Search Results

Search found 50594 results on 2024 pages for 'dynamic class loaders'.

Page 66/2024 | < Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >

  • How can I create object in abstract class without having knowledge of implementation?

    - by Greg
    Hi, Is there a way to implement the "CreateNode" method in my library abstract below? Or can this only be done in client code outside the library? I current get the error "Cannot create an instance of the abstract class or interface 'ToplogyLibrary.AbstractNode" public abstract class AbstractTopology<T> { // Properties public Dictionary<T, AbstractNode<T>> Nodes { get; private set; } public List<AbstractRelationship<T>> Relationships { get; private set; } // Constructors protected AbstractTopology() { Nodes = new Dictionary<T, AbstractNode<T>>(); } // Methods public AbstractNode<T> CreateNode() { var node = new AbstractNode<T>(); // ** Does not work ** Nodes.Add(node.Key, node); } } } public abstract class AbstractNode<T> { public T Key { get; set; } } public abstract class AbstractRelationship<T> { public AbstractNode<T> Parent { get; set; } public AbstractNode<T> Child { get; set; } }

    Read the article

  • Finding parent class and id

    - by Breezer
    Well after countless tries i can't get this work? <script type="text/javascript"> $("td input").focusout(function() { var column = $(this).parent('td').attr('class'); var row = $(this).parent('tr').attr('id'); $('#dat').HTML(row+" "+column); }); </script> And the html looks like this <tr class="numbers" id="1"> <td class="a" align="right">1</td> <td class="b"><input class="input" type="text" value=""/></td> <td class="c"><input class="input" type="text" value=""/></td> <td class="d"><input class="input" type="text" value=""/></td> <td class="e"><input class="input" type="text" value=""/></td> <td class="f">0</td> <td class="g"><input class="input" type="text" value=""/></td> </tr> can anyone point me to the right direction on what might be wrong? thanks in advance regards

    Read the article

  • Java Class<T> static method forName() IncompatibleClassChangeError

    - by matt
    Hi, i have this code: private static Importable getRightInstance(String s) throws Exception { Class<? extends Importable> c = Class.forName(s).asSubclass(Importable.class); Importable i = c.newInstance(); return i; } which i can also write private static Importable getRightInstance(String s) throws Exception { Class<? extends Importable> c = (Class<? extends Importable>)Class.forName(s); Importable i = c.newInstance(); return i; } or private static Importable getRightInstance(String s) throws Exception { Class<?> c = Class.forName(s); Importable i = (Importable)c.newInstance(); return i; } where Importable is an interface and s is a string representing an implementing class. Well, in any case it gives the following: Exception in thread "main" java.lang.IncompatibleClassChangeError: class C1 has interface Importable as super class Here is the last snippet of the stack trace: at java.lang.Class.forName(Class.java:169) at Importer.getRightImportable(Importer.java:33) at Importer.importAll(Importer.java:44) at Test.main(Test.java:16) Now, class C1 actually implemens Importable and i totally don't understand why it complaints. Thanks in advance.

    Read the article

  • How do I call a variable from another class?

    - by squeezemylime
    I have a class called 'Constants' that I am storing a String variable in. This class contains a few global variables used in my app. I want to be able to reference this class and call the variable (called profileId) in other Views of my app. I looked around and found a few examples, but am not sure how to do this. Currently my setup is: Constants.h @interface Constants : UIViewController { NSString *profileId; } @property (nonatomic, retain) NSString *profileId; @end Constants.m #import "Constants.h" @implementation Constants @synthesize profileId; - (void)dealloc { [profileId release]; [super dealloc]; } And I am trying to call the variable profileId in a new View via this way: NewView.h file @class Constants; NewView.m file NSLog(@"ProfileId is:", [myConstants profileId]); Is there something I'm missing? It is coming up null, even though I am properly storing a value in it in another function via this way: Constants *Constant; Constant = [[Constants alloc] init]; Constant.profileId = userId;

    Read the article

  • How to handle lookup data in a C# ASP.Net MVC4 application?

