Search Results

Search found 12366 results on 495 pages for 'memory barriers'.

Page 68/495 | < Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >

  • Reusing a NSString variable - does it cause a memory leak?

    - by Chris S
    Coming from a .NET background I'm use to reusing string variables for storage, so is the code below likely to cause a memory leak? The code is targeting OS X on the iphone/itouch so no automatic GC. -(NSString*) stringExample { NSString *result = @"example"; result = [result stringByAppendingString:@" test"]; // where does "example" go? return result; } What confuses me is an NSStrings are immutable, but you can reuse an 'immutable' variable with no problem.

    Read the article

  • Combining FileStream and MemoryStream to avoid disk accesses/paging while receiving gigabytes of data?

    - by w128
    I'm receiving a file as a stream of byte[] data packets (total size isn't known in advance) that I need to store somewhere before processing it immediately after it's been received (I can't do the processing on the fly). Total received file size can vary from as small as 10 KB to over 4 GB. One option for storing the received data is to use a MemoryStream, i.e. a sequence of MemoryStream.Write(bufferReceived, 0, count) calls to store the received packets. This is very simple, but obviously will result in out of memory exception for large files. An alternative option is to use a FileStream, i.e. FileStream.Write(bufferReceived, 0, count). This way, no out of memory exceptions will occur, but what I'm unsure about is bad performance due to disk writes (which I don't want to occur as long as plenty of memory is still available) - I'd like to avoid disk access as much as possible, but I don't know of a way to control this. I did some testing and most of the time, there seems to be little performance difference between say 10 000 consecutive calls of MemoryStream.Write() vs FileStream.Write(), but a lot seems to depend on buffer size and the total amount of data in question (i.e the number of writes). Obviously, MemoryStream size reallocation is also a factor. Does it make sense to use a combination of MemoryStream and FileStream, i.e. write to memory stream by default, but once the total amount of data received is over e.g. 500 MB, write it to FileStream; then, read in chunks from both streams for processing the received data (first process 500 MB from the MemoryStream, dispose it, then read from FileStream)? Another solution is to use a custom memory stream implementation that doesn't require continuous address space for internal array allocation (i.e. a linked list of memory streams); this way, at least on 64-bit environments, out of memory exceptions should no longer be an issue. Con: extra work, more room for mistakes. So how do FileStream vs MemoryStream read/writes behave in terms of disk access and memory caching, i.e. data size/performance balance. I would expect that as long as enough RAM is available, FileStream would internally read/write from memory (cache) anyway, and virtual memory would take care of the rest. But I don't know how often FileStream will explicitly access a disk when being written to. Any help would be appreciated.

    Read the article

  • How can I run ARM code from external memory?

    - by samoz
    I am using an LPC2132 ARM chip to develop a program. However, my program has grown larger than the space on the chip. How can I connect my chip to some sort of external memory chip to hold additional executable code? Is this possible? If not, what do people normally do when they run out of chip space?

    Read the article

  • 3G dongle and memory card detection

    - by user212632
    My questions is about 3G dongle (Huawei E1752) that I use for my internet on Ubuntu 12.04. The big issue is that ubuntu only recognise the dongle if I plug it in before booting up. But if somehow I loses connection (due to network being low) then the only way to use the 3G dongle again is to reboot my machine, which becomes a pain. I have the same issue with the memory card reader of my laptop whereby it only reads when I insert the card before booting up. My laptop is an Acer V3 -571g. At first I thought it was an issue that the model was quite new, but I have been updating my ubuntu for a while, and this issue has kept being the same

    Read the article

  • Is valgrind crazy or is this is a genuine std map iterator memory leak?

