuring and arranging looks very complicated, just from wandering around a little in the code for the standard panels in Reflector.

    Read the article

  • Android Canvas Coordinate System

    - by Mitch
    I'm trying to find information on how to change the coordinate system for the canvas. I have some vector data I'd like to draw to a canvas using things like circles and lines, but the data's coordinate system doesn't match the canvas coordinate system. Is there a way to map the units I'm using to the screen's units? I'm drawing to an ImageView which isn't taking up the entire display. If I have to do my own calculations prior to each drawing call, how to I find the width and height of my ImageView? The getWidth() and getHeight() calls I tried seem to be returning the entire canvas size and not the size of the ImageView which isn't helpful. I see some matrix stuff, is that something that will work for me? I tried to use the "public void scale(float sx, float sy)", but that works more like a pixel level zoom rather than a vector scale function by expanding each pixel. This means if the dimensions are increased to fit the screen, the line thickness is also increased. Update: After some research I'm starting to think there's no way to change coordinate systems to something else. I'll need to map all my coordinates to the screen's pixel coordinates and do so by modifying each vector. The getWidth() and getHeight() seem to be working better for me now. I can say what was wrong, but I suspect I can't use these methods inside the constructor.

    Read the article

  • Determine size of SizeToContent WPF Window before its rendered

    - by DudeFX
    I have a window in my WPF application that is displayed on occasion. When it is shown it is faded in with an annimation, and when closed it is faded out. Nothing fancy, just a storyboard that modifies the opacity. Actually the window is never really closed, the opacity is just faded out to 0 where it remains until its to be displayed again. This window is an informative window and doesn't always show the same content. It is sized to content (Width and Height) and works well in that regard. The user chooses the basic area of the screen for it to be displayed (TopLeft, TopRight, Center, BottomLeft, BottomRight). Before the window is faded in the content is updated. Because the window is sized to content it increases or descreases in size. The width and height can change. When positioning the window, lets say, in the bottom right corner, I simply take the WorkingArea of the screen (width and height) and then minus the width/height of the window to get the Top and Left position that I need. The logic works, but the trouble I am having is the Window's Height and Width is not returning the size it is after the content was updated, but is returning the size it was the last time it was displayed. I am assuming this is because it hasn't yet been rendered with the new content. This causes me grief becuase if the Window is larger than it was the last time it obviously extends off the screen. I tried positioning the window in the OnContentRendered event, but this only fires once when the Window is created, not after the content has been updated, when the opacity is set to 0. Does anyone have any idea how I might get an accurate width and height of this window before it is faded in? Any help would be appreciated!!

    Read the article

  • High Profile ASP.NET websites

    - by nandos
    About twice a month I get asked to justify the reason "Why are we using ASP.NET and not PHP or Java, or buzz-word-of-the-month-here, etc". 100% of the time the questions come from people that do not understand anything about technology. People that would not know the difference between FTP and HTTP. The best approach I found (so far) to justify it to people without getting into technical details is to just say "XXX website uses it". Which I get back "Oh...I did not know that, so ASP.NET must be good". I know, I know, it hurts. But it works. So, without getting into the merit of why I'm using ASP.NET (which could trigger an endless argument for other platforms), I'm trying to compile a list of high profile websites that are implemented in ASP.NET. (No, they would have no idea what StackOverflow is). Can you name a high-profile website implemented in ASP.NET? EDIT: Current list (thanks for all the responses): (trying to avoid tech sites and prioritizing retail sites) Costco - http://www.costco.com/ Crate & Barrel - http://www.crateandbarrel.com/ Home Shopping Network - http://www.hsn.com/ Buy.com - http://www.buy.com/ Dell - http://www.dell.com Nasdaq - http://www.nasdaq.com/ Virgin - http://www.virgin.com/ 7-Eleven - http://www.7-eleven.com/ Carnival Cruise Lines - http://www.carnival.com/ L'Oreal - http://www.loreal.com/ The White House - http://www.whitehouse.gov/ Remax - http://www.remax.com/ Monster Jobs - http://www.monster.com/ USA Today - http://www.usatoday.com/ ComputerJobs.com - http://computerjobs.com/ Match.com - http://www.match.com National Health Services (UK) - http://www.nhs.uk/ CarrerBuilder.com - http://www.careerbuilder.com/

    Read the article

  • LoaderLock was detected, and turning off the warning does not help

    - by Scott M.
    I am trying to write an application that takes in sound from the default audio recording device on a computer. When running any code that accesses DirectX from my managed code i get this error: DLL 'C:\Windows\assembly\GAC\Microsoft.DirectX.DirectSound\1.0.2902.0__31bf3856ad364e35\Microsoft.DirectX.DirectSound.dll' is attempting managed execution inside OS Loader lock. Do not attempt to run managed code inside a DllMain or image initialization function since doing so can cause the application to hang. DevicesCollection coll = new DevicesCollection(); and Device d = new Device(DSoundHelper.DefaultCaptureDevice); and Capture c = new Capture(DSoundHelper.DefaultCaptureDevice); all cause the LoaderLock MDA to pop up and tell me there is a problem. I have scoured the internet (stackoverflow included) for solutions to this problem, but most people just say to turn off the warning, which does not work. When I turn off the warning, a generic ApplicationException is thrown, which is even less useful. I have seen the answers to this question as well, which didn't help because he said to remove the code that is causing the error. Others have said "fix your code." My questions are: how can I call any (preferably managed) DirectX code from C# without getting this error?