    - by Jim
    I am writing an MVC4 application to track documents we have on file for our clients. I'm using code first, and have created models for my objects (Company, Document, etc...). I am now faced with the topic of document expiration. Business logic dictates certain documents will expire a set number of days past the document date. For example, Document A might expire in 180 days, Document 2 in 365 days, etc... I have a class for my documents as shown below (simplified for this example). What is the best way for me to create a lookup for expiration values? I want to specify documents of type DocumentA expire in 30 days, type DocumentB expire in 75 days, etc... I can think of a few ways to do this: Lookup table in the database I can query New property in my class (DaysValidFor) which has a custom getter that returns different values based on the DocumentType A method that takes in the document type and returns the number of days and I'm sure there are other ways I'm not even thinking of. My main concern is a) not violating any best practices and b) maintainability. Are there any pros/cons I need to be aware of for the above options, or is this a case of "just pick one and run with it"? One last thought, right now the number of days is a value that does not need to be stored anywhere on a per-document basis -- however, it is possible that business logic will change this (i.e., DocumentA's are 30 days expiration by default, but this DocumentA associated with Company XYZ will be 60 days because we like them). In that case, is a property in the Document class the best way to go, seeing as I need to add that field to the DB? namespace Models { // Types of documents to track public enum DocumentType { DocumentA, DocumentB, DocumentC // etc... } // Document model public class Document { public int DocumentID { get; set; } // Foreign key to companies public int CompanyID { get; set; } public DocumentType DocumentType { get; set; } // Helper to translate enum's value to an integer for DB storage [Column("DocumentType")] public int DocumentTypeInt { get { return (int)this.DocumentType; } set { this.DocumentType = (DocumentType)value; } } [DataType(DataType.Date)] [DisplayFormat(DataFormatString = "{0:MM-dd-yyyy}", ApplyFormatInEditMode = true)] public DateTime DocumentDate { get; set; } // Navigation properties public virtual Company Company { get; set; } } }

    Read the article

  • Orange Brightbox and NO-IP.com

    - by JSweete
    Strange one here i didnt know where to ask, and i know this is a developer resource but i was hoping with everyones tech know how someone may have a solution for my problem. Ok i had an orange livebox before and in the dynamic dns settings it had no-ip.com as a drop down option with login variables to update my account with a dynamic ip address. This worked great for years. However my livebox died and i now have a orange brightbox, and this doesnt have no-ip.com as a login update option for dynamic dns on my router. Does any one have any idea how i can get my domain to point to my home server with a dynamic ip address ideally for free? This is merely for testing and to have a backup server for my main remote server.

    Read the article

  • Adding dynamic business logic/business process checks to a system

    - by Jordan Reiter
    I'm wondering if there is a good extant pattern (language here is Python/Django but also interested on the more abstract level) for creating a business logic layer that can be created without coding. For example, suppose that a house rental should only be available during a specific time. A coder might create the following class: from bizlogic import rules, LogicRule from orders.models import Order class BeachHouseAvailable(LogicRule): def check(self, reservation): house = reservation.house_reserved if not (house.earliest_available < reservation.starts < house.latest_available ) raise RuleViolationWhen("Beach house is available only between %s and %s" % (house.earliest_available, house.latest_available)) return True rules.add(Order, BeachHouseAvailable, name="BeachHouse Available") This is fine, but I don't want to have to code something like this each time a new rule is needed. I'd like to create something dynamic, ideally something that can be stored in a database. The thing is, it would have to be flexible enough to encompass a wide variety of rules: avoiding duplicates/overlaps (to continue the example "You already have a reservation for this time/location") logic rules ("You can't rent a house to yourself", "This house is in a different place from your chosen destination") sanity tests ("You've set a rental price that's 10x the normal rate. Are you sure this is the right price?" Things like that. Before I recreate the wheel, I'm wondering if there are already methods out there for doing something like this.

