Search Results

Search found 11409 results on 457 pages for 'large teams'.

Page 67/457 | < Previous Page | 63 64 65 66 67 68 69 70 71 72 73 74  | Next Page >

  • Creating multiple heads in remote repository

    - by Jab
    We are looking to move our team (~10 developers) from SVN to mercurial. We are trying to figure out how to manage our workflow. In particular, we are trying to see if creating remote heads is the right solution. We currently have a very large repository with multiple, related projects. They share a lot of code, but pieces of the project are deployed by different teams (3 teams) independent of other portions of the code-base. So each team is working on concurrent large features. The way we currently handles this in SVN are branches. Team1 has a branch for Feature1, same deal for the other teams. When Team1 finishes their change, it gets merged into the trunk and deployed out. The other teams follow suite when their project is complete, merging of course. So my initial thought are using Named Branches for these situations. Team1 makes a Feature1 branch off of the default branch in Hg. Now, here is the question. Should the team PUSH that branch, in it's current/half-state to the repository. This will create a second head in the core repo. My initial reaction was "NO!" as it seems like a bad idea. Handling multiple heads on our repository just sounds awful, but there are some advantages... First, the teams want to setup Continuous Integration to build this branch during their development cycle(months long). This will only work if the CI can pull this branch from the repo. This is something we do now with SVN, copy a CI build and change the branch. Easy. Second, it makes it easier for any team member to jump onto the branch and start working. Without pushing to the core repo, they would have to receive a push from a developer on that team with the changeset information. It is also possible to lose local commits to hardware failure. The chances increase a lot if it's a branch by a single developer who has followed the "don't push until finished" approach. And lastly is just for ease of use. The developers can easily just commit and push on their branch at any time without consequence(as they do today, in their SVN branches). Is there a better way to handle this scenario that I may be missing? I just want a veteran's opinion before moving forward with the strategy. For bug fixes we like the general workflow of mecurial, anonymous branches that only consist of 1-2 commits. The simplicity is great for those cases. By the way, I've read this , great article which seems to favor Named branches.

    Read the article

  • How can I possibly sort this in JavaScript?

    - by orokusaki
    I've been pounding my head on the wall trying to figure out how to sort this in JavaScript (I have to work with it in this format unfortunately). I need to sort it based on Small, Medium, Large, XL, XXL (Small ranking the highest) in each variationValues size field. The problem is that I need to sort the variationCosts and variationInventories at the same time to match the new order (since each value in order corresponds to the values in the other fields :( Input I have to work with var m = { variationNames: ["Length", "Size" ], variationValues: [ ["26.5\"", "XXL"], ["25\"", "Large"], ["25\"", "Medium"], ["25\"", "Small"], ["25\"", "XL"], ["25\"", "XXL"], ["26.5\"", "Large"], ["26.5\"", "Small"], ["26.5\"", "XL"] ], variationCosts: [ 20.00, 20.00, 20.00, 20.00, 20.00, 20.00, 20.00, 20.00, 20.00 ], variationInventories: [ 10, 60, 51, 10, 15, 10, 60, 10, 15 ], parentCost: 20.00 }; Desired output var m = { variationNames: ["Length", "Size" ], variationValues: [ ["25\"", "Small"], ["26.5\"", "Small"], ["25\"", "Medium"], ["25\"", "Large"], ["26.5\"", "Large"], ["25\"", "XL"], ["26.5\"", "XL"] ["25\"", "XXL"], ["26.5\"", "XXL"], ], variationCosts: [ 20.00, 20.00, 20.00, 20.00, 20.00, 20.00, 20.00, 20.00, 20.00 ], variationInventories: [ 10, 10, 51, 60, 15, 15, 15, 10, 10 ], parentCost: 20.00 };

    Read the article

  • Tweaking Hudson memory usage

    - by rovarghe
    Hudson 3.1 has some performance optimizations that greatly reduces its memory footprint. Prior to this Hudson used to always hold the entire data model (all jobs and all builds) in memory which affected scalability. Some installations configured heap sizes in excess of 1GB to counteract this. Hudson 3.1.x maintains an MRU cache and only loads jobs and builds as they are required. Because of the inability to change existing APIs and be backward compatible with plugins, there were limits to how far we could go with this approach. Memory optimizations almost always come with a related cost, in this case its additional I/O that has to be performed to load data on request. On a small site that has frequent traffic, this is usually not noticeable since the MRU cache will usually hold on to all the data. A large site with infrequent traffic might experience some delays when the first request hits the server after a long gap. If you have a large heap and are able to allocate more memory, the cache settings can be adjusted to take advantage of this and even go back to pre-3.1 behavior. All the cache settings can be passed as options to the JVM container (Tomcat or the default Jetty container) using the -D option. There are two caches, independant of each other, one for Jobs and the other for Builds. For the jobs cache: hudson.jobs.cache.evict_in_seconds ( default=60 ) Seconds from last access (could be because of a servlet request or a background cron thread) a job should be purged from the cache. Set this to 0 to never purge based on time. hudson.jobs.cache.initial_capacity ( default=1024 ) Initial number of jobs the cache can accomodate. Setting this to the number of jobs you typically display on your Hudson landing page or home page will speed up consecutive access to that page. If the default is too large you may consider downsizing and using that memory for the Builds cache instead. hudson.jobs.cache.max_entries ( default=1024) Maximum number of jobs in the cache. The default is large enough for most installations, but if you find I/O activity when always accessing the hudson home page you might consider increasing this, but first verify if the I/O is caused by frequent eviction (see above), rather than by the cache not being large enough. For the builds cache: The builds cache is used to store Build objects as they are read from storage. Typically this happens when a user drills down into the details of a particular Job from the hudson hom epage. The cache is shared among builds for different jobs since in most installations all jobs are not accessed with the same frequency, so a per-job builds cache would be a waste of memory. hudson.job.builds.cache.evict_in_seconds ( default=60 ) Same as the equivalent Job cache, applied to Build. hudson.job.builds.cache.initial_capacity" ( default=512 ) Same as equivalent Job cache setting. Note the smaller initial size. If your site stores a large number of builds and has frequent access to more builds you might consider bumping this up. hudson.job.builds.cache.max_entries ( default=10240 ) The default max is large enough for most installations, the builds cache has bigger sized objects, so be careful about increasing the upper limit on this. See section on monitoring below. Sample usage: java -jar hudson-war-3.1.2-SNAPSHOT.war -Dhudson.jobs.cache.evict_in_seconds=300 \ -Dhudson.job.builds.cache.evict_in_seconds=300 Monitoring cache usage The 'jmap' tool that comes with the JDK can be used to monitor cache performance in an indirect way by looking at the number of Job and Build objects in each cache. Find the PID of the hudson instance and run $ jmap -histo:live <pid | grep 'hudson.model.*Lazy.*Key$' Here's a sample output: num #instances #bytes class name 523: 28 896 hudson.model.RunMap$LazyRunValue$Key 1200: 3 96 hudson.model.LazyTopLevelItem$Key These are the keys to the Jobs (LazyTopLevelItem$Key) and Builds (RunMap$LazyRunValue$Key) in the caches, so counting the number of keys is a good indicator of the number of items in the cache at any given moment. The size in bytes can be ignored, they are just the size of the keys, not the actual sizes of the objects they hold. Those sizes can only be obtained with a profiler. With the output above we can conclude that there are 3 jobs and 28 builds in memory. The 28 builds can all be from 1 job or all 3 jobs. Over time on an idle system, these should get evicted and memory cache should be empty. In practice, because of background cron threads and triggers, jobs rarely fall down to zero. Access of a job or a build by a cron thread resets the eviction timer.