    - by Alberto Toglia
    Well, I'm very new to Valgrind and memory leak profilers in general. And I must say it is a bit scary when you start using them cause you can't stop wondering how many leaks you might have left unsolved before! To the point, as I'm not an experienced in c++ programmer, I would like to check if this is certainly a memory leak or is it that Valgrind is doing a false positive? typedef std::vector<int> Vector; typedef std::vector<Vector> VectorVector; typedef std::map<std::string, Vector*> MapVector; typedef std::pair<std::string, Vector*> PairVector; typedef std::map<std::string, Vector*>::iterator IteratorVector; VectorVector vv; MapVector m1; MapVector m2; vv.push_back(Vector()); m1.insert(PairVector("one", &vv.back())); vv.push_back(Vector()); m2.insert(PairVector("two", &vv.back())); IteratorVector i = m1.find("one"); i->second->push_back(10); m2.insert(PairVector("one", i->second)); m2.clear(); m1.clear(); vv.clear(); Why is that? Shouldn't the clear command call the destructor of every object and every vector? Now after doing some tests I found different solutions to the leak: 1) Deleting the line i-second-push_back(10); 2) adding a delete i-second; after it's been used. 3) Deleting the second vv.push_back(Vector()); and m2.insert(PairVector("two", &vv.back())); statements. Using solution 2) makes Valgring print: 10 allocs, 11 frees Is that OK? As I'm not using new why should I delete? Thanks, for any help!

    Read the article

  • Moving from a traditional in memory Java session to persistent storage sessions

    - by Benju
    We have decided to take the plunge and move from using a typical java session provider in Tomcat/Jetty/etc to persisting everything to a central datastore. We are looking at using MongoDB for this. A few options come to mind... http://wiki.eclipse.org/Jetty/Tutorial/MongoDB_Session_Clustering This is nice because it will "auto-magically" persist our session to a Mongo installation. I am concerned however that we will not have fine grained control of what is happening. https://github.com/mattinsler/com.lowereast.guiceymongo/ GuiceMongo is interesting as it integrates with Guice. Perhaps we could persist everything via this ORM. Has anybody had to deal with this kind of move? It seems that moving from in memory to persistent session storage has a lot of gotchas.

    Read the article

  • C++ - Is it possible to implement memory leak testing in a unit test?

    - by sevaxx
    I'm trying to implement unit testing for my code and I'm having a hard time doing it. Ideally I would like to test some classes not only for good functionality but also for proper memory allocation/deallocation. I wonder if this check can be done using a unit testing framework. I am using Visual Assert btw. I would love to see some sample code , if possible !

    Read the article

  • What is a good metaphor for c memory management?

    - by fsmc
    I'm trying to find a good metaphor to explain memory allocation, initialization and freeing in c to a non technical audience. I've heard pass-by-reference/value talked about quite well with postal service usage, but not so much for allocation/deallocation. So for I've thought about using the idea of renting a space might work, but I wonder if the SO crew can provide something better.

    Read the article

  • Does OpenCL allow concurrent writes to same memory address?

    - by Wonko
    Is two (or more) different threads allowed to write to the same memory location in global space in OpenCL? The write is always changing a uchar from 0 to 1 so the outcome should be predictable, but I'm getting erratic results in my program, so I'm wondering if the reason can be that some of the writes fail. Could it help to declare the buffer write-only and copy it to a read-only buffer afterwards?

    Read the article

  • How to save memory when reading a file in Php ?

    - by coolboycsaba
    I have a 200kb file, what I use in multiple pages, but on each page I need only 1-2 lines of that file so how I can read only these lines what I need if I know the line number? For example if I need only the 10th line, I don`t want to load in memory all the lines, just the 10th line. Sorry for my bad english!

    Read the article

  • In-memory DB to perform intersects on set slices

    - by IanC
    I have a specific programming need where I need to efficiently store large sorted sets in memory, query them for ranges, and intersect them against other sets that are also queried for ranged. I am looking at Redis, but I can't see a range slice command. MongoDB can only use 1 index, so it has to perform row-level scans, whereas I wish to process using columns that are intersected. I'm also looking at Counchbase, but can't easily determine from the documentation if it is suited to this. I know it uses Memcached, which is AFAIK not suited to this usage. Could anyone share potential solutions for this specific problem? EDIT For example, I need to perform the following: Get the IDs of all cars where the price is between 2000 and 3000, and intersect that will all cars where the engine capacity is between 3000 and 4000.