    Read the article

  • C#/.NET Little Wonders: The Timeout static class

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. When I started the “Little Wonders” series, I really wanted to pay homage to parts of the .NET Framework that are often small but can help in big ways.  The item I have to discuss today really is a very small item in the .NET BCL, but once again I feel it can help make the intention of code much clearer and thus is worthy of note. The Problem - Magic numbers aren’t very readable or maintainable In my first Little Wonders Post (Five Little Wonders That Make Code Better) I mention the TimeSpan factory methods which, I feel, really help the readability of constructed TimeSpan instances. Just to quickly recap that discussion, ask yourself what the TimeSpan specified in each case below is 1: // Five minutes? Five Seconds? 2: var fiveWhat1 = new TimeSpan(0, 0, 5); 3: var fiveWhat2 = new TimeSpan(0, 0, 5, 0); 4: var fiveWhat3 = new TimeSpan(0, 0, 5, 0, 0); You’d think they’d all be the same unit of time, right?  After all, most overloads tend to tack additional arguments on the end.  But this is not the case with TimeSpan, where the constructor forms are:     TimeSpan(int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds, int milliseconds); Notice how in the 4 and 5 parameter version we suddenly have the parameter days slipping in front of hours?  This can make reading constructors like those above much harder.  Fortunately, there are TimeSpan factory methods to help make your intention crystal clear: 1: // Ah! Much clearer! 2: var fiveSeconds = TimeSpan.FromSeconds(5); These are great because they remove all ambiguity from the reader!  So in short, magic numbers in constructors and methods can be ambiguous, and anything we can do to clean up the intention of the developer will make the code much easier to read and maintain. Timeout – Readable identifiers for infinite timeout values In a similar way to TimeSpan, let’s consider specifying timeouts for some of .NET’s (or our own) many methods that allow you to specify timeout periods. For example, in the TPL Task class, there is a family of Wait() methods that can take TimeSpan or int for timeouts.  Typically, if you want to specify an infinite timeout, you’d just call the version that doesn’t take a timeout parameter at all: 1: myTask.Wait(); // infinite wait But there are versions that take the int or TimeSpan for timeout as well: 1: // Wait for 100 ms 2: myTask.Wait(100); 3:  4: // Wait for 5 seconds 5: myTask.Wait(TimeSpan.FromSeconds(5); Now, if we want to specify an infinite timeout to wait on the Task, we could pass –1 (or a TimeSpan set to –1 ms), which what the .NET BCL methods with timeouts use to represent an infinite timeout: 1: // Also infinite timeouts, but harder to read/maintain 2: myTask.Wait(-1); 3: myTask.Wait(TimeSpan.FromMilliseconds(-1)); However, these are not as readable or maintainable.  If you were writing this code, you might make the mistake of thinking 0 or int.MaxValue was an infinite timeout, and you’d be incorrect.  Also, reading the code above it isn’t as clear that –1 is infinite unless you happen to know that is the specified behavior. To make the code like this easier to read and maintain, there is a static class called Timeout in the System.Threading namespace which contains definition for infinite timeouts specified as both int and TimeSpan forms: Timeout.Infinite An integer constant with a value of –1 Timeout.InfiniteTimeSpan A static readonly TimeSpan which represents –1 ms (only available in .NET 4.5+) This makes our calls to Task.Wait() (or any other calls with timeouts) much more clear: 1: // intention to wait indefinitely is quite clear now 2: myTask.Wait(Timeout.Infinite); 3: myTask.Wait(Timeout.InfiniteTimeSpan); But wait, you may say, why would we care at all?  Why not use the version of Wait() that takes no arguments?  Good question!  When you’re directly calling the method with an infinite timeout that’s what you’d most likely do, but what if you are just passing along a timeout specified by a caller from higher up?  Or perhaps storing a timeout value from a configuration file, and want to default it to infinite? For example, perhaps you are designing a communications module and want to be able to shutdown gracefully, but if you can’t gracefully finish in a specified amount of time you want to force the connection closed.  You could create a Shutdown() method in your class, and take a TimeSpan or an int for the amount of time to wait for a clean shutdown – perhaps waiting for client to acknowledge – before terminating the connection.  So, assume we had a pub/sub system with a class to broadcast messages: 1: // Some class to broadcast messages to connected clients 2: public class Broadcaster 3: { 4: // ... 5:  6: // Shutdown connection to clients, wait for ack back from clients 7: // until all acks received or timeout, whichever happens first 8: public void Shutdown(int timeout) 9: { 10: // Kick off a task here to send shutdown request to clients and wait 11: // for the task to finish below for the specified time... 12:  13: if (!shutdownTask.Wait(timeout)) 14: { 15: // If Wait() returns false, we timed out and task 16: // did not join in time. 17: } 18: } 19: } We could even add an overload to allow us to use TimeSpan instead of int, to give our callers the flexibility to specify timeouts either way: 1: // overload to allow them to specify Timeout in TimeSpan, would 2: // just call the int version passing in the TotalMilliseconds... 3: public void Shutdown(TimeSpan timeout) 4: { 5: Shutdown(timeout.TotalMilliseconds); 6: } Notice in case of this class, we don’t assume the caller wants infinite timeouts, we choose to rely on them to tell us how long to wait.  So now, if they choose an infinite timeout, they could use the –1, which is more cryptic, or use Timeout class to make the intention clear: 1: // shutdown the broadcaster, waiting until all clients ack back 2: // without timing out. 3: myBroadcaster.Shutdown(Timeout.Infinite); We could even add a default argument using the int parameter version so that specifying no arguments to Shutdown() assumes an infinite timeout: 1: // Modified original Shutdown() method to add a default of 2: // Timeout.Infinite, works because Timeout.Infinite is a compile 3: // time constant. 4: public void Shutdown(int timeout = Timeout.Infinite) 5: { 6: // same code as before 7: } Note that you can’t default the ShutDown(TimeSpan) overload with Timeout.InfiniteTimeSpan since it is not a compile-time constant.  The only acceptable default for a TimeSpan parameter would be default(TimeSpan) which is zero milliseconds, which specified no wait, not infinite wait. Summary While Timeout.Infinite and Timeout.InfiniteTimeSpan are not earth-shattering classes in terms of functionality, they do give you very handy and readable constant values that you can use in your programs to help increase readability and maintainability when specifying infinite timeouts for various timeouts in the BCL and your own applications. Technorati Tags: C#,CSharp,.NET,Little Wonders,Timeout,Task