    Read the article

  • Why your Netapp is so slow...

    - by Darius Zanganeh
    Have you ever wondered why your Netapp FAS box is slow and doesn't perform well at large block workloads?  In this blog entry I will give you a little bit of information that will probably help you understand why it’s so slow, why you shouldn't use it for applications that read and write in large blocks like 64k, 128k, 256k ++ etc..  Of course since I work for Oracle at this time, I will show you why the ZS3 storage boxes are excellent choices for these types of workloads. Netapp’s Fundamental Problem The fundamental problem you have running these workloads on Netapp is the backend block size of their WAFL file system.  Every application block on a Netapp FAS ends up in a 4k chunk on a disk. Reference:  Netapp TR-3001 Whitepaper Netapp has proven this lacking large block performance fact in at least two different ways. They have NEVER posted an SPC-2 Benchmark yet they have posted SPC-1 and SPECSFS, both recently. In 2011 they purchased Engenio to try and fill this GAP in their portfolio. Block Size Matters So why does block size matter anyways?  Many applications use large block chunks of data especially in the Big Data movement.  Some examples are SAS Business Analytics, Microsoft SQL, Hadoop HDFS is even 64MB! Now let me boil this down for you.  If an application such MS SQL is writing data in a 64k chunk then before Netapp actually writes it on disk it will have to split it into 16 different 4k writes and 16 different disk IOPS.  When the application later goes to read that 64k chunk the Netapp will have to again do 16 different disk IOPS.  In comparison the ZS3 Storage Appliance can write in variable block sizes ranging from 512b to 1MB.  So if you put the same MSSQL database on a ZS3 you can set the specific LUNs for this database to 64k and then when you do an application read/write it requires only a single disk IO.  That is 16x faster!  But, back to the problem with your Netapp, you will VERY quickly run out of disk IO and hit a wall.  Now all arrays will have some fancy pre fetch algorithm and some nice cache and maybe even flash based cache such as a PAM card in your Netapp but with large block workloads you will usually blow through the cache and still need significant disk IO.  Also because these datasets are usually very large and usually not dedupable they are usually not good candidates for an all flash system.  You can do some simple math in excel and very quickly you will see why it matters.  Here are a couple of READ examples using SAS and MSSQL.  Assume these are the READ IOPS the application needs even after all the fancy cache and algorithms.   Here is an example with 128k blocks.  Notice the numbers of drives on the Netapp! Here is an example with 64k blocks You can easily see that the Oracle ZS3 can do dramatically more work with dramatically less drives.  This doesn't even take into account that the ONTAP system will likely run out of CPU way before you get to these drive numbers so you be buying many more controllers.  So with all that said, lets look at the ZS3 and why you should consider it for any workload your running on Netapp today.  ZS3 World Record Price/Performance in the SPC-2 benchmark ZS3-2 is #1 in Price Performance $12.08ZS3-2 is #3 in Overall Performance 16,212 MBPS Note: The number one overall spot in the world is held by an AFA 33,477 MBPS but at a Price Performance of $29.79.  A customer could purchase 2 x ZS3-2 systems in the benchmark with relatively the same performance and walk away with $600,000 in their pocket.

    Read the article

  • Creating a branch for every Sprint

    - by Martin Hinshelwood
    There are a lot of developers using version control these days, but a feature of version control called branching is very poorly understood and remains unused by most developers in favour of Labels. Most developers think that branching is hard and complicated. Its not! What is hard and complicated is a bad branching strategy. Just like a bad software architecture a bad branch architecture, or one that is not adhered to can prove fatal to a project. We I was at Aggreko we had a fairly successful Feature branching strategy (although the developers hated it) that meant that we could have multiple feature teams working at the same time without impacting each other. Now, this had to be carefully orchestrated as it was a Business Intelligence team and many of the BI artefacts do not lend themselves to merging. Today at SSW I am working on a Scrum team delivering a product that will be used by many hundreds of developers. SSW SQL Deploy takes much of the pain out of upgrading production databases when you are not using the Database projects in Visual Studio. With Scrum each Scrum Team works for a fixed period of time on a single sprint. You can have one or more Scrum Teams involved in delivering a product, but all the work must be merged and tested, ready to be shown to the Product Owner at the the Sprint Review meeting at the end of the current Sprint. So, what does this mean for a branching strategy? We have been using a “Main” (sometimes called “Trunk”) line and doing a branch for each sprint. It’s like Feature Branching, but with only ONE feature in operation at any one time, so no conflicts Figure: DEV folder containing the Development branches.   I know that some folks advocate applying a Label at the start of each Sprint and then rolling back if you need to, but I have always preferred the security of a branch. Like: being able to create a release from Main that has Sprint3 code even while Sprint4 is being worked on. being sure I can always create a stable build on request. Being able to guarantee a version (labels are not auditable) Be able to abandon the sprint without having to delete the code (rare I know, but would be a mess if it happened) Being able to see the flow of change sets through to a safe release It helps you find invalid dependencies when merging to Main as there may be some file that is in everyone’s Sprint branch, but never got checked in. (We had this at the merge of Sprint2) If you are always operating in this way as a standard it makes it easier to then add more scrum teams in the future. Muscle memory of this way of working. Don’t Like: Additional DB space for the branches Baseless merging between sprint branches when changes are directly ported Note: I do not think we will ever attempt this! Maybe a bit tougher to see the history between sprint branches since the changes go up through Main and down to another sprint branch Note: What you would have to do is see which Sprint the changes were made in and then check the history he same file in that Sprint. A little bit of added complexity that you would have to do anyway with multiple teams. Over time, you can end up with a lot of old unused sprint branches. Perhaps destroy with /keephistory can help in this case. Note: We ALWAYS delete the Sprint branch after it has been merged into Main. That is the theory anyway, and as you can see from the images Sprint2 has already been deleted. Why take the chance of having a problem rolling back or wanting to keep some of the code, when you can just abandon a branch and start a new one? It just seems easier and less painful to use a branch to me! What do you think?   Technorati Tags: TFS,TFS2010,Software Development,ALM,Branching