    Read the article

  • ????ASMM

    - by Liu Maclean(???)
    ???Oracle??????????????SGA/PGA???,????10g????????????ASMM????,????????ASMM?????????Oracle??????????,?ASMM??????DBA????????????;????????ASMM???????????????DBA???:????????????DB,?????????????DBA?????????????????????????????????,ASMM??????????,???????????,??????????,??????????????????;?10g release 1?10.2??????ASMM?????????????,???????ASMM????????ASMM?????startup???????????ASMM??AMM??,????????DBA????SGA/PGA?????????”??”??”???”???,???????????DBA????chemist(???????1??2??????????????)? ?????????????????ASMM?????,?????????????…… Oracle?SGA???????9i???????????,????: Buffer Cache ????????????,??????????????? Default Pool                  ??????,???DB_CACHE_SIZE?? Keep Pool                     ??????,???DB_KEEP_CACHE_SIZE?? Non standard pool         ???????,???DB_nK_cache_size?? Recycle pool                 ???,???db_recycle_cache_size?? Shared Pool ???,???shared_pool_size?? Library cache   ?????? Row cache      ???,?????? Java Pool         java?,???Java_pool_size?? Large Pool       ??,???Large_pool_size?? Fixed SGA       ???SGA??,???Oracle???????,?????????granule? ?9i?????ASMM,???????????SGA,??????MSMM??9i???buffer cache??????????,?????????????????????????,???9i?????????????,?????????????????????????? ????SGA?????: ?????shared pool?default buffer pool????????,??????????? ?9i???????????(advisor),?????????? ??????????????? ?????????,?????? ?????,?????ORA-04031?????????? ASMM?????: ?????????? ???????????????? ???????sga_target?? ???????????,??????????? ??MSMM???????: ???? ???? ?????? ???? ??????????,??????????? ??????????????????,??????????ORA-04031??? ASMM???????????:1.??????sga_target???????2.???????,???:????(memory component),????(memory broker)???????(memory mechanism)3.????(memory advisor) ASMM????????????(Automatically set),??????:shared_pool_size?db_cache_size?java_pool_size?large_pool _size?streams_pool_size;?????????????????,???:db_keep_cache_size?db_recycle_cache_size?db_nk_cache_size?log_buffer????SGA?????,????????????????,??log_buffer?fixed sga??????????????? ??ASMM?????????sga_target??,???????ASMM??????????????????db_cache_size?java_pool_size???,?????????????????????,????????????????????(???)????????,Oracle?????????(granule,?SGA<1GB?granule???4M,?SGA>1GB?granule???16M)???????,??????????????buffer cache,??????????????????(granule)??????????????????????sga_target??,???????????????????(dism,???????)???ASMM?????????????statistics_level?????typical?ALL,?????BASIC??MMON????(Memory Monitor is a background process that gathers memory statistics (snapshots) stores this information in the AWR (automatic workload repository). MMON is also responsible for issuing alerts for metrics that exceed their thresholds)?????????????????????ASMM?????,???????????sga_target?????statistics_level?BASIC: SQL> show parameter sga NAME TYPE VALUE ------------------------------------ ----------- ------------------------------ lock_sga boolean FALSE pre_page_sga boolean FALSE sga_max_size big integer 2000M sga_target big integer 2000M SQL> show parameter sga_target NAME TYPE VALUE ------------------------------------ ----------- ------------------------------ sga_target big integer 2000M SQL> alter system set statistics_level=BASIC; alter system set statistics_level=BASIC * ERROR at line 1: ORA-02097: parameter cannot be modified because specified value is invalid ORA-00830: cannot set statistics_level to BASIC with auto-tune SGA enabled ?????server parameter file?spfile??,ASMM????shutdown??????????????(Oracle???????,????????)???spfile?,?????strings?????spfile????????????????????,?: G10R2.__db_cache_size=973078528 G10R2.__java_pool_size=16777216 G10R2.__large_pool_size=16777216 G10R2.