    Read the article

  • Delphi: how to set the length of a RTTI-accessed dynamic array using DynArraySetLength?

    - by conciliator
    I'd like to set the length of a dynamic array, as suggested in this post. I have two classes TMyClass and the related TChildClass defined as TChildClass = class private FField1: string; FField2: string; end; TMyClass = class private FField1: TChildClass; FField2: Array of TChildClass; end; The array augmentation is implemented as var RContext: TRttiContext; RType: TRttiType; Val: TValue; // Contains the TMyClass instance RField: TRttiField; // A field in the TMyClass instance RElementType: TRttiType; // The kind of elements in the dyn array DynArr: TRttiDynamicArrayType; Value: TValue; // Holding an instance as referenced by an array element ArrPointer: Pointer; ArrValue: TValue; ArrLength: LongInt; i: integer; begin RContext := TRTTIContext.Create; try RType := RContext.GetType(TMyClass.ClassInfo); Val := RType.GetMethod('Create').Invoke(RType.AsInstance.MetaclassType, []); RField := RType.GetField('FField2'); if (RField.FieldType is TRttiDynamicArrayType) then begin DynArr := (RField.FieldType as TRttiDynamicArrayType); RElementType := DynArr.ElementType; // Set the new length of the array ArrValue := RField.GetValue(Val.AsObject); ArrLength := 3; // Three seems like a nice number ArrPointer := ArrValue.GetReferenceToRawData; DynArraySetLength(ArrPointer, ArrValue.TypeInfo, 1, @ArrLength); { TODO : Fix 'Index out of bounds' } WriteLn(ArrValue.IsArray, ' ', ArrValue.GetArrayLength); if RElementType.IsInstance then begin for i := 0 to ArrLength - 1 do begin Value := RElementType.GetMethod('Create').Invoke(RElementType.AsInstance.MetaclassType, []); ArrValue.SetArrayElement(i, Value); // This is just a test, so let's clean up immediatly Value.Free; end; end; end; ReadLn; Val.AsObject.Free; finally RContext.Free; end; end. Being new to D2010 RTTI, I suspected the error could depend on getting ArrValue from the class instance, but the subsequent WriteLn prints "TRUE", so I've ruled that out. Disappointingly, however, the same WriteLn reports that the size of ArrValue is 0, which is confirmed by the "Index out of bounds"-exception I get when trying to set any of the elements in the array (through ArrValue.SetArrayElement(i, Value);). Do anyone know what I'm doing wrong here? (Or perhaps there is a better way to do this?) TIA!

    Read the article

  • Using Static methods or none static methods in Dao Class ?

    - by dankyy1
    Hi I generate Dao classes for some DB operations in this manner making methods of Dao class as static or none static is better? Using sample dao class below ,If more than one client got to use the AddSampleItem method in same time?how this may result? public class SampleDao { static DataAcessor dataAcessor public static void AddSampleItem(object[] params) { dataAcessor =new DataAcessor(); //generate query here string query="..." dataAcessor.ExecuteQery(query); dataAcessor.Close(); } public static void UpdateSampleItem(object[] params) { dataAcessor =new DataAcessor(); //generate query here string query="..." dataAcessor.ExecuteQery(query); dataAcessor.Close(); } }