    Read the article

  • 256 Worker Role 3D Rendering Demo is now a Lab on my Azure Course

    - by Alan Smith
    Ever since I came up with the crazy idea of creating an Azure application that would spin up 256 worker roles (please vote if you like it ) to render a 3D animation created using the Kinect depth camera I have been trying to think of something useful to do with it. I have also been busy working on developing training materials for a Windows Azure course that I will be delivering through a training partner in Stockholm, and for customers wanting to learn Windows Azure. I hit on the idea of combining the render demo and a course lab and creating a lab where the students would create and deploy their own mini render farms, which would participate in a single render job, consisting of 2,000 frames. The architecture of the solution is shown below. As students would be creating and deploying their own applications, I thought it would be fun to introduce some competitiveness into the lab. In the 256 worker role demo I capture the rendering statistics for each role, so it was fairly simple to include the students name in these statistics. This allowed the process monitor application to capture the number of frames each student had rendered and display a high-score table. When I demoed the application I deployed one instance that started rendering a frame every few minutes, and the challenge for the students was to deploy and scale their applications, and then overtake my single role instance by the end of the lab time. I had the process monitor running on the projector during the lab so the class could see the progress of their deployments, and how they were performing against my implementation and their classmates. When I tested the lab for the first time in Oslo last week it was a great success, the students were keen to be the first to build and deploy their solution and then watch the frames appear. As the students mostly had MSDN suspicions they were able to scale to the full 20 worker role instances and before long we had over 100 worker roles working on the animation. There were, however, a few issues who the couple of issues caused by the competitive nature of the lab. The first student to scale the application to 20 instances would render the most frames and win; there was no way for others to catch up. Also, as they were competing against each other, there was no incentive to help others on the course get their application up and running. I have now re-written the lab to divide the student into teams that will compete to render the most frames. This means that if one developer on the team can deploy and scale quickly, the other team still has a chance to catch up. It also means that if a student finishes quickly and puts their team in the lead they will have an incentive to help the other developers on their team get up and running. As I was using “Sharks with Lasers” for a lot of my demos, and reserved the sharkswithfreakinlasers namespaces for some of the Azure services (well somebody had to do it), the students came up with some creative alternatives, like “Camels with Cannons” and “Honey Badgers with Homing Missiles”. That gave me the idea for the teams having to choose a creative name involving animals and weapons. The team rendering architecture diagram is shown below.   Render Challenge Rules In order to ensure fair play a number of rules are imposed on the lab. ·         The class will be divided into teams, each team choses a name. ·         The team name must consist of a ferocious animal combined with a hazardous weapon. ·         Teams can allocate as many worker roles as they can muster to the render job. ·         Frame processing statistics and rendered frames will be vigilantly monitored; any cheating, tampering, and other foul play will result in penalties. The screenshot below shows an example of the team render farm in action, Badgers with Bombs have taken a lead over Camels with Cannons, and both are  leaving the Sharks with Lasers standing. If you are interested in attending a scheduled delivery of my Windows Azure or Windows Azure Service bus courses, or would like on-site training, more details are here.

    Read the article

  • AppKata - Enter the next level of programming exercises

    - by Ralf Westphal
    Doing CodeKatas is all the rage lately. That´s great since widely accepted exercises are important to further the art. They provide a means of communication across platforms and allow to compare results which is part of any deliberate practice. But CodeKatas suffer from their size. They are intentionally small, so they can be done again and again. Repetition helps to build habit and to dig deeper. Over time ever new nuances of the problem or one´s approach become visible. On the other hand, though, their small size limits the methods, techniques, technologies that can be applied. To improve your TDD skills doing CodeKatas might be enough. But what about other skills? Developing on a software in a team, designing larger pieces of software, iteratively releasing software… all this and more is kinda hard to train using the tiny CodeKata problems. That´s why I´d like to present here another kind of kata I call Application Kata (or just AppKata). AppKatas are larger programming problems. They require the development of “whole” applications, i.e. not just one class or method, but bunches of classes accessible through a user interface. Also AppKata problems always are split into iterations. To get the most out of them, just look at the requirements of one iteration at a time. This way you´re closer to reality where requirements evolve in unexpected ways. So if you´re looking for more of a challenge for your software development skills, check out these AppKatas – or invent your own. AppKatas are platform independent like CodeKatas. Use whatever programming language and IDE you like. Also use whatever approach to software development you like. Just be sensitive to how easy it is to evolve your code across iterations. Reflect on what went well and what not. Compare your solutions with others. Or – for even more challenge – go for the “Coding Carousel” (see below). CSV Viewer An application to view CSV files. Sounds easy, but watch out! Requirements sometimes drastically change if the customer is happy with what you delivered. Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 (to come) Questionnaire If you like GUI programming, this AppKata might be for you. It´s about an app to let people fill out questionnaires. Also this problem might be interestin for you, if you´re into DDD. Iteration 1 Iteration 2 (to come) Iteration 3 (to come) Iteration 4 (to come) Tic Tac Toe For developers who like game programming. Although Tic Tac Toe is a trivial game, this AppKata poses some interesting infrastructure challenges. The GUI, however, stays simple; leave any 3D ambitions at home ;-) Iteration 1 Iteration 2 (to come) Iteration 3 (to come) Iteration 4 (to come) Iteration 5 (to come) Coding Carousel There are many ways you can do AppKatas. Work on them alone or in a team, pitch several devs against each other in an AppKata contest – or go around in a Coding Carousel. For the Coding Carousel you need at least 3 dev teams (regardless of size). All teams work on the same iteration at the same time. But here´s the trick: After each iteration the teams swap their code. Whatever they did for iteration n will be the basis for changes another team has to apply in iteration n+1. The code is going around the teams like in a carousel. I promise you, that´s gonna be fun! :-)

    Read the article

  • Do you want to be an ALM Consultant?