__shared_pool_size=1006632960 G10R2.__streams_pool_size=67108864 ???spfile?????????????????,???????????”???”?????,??????????”??”?? ?ASMM?????????????? ?????(tunable):????????????????????????????buffer cache?????????,cache????????????????,?????????? IO????????????????????????????Library cache????? subheap????,?????????????????????????????????(open cursors)?????????client??????????????buffer cache???????,???????????pin??buffer???(???????) ?????(Un-tunable):???????????????????,?????????????????,?????????????????????????large pool?????? ??????(Fixed Size):???????????,??????????????????????????????????????? ????????????????(memory resize request)?????????,?????: ??????(Immediate Request):???????????ASMM????????????????????????(chunk)?,??????OUT-OF-MEMORY(ORA-04031)???,????????????????????(granule)????????????????????granule,????????????,?????????????????????????????,????granule??????????????? ??????(Deferred Request):???????????????????????????,??????????????granule???????????????MMON??????????delta. ??????(Manual Request):????????????alter system?????????????????????????????????????????????????granule,??????grow?????ORA-4033??,?????shrink?????ORA-4034??? ?ASMM????,????(Memory Broker)????????????????????????????(Deferred)??????????????????????(auto-tunable component)???????????????,???????????????MMON??????????????????????????????????,????????????????;MMON????Memory Broker?????????????????????????MMON????????????????????????????????????????(resize request system queue)?MMAN????(Memory Manager is a background process that manages the dynamic resizing of SGA memory areas as the workload increases or decreases)??????????????????? ?10gR1?Shared Pool?shrink??????????,?????????????Buffer Cache???????????granule,????Buffer Cache?granule????granule header?Metadata(???buffer header??RAC??Lock Elements)????,?????????????????????shared pool????????duration(?????)?chunk??????granule?,????????????granule??10gR2????Buffer Cache Granule????????granule header?buffer?Metadata(buffer header?LE)????,??shared pool???duration?chunk????????granule,??????buffer cache?shared pool??????????????10gr2?streams pool?????????(???????streams pool duration????) ??????????(Donor,???trace????)???,?????????granule???buffer cache,????granule????????????: ????granule???????granule header ?????chunk????granule?????????buffer header ???,???chunk??????????????????????metadata? ???2-4??,???granule???? ??????????????????,??buffer cache??granule???shared pool?,???????: MMAN??????????buffer cache???granule MMAN????granule??quiesce???(Moving 1 granule from inuse to quiesce list of DEFAULT buffer cache for an immediate req) DBWR???????quiesced???granule????buffer(dirty buffer) MMAN??shared pool????????(consume callback),granule?free?chunk???shared pool??(consume)?,????????????????????granule????shared granule??????,???????????granule???????????,??????pin??buffer??Metadata(???buffer header?LE)?????buffer cache??? ???granule???????shared pool,???granule?????shared??? ?????ASMM???????????,??????????: _enabled_shared_pool_duration:?????????10g????shared pool duration??,?????sga_target?0?????false;???10.2.0.5??cursor_space_for_time???true??????false,???10.2.0.5??cursor_space_for_time????? _memory_broker_shrink_heaps:???????0??Oracle?????shared pool?java pool,??????0,??shrink request??????????????????? _memory_management_tracing: ???????MMON?MMAN??????????(advisor)?????(Memory Broker)?????trace???;??ORA-04031????????36,???8?????????????trace,???23????Memory Broker decision???,???32???cache resize???;??????????: Level Contents 0×01 Enables statistics tracing 0×02 Enables policy tracing 0×04 Enables transfer of granules tracing 0×08 Enables startup tracing 0×10 Enables tuning tracing 0×20 Enables cache tracing ?????????