    Read the article

  • A Custom View Engine with Dynamic View Location

    - by imran_ku07
        Introduction:          One of the nice feature of ASP.NET MVC framework is its pluggability. This means you can completely replace the default view engine(s) with a custom one. One of the reason for using a custom view engine is to change the default views location and sometimes you need to change the views location at run-time. For doing this, you can extend the default view engine(s) and then change the default views location variables at run-time.  But, you cannot directly change the default views location variables at run-time because they are static and shared among all requests. In this article, I will show you how you can dynamically change the views location without changing the default views location variables at run-time.       Description:           Let's say you need to synchronize the views location with controller name and controller namespace. So, instead of searching to the default views location(Views/ControllerName/ViewName) to locate views, this(these) custom view engine(s) will search in the Views/ControllerNameSpace/ControllerName/ViewName folder to locate views.           First of all create a sample ASP.NET MVC 3 application and then add these custom view engines to your application,   public class MyRazorViewEngine : RazorViewEngine { public MyRazorViewEngine() : base() { AreaViewLocationFormats = new[] { "~/Areas/{2}/Views/%1/{1}/{0}.cshtml", "~/Areas/{2}/Views/%1/{1}/{0}.vbhtml", "~/Areas/{2}/Views/%1/Shared/{0}.cshtml", "~/Areas/{2}/Views/%1/Shared/{0}.vbhtml" }; AreaMasterLocationFormats = new[] { "~/Areas/{2}/Views/%1/{1}/{0}.cshtml", "~/Areas/{2}/Views/%1/{1}/{0}.vbhtml", "~/Areas/{2}/Views/%1/Shared/{0}.cshtml", "~/Areas/{2}/Views/%1/Shared/{0}.vbhtml" }; AreaPartialViewLocationFormats = new[] { "~/Areas/{2}/Views/%1/{1}/{0}.cshtml", "~/Areas/{2}/Views/%1/{1}/{0}.vbhtml", "~/Areas/{2}/Views/%1/Shared/{0}.cshtml", "~/Areas/{2}/Views/%1/Shared/{0}.vbhtml" }; ViewLocationFormats = new[] { "~/Views/%1/{1}/{0}.cshtml", "~/Views/%1/{1}/{0}.vbhtml", "~/Views/%1/Shared/{0}.cshtml", "~/Views/%1/Shared/{0}.vbhtml" }; MasterLocationFormats = new[] { "~/Views/%1/{1}/{0}.cshtml", "~/Views/%1/{1}/{0}.vbhtml", "~/Views/%1/Shared/{0}.cshtml", "~/Views/%1/Shared/{0}.vbhtml" }; PartialViewLocationFormats = new[] { "~/Views/%1/{1}/{0}.cshtml", "~/Views/%1/{1}/{0}.vbhtml", "~/Views/%1/Shared/{0}.cshtml", "~/Views/%1/Shared/{0}.vbhtml" }; } protected override IView CreatePartialView(ControllerContext controllerContext, string partialPath) { var nameSpace = controllerContext.Controller.GetType().Namespace; return base.CreatePartialView(controllerContext, partialPath.Replace("%1", nameSpace)); } protected override IView CreateView(ControllerContext controllerContext, string viewPath, string masterPath) { var nameSpace = controllerContext.Controller.GetType().Namespace; return base.CreateView(controllerContext, viewPath.Replace("%1", nameSpace), masterPath.Replace("%1", nameSpace)); } protected override bool FileExists(ControllerContext controllerContext, string virtualPath) { var nameSpace = controllerContext.Controller.GetType().Namespace; return base.FileExists(controllerContext, virtualPath.Replace("%1", nameSpace)); } } public class MyWebFormViewEngine : WebFormViewEngine { public MyWebFormViewEngine() : base() { MasterLocationFormats = new[] { "~/Views/%1/{1}/{0}.master", "~/Views/%1/Shared/{0}.master" }; AreaMasterLocationFormats = new[] { "~/Areas/{2}/Views/%1/{1}/{0}.master", "~/Areas/{2}/Views/%1/Shared/{0}.master", }; ViewLocationFormats = new[] { "~/Views/%1/{1}/{0}.aspx", "~/Views/%1/{1}/{0}.ascx", "~/Views/%1/Shared/{0}.aspx", "~/Views/%1/Shared/{0}.ascx" }; AreaViewLocationFormats = new[] { "~/Areas/{2}/Views/%1/{1}/{0}.aspx", "~/Areas/{2}/Views/%1/{1}/{0}.ascx", "~/Areas/{2}/Views/%1/Shared/{0}.aspx", "~/Areas/{2}/Views/%1/Shared/{0}.ascx", }; PartialViewLocationFormats = ViewLocationFormats; AreaPartialViewLocationFormats = AreaViewLocationFormats; } protected override IView CreatePartialView(ControllerContext controllerContext, string partialPath) { var nameSpace = controllerContext.Controller.GetType().Namespace; return base.CreatePartialView(controllerContext, partialPath.Replace("%1", nameSpace)); } protected override IView CreateView(ControllerContext controllerContext, string viewPath, string masterPath) { var nameSpace = controllerContext.Controller.GetType().Namespace; return base.CreateView(controllerContext, viewPath.Replace("%1", nameSpace), masterPath.Replace("%1", nameSpace)); } protected override bool FileExists(ControllerContext controllerContext, string virtualPath) { var nameSpace = controllerContext.Controller.GetType().Namespace; return base.FileExists(controllerContext, virtualPath.Replace("%1", nameSpace)); } }             Here, I am extending the RazorViewEngine and WebFormViewEngine class and then appending /%1 in each views location variable, so that we can replace /%1 at run-time. I am also overriding the FileExists, CreateView and CreatePartialView methods. In each of these method implementation, I am replacing /%1 with controller namespace. Now, just register these view engines in Application_Start method in Global.asax.cs file,   protected void Application_Start() { ViewEngines.Engines.Clear(); ViewEngines.Engines.Add(new MyRazorViewEngine()); ViewEngines.Engines.Add(new MyWebFormViewEngine()); ................................................ ................................................ }             Now just create a controller and put this controller's view inside Views/ControllerNameSpace/ControllerName folder and then run this application. You will find that everything works just fine.       Summary:          ASP.NET MVC uses convention over configuration to locate views. For many applications this convention to locate views is acceptable. But sometimes you may need to locate views at run-time. In this article, I showed you how you can dynamically locate your views by using a custom view engine. I am also attaching a sample application. Hopefully you will enjoy this article too. SyntaxHighlighter.all()  