    - by Martin Hinshelwood
    Northwest Cadence is looking for our next great consultant! At Northwest Cadence, we have created a work environment that emphasizes excellence, integrity, and out-of-the-box thinking.  Our customers have high expectations (rightfully so) and we wouldn’t have it any other way!   Northwest Cadence has some of the most exciting customers I have ever worked with and even though I have only been here just over a month I have already: Provided training/consulting for 3 government departments Created and taught courseware for delivering Scrum to teams within a high profile multinational company Started presenting Microsoft's ALM Engagement Program  So if you are interested in helping companies build better software more efficiently, then.. Enquire at [email protected] Application Lifecycle Management (ALM) Consultant An ALM Consultant with a minimum of 8 years of relevant experience with Application Lifecycle Management, Visual Studio (including Visual Studio Team System) and software design is needed. Must provide thought leadership on best practices for enterprise architecture, understand the Microsoft technology solution stack, and have a thorough understanding of enterprise application integration. The ALM Practice Lead will play a central role in designing and implementing the overall ALM Practice strategy, including creating, updating, and delivering ALM courseware and consultancy engagements. This person will also provide project support, deliverables, and quality solutions on Visual Studio Team System that exceed client expectations. Engagements will vary and will involve providing expert training, consulting, mentoring, formulating technical strategies and policies and acting as a “trusted advisor” to customers and internal teams. Sound sense of business and technical strategy required. Strong interpersonal skills as well as solid strategic thinking are key. The ideal candidate will be capable of envisioning the solution based on the early client requirements, communicating the vision to both technical and business stakeholders, leading teams through implementation, as well as training, mentoring, and hands-on software development. The ideal candidate will demonstrate successful use of both agile and formal software development methods, enterprise application patterns, and effective leadership on prior projects. Job Requirements Minimum Education: Bachelor’s Degree (computer science, engineering, or math preferred). Locale / Travel: The Practice Lead position requires estimated 50% travel, most of which will be in the Continental US (a valid national Passport must be maintained).  This is a full time position and will be based in the Kirkland office. Preferred Education: Master’s Degree in Information Technology or Software Engineering; Premium Microsoft Certifications on .NET (MCSD) or MCPD or relevant experience; Microsoft Certified Trainer (MCT) or relevant experience. Minimum Experience and Skills: 7+ years experience with business information systems integration or custom business application design and development in a professional technology consulting, corporate MIS or software development environment. Essential Duties & Responsibilities: Provide training, consulting, and mentoring to organizations on topics that include Visual Studio Team System and ALM. Create content, including labs and demonstrations, to be delivered as training classes by Northwest Cadence employees. Lead development teams through the complete ALM and/or Visual Studio Team System solution. Be able to communicate in detail how a solution will integrate into the larger technical problem space for large, complex enterprises. Define technical solution requirements. Provide guidance to the customer and project team with respect to technical feasibility, complexity, and level of effort required to deliver a custom solution. Ensure that the solution is designed, developed and deployed in accordance with the agreed upon development work plan. Create and deliver weekly status reports of training and/or consulting progress. Engagement Responsibilities: · Provide a strong desire to provide thought leadership related to technology and to help grow the business. · Work effectively and professionally with employees at all levels of a customer’s organization. · Have strong verbal and written communication skills. · Have effective presentation, organizational and planning skills. · Have effective interpersonal skills and ability to work in a team environment. Enquire at [email protected]

    Read the article

  • Collaborative Organizations build Organizational Culture

    “A Collaborative organization builds its culture based on the idea of the family or an athletic team.”(Hoefling, 2001) As I grew up, I participated in many different types of clubs, civic organizations, and sports teams.  Now looking back at the more successful undertakings, I can see three commonalities amongst them. They all shared a defined purpose or goal, defined functional roles, and a shared sense of responsibility to the group. Defined Purpose or Goal In order to unit people to work together, they must share a common goal or have a common purpose. An example of this would be the Lions Club International Foundation. There purpose is to help everyone to lead healthier and more productive lives, nurtures the potential of youth, promotes health, serves the elderly, empowers the disabled and helps victims of disasters. This organization holds localized meetings across the world and works in conjunction with other localized clubs within there organization along with other organizations to promote common goals. If there are no common goals for the group, then there is nothing that binds people to the group, and nothing will be done. Defined Functional Roles In order for an organization to work and function as a team, they must have defined roles and everyone must know how their roles are interdependent on each other. Lets shed light on this subject by looking at a football team’s offense.  Each player has an assigned role to play each time the ball is snapped. The offensive line blocks for the running back or quarterback, the quarterback passes the ball to the wide receiver or hands it off to the running back and the running back and wide receivers run with the ball towards the goal line. Each member of this team shares a common goal of scoring a touchdown, but if each team member does not fulfill their assigned roles the offences will collapse and the team will lose yards. This will provide a set back to the teams goal of scoring a touchdown because they potential are then farther away from the goal line.  In addition, if all the players do not know their roles and how they are part of a larger team then even larger yard losses can occur. Shared Sense of Personal Responsibility to the Group Shared responsibility comes with the shared common goals. Each person in the organization must do their part to promote the common shared goal or purpose based on their abilities. A prime example of this is a wrestling team competing in a match. Points are awarded to the team based on how many wins the team achieves in the meet and of that how many wins where won by decision or by pin. If a wrestler pins his opponent the teams will receive 2 points for the win, but if the wrestler wins by decision, then the team only gets one point for the win. So it is the responsibility of each person on the team to not get pinned if they are unable to win the match. If the team member gets pinned then the other team receives an additional point for the win. References: Hoefling, T. (2001). Working Virtually: Managing People for Successful Virtual Teams and Organizations. Sterling, VA: Stylus Publishing, LLC.

    Read the article

  • issue in ObservableCollection

    - by prince23
    hi, i have an lsit with these data i have a class called information.cs with these properties name,school, parent ex data name school parent kumar fes All manju fes kumar anu frank kumar anitha jss All rohit frank manju anill vijaya manju vani jss kumar soumya jss kumar madhu jss rohit shiva jss rohit vanitha jss anitha anu jss anitha now taking this as an input i wanted the output to be formated with a Hierarchical data when parent is all means it is the topmost level kumar fes All. what i need to do here is i need to create an object[0] and then check in list whether kumar exists as a parent in the list if it exista then add those items as under the object[0] as a parent i need to create one more oject under **manju fes kumar anu frank kumar** if you see this class file its shows how data is formatted. public class SampleProjectData { public static ObservableCollection GetSampleData() { DateTime dtS = DateTime.Now; ObservableCollection<Product> teams = new ObservableCollection<Product>(); teams.Add(new Product() { PDName = "Product1", OverallStartTime = dtS, OverallEndTime = dtS + TimeSpan.FromDays(3), }); Project emp = new Project() { PName = "Project1", OverallStartTime = dtS + TimeSpan.FromDays(1), OverallEndTime = dtS + TimeSpan.FromDays(6) }; emp.Tasks.Add(new Task() { StartTime = dtS, EndTime = dtS + TimeSpan.FromDays(2), TaskName = "John's Task 3" }); emp.Tasks.Add(new Task() { StartTime = dtS + TimeSpan.FromDays(3), EndTime = dtS + TimeSpan.FromDays(4), TaskName = "John's Task 2" }); teams[0].Projects.Add(emp); } return teams; }