_memory_management_tracing?????DUMP_TRANSFER_OPS????????????????,?????????????????trace?????????mman_trace?transfer_ops_dump? SQL> alter system set "_memory_management_tracing"=63; System altered Operation make shared pool grow and buffer cache shrink!!!.............. ???????granule?????,????default buffer pool?resize??: AUTO SGA: Request 0xdc9c2628 after pre-processing, ret=0 /* ???0xdc9c2628??????addr */ AUTO SGA: IMMEDIATE, FG request 0xdc9c2628 /* ???????????Immediate???? */ AUTO SGA: Receiver of memory is shared pool, size=16, state=3, flg=0 /* ?????????shared pool,???,????16?granule,??grow?? */ AUTO SGA: Donor of memory is DEFAULT buffer cache, size=106, state=4, flg=0 /* ???????Default buffer cache,????,????106?granule,??shrink?? */ AUTO SGA: Memory requested=3896, remaining=3896 /* ??immeidate request???????3896 bytes */ AUTO SGA: Memory received=0, minreq=3896, gransz=16777216 /* ????free?granule,??received?0,gransz?granule??? */ AUTO SGA: Request 0xdc9c2628 status is INACTIVE /* ??????????,??????inactive?? */ AUTO SGA: Init bef rsz for request 0xdc9c2628 /* ????????before-process???? */ AUTO SGA: Set rq dc9c2628 status to PENDING /* ?request??pending?? */ AUTO SGA: 0xca000000 rem=3896, rcvd=16777216, 105, 16777216, 17 /* ???????0xca000000?16M??granule */ AUTO SGA: Returning 4 from kmgs_process for request dc9c2628 AUTO SGA: Process req dc9c2628 ret 4, 1, a AUTO SGA: Resize done for pool DEFAULT, 8192 /* ???default pool?resize */ AUTO SGA: Init aft rsz for request 0xdc9c2628 AUTO SGA: Request 0xdc9c2628 after processing AUTO SGA: IMMEDIATE, FG request 0x7fff917964a0 AUTO SGA: Receiver of memory is shared pool, size=17, state=0, flg=0 AUTO SGA: Donor of memory is DEFAULT buffer cache, size=105, state=0, flg=0 AUTO SGA: Memory requested=3896, remaining=0 AUTO SGA: Memory received=16777216, minreq=3896, gransz=16777216 AUTO SGA: Request 0x7fff917964a0 status is COMPLETE /* shared pool????16M?granule */ AUTO SGA: activated granule 0xca000000 of shared pool ?????partial granule????????????trace: AUTO SGA: Request 0xdc9c2628 after pre-processing, ret=0 AUTO SGA: IMMEDIATE, FG request 0xdc9c2628 AUTO SGA: Receiver of memory is shared pool, size=82, state=3, flg=1 AUTO SGA: Donor of memory is DEFAULT buffer cache, size=36, state=4, flg=1 /* ????????shared pool,?????default buffer cache */ AUTO SGA: Memory requested=4120, remaining=4120 AUTO SGA: Memory received=0, minreq=4120, gransz=16777216 AUTO SGA: Request 0xdc9c2628 status is INACTIVE AUTO SGA: Init bef rsz for request 0xdc9c2628 AUTO SGA: Set rq dc9c2628 status to PENDING AUTO SGA: Moving granule 0x93000000 of DEFAULT buffer cache to activate list AUTO SGA: Moving 1 granule 0x8c000000 from inuse to quiesce list of DEFAULT buffer cache for an immediate req /* ???buffer cache??????0x8c000000?granule??????inuse list, ???????quiesce list? */ AUTO SGA: Returning 0 from kmgs_process for request dc9c2628 AUTO SGA: Process req dc9c2628 ret 0, 1, 20a AUTO SGA: activated granule 0x93000000 of DEFAULT buffer cache AUTO SGA: NOT_FREE for imm req for gran 0x8c000000 / * ??dbwr??0x8c000000 granule????dirty buffer */ AUTO SGA: Returning 0 from kmgs_process for request dc9c2628 AUTO SGA: Process req dc9c2628 ret 0, 1, 20a AUTO SGA: NOT_FREE for imm req for gran 0x8c000000 AUTO SGA: Returning 0 from kmgs_process for request dc9c2628 AUTO SGA: Process req dc9c2628 ret 0, 1, 20a AUTO SGA: NOT_FREE for imm req for gran 0x8c000000 AUTO SGA: Returning 0 from kmgs_process for request dc9c2628 AUTO SGA: Process req dc9c2628 ret 0, 1, 20a AUTO SGA: NOT_FREE for imm req for gran 0x8c000000 AUTO SGA: Returning 0 from kmgs_process for request dc9c2628 