    Read the article

  • Problems with jQuery getJSON using local files in Chrome

    - by Tauren
    I have a very simple test page that uses XHR requests with jQuery's $.getJSON and $.ajax methods. The same page works in some situations and not in others. Specificially, it doesn't work in Chrome on Ubuntu. I'm testing on Ubuntu 9.10 with Chrome 5.0.342.7 beta and Mac OSX 10.6.2 with Chrome 5.0.307.9 beta. It works correctly when files are installed on a web server from both Ubuntu/Chrome and Mac/Chrome (try it out here). It works correctly when files are installed on local hard drive in Mac/Chrome (accessed with file:///...). It FAILS when files are installed on local hard drive in Ubuntu/Chrome (access with file:///...). The small set of 3 files can be downloaded in a tar/gzip file from here: http://issues.tauren.com/testjson/testjson.tgz When it works, the Chrome console will say: XHR finished loading: "http://issues.tauren.com/testjson/data.json". index.html:16Using getJSON index.html:21 Object result: "success" __proto__: Object index.html:22success XHR finished loading: "http://issues.tauren.com/testjson/data.json". index.html:29Using ajax with json dataType index.html:34 Object result: "success" __proto__: Object index.html:35success XHR finished loading: "http://issues.tauren.com/testjson/data.json". index.html:46Using ajax with text dataType index.html:51{"result":"success"} index.html:52undefined When it doesn't work, the Chrome console will show this: index.html:16Using getJSON index.html:21null index.html:22Uncaught TypeError: Cannot read property 'result' of null index.html:29Using ajax with json dataType index.html:34null index.html:35Uncaught TypeError: Cannot read property 'result' of null index.html:46Using ajax with text dataType index.html:51 index.html:52undefined Notice that it doesn't even show the XHR requests, although the success handler is run. I swear this was working previously in Ubuntu/Chrome, and am worried something got messed up. I already uninstalled and reinstalled Chrome, but that didn't help. Can someone try it out locally on your Ubuntu system and tell me if you have any troubles? Note that it seems to be working fine in Firefox.

    Read the article

  • Multi tenant membership provider ASP.NET MVC

    - by Masna
    Hello, I'm building a multi-tenant app with ASP.NET MVC and have a problem with validating users. Situation I have: -a table with User(ID, Name, FirstName, Email) This table is made, so that a users who is registered in two tenants doesn't need to login again. -a table with Tentantuser(ID, TenantID, UserID (FK to table User), UserName, Loginname, Password, Active) This table contains de login en password for one tenant. Example: UserX is registered in TenantA and TenantB UserX logs in on TenantA, with his login and password for TenantA System verifies or login and password are correct in the table TenantUser System validates UserX which userID corresponds to the Id in the table User UserX goes to TenantB and is automatically logged in My problem: How can I create a custom Provider so I can check the login & password in a tenant? For example: public abstract bool ValidateUser(string username,string password); How can I say to my provider on which tenant the user is? How can I change this in something like: public overrides bool ValidateUser(string username,string password, string tenant); ? Or what is another way to solve this issue?

    Read the article

  • DataView.RowFilter Vs DataTable.Select() vs DataTable.Rows.Find()

    - by Aseem Gautam
    Considering the code below: Dataview someView = new DataView(sometable) someView.RowFilter = someFilter; if(someView.count > 0) { …. } Quite a number of articles which say Datatable.Select() is better than using DataViews, but these are prior to VS2008. Solved: The Mystery of DataView's Poor Performance with Large Recordsets Array of DataRecord vs. DataView: A Dramatic Difference in Performance Googling on this topic I found some articles/forum topics which mention Datatable.Select() itself is quite buggy(not sure on this) and underperforms in various scenarios. On this(Best Practices ADO.NET) topic on msdn it is suggested that if there is primary key defined on a datatable the findrows() or find() methods should be used insted of Datatable.Select(). This article here (.NET 1.1) benchmarks all the three approaches plus a couple more. But this is for version 1.1 so not sure if these are valid still now. Accroding to this DataRowCollection.Find() outperforms all approaches and Datatable.Select() outperforms DataView.RowFilter. So I am quite confused on what might be the best approach on finding rows in a datatable. Or there is no single good way to do this, multiple solutions exist depending upon the scenario?

    Read the article

< Previous Page | 648 649 650 651 652 653 654 655 656 657 658 659  | Next Page >