    Read the article

  • Software development metrics and reporting

    - by David M
    I've had some interesting conversations recently about software development metrics, in particular how they can be used in a reasonably large organisation to help development teams work better. I know there have been Stack Overflow questions about which metrics are good to use - like this one, but my question is more about which metrics are useful to which stakeholders, and at what level of aggregation. As an example, my view is that code coverage is a useful metric in the following ways (and maybe others): For a team's own internal use when combined with other measurements. For facilitating/enabling/mentoring teams, where it might be instructive when considered on a team-by-team basis as a trend (e.g. if team A and B have coverage this month of 75 and 50, I'd be more concerned with team A than B if the previous month they'd had 80 and 40). For senior management when presented as an aggregated statistic across a number of teams or a whole department. But I don't think it's useful for senior management to see this on a team-by-team basis, as this encourages artifical attempts to bolster coverage with tests that merely exercise, rather than test, code. I'm in an organisation with a couple of levels in its management hierarchy, but where the vast majority of managers are technically minded and able (with many still getting their hands dirty). Some of the development teams are leading the way in driving towards agile development practices, but others lag, and there is now a serious mandate from the top for this to be the way the organisation works. A couple of us are starting a programme to encourage this. In this sort of an organisation, what sort of metrics do you think are useful, to whom, why, and at what level of aggregation? I don't want people to feel their performance is being assessed based on a metric that they can artificially influence; at the same time, the senior management are going to want some sort of evidence that progress is being made. What advice or caveats can you provide based on experience in your own organisations? EDIT We are definitely wanting to use metrics as a tool for organisational improvement not as a tool for individual performance measurement.

    Read the article

  • Building a formset dynamically

    - by vorpyg
    I initially wrote code to build a form dynamically, based on data from the DB, similar to what I described in my previous SO post. As SO user Daniel Roseman points out, he would use a formset for this, and now I've come to the realization that he must be completely right. :) My approach works, basically, but I can't seem to get validation across the entire form to be working properly (I believe it's possible, but it's getting quite complex, and there has to be a smarter way of doing it = Formsets!). So now my question is: How can I build a formset dynamically? Not in an AJAX way, I want each form's label to be populated with an FK value (team) from the DB. As I have a need for passing parameters to the form, I've used this technique from a previous SO post. With the former approach, my view code is (form code in previous link): def render_form(request): teams = Team.objects.filter(game=game) form_collection = [] for team in teams: f = SuggestionForm(request.POST or None, team=team, user=request.user) form_collection.append(f) Now I want to do something like: def render_form(request): teams = Team.objects.filter(game=game) from django.utils.functional import curry from django.forms.formsets import formset_factory formset = formset_factory(SuggestionForm) for team in teams: formset.form.append(staticmethod(curry(SuggestionForm, request.POST or None, team=team, user=request.user))) But the append bit doesn't work. What's the proper way of doing this? Thanks!

    Read the article

  • Deleting a resource in a Cucumber (Capybara) step doesn't work

    - by Josiah Kiehl
    Here is my Scenario: Scenario: Delete a match Given pojo is logged in And there is a match with the following: | game_id | 1 | | name | Game del Pojo | | date_and_time | 2010-02-23 17:52:00 | | players | 2 | | teams | 2 | | comment | This is an awesome comment | | user_id | 1 | And I am on the show match 1 page And show me the page When I follow "Delete" And I follow "Yes, delete it" Then there should not be a match with the following: | game_id | 1 | | name | Game del Pojo | | date_and_time | 2010-02-23 17:52:00 | | players | 2 | | teams | 2 | | comment | This is an awesome comment | | user_id | 1 | If I walk through these steps manually, they work. When I click the confirmation: Yes, delete it, then the match is deleted. Cucumber, however, fails to delete the record and the last step fails. And I follow "Yes, delete it" # features/step_definitions/web_steps.rb:32 Then there should not be a match with the following: # features/step_definitions/match_steps.rb:8 | game_id | 1 | | name | Game del Pojo | | date_and_time | 2010-02-23 17:52:00 | | players | 2 | | teams | 2 | | comment | This is an awesome comment | | user_id | 1 | <nil> expected but was <#<Match id: 1, name: "Game del Pojo", date_and_time: "2010-02-23 17:52:00", teams: 2, created_at: "2010-03-02 23:06:33", updated_at: "2010-03-02 23:06:33", comment: "This is an awesome comment", players: 2, game_id: 1, user_id: 1>>. (Test::Unit::AssertionFailedError) /usr/lib/ruby/1.8/test/unit/assertions.rb:48:in `assert_block' /usr/lib/ruby/1.8/test/unit/assertions.rb:495:in `_wrap_assertion' /usr/lib/ruby/1.8/test/unit/assertions.rb:46:in `assert_block' /usr/lib/ruby/1.8/test/unit/assertions.rb:83:in `assert_equal' /usr/lib/ruby/1.8/test/unit/assertions.rb:172:in `assert_nil' ./features/step_definitions/match_steps.rb:22:in `/^there should (not)? be a match with the following:$/' features/matches.feature:124:in `Then there should not be a match with the following:' Any clue how to debug this? Thanks!