AUTO SGA: Process req dc9c2628 ret 0, 1, 20a AUTO SGA: NOT_FREE for imm req for gran 0x8c000000 AUTO SGA: Returning 0 from kmgs_process for request dc9c2628 AUTO SGA: Process req dc9c2628 ret 0, 1, 20a AUTO SGA: NOT_FREE for imm req for gran 0x8c000000 ......................................... AUTO SGA: Rcv shared pool consuming 8192 from 0x8c000000 in granule 0x8c000000; owner is DEFAULT buffer cache AUTO SGA: Rcv shared pool consuming 90112 from 0x8c002000 in granule 0x8c000000; owner is DEFAULT buffer cache AUTO SGA: Rcv shared pool consuming 24576 from 0x8c01a000 in granule 0x8c000000; owner is DEFAULT buffer cache AUTO SGA: Rcv shared pool consuming 65536 from 0x8c022000 in granule 0x8c000000; owner is DEFAULT buffer cache AUTO SGA: Rcv shared pool consuming 131072 from 0x8c034000 in granule 0x8c000000; owner is DEFAULT buffer cache AUTO SGA: Rcv shared pool consuming 286720 from 0x8c056000 in granule 0x8c000000; owner is DEFAULT buffer cache AUTO SGA: Rcv shared pool consuming 98304 from 0x8c09e000 in granule 0x8c000000; owner is DEFAULT buffer cache AUTO SGA: Rcv shared pool consuming 106496 from 0x8c0b8000 in granule 0x8c000000; owner is DEFAULT buffer cache ..................... /* ??shared pool????0x8c000000 granule??chunk, ??granule?owner????default buffer cache */ AUTO SGA: Imm xfer 0x8c000000 from quiesce list of DEFAULT buffer cache to partial inuse list of shared pool /* ???0x8c000000 granule?default buffer cache????????shared pool????inuse list */ AUTO SGA: Returning 4 from kmgs_process for request dc9c2628 AUTO SGA: Process req dc9c2628 ret 4, 1, 20a AUTO SGA: Init aft rsz for request 0xdc9c2628 AUTO SGA: Request 0xdc9c2628 after processing AUTO SGA: IMMEDIATE, FG request 0x7fffe9bcd0e0 AUTO SGA: Receiver of memory is shared pool, size=83, state=0, flg=1 AUTO SGA: Donor of memory is DEFAULT buffer cache, size=35, state=0, flg=1 AUTO SGA: Memory requested=4120, remaining=0 AUTO SGA: Memory received=14934016, minreq=4120, gransz=16777216 AUTO SGA: Request 0x7fffe9bcd0e0 status is COMPLETE /* ????partial transfer?? */ ?????partial transfer??????DUMP_TRANSFER_OPS????0x8c000000 partial granule???????,?: SQL> oradebug setmypid; Statement processed. SQL> oradebug dump DUMP_TRANSFER_OPS 1; Statement processed. SQL> oradebug tracefile_name; /s01/admin/G10R2/udump/g10r2_ora_21482.trc =======================trace content============================== GRANULE SIZE is 16777216 COMPONENT NAME : shared pool Number of granules in partially inuse list (listid 4) is 23 Granule addr is 0x8c000000 Granule owner is DEFAULT buffer cache /* ?0x8c000000 granule?shared pool?partially inuse list, ?????owner??default buffer cache */ Granule 0x8c000000 dump from owner perspective gptr = 0x8c000000, num buf hdrs = 1989, num buffers = 156, ghdr = 0x8cffe000 / * ?????granule?granule header????0x8cffe000, ????156?buffer block,1989?buffer header */ /* ??granule??????,??????buffer cache??shared pool chunk */ BH:0x8cf76018 BA:(nil) st:11 flg:20000 BH:0x8cf76128 BA:(nil) st:11 flg:20000 BH:0x8cf76238 BA:(nil) st:11 flg:20000 BH:0x8cf76348 BA:(nil) st:11 flg:20000 BH:0x8cf76458 BA:(nil) st:11 flg:20000 BH:0x8cf76568 BA:(nil) st:11 flg:20000 BH:0x8cf76678 BA:(nil) st:11 flg:20000 BH:0x8cf76788 BA:(nil) st:11 flg:20000 BH:0x8cf76898 BA:(nil) st:11 flg:20000 BH:0x8cf769a8 BA:(nil) st:11 flg:20000 BH:0x8cf76ab8 BA:(nil) st:11 flg:20000 BH:0x8cf76bc8 BA:(nil) st:11 flg:20000 BH:0x8cf76cd8 BA:0x8c018000 st:1 flg:622202 ............... Address 0x8cf30000 to 0x8cf74000 not in cache Address 0x8cf74000 to 0x8d000000 in cache Granule 0x8c000000 dump from receivers perspective Dumping layout Address 0x8c000000 to 0x8c018000 in sga heap(1,3) (idx=1, dur=4) Address 