    Read the article

  • Implicitly invoking parent class initializer

    - by Matt Joiner
    class A(object): def __init__(self, a, b, c): #super(A, self).__init__() super(self.__class__, self).__init__() class B(A): def __init__(self, b, c): print super(B, self) print super(self.__class__, self) #super(B, self).__init__(1, b, c) super(self.__class__, self).__init__(1, b, c) class C(B): def __init__(self, c): #super(C, self).__init__(2, c) super(self.__class__, self).__init__(2, c) C(3) In the above code, the commented out __init__ calls appear to the be the commonly accepted "smart" way to do super class initialization. However in the event that the class hierarchy is likely to change, I have been using the uncommented form, until recently. It appears that in the call to the super constructor for B in the above hierarchy, that B.__init__ is called again, self.__class__ is actually C, not B as I had always assumed. Is there some way in Python-2.x that I can overcome this, and maintain proper MRO when calling super constructors without actually naming the current class?

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • class on td is causing tr not to respond

    - by Catfish
    I have this script and the rows that have td class "odd" will not toggle the blue color that the rows without the class "odd" do. anybody know why? //Used to make a row turn blue if available $('tr:not(theadtr)').toggle(function() { $(this).addClass("hltclick"); }, function() { $(this).removeClass("hltclick"); }); and this table <table> <thead> <tr class="border"> <td>Start Time</td> <td>End Time</td> </tr> </thead> <tbody> <tr class="border"> <td class="odd"><a href="#">7:00am</a></td> <td class="odd"><a href="#">8:00am</a></td> </tr> <tr class="border"> <td><a href="#">8:00am</a></td> <td><a href="#">9:00am</a></td> </tr> <tr class="border"> <td class="odd"><a href="#">9:00am</a></td> <td class="odd"><a href="#">10:00am</a></td> </tr> <tr class="border"> <td><a href="#">10:00am</a></td> <td><a href="#">11:00am</a></td> </tr> <tr class="border"> <td class="odd"><a href="#">11:00am</a></td> <td class="odd"><a href="#">12:00pm</a></td> </tr> <tr class="border"> <td><a href="#">1:00pm</a></td> <td><a href="#">2:00pm</a></td> </tr> <tr class="border"> <td class="odd"><a href="#">2:00pm</a></td> <td class="odd"><a href="#">3:00pm</a></td> </tr> <tr class="border"> <td><a href="#">3:00pm</a></td> <td><a href="#">4:00pm</a></td> </tr> <tr class="border"> <td class="odd"><a href="#">4:00pm</a></td> <td class="odd"><a href="#">5:00pm</a></td> </tr> </tbody> </table> and this css #calendar { -moz-border-radius-bottomleft:6px; -moz-border-radius-bottomright:6px; padding:15px; clear:both; padding:15px; } body { color:#222222; font-family:sans-serif; font-size:12px; } table { border:1px solid white; border-collapse:collapse; margin:0 0 30px; width:100%; } .border { border:1px solid #333134; } thead tr { background:none repeat scroll 0 0 #B7EBFF; color:#333134; font-size:24px; font-weight:bold; } tr { background:none repeat scroll 0 0 #616062; font-size:16px; } thead td { font-family:"Century Gothic",Arial; padding:5px 0 20px 5px; } tr.border thead tr { color:#333134; font-size:24px; font-weight:bold; } tr { font-size:16px; }

    Read the article

  • Django: way to test what class a generic relation content_object is?

    - by bitbutter
    In my project I have a class, NewsItem. Instances of NewsItem act like a wrapper. They can be associated with either an ArtWork instance, or an Announcement instance. Here's how the NewsItem model looks: class NewsItem(models.Model): content_type = models.ForeignKey(ContentType) object_id = models.PositiveIntegerField() content_object = generic.GenericForeignKey('content_type', 'object_id') date = models.DateTimeField(default=datetime.datetime.now,) class Meta: ordering = ('-date',) def __unicode__(self): return (self.title()) In a template I'm dealing with a NewsItem instance, and would like to output a certain bunch of html it it's 'wrapping' an Artwork instance, and a different bunch of html if it's wrapping an Announcement instance. Could someone explain how I can write a conditional to test for this? My first naive try looked like this: {% if news_item.content_object.type=='Artwork' %}do this{% else %}do that{% endif %}

    Read the article

  • How do I define an implicit typecast from my class to a scalar?

    - by Delan Azabani
    I have the following code, which uses a Unicode string class from a library that I'm writing: #include <cstdio> #include "ucpp" main() { ustring a = "test"; ustring b = "ing"; ustring c = "- -"; ustring d; d = "cafe\xcc\x81"; printf("%s\n", (a + b + c[1] + d).encode()); } The encode method of the ustring class instances converts the internal Unicode into a UTF-8 char *. However, because I don't have access to the char class definition, I am unsure on how I can define an implicit typecast (so that I don't have to manually call encode when using with printf, etc).

    Read the article

  • Portable class libraries and fetching JSON

    - by Jeff
    After much delay, we finally have the Windows Phone 8 SDK to go along with the Windows 8 Store SDK, or whatever ridiculous name they’re giving it these days. (Seriously… that no one could come up with a suitable replacement for “metro” is disappointing in an otherwise exciting set of product launches.) One of the neat-o things is the potential for code reuse, particularly across Windows 8 and Windows Phone 8 apps. This is accomplished in part with portable class libraries, which allow you to share code between different types of projects. With some other techniques and quasi-hacks, you can share some amount of code, and I saw it mentioned in one of the Build videos that they’re seeing as much as 70% code reuse. Not bad. However, I’ve already hit a super annoying snag. It appears that the HttpClient class, with its idiot-proof async goodness, is not included in the Windows Phone 8 class libraries. Shock, gasp, horror, disappointment, etc. The delay in releasing it already caused dismay among developers, and I’m sure this won’t help. So I started refactoring some code I already had for a Windows 8 Store app (ugh) to accommodate the use of HttpWebRequest instead. I haven’t tried it in a Windows Phone 8 project beyond compiling, but it appears to work. I used this StackOverflow answer as a starting point since it’s been a long time since I used HttpWebRequest, and keep in mind that it has no exception handling. It needs refinement. The goal here is to new up the client, and call a method that returns some deserialized JSON objects from the Intertubes. Adding facilities for headers or cookies is probably a good next step. You need to use NuGet for a Json.NET reference. So here’s the start: using System.Net; using System.Threading.Tasks; using Newtonsoft.Json; using System.IO; namespace MahProject {     public class ServiceClient<T> where T : class     {         public ServiceClient(string url)         {             _url = url;         }         private readonly string _url;         public async Task<T> GetResult()         {             var response = await MakeAsyncRequest(_url);             var result = JsonConvert.DeserializeObject<T>(response);             return result;         }         public static Task<string> MakeAsyncRequest(string url)         {             var request = (HttpWebRequest)WebRequest.Create(url);             request.ContentType = "application/json";             Task<WebResponse> task = Task.Factory.FromAsync(                 request.BeginGetResponse,                 asyncResult => request.EndGetResponse(asyncResult),                 null);             return task.ContinueWith(t => ReadStreamFromResponse(t.Result));         }         private static string ReadStreamFromResponse(WebResponse response)         {             using (var responseStream = response.GetResponseStream())                 using (var reader = new StreamReader(responseStream))                 {                     var content = reader.ReadToEnd();                     return content;                 }         }     } } Calling it in some kind of repository class may look like this, if you wanted to return an array of Park objects (Park model class omitted because it doesn’t matter): public class ParkRepo {     public async Task<Park[]> GetAllParks()     {         var client = new ServiceClient<Park[]>(http://superfoo/endpoint);         return await client.GetResult();     } } And then from inside your WP8 or W8S app (see what I did there?), when you load state or do some kind of UI event handler (making sure the method uses the async keyword): var parkRepo = new ParkRepo(); var results = await parkRepo.GetAllParks(); // bind results to some UI or observable collection or something Hopefully this saves you a little time.

    Read the article

  • Pass in the object a java class is embedded in as a parameter.

    - by Leif Andersen
    I'm building an android application, which has a list view, and in the list view, a click listener, containing an onItemClick method. So I have something like this: public class myList extends ListActivity { @Override public void onCreate(Bundle savedInstanceState) { getListView().setOnItemClickListener(new OnItemClickListener() { public void onItemClick(AdapterView<?> parent, View view, int position, long id) { /* Do something*/ } } } Normally, this works fine. However, many times I find myself needing too preform an application using the outer class as a context. thusfar, I've used: parent.getContext(); to do this, but I would like to know, is that a bad idea? I can't really call: super because it's not really a subclass, just an embedded one. So is there any better way, or is that considered cosure? Also, if it is the right way, what should I do if the embedded method doesn't have a parameter to get the outside class? Thank you.

    Read the article

  • How is it possible the class inheritance in namespaces using Ruby on Rails 3?

    - by user502052
    In my RoR3 application I have a namespace called NS1 so that I have this filesystem structure: ROOT_RAILS/controllers/ ROOT_RAILS/controllers/application_controller.rb ROOT_RAILS/controllers/ns/ ROOT_RAILS/controllers/ns/ns_controller.rb ROOT_RAILS/controllers/ns/names_controller.rb ROOT_RAILS/controllers/ns/surnames_controller.rb I wuold like that 'ns_controller.rb' inherits from application controller, so in 'ns_controller.rb' file I have: class Ns::NsController < ApplicationController ... end Is this the right approach? Anyway if I have this situation... in 'application_controller.rb' class ApplicationController < ActionController::Base @profile = Profile.find(1) end in 'ns_controller.rb' class Ns::NsController < ApplicationController @name = @profile.name @surname = @profile.surname end ... '@name' and '@surname' variables are not set. Why?

    Read the article

  • Can I set a PHP class property from an existing variable?

    - by jasondavis
    I am trying to figure out how I want to handle settings in my PHP app. I have pretty much decide that I would like to use a Confg class file so it will be autoloaded and flexible in the future. Below is some stuff I was playing with. I know you cannot set a variable to popluate a Constant so I then try to use a public static property. Why can I not set public static $ip = $_SERVER['REMOTE_ADDR']; ?? <?php // config.class.php class Config { const URL = 'http://www.foo.com'; const DB_User = 'dbname'; public static $test = 'test string'; public static $ip = $_SERVER['REMOTE_ADDR']; } /////////////////////////////////////////////////////// //index.php // works echo Config::URL; // works echo Config::$test; // DOES NOT WORK echo Config::$ip; ?>

    Read the article

  • What's wrong with consuming ConfiguredTaskAwaitable from PortableClassLibrary's class under Debugger from MSTest Runner or Console App?

    - by Stas Shusha
    *Its only Debug-time error, but a very weird one. Problem: While running with Debugger attached and calling a method, exposed in separate Portable library, returning ConfiguredTaskAwaitable, we get InvalidProgramException. Repro: Having 2 projects: PortableClassLibrary (supporting .Net 4.5; Windows Store; Windows Phone 8) with 1 class: public class Weird { public static ConfiguredTaskAwaitable GetConfiguredTaskAwaitable() { return new ConfiguredTaskAwaitable(); } } ConsoleApplication with code: static void Main(string[] args) { Weird.GetConfiguredTaskAwaitable(); } Notes: replacing ConfiguredTaskAwaitable with ConfiguredTaskAwaitable<T> (a generic version) fixes this strange issue consuming this method form WP8 or Win8 app under Debugger works fine. Currently it causes problems cause I cant run my Unit Tests under Debugger. I'm forced to change my "ObjectUnderTest" implementation to return generic ConfiguredTaskAwaitable<T>, which is fine for the real project, but still is only a workaround. The Question is: does anybody knows the reason of this error? It definitely related to Portable Class Library magic.

    Read the article

  • Enterprise Library Validation Block - Should validation be placed on class or interface?

    - by Robert MacLean
    I am not sure where the best place to put validation (using the Enterprise Library Validation Block) is? Should it be on the class or on the interface? Things that may effect it Validation rules would not be changed in classes which inherit from the interface. Validation rules would not be changed in classes which inherit from the class. Inheritance will occur from the class in most cases - I suspect some fringe cases to inherit from the interface (but I would try and avoid it). The interface main use is for DI which will be done with the Unity block.

    Read the article

< Previous Page | 62 63 64 65 66 67 68 69 70 71 72 73  | Next Page >