    Read the article

  • Agile Awakenings and the Rules of Agile

    - by Robert May
    For those that care, you can read my history of management and technology to understand why I think I’m qualified to talk about this at all.  It’s boring, so feel free to skip it. Awakenings I first started to play around with the idea of “agile” in 2004 or 2005.  I found a book on the Rational Unified Process that I thought was good, and attempted to implement parts of it.  I thought I was agile, but really, it wasn’t.   I still didn’t understand the concept of a team.  I still wanted to tell the team what to do and how to get it done.  I still thought I was smarter than the team. After that job, I started work on another project and began helping that team.  The first few months were really rough.  We were implementing Scrum, which was relatively new to everyone on the team, and, quite frankly, I was doing a poor job of it.  I was trying to micro-manage every aspect of the teams work, and we were all miserable. The moment of change came when the senior architect bailed on the project.  His comment to me was: “This isn’t Agile.  Where are the stand-ups?  Where are the stories?”  He was dead on, and I finally woke up.  I finally realized that I was the problem!  I wasn’t trusting the team.  I wasn’t helping the team.  I was being a manager. Like many (most?), I was claiming to be Agile and use Scrum, but I wasn’t in fact following the rules Scrum.  Since then, I’ve done a lot of studying, hands on practice, coaching of many different teams, and other learning around Scrum, and I have discovered that Scrum has some rules that must be followed for success, even though the process is about continuous improvement. I’ve been practicing Scrum right for about 4 years now and have helped multiple teams implement it successfully, so what you’re about to get is based on experience, rather than just theory. The Rules of Scrum In my experience, what I’ve found is that most companies that claim to be doing Scrum or Agile are actually NOT doing either.  This stems largely because they think that they can “adopt the rules of Agile that fit their organization.”  Sadly, many of them think that this means they can adopt iterations (sprints) and not much else.  Either that, or they think they can do whatever they want, or were doing before, and call it Scrum.  This is simply not true. Here are some rules that must be followed for you to really be doing Scrum.  I’ll go into detail on each one of these posts in future blog posts and update links here.  My intent is that this will help other teams implementing scrum to see more success. Agile does not allow you to do whatever you want A Product Owner is required A ScrumMaster is required The team must function as a Team, and QA must be part of the team Support from upper management is required A prioritized product backlog is required A prioritized sprint backlog is required Release planning is required Complete spring planning is required Showcases are required Velocity must be measured Retrospectives are required Daily stand-ups are required Visibility is absolutely required For now, I think that’s enough, although I reserve the right to add more.  If you’re breaking any of these rules, you’re probably not doing Scrum.  There are exceptions to these rules, but until you have practiced Scrum for a while, you don’t know what those exceptions are. Breaking the Rules Many teams break these rules because they are the ones that expose the most pain.  Scrum is not Advil.  It’s not intended to mask the pain, its intended to cure it.  Let me explain that analogy a bit more.  Recently, my 7 year old son broke his arm, quite severely (see the X-Ray to the right).  That caused him a great deal of pain.  We went first to one doctor, and after viewing the X-Ray, they determined that there was no way that they’d cast the arm at their location.  It was simply too bad of a break for them to deal with.  They did, however, give him some Advil for the pain and put a splint on his arm to stabilize the broken bones.  Within minutes, he was feeling much better.  Had we been stupid, we could have gone home and he’d have been just as happy as ever . . . until the pain medication wore off or one of his siblings touched the splint.  Then, all of that pain would come right back to the top.  Sure, he could make it go away by just taking more Advil and moving the splint out of the way, but that wasn’t going to fix the problem permanently. We ended up in an emergency room with a doctor who could fix his arm.  However, we were warned that the fix was going to be VERY painful, and it was.  Even with heavy sedation (Propofol), my son was in enough pain that he squirmed and wiggled trying to get his arm away from the doctor.  He had to endure this pain in order to have a functional arm. But the setting wasn’t the end.  He had to have several casts, had to have it re-broken once, since the first setting didn’t take and finally was given a clean bill of health. Agile implementation is much like this story.  Agile was developed as a result of people recognizing that the development methodologies that were currently in place simply were ineffective.  However, the fix to the broken development that’s been festering for many years is not painless.  Many people start Agile thinking that things will be wonderful.  They won’t!  Agile is about visibility, and often, it brings great pain to surface.  It causes all of the missed deadlines, the cowboy coders, the coasters, the micro-managers, the lazy, and all of the other problems that are really part of your development process now to become painfully visible to EVERYONE.  Many people don’t like this exposure.  Agile will make the pain better, but not if you remove the cast (the rules above) prematurely and start breaking the rules that expose the most pain.  The healing will take time and is not instant (like Advil).  Figuring out what the true source of pain and fixing it is very valuable to you, your team, and your company.  Remember as you’re doing this that Agile isn’t the source of the pain, it’s really just exposing it.  Find the source. My recommendation is that ALL of these rules are followed for a minimum of six months, and preferably for an entire year, before you decide to break any of these rules.  Get a few good releases under your belt.  Figure out what your velocity is and start firing as a team.  Chances are, after you see agile really in action, you won’t want to break the rules because you’ll see their value. More Reading Jean Tabaka recently published a list of 78 Things I Have Learned in 6 Years of Agile Coaching.  Highly recommended. Technorati Tags: Agile,Scrum,Rules

    Read the article

  • Big Visible Charts

    - by Robert May
    An important part of Agile is the concept of transparency and visibility. In proper functioning teams, stakeholders can look at any team at any time in the iteration or release and see how that team is doing by simply looking at what we call Big Visible Charts. If you’ve done Scrum, you’ve seen these charts. However, interpreting these charts can often be an art form. There are several different charts that can be useful. In this newsletter, I’ll focus on the Iteration Burndown and Cumulative Flow charts. I’ve included a copy of the spreadsheet that I used to create the charts, and if you don’t have a tool that creates them for you, you can use this spreadsheet to do so. Our preferred tool for managing Scrum projects is Rally. Rally creates all of these charts for you, saving you quite a bit of time. The Iteration Burndown and Cumulative Flow Charts This is the main chart that teams use. Although less useful to stakeholders, this chart is critical to the team and provides quite a bit of information to the team about how their iteration is going. Most charts are a combination of the charts below, so you may need to combine aspects of each section to understand what is happening in your iterations. Ideal Ah, isn’t that a pretty picture? Unfortunately, it’s also very unrealistic. I’ve seen iterations that come close to ideal, but never that match perfectly. If your iteration matches perfectly, chances are, someone is playing with the numbers. Reality is just too difficult to have a burndown chart that matches this exactly. Late Planning Iteration started, but the team didn’t. You can tell this by the fact that the real number of estimated hours didn’t appear until day two. In the cumulative flow, you can also see that nothing was defined in Day one and two. You want to avoid situations like this. You’ll note that the team had to burn faster than is ideal to meet the iteration because of the late planning. This often results in long weeks and days. Testing Starved Determining whether or not testing is starved is difficult without the cumulative flow. The pattern in the burndown could be nothing more that developers not completing stories early enough or could be caused by stories being too big. With the cumulative flow, however, you see that only small bites are in progress and stories were completed early, but testing didn’t start testing until the end of the iteration, and didn’t complete testing all stories in the iteration. When this happens, question whether or not your testing resources are sufficient for your team and whether or not acceptance is adequately defined. No Testing With this one, both graphs show the same thing; the team needs testers and testing! Without testing, what was completed cannot be verified to make sure that it is acceptable to the business. If you find yourself in this situation, review your testing practices and acceptance testing process and make changes today. Late Development With this situation, both graphs tell a story. In the top graph, you can see that the hours failed to burn down as quickly as the team expected. This could be caused by the team not correctly estimating their hours or the team could have had illness or some other issue that affected them. Often, when teams are tackling something that is more unknown, they’ll run into technical barriers that cause the burn down to happen slower than expected. In the cumulative flow graph, you can see that not much was completed in the first few days. This could be because of illness or technical barriers or simply poor estimation. Testing was able to keep up with everything that was completed, however. No Tool Updating When you see graphs that look like this, you can be assured that it’s because the team is not updating the tool that generates the graphs. Review your policy for when they are to update. On the teams that I run, I require that each team member updates the tool at least once daily. You should also check to see how well the team is breaking down stories into tasks. If they’re creating few large tasks, graphs can look similar to this. As a general rule, I never allow tasks, other than Unit Testing and Uncertainty, to be greater than eight hours in duration. Scope Increase I always encourage team members to enter in however much time they think they have left on a task, even if that means increasing the total amount of time left to do. You get a much better and more realistic picture this way. Increasing time remaining could explain the burndown graph, but by looking at the cumulative flow graph, we can see that stories were added to the iteration and scope was increased. Since planning should consume all of the hours in the iteration, this is almost always a bad thing. If the scope change happened late in the iteration and the hours remaining were well below the ideal burn, then increasing scope is probably o.k., but estimation needs to get better. However, with the charts above, that’s clearly not what happened and the team was required to do extra work to make the iteration. If you find this happening, your product owner and ScrumMasters need training. The team also needs to learn to say no. Scope Decrease Scope decreases are just as bad as scope increases. Usually, graphs above show that the team did a poor job of estimating their stories and part way through had to reduce scope to change the iteration. This will happen once in a while, but if you find it’s a pattern on your team, you need to re-evaluate planning. Some teams are hopelessly optimistic. In those cases, I’ll introduce a task I call “Uncertainty.” With Uncertainty, the team estimates how many hours they might need if things don’t go well with the tasks they’ve defined. They try to estimate things that could go poorly and increase the time appropriately. Having an Uncertainty task allows them to have a low and high estimate. Uncertainty should not just be an arbitrary buffer. It must correlate to real uncertainty in the tasks that have been defined. Stories are too Big Often, we see graphs like the ones above. Note that the burndown looks fairly good, other than the chunky acceptance of stories. However, when you look at cumulative flow, you can see that at one point, everything is in progress. This is a bad thing. When you see graphs like this, you’re in one of two states. You may just have a very small team and can only handle one or two stories in your iteration. If you have more than one or two people, then the most likely problem is that your stories are far too big. To combat this, break large high hour stories into smaller pieces that can be completed independently and accepted independently. If you don’t, you’ll likely be requiring your testers to do heroic things to complete testing on the last day of the iteration and you’re much more likely to have the entire iteration fail, because of the limited amount of things that can be completed. Summary There are other charts that can be useful when doing scrum. If you don’t have any big visible charts, you really need to evaluate your process and change. These charts can provide the team a wealth of information and help you write better software. If you have any questions about charts that you’re seeing on your team, contact me with a screen capture of the charts and I’ll tell you what I’m seeing in those charts. I always want this information to be useful, so please let me know if you have other questions. Technorati Tags: Agile

    Read the article

  • Simple database design and LINQ

    - by Anders Svensson
    I have very little experience designing databases, and now I want to create a very simple database that does the same thing I have previously had in xml. Here's the xml: <services> <service type="writing"> <small>125</small> <medium>100</medium> <large>60</large> <xlarge>30</xlarge> </service> <service type="analysis"> <small>56</small> <medium>104</medium> <large>200</large> <xlarge>250</xlarge> </service> </services> Now, I wanted to create the same thing in a SQL database, and started doing this ( hope this formats ok, but you'll get the gist, four columns and two rows): > ServiceType Small Medium Large > > Writing 125 100 60 > > Analysis 56 104 200 This didn't work too well, since I then wanted to use LINQ to select, say, the Large value for Writing (60). But I couldn't use LINQ for this (as far as I know) and use a variable for the size (see parameters in the method below). I could only do that if I had a column like "Size" where Small, Medium, and Large would be the values. But that doesn't feel right either, because then I would get several rows with ServiceType = Writing (3 in this case, one for each size), and the same for Analysis. And if I were to add more servicetypes I would have to do the same. Simply repetitive... Is there any smart way to do this using relationships or something? Using the second design above (although not good), I could use the following LINQ to select a value with parameters sent to the method: protected int GetHourRateDB(string serviceType, Size size) { CalculatorLinqDataContext context = new CalculatorLinqDataContext(); var data = (from calculatorData in context.CalculatorDatas where calculatorData.Service == serviceType && calculatorData.Size == size.ToString() select calculatorData).Single(); return data.Hours; } But if there is another better design, could you please also describe how to do the same selection using LINQ with that design? Please keep in mind that I am a rookie at database design, so please be as explicit and pedagogical as possible :-) Thanks! Anders

    Read the article

  • How do I mount an EBS root volume to a windows instance in Amazon EC2

    - by Kyle
    So basically, I created a large windows server for development, and then I created a micro windows server for production. I set up everything how I wanted it on my development server, and then i unmounted the drives, and mounted them to my micro server. Now I'm trying to get back into my large windows development server, and I'm getting the error. Invalid value 'i-4896ce28' for instanceId. Instance does not have a volume attached at root (/dev/sda1) this error pops up when I try to start my large windows server. I've remounted the drives to the large development server, and I still get this message. I'm not really sure what to do, I've read other posts and everyone is giving these almost like command line arguments and talking about other tools, and I really have no clue what any of that means, or where I even have an option to enter any commands without be logged into a specific instance.

    Read the article

  • Looking for the best ec2 setup for 3 sites totaling in 1.5 mil in traffic monthly

    - by john h.
    I am looking to consolidate our current aws setup of 2 Large ubuntu ec2 servers and 2 large RDS server for our 3 websites that have a total of about 1.5 million hits a month and increasing every month with the majority of traffic (1 mil) to one forum site in the group and the rest of traffic to an ecommerce site and a small wordpress site. So here is my question/thought? Would it be better for us to combine the two ec2 large servers to just one and same with the 2 RDS servers so we run all three sites off one large ec2 and one RDS. -or- Should we setup maybe 2-3 smaller ec2 servers load balenced and a single RDS. -or- Something completely different setup? One concern is that if one site crashes it takes with it the others. It happened in the past but I am pretty sure its because of the forum software and not the server setup. -john

    Read the article

  • How do I extract files from one tarball to another tarball in one step?

    - by Martin
    I have some fairly large tarball archives, from which I need to extract some files. I will later repack those files to transfer them to another server. Currently that is a two (multi) step process for me: mkdir ttmp tar -vxzf large.tgz -C ttmp/ --strip-components=<INT> <folder-to-be-extracted> or alternatively with wildcards mkdir ttmp tar -vxzf large.tgz -C ttmp/ --strip-components=<INT> \ --wildcards --no-anchored '*pattern*' Then I go ahead and recompress the created folder tar -vczf small.tgz ttmp/* rm -rf ttmp How can I combine these two commands into one? Like this tar -x large.tgz > tar -c small.tgz Just to show, what I already tried: Whenever I search the terms "extract" I will end up here or here or even here. When I use the term "split" I will end up here and that is definitely not what I intend to do. When I use "repack" I end up in strange places.

    Read the article

  • I overwrote a large file with a blank one on a linux server. Can I recover the existing file?

    - by user39234
    I came back to my machine, tried saving a file over ssh onto my linux server (CentOS). It failed. I wasn't interested in keeping any changes I had made so I closed my editor and reopened the file (over ssh). The save attempt wiped the file. I have made loads of changes to it since I last uploaded to revision control. Seeing as it has just wiped the file I assume the data is still there. It's just a text file (php), is there any way of recovering it?

    Read the article

  • Developer momentum on open source projects

    - by sashang
    Hi I've been struggling to develop momentum contributing to open source projects. I have in the past tried with gcc and contributed a fix to libstdc++ but it was a once off and even though I spent months in my spare time on the dev mailing list and reading through things I just never seemed to develop any momentum with the code. Eventually I unsubscribed and got my free time back and uncluttered my mailbox. Like a lot of people I have some little open source defunct projects lying around on the net, but they're not large and I'm the only contributor. At the moment I'm more interested in contributing to a large open source project and want to know how people got started because I find it difficult while working full time to develop any momentum with the code base. Other more regular contributors, who are on the project full-time, are able to make changes at will and as result enter that positive feedback cycle where they understand the code and also know where it's heading. It makes the barrier to entry higher for those that come along later. My questions are to people who actively contribute to large opensource projects, like the Linux kernel, or gcc or clang/llvm or anything else with say a developer head count of more than 10. How did you get started? Was there a large chunk of time in your life that you just could dedicate to working on the project? I know in Linus's case he had a chunk of time (6 months) to get it started. What barriers to entry did you encounter? Can you describe the initial stages of the time spent with the project, from when you had little understanding of the code to when you understood enough to commit regularly. Thanks

    Read the article

  • Developing momentum on open source projects

    - by sashang
    Hi I've been struggling to develop momentum contributing to open source projects. I have in the past tried with gcc and contributed a fix to libstdc++ but it was a once off and even though I spent months in my spare time on the dev mailing list and reading through things I just never seemed to develop any momentum with the code. Eventually I unsubscribed and got my free time back and uncluttered my mailbox. Like a lot of people I have some little open source defunct projects lying around on the net, but they're not large and I'm the only contributor. At the moment I'm more interested in contributing to a large open source project and want to know how people got started because I find it difficult while working full time to develop any momentum with the code base. Other more regular contributors, who are on the project full-time, are able to make changes at will and as result enter that positive feedback cycle where they understand the code and also know where it's heading. It makes the barrier to entry higher for those that come along later. My questions are to people who actively contribute to large opensource projects, like the Linux kernel, or gcc or clang/llvm or anything else with say a developer head count of more than 10. How did you get started? Was there a large chunk of time in your life that you just could dedicate to working on the project? I know in Linus's case he had a chunk of time (6 months) to get it started. What barriers to entry did you encounter? Can you describe the initial stages of the time spent with the project, from when you had little understanding of the code to when you understood enough to commit regularly. Thanks

    Read the article

  • Companies and Ships

    - by TechnicalWriting
    I have worked for small, medium, large, and extra large companies and they have something in common with ships. These metaphors have been used before, I know, but I will have a go at them.The small company is like a speed boat, exciting and fast, and can turn on a dime, literally. Captain and crew share a lot of the work. A speed boat has a short range and needs to refuel a lot. It has difficulty getting through bad weather. (Small companies often live quarter to quarter. By the way, if a larger company is living quarter to quarter, it is taking on water.)The medium company is is like a battleship. It can maneuver, has a longer range, and the crew is focused on its mission. Its main concern are the other battleships trying to blow it out of the water, but it can respond quickly. Bad weather can jostle it, but it can get through most storms.The large company is like an aircraft carrier; a floating city. It is well-provisioned and can carry a specialized load for a very long range. Because of its size and complexity, it has to be well-organized to be effective and most of its functions are specialized (with little to no functional cross-over). There are many divisions and layers between Captain and crew. It is not very maneuverable; it has to set its course well in advance and have a plan of action.The extra large company is like a cruise liner. It also has to be well-organized and changes in direction are often slow. Some of the people are hard at work behind the scenes to run the ship; others can be along for the ride. They sail the same routes over and over again (often happily) with the occasional cosmetic face-lift to the ship and entertainment. It should stay in warm, friendly waters and avoid risky speed through fields of ice bergs.I have enjoyed my career on the various Ships of Technical Writing, but I get the most of my juice from the battleship where I am closer to the campaign and my contributions have the greater impact on success.Mark Metcalfewww.linkedin.com/in/MarkMetcalfe

    Read the article

  • Developing my momentum on open source projects

    - by sashang
    Hi I've been struggling to develop momentum contributing to open source projects. I have in the past tried with gcc and contributed a fix to libstdc++ but it was a once off and even though I spent months in my spare time on the dev mailing list and reading through things I just never seemed to develop any momentum with the code. Eventually I unsubscribed and got my free time back and uncluttered my mailbox. Like a lot of people I have some little open source defunct projects lying around on the net, but they're not large and I'm the only contributor. At the moment I'm more interested in contributing to a large open source project and want to know how people got started because I find it difficult while working full time to develop any momentum with the code base. Other more regular contributors, who are on the project full-time, are able to make changes at will and as result enter that positive feedback cycle where they understand the code and also know where it's heading. It makes the barrier to entry higher for those that come along later. My questions are to people who actively contribute to large opensource projects, like the Linux kernel, or gcc or clang/llvm or anything else with say a developer head count of more than 10. How did you get started? Was there a large chunk of time in your life that you just could dedicate to working on the project? I know in Linus's case he had a chunk of time (6 months) to get it started. What barriers to entry did you encounter? Can you describe the initial stages of the time spent with the project, from when you had little understanding of the code to when you understood enough to commit regularly. Thanks

    Read the article

< Previous Page | 63 64 65 66 67 68 69 70 71 72 73 74  | Next Page >