0x8c018000 to 0x8c01a000 not in this pool Address 0x8c01a000 to 0x8c020000 in sga heap(1,3) (idx=1, dur=4) Address 0x8c020000 to 0x8c022000 not in this pool Address 0x8c022000 to 0x8c032000 in sga heap(1,3) (idx=1, dur=4) Address 0x8c032000 to 0x8c034000 not in this pool Address 0x8c034000 to 0x8c054000 in sga heap(1,3) (idx=1, dur=4) Address 0x8c054000 to 0x8c056000 not in this pool Address 0x8c056000 to 0x8c09c000 in sga heap(1,3) (idx=1, dur=4) Address 0x8c09c000 to 0x8c09e000 not in this pool Address 0x8c09e000 to 0x8c0b6000 in sga heap(1,3) (idx=1, dur=4) Address 0x8c0b6000 to 0x8c0b8000 not in this pool Address 0x8c0b8000 to 0x8c0d2000 in sga heap(1,3) (idx=1, dur=4) ???????granule?????shared granule??????,?????????buffer block,????1?shared subpool??????durtaion?4?chunk,duration=4?execution duration;??duration?chunk???????????,??extent???quiesce list??????????????free?execution duration?????????????,??????duration???extent(??????extent????granule)??????? ?????????????ASMM?????????,????: V$SGAINFODisplays summary information about the system global area (SGA). V$SGADisplays size information about the SGA, including the sizes of different SGA components, the granule size, and free memory. V$SGASTATDisplays detailed information about the SGA. V$SGA_DYNAMIC_COMPONENTSDisplays information about the dynamic SGA components. This view summarizes information based on all completed SGA resize operations since instance startup. V$SGA_DYNAMIC_FREE_MEMORYDisplays information about the amount of SGA memory available for future dynamic SGA resize operations. V$SGA_RESIZE_OPSDisplays information about the last 400 completed SGA resize operations. V$SGA_CURRENT_RESIZE_OPSDisplays information about SGA resize operations that are currently in progress. A resize operation is an enlargement or reduction of a dynamic SGA component. V$SGA_TARGET_ADVICEDisplays information that helps you tune SGA_TARGET. ?????????shared pool duration???,?????????

    Read the article

  • On mobile is there a reason why processes are often short lived and must persist their state explicitly?

    - by Alexandre Jasmin
    Most mobile platforms (such as Android, iOS, Windows phone 7 and I believe the new WinRT) can kill inactive application processes under memory pressure. To prevent this from affecting the user experience applications are expected to save and restore their state as their process is killed and restarted. Having application processes killed in this way makes the developers job harder. On various occasions I've seen a mobile app that would: Return to the welcome screen each time I switch back to it. Crash when I switch back to it (possibly accessing some state that no longer exists after the process was killed) Misbehave when I switch back to it (sometimes requiring a restart or tasks killer to fix) Otherwise misbehave in some hard to reproduce way (e.g. android service killed and restarted at the wrong time) I don't really understand why these mobile operating systems are designed to kill tasks in this way especially since it makes application development more difficult and error prone. Desktop operating systems don't kill processes like that. They swap out unused pages of memory to mass storage. Is there a reason why the same approach isn't used on mobile? Mobile hardware is only a few years behind PC hardware in term of performance. I'm sure there are very good reasons why mobile operating systems are designed this way. If you can point me to a paper or blog post that explain these reasons or can give me some insight I'd very much appreciate it.

    Read the article

< Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >