Search Results

Search found 8749 results on 350 pages for 'nullable types'.

Page 68/350 | < Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >

  • Azure Storage Explorer

    - by kaleidoscope
    Azure Storage Explorer –  an another way to Deploy the services on Cloud Azure Storage Explorer is a useful GUI tool for inspecting and altering the data in your Azure cloud storage projects including the logs of your cloud-hosted applications. All three types of cloud storage can be viewed: blobs, queues, and tables. You can also create or delete blob/queue/table containers and items. Text blobs can be edited and all data types can be imported/exported between the cloud and local files. Table records can be imported/exported between the cloud and spreadsheet CSV files. Why Azure Storage Explorer Azure Storage Explorer is a licensed CodePlex project provided by Neudesic – a Microsoft partner.  It is a simple UI that requires you to input your blob storage name, access key and endpoints in the Storage Settings dialog. For more details please refer to the link: http://azurestorageexplorer.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=35189   Anish, S

    Read the article

  • finding high end software contracting jobs

    - by numerical25
    I've been contracting for about 3 years now. I am currently a contractor for a web firm. This is a hourly position. I want to find larger projects. I had read that some people are able to only do one or two jobs a year and be set on that. I want those types of jobs, and I want to hire people to take on these jobs as well, but I have no idea where to start. I highly doubt places like odesk post these types of contracts. Where can I find them? How can I make good money and live comfortably while working for myself?

    Read the article

  • New Release of ROracle posted to CRAN

    - by mhornick
    Oracle recently updated ROracle to version 1.1-2 on CRAN with enhancements and bug fixes. The major enhancements include the introduction of Oracle Wallet Manager and support for datetime and interval types.  Oracle Wallet support in ROracle allows users to manage public key security from the client R session. Oracle Wallet allows passwords to be stored and read by Oracle Database, allowing safe storage of database login credentials. In addition, we added support for datetime and interval types when selecting data, which expands ROracle's support for date data.  See the ROracle NEWS for the complete list of updates. We encourage ROracle users to post questions and provide feedback on the Oracle R Forum. In addition to being a high performance database interface to Oracle Database from R for general use, ROracle supports database access for Oracle R Enterprise.

    Read the article

  • Create Device Reccieve SMS Parse To Text ( SMS Gateway )

    - by Chris Okyen
    I want to use a server as a device to run a script to parse a SMS text in the following way. I. The person types in a specific and special cell phone number (Similar to Facebook’s 32556 number used to post on your wall) II. The user types a text message. III. The user sends the text message. IV. The message is sent to some kind of Device (the server) or SMS Gateway and receives it. V. The thing described above that the message is sent to then parse the test message. I understand that these three question will mix Programming and Server Stuff and could reside here or at DBA.SE How would I make such a cell phone number (described in step I) that would be sent to the Device? How do I create the device that then would receive it? Finally, how do I Parse the text message?

    Read the article

  • A design pattern for data binding an object (with subclasses) to asp.net user control

    - by Rohith Nair
    I have an abstract class called Address and I am deriving three classes ; HomeAddress, Work Address, NextOfKin address. My idea is to bind this to a usercontrol and based on the type of Address it should bind properly to the ASP.NET user control. My idea is the user control doesn't know which address it is going to present and based on the type it will parse accordingly. How can I design such a setup, based on the fact that, the user control can take any type of address and bind accordingly. I know of one method like :- Declare class objects for all the three types (Home,Work,NextOfKin). Declare an enum to hold these types and based on the type of this enum passed to user control, instantiate the appropriate object based on setter injection. As a part of my generic design, I just created a class structure like this :- I know I am missing a lot of pieces in design. Can anybody give me an idea of how to approach this in proper way.

    Read the article

  • What's the difference between Scala and Red Hat's Ceylon language?

    - by John Bryant
    Red Hat's Ceylon language has some interesting improvements over Java: The overall vision: learn from Java's mistakes, keep the good, ditch the bad The focus on readability and ease of learning/use Static Typing (find errors at compile time, not run time) No “special” types, everything is an object Named and Optional parameters (C# 4.0) Nullable types (C# 2.0) No need for explicit getter/setters until you are ready for them (C# 3.0) Type inference via the "local" keyword (C# 3.0 "var") Sequences (arrays) and their accompanying syntactic sugariness (C# 3.0) Straight-forward implementation of higher-order functions I don't know Scala but have heard it offers some similar advantages over Java. How would Scala compare to Ceylon in this respect?

    Read the article

  • DB DOC Enhancements for Oracle SQL Developer v4

    - by thatjeffsmith
    One of our more popular features is ‘DB Doc.’ It’s like JAVADOC for the database. Pick a connection, right-click, and go. It will generate an HTML documentation set for that schema. For version 4, we’ve introduced a few enhancements based on user requests. That’s right, you asked, and we listened. Added support for Package Bodies Added parallelization option for larger doc sets Enhanced the HTML formatting a bit Select Your Object Types and Generation Options We’ve changed the default selection of object types to be included and added support for package bodies There’s also an option to auto-open the documentation set after it’s been generated. And the HTML As Requested

    Read the article

  • Sniffing out SQL Code Smells: Inconsistent use of Symbolic names and Datatypes

    - by Phil Factor
    It is an awkward feeling. You’ve just delivered a database application that seems to be working fine in production, and you just run a few checks on it. You discover that there is a potential bug that, out of sheer good chance, hasn’t kicked in to produce an error; but it lurks, like a smoking bomb. Worse, maybe you find that the bug has started its evil work of corrupting the data, but in ways that nobody has, so far detected. You investigate, and find the damage. You are somehow going to have to repair it. Yes, it still very occasionally happens to me. It is not a nice feeling, and I do anything I can to prevent it happening. That’s why I’m interested in SQL code smells. SQL Code Smells aren’t necessarily bad practices, but just show you where to focus your attention when checking an application. Sometimes with databases the bugs can be subtle. SQL is rather like HTML: the language does its best to try to carry out your wishes, rather than to be picky about your bugs. Most of the time, this is a great benefit, but not always. One particular place where this can be detrimental is where you have implicit conversion between different data types. Most of the time it is completely harmless but we’re  concerned about the occasional time it isn’t. Let’s give an example: String truncation. Let’s give another even more frightening one, rounding errors on assignment to a number of different precision. Each requires a blog-post to explain in detail and I’m not now going to try. Just remember that it is not always a good idea to assign data to variables, parameters or even columns when they aren’t the same datatype, especially if you are relying on implicit conversion to work its magic.For details of the problem and the consequences, see here:  SR0014: Data loss might occur when casting from {Type1} to {Type2} . For any experienced Database Developer, this is a more frightening read than a Vampire Story. This is why one of the SQL Code Smells that makes me edgy, in my own or other peoples’ code, is to see parameters, variables and columns that have the same names and different datatypes. Whereas quite a lot of this is perfectly normal and natural, you need to check in case one of two things have gone wrong. Either sloppy naming, or mixed datatypes. Sure it is hard to remember whether you decided that the length of a log entry was 80 or 100 characters long, or the precision of a number. That is why a little check like this I’m going to show you is excellent for tidying up your code before you check it back into source Control! 1/ Checking Parameters only If you were just going to check parameters, you might just do this. It simply groups all the parameters, either input or output, of all the routines (e.g. stored procedures or functions) by their name and checks to see, in the HAVING clause, whether their data types are all the same. If not, it lists all the examples and their origin (the routine) Even this little check can occasionally be scarily revealing. ;WITH userParameter AS  ( SELECT   c.NAME AS ParameterName,  OBJECT_SCHEMA_NAME(c.object_ID) + '.' + OBJECT_NAME(c.object_ID) AS ObjectName,  t.name + ' '     + CASE     --we may have to put in the length            WHEN t.name IN ('char', 'varchar', 'nchar', 'nvarchar')             THEN '('               + CASE WHEN c.max_length = -1 THEN 'MAX'                ELSE CONVERT(VARCHAR(4),                    CASE WHEN t.name IN ('nchar', 'nvarchar')                      THEN c.max_length / 2 ELSE c.max_length                    END)                END + ')'         WHEN t.name IN ('decimal', 'numeric')             THEN '(' + CONVERT(VARCHAR(4), c.precision)                   + ',' + CONVERT(VARCHAR(4), c.Scale) + ')'         ELSE ''      END  --we've done with putting in the length      + CASE WHEN XML_collection_ID <> 0         THEN --deal with object schema names             '(' + CASE WHEN is_XML_Document = 1                    THEN 'DOCUMENT '                    ELSE 'CONTENT '                   END              + COALESCE(               (SELECT QUOTENAME(ss.name) + '.' + QUOTENAME(sc.name)                FROM sys.xml_schema_collections sc                INNER JOIN Sys.Schemas ss ON sc.schema_ID = ss.schema_ID                WHERE sc.xml_collection_ID = c.XML_collection_ID),'NULL') + ')'          ELSE ''         END        AS [DataType]  FROM sys.parameters c  INNER JOIN sys.types t ON c.user_Type_ID = t.user_Type_ID  WHERE OBJECT_SCHEMA_NAME(c.object_ID) <> 'sys'   AND parameter_id>0)SELECT CONVERT(CHAR(80),objectName+'.'+ParameterName),DataType FROM UserParameterWHERE ParameterName IN   (SELECT ParameterName FROM UserParameter    GROUP BY ParameterName    HAVING MIN(Datatype)<>MAX(DataType))ORDER BY ParameterName   so, in a very small example here, we have a @ClosingDelimiter variable that is only CHAR(1) when, by the looks of it, it should be up to ten characters long, or even worse, a function that should be a char(1) and seems to let in a string of ten characters. Worth investigating. Then we have a @Comment variable that can't decide whether it is a VARCHAR(2000) or a VARCHAR(MAX) 2/ Columns and Parameters Actually, once we’ve cleared up the mess we’ve made of our parameter-naming in the database we’re inspecting, we’re going to be more interested in listing both columns and parameters. We can do this by modifying the routine to list columns as well as parameters. Because of the slight complexity of creating the string version of the datatypes, we will create a fake table of both columns and parameters so that they can both be processed the same way. After all, we want the datatypes to match Unfortunately, parameters do not expose all the attributes we are interested in, such as whether they are nullable (oh yes, subtle bugs happen if this isn’t consistent for a datatype). We’ll have to leave them out for this check. Voila! A slight modification of the first routine ;WITH userObject AS  ( SELECT   Name AS DataName,--the actual name of the parameter or column ('@' removed)  --and the qualified object name of the routine  OBJECT_SCHEMA_NAME(ObjectID) + '.' + OBJECT_NAME(ObjectID) AS ObjectName,  --now the harder bit: the definition of the datatype.  TypeName + ' '     + CASE     --we may have to put in the length. e.g. CHAR (10)           WHEN TypeName IN ('char', 'varchar', 'nchar', 'nvarchar')             THEN '('               + CASE WHEN MaxLength = -1 THEN 'MAX'                ELSE CONVERT(VARCHAR(4),                    CASE WHEN TypeName IN ('nchar', 'nvarchar')                      THEN MaxLength / 2 ELSE MaxLength                    END)                END + ')'         WHEN TypeName IN ('decimal', 'numeric')--a BCD number!             THEN '(' + CONVERT(VARCHAR(4), Precision)                   + ',' + CONVERT(VARCHAR(4), Scale) + ')'         ELSE ''      END  --we've done with putting in the length      + CASE WHEN XML_collection_ID <> 0 --tush tush. XML         THEN --deal with object schema names             '(' + CASE WHEN is_XML_Document = 1                    THEN 'DOCUMENT '                    ELSE 'CONTENT '                   END              + COALESCE(               (SELECT TOP 1 QUOTENAME(ss.name) + '.' + QUOTENAME(sc.Name)                FROM sys.xml_schema_collections sc                INNER JOIN Sys.Schemas ss ON sc.schema_ID = ss.schema_ID                WHERE sc.xml_collection_ID = XML_collection_ID),'NULL') + ')'          ELSE ''         END        AS [DataType],       DataObjectType  FROM   (Select t.name AS TypeName, REPLACE(c.name,'@','') AS Name,          c.max_length AS MaxLength, c.precision AS [Precision],           c.scale AS [Scale], c.[Object_id] AS ObjectID, XML_collection_ID,          is_XML_Document,'P' AS DataobjectType  FROM sys.parameters c  INNER JOIN sys.types t ON c.user_Type_ID = t.user_Type_ID  AND parameter_id>0  UNION all  Select t.name AS TypeName, c.name AS Name, c.max_length AS MaxLength,          c.precision AS [Precision], c.scale AS [Scale],          c.[Object_id] AS ObjectID, XML_collection_ID,is_XML_Document,          'C' AS DataobjectType            FROM sys.columns c  INNER JOIN sys.types t ON c.user_Type_ID = t.user_Type_ID   WHERE OBJECT_SCHEMA_NAME(c.object_ID) <> 'sys'  )f)SELECT CONVERT(CHAR(80),objectName+'.'   + CASE WHEN DataobjectType ='P' THEN '@' ELSE '' END + DataName),DataType FROM UserObjectWHERE DataName IN   (SELECT DataName FROM UserObject   GROUP BY DataName    HAVING MIN(Datatype)<>MAX(DataType))ORDER BY DataName     Hmm. I can tell you I found quite a few minor issues with the various tabases I tested this on, and found some potential bugs that really leap out at you from the results. Here is the start of the result for AdventureWorks. Yes, AccountNumber is, for some reason, a Varchar(10) in the Customer table. Hmm. odd. Why is a city fifty characters long in that view?  The idea of the description of a colour being 256 characters long seems over-ambitious. Go down the list and you'll spot other mistakes. There are no bugs, but just mess. We started out with a listing to examine parameters, then we mixed parameters and columns. Our last listing is for a slightly more in-depth look at table columns. You’ll notice that we’ve delibarately removed the indication of whether a column is persisted, or is an identity column because that gives us false positives for our code smells. If you just want to browse your metadata for other reasons (and it can quite help in some circumstances) then uncomment them! ;WITH userColumns AS  ( SELECT   c.NAME AS columnName,  OBJECT_SCHEMA_NAME(c.object_ID) + '.' + OBJECT_NAME(c.object_ID) AS ObjectName,  REPLACE(t.name + ' '   + CASE WHEN is_computed = 1 THEN ' AS ' + --do DDL for a computed column          (SELECT definition FROM sys.computed_columns cc           WHERE cc.object_id = c.object_id AND cc.column_ID = c.column_ID)     --we may have to put in the length            WHEN t.Name IN ('char', 'varchar', 'nchar', 'nvarchar')             THEN '('               + CASE WHEN c.Max_Length = -1 THEN 'MAX'                ELSE CONVERT(VARCHAR(4),                    CASE WHEN t.Name IN ('nchar', 'nvarchar')                      THEN c.Max_Length / 2 ELSE c.Max_Length                    END)                END + ')'       WHEN t.name IN ('decimal', 'numeric')       THEN '(' + CONVERT(VARCHAR(4), c.precision) + ',' + CONVERT(VARCHAR(4), c.Scale) + ')'       ELSE ''      END + CASE WHEN c.is_rowguidcol = 1          THEN ' ROWGUIDCOL'          ELSE ''         END + CASE WHEN XML_collection_ID <> 0            THEN --deal with object schema names             '(' + CASE WHEN is_XML_Document = 1                THEN 'DOCUMENT '                ELSE 'CONTENT '               END + COALESCE((SELECT                QUOTENAME(ss.name) + '.' + QUOTENAME(sc.name)                FROM                sys.xml_schema_collections sc                INNER JOIN Sys.Schemas ss ON sc.schema_ID = ss.schema_ID                WHERE                sc.xml_collection_ID = c.XML_collection_ID),                'NULL') + ')'            ELSE ''           END + CASE WHEN is_identity = 1             THEN CASE WHEN OBJECTPROPERTY(object_id,                'IsUserTable') = 1 AND COLUMNPROPERTY(object_id,                c.name,                'IsIDNotForRepl') = 0 AND OBJECTPROPERTY(object_id,                'IsMSShipped') = 0                THEN ''                ELSE ' NOT FOR REPLICATION '               END             ELSE ''            END + CASE WHEN c.is_nullable = 0               THEN ' NOT NULL'               ELSE ' NULL'              END + CASE                WHEN c.default_object_id <> 0                THEN ' DEFAULT ' + object_Definition(c.default_object_id)                ELSE ''               END + CASE                WHEN c.collation_name IS NULL                THEN ''                WHEN c.collation_name <> (SELECT                collation_name                FROM                sys.databases                WHERE                name = DB_NAME()) COLLATE Latin1_General_CI_AS                THEN COALESCE(' COLLATE ' + c.collation_name,                '')                ELSE ''                END,'  ',' ') AS [DataType]FROM sys.columns c  INNER JOIN sys.types t ON c.user_Type_ID = t.user_Type_ID  WHERE OBJECT_SCHEMA_NAME(c.object_ID) <> 'sys')SELECT CONVERT(CHAR(80),objectName+'.'+columnName),DataType FROM UserColumnsWHERE columnName IN (SELECT columnName FROM UserColumns  GROUP BY columnName  HAVING MIN(Datatype)<>MAX(DataType))ORDER BY columnName If you take a look down the results against Adventureworks, you'll see once again that there are things to investigate, mostly, in the illustration, discrepancies between null and non-null datatypes So I here you ask, what about temporary variables within routines? If ever there was a source of elusive bugs, you'll find it there. Sadly, these temporary variables are not stored in the metadata so we'll have to find a more subtle way of flushing these out, and that will, I'm afraid, have to wait!

    Read the article

  • If Scheme is untyped, how can it have numbers and lists?

    - by Dokkat
    Scheme is said to be just an extension of the Untyped Lambda Calculus (correct me if I am wrong). If that is the case, how can it have Lists and Numbers? Those, to me, look like 2 base types. So I'd say Racket is actually an extension of the Simply Typed Lambda Calculus. No? Question: Is Scheme's type system actually based or more similar to Simply Typed or Untyped Lambda Calculus? In what ways does it differ from Untyped and or Simply Typed Lambda Calculus? (The same question is valid for "untyped" languages such as Python and JavaScript - all of which look like they have base types to me.)

    Read the article

  • How to sort a ListView control by a column in Visual C#

    - by bconlon
    Microsoft provide an article of the same name (previously published as Q319401) and it shows a nice class 'ListViewColumnSorter ' for sorting a standard ListView when the user clicks the column header. This is very useful for String values, however for Numeric or DateTime data it gives odd results. E.g. 100 would come before 99 in an ascending sort as the string compare sees 1 < 9. So my challenge was to allow other types to be sorted. This turned out to be fairly simple as I just needed to create an inner class in ListViewColumnSorter which extends the .Net CaseInsensitiveComparer class, and then use this as the ObjectCompare member's type. Note: Ideally we would be able to use IComparer as the member's type, but the Compare method is not virtual in CaseInsensitiveComparer , so we have to create an exact type: public class ListViewColumnSorter : IComparer {     private CaseInsensitiveComparer ObjectCompare;     private MyComparer ObjectCompare;     ... rest of Microsofts class implementation... } Here is my private inner comparer class, note the 'new int Compare' as Compare is not virtual, and also note we pass the values to the base compare as the correct type (e.g. Decimal, DateTime) so they compare correctly: private class MyComparer : CaseInsensitiveComparer {     public new int Compare(object x, object y)     {         try         {             string s1 = x.ToString();             string s2 = y.ToString();               // check for a numeric column             decimal n1, n2 = 0;             if (Decimal.TryParse(s1, out n1) && Decimal.TryParse(s2, out n2))                 return base.Compare(n1, n2);             else             {                 // check for a date column                 DateTime d1, d2;                 if (DateTime.TryParse(s1, out d1) && DateTime.TryParse(s2, out d2))                     return base.Compare(d1, d2);             }         }         catch (ArgumentException) { }           // just use base string compare         return base.Compare(x, y);     } } You could extend this for other types, even custom classes as long as they support ICompare. Microsoft also have another article How to: Sort a GridView Column When a Header Is Clicked that shows this for WPF, which looks conceptually very similar. I need to test it out to see if it handles non-string types. #

    Read the article

  • Introdução ao NHibernate on TechDays 2010

    - by Ricardo Peres
    I’ve been working on the agenda for my presentation titled Introdução ao NHibernate that I’ll be giving on TechDays 2010, and I would like to request your assistance. If you have any subject that you’d like me to talk about, you can suggest it to me. For now, I’m thinking of the following issues: Domain Driven Design with NHibernate Inheritance Mapping Strategies (Table Per Class Hierarchy, Table Per Type, Table Per Concrete Type, Mixed) Mappings (hbm.xml, NHibernate Attributes, Fluent NHibernate, ConfORM) Supported querying types (ID, HQL, LINQ, Criteria API, QueryOver, SQL) Entity Relationships Custom Types Caching Interceptors and Listeners Advanced Usage (Duck Typing, EntityMode Map, …) Other projects (NHibernate Validator, NHibernate Search, NHibernate Shards, …) ASP.NET Integration ASP.NET Dynamic Data Integration WCF Data Services Integration Comments?

    Read the article

  • Patterns for Handling Changing Property Sets in C++

    - by Bhargav Bhat
    I have a bunch "Property Sets" (which are simple structs containing POD members). I'd like to modify these property sets (eg: add a new member) at run time so that the definition of the property sets can be externalized and the code itself can be re-used with multiple versions/types of property sets with minimal/no changes. For example, a property set could look like this: struct PropSetA { bool activeFlag; int processingCount; /* snip few other such fields*/ }; But instead of setting its definition in stone at compile time, I'd like to create it dynamically at run time. Something like: class PropSet propSetA; propSetA("activeFlag",true); //overloading the function call operator propSetA("processingCount",0); And the code dependent on the property sets (possibly in some other library) will use the data like so: bool actvFlag = propSet["activeFlag"]; if(actvFlag == true) { //Do Stuff } The current implementation behind all of this is as follows: class PropValue { public: // Variant like class for holding multiple data-types // overloaded Conversion operator. Eg: operator bool() { return (baseType == BOOLEAN) ? this->ToBoolean() : false; } // And a method to create PropValues various base datatypes static FromBool(bool baseValue); }; class PropSet { public: // overloaded[] operator for adding properties void operator()(std::string propName, bool propVal) { propMap.insert(std::make_pair(propName, PropVal::FromBool(propVal))); } protected: // the property map std::map<std::string, PropValue> propMap; }; This problem at hand is similar to this question on SO and the current approach (described above) is based on this answer. But as noted over at SO this is more of a hack than a proper solution. The fundamental issues that I have with this approach are as follows: Extending this for supporting new types will require significant code change. At the bare minimum overloaded operators need to be extended to support the new type. Supporting complex properties (eg: struct containing struct) is tricky. Supporting a reference mechanism (needed for an optimization of not duplicating identical property sets) is tricky. This also applies to supporting pointers and multi-dimensional arrays in general. Are there any known patterns for dealing with this scenario? Essentially, I'm looking for the equivalent of the visitor pattern, but for extending class properties rather than methods. Edit: Modified problem statement for clarity and added some more code from current implementation.

    Read the article

  • What are the most common AI systems implemented in Tower Defense Games

    - by the_Dan
    I'm currently in the middle of researching on the various types of AI techniques used in tower defense type games. If someone could be help me in understanding the different types of techniques and their associated advantages. Using Google I already found several techniques. Random Map traversal Path finding e.g. Cost based Traversing Algorithms i.e. A* I have already found a great answer to this type of question with the below link, but I feel that this answer is tailored to FPS. If anyone could add to this and make it specific to tower defense games then I would be truly great-full. How is AI most commonly implemented in popular games? Example of such games would be: Radiant Defense Plant Vs Zombies - Not truly Intelligent, but there must be an AI system used right? Field Runners Edit: After further research I found an interesting book that may be useful: http://www.amazon.com/dp/0123747317/?tag=stackoverfl08-20

    Read the article

  • Process Rules!

    - by Ajay Khanna
    One of the key components of a process is “Business Rule”. Business rule takes many forms inside your process definition and in a way is a manifestation of your company’s business policy. Business rules inside the process are used for policy enforcement, governance, decision management, operations efficiency etc. Following are some basic types of rules that can be a part of your process. 1. Process conditions:  These are defined as the process gateways that determine a path process will take depending on the process parameters. For Example, if discount >10% go to approval path : if discount < 10% auto-approve order. 2. Data rules: These business rules are defined as facts in decision table or knowledge base. The process captures all required parameters and submits those to RETE based rules engine. Rules engine processes the data and returns the result back. For example, rules determining your insurance eligibility. 3. Event rules: Here the system is monitoring the various events and events patterns that are emerging inside the process or external to the process. You can define actions or alerts to be triggered when a certain pattern of events emerges over a specified time period. Such types of rules need Complex Event Processing and are used in applications like Credit Card Fraud detection or Utility Demand Response. 4. User Interface Rules: In order to add dynamic behavior to UI or to keep users from making mistakes and enforcing policy, another mechanism available is UI rules. They are evaluated as the end user is filling out the web forms. These may include enabling and disabling of UI as per business policy. An example could be, if the age of a user is less than 13 years, disable credit card field and enable parental approval required checkbox. Your process may include many of such rule types. Oracle OpenWorld provides a unique opportunity to listen to Oracle Business Process Management Experts and Customers.  We will discuss business rules during various sessions in Oracle OpenWorld. Two of the sessions specifically focused on business rules are listed below: Accelerating an Implementation of Complex Worldwide Business Approval Rules Wednesday, Oct 3, 10:15 AM Moscone South – 305 Oracle Business Rules Use Cases Design and Testing Wednesday, Oct 3, 3:30 PM Marriott Marquis - Golden Gate C3   Oracle Business Process Management Track covers a variety of topics, and speakers covering technology, methodology and best practices. You can see the list of Business process Management sessions here. Come back to this blog for more coverage from Oracle OpenWorld!

    Read the article

  • Is this how dynamic language copes with dynamic requirement?

    - by Amumu
    The question is in the title. I want to have my thinking verified by experienced people. You can add more or disregard my opinion, but give me a reason. Here is an example requirement: Suppose you are required to implement a fighting game. Initially, the game only includes fighters, who can attack each other. Each fighter can punch, kick or block incoming attacks. Fighters can have various fighting styles: Karate, Judo, Kung Fu... That's it for the simple universe of the game. In an OO like Java, it can be implemented similar to this way: abstract class Fighter { int hp, attack; void punch(Fighter otherFighter); void kick(Fighter otherFighter); void block(Figther otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; This is fine if the game stays like this forever. But, somehow the game designers decide to change the theme of the game: instead of a simple fighting game, the game evolves to become a RPG, in which characters can not only fight but perform other activities, i.e. the character can be a priest, an accountant, a scientist etc... At this point, to make it more generic, we have to change the structure of our original design: Fighter is not used to refer to a person anymore; it refers to a profession. The specialized classes of Fighter (KaraterFighter, JudoFighter, KungFuFighter) . Now we have to create a generic class named Person. However, to adapt this change, I have to change the method signatures of the original operations: class Person { int hp, attack; List<Profession> skillSet; }; abstract class Profession {}; class Fighter extends Profession { void punch(Person otherFighter); void kick(Person otherFighter); void block(Person otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; class Accountant extends Profession { void calculateTax(Person p) { //...implementation...}; void calculateTax(Company c) { //...implementation...}; }; //... more professions... Here are the problems: To adapt to the method changes, I have to fix the places where the changed methods are called (refactoring). Every time a new requirement is introduced, the current structural design has to be broken to adapt the changes. This leads to the first problem. Rigid structure makes it hard for code reuse. A function can only accept the predefined types, but it cannot accept future unknown types. A written function is bound to its current universe and has no way to accommodate to the new types, without modifications or rewrite from scratch. I see Java has a lot of deprecated methods. OO is an extreme case because it has inheritance to add up the complexity, but in general for statically typed language, types are very strict. In contrast, a dynamic language can handle the above case as follow: ;;fighter1 punch fighter2 (defun perform-punch (fighter1 fighter2) ...implementation... ) ;;fighter1 kick fighter2 (defun perform-kick (fighter1 fighter2) ...implementation... ) ;;fighter1 blocks attacks from fighter2 (defun perform-block (fighter1 fighter2) ...implementation... ) fighter1 and fighter2 can be anything as long as it has the required data for calculation; or methods (duck typing). You don't have to change from the type Fighter to Person. In the case of Lisp, because Lisp only has a single data structure: list, it's even easier to adapt to changes. However, other dynamic languages can have similar behaviors as well. I work primarily with static languages (mainly C and Java, but working with Java was a long time ago). I started learning Lisp and some other dynamic languages this year. I can see how it helps improving my productivity.

    Read the article

  • Subterranean IL: Generics and array covariance

    - by Simon Cooper
    Arrays in .NET are curious beasts. They are the only built-in collection types in the CLR, and SZ-arrays (single dimension, zero-indexed) have their own commands and IL syntax. One of their stranger properties is they have a kind of built-in covariance long before generic variance was added in .NET 4. However, this causes a subtle but important problem with generics. First of all, we need to briefly recap on array covariance. SZ-array covariance To demonstrate, I'll tweak the classes I introduced in my previous posts: public class IncrementableClass { public int Value; public virtual void Increment(int incrementBy) { Value += incrementBy; } } public class IncrementableClassx2 : IncrementableClass { public override void Increment(int incrementBy) { base.Increment(incrementBy); base.Increment(incrementBy); } } In the CLR, SZ-arrays of reference types are implicitly convertible to arrays of the element's supertypes, all the way up to object (note that this does not apply to value types). That is, an instance of IncrementableClassx2[] can be used wherever a IncrementableClass[] or object[] is required. When an SZ-array could be used in this fashion, a run-time type check is performed when you try to insert an object into the array to make sure you're not trying to insert an instance of IncrementableClass into an IncrementableClassx2[]. This check means that the following code will compile fine but will fail at run-time: IncrementableClass[] array = new IncrementableClassx2[1]; array[0] = new IncrementableClass(); // throws ArrayTypeMismatchException These checks are enforced by the various stelem* and ldelem* il instructions in such a way as to ensure you can't insert a IncrementableClass into a IncrementableClassx2[]. For the rest of this post, however, I'm going to concentrate on the ldelema instruction. ldelema This instruction pops the array index (int32) and array reference (O) off the stack, and pushes a pointer (&) to the corresponding array element. However, unlike the ldelem instruction, the instruction's type argument must match the run-time array type exactly. This is because, once you've got a managed pointer, you can use that pointer to both load and store values in that array element using the ldind* and stind* (load/store indirect) instructions. As the same pointer can be used for both input and output to the array, the type argument to ldelema must be invariant. At the time, this was a perfectly reasonable restriction, and maintained array type-safety within managed code. However, along came generics, and with it the constrained callvirt instruction. So, what happens when we combine array covariance and constrained callvirt? .method public static void CallIncrementArrayValue() { // IncrementableClassx2[] arr = new IncrementableClassx2[1] ldc.i4.1 newarr IncrementableClassx2 // arr[0] = new IncrementableClassx2(); dup newobj instance void IncrementableClassx2::.ctor() ldc.i4.0 stelem.ref // IncrementArrayValue<IncrementableClass>(arr, 0) // here, we're treating an IncrementableClassx2[] as IncrementableClass[] dup ldc.i4.0 call void IncrementArrayValue<class IncrementableClass>(!!0[],int32) // ... ret } .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } And the result: Unhandled Exception: System.ArrayTypeMismatchException: Attempted to access an element as a type incompatible with the array. at IncrementArrayValue[T](T[] arr, Int32 index) at CallIncrementArrayValue() Hmm. We're instantiating the generic method as IncrementArrayValue<IncrementableClass>, but passing in an IncrementableClassx2[], hence the ldelema instruction is failing as it's expecting an IncrementableClass[]. On features and feature conflicts What we've got here is a conflict between existing behaviour (ldelema ensuring type safety on covariant arrays) and new behaviour (managed pointers to object references used for every constrained callvirt on generic type instances). And, although this is an edge case, there is no general workaround. The generic method could be hidden behind several layers of assemblies, wrappers and interfaces that make it a requirement to use array covariance when calling the generic method. Furthermore, this will only fail at runtime, whereas compile-time safety is what generics were designed for! The solution is the readonly. prefix instruction. This modifies the ldelema instruction to ignore the exact type check for arrays of reference types, and so it lets us take the address of array elements using a covariant type to the actual run-time type of the array: .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 readonly. ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } But what about type safety? In return for ignoring the type check, the resulting controlled mutability pointer can only be used in the following situations: As the object parameter to ldfld, ldflda, stfld, call and constrained callvirt instructions As the pointer parameter to ldobj or ldind* As the source parameter to cpobj In other words, the only operations allowed are those that read from the pointer; stind* and similar that alter the pointer itself are banned. This ensures that the array element we're pointing to won't be changed to anything untoward, and so type safety within the array is maintained. This is a typical example of the maxim that whenever you add a feature to a program, you have to consider how that feature interacts with every single one of the existing features. Although an edge case, the readonly. prefix instruction ensures that generics and array covariance work together and that compile-time type safety is maintained. Tune in next time for a look at the .ctor generic type constraint, and what it means.

    Read the article

  • Explanation of the definition of interface inheritance as described in GoF book

    - by Geek
    I am reading the first chapter of the Gof book. Section 1.6 discusses about class vs interface inheritance: Class versus Interface Inheritance It's important to understand the difference between an object's class and its type. An object's class defines how the object is implemented.The class defines the object's internal state and the implementation of its operations.In contrast,an object's type only refers to its interface--the set of requests on which it can respond. An object can have many types, and objects of different classes can have the same type. Of course, there's a close relationship between class and type. Because a class defines the operations an object can perform, it also defines the object's type . When we say that an object is an instance of a class, we imply that the object supports the interface defined by the class. Languages like c++ and Eiffel use classes to specify both an object's type and its implementation. Smalltalk programs do not declare the types of variables; consequently,the compiler does not check that the types of objects assigned to a variable are subtypes of the variable's type. Sending a message requires checking that the class of the receiver implements the message, but it doesn't require checking that the receiver is an instance of a particular class. It's also important to understand the difference between class inheritance and interface inheritance (or subtyping). Class inheritance defines an object's implementation in terms of another object's implementation. In short, it's a mechanism for code and representation sharing. In contrast,interface inheritance(or subtyping) describes when an object can be used in place of another. I am familiar with the Java and JavaScript programming language and not really familiar with either C++ or Smalltalk or Eiffel as mentioned here. So I am trying to map the concepts discussed here to Java's way of doing classes, inheritance and interfaces. This is how I think of of these concepts in Java: In Java a class is always a blueprint for the objects it produces and what interface(as in "set of all possible requests that the object can respond to") an object of that class possess is defined during compilation stage only because the class of the object would have implemented those interfaces. The requests that an object of that class can respond to is the set of all the methods that are in the class(including those implemented for the interfaces that this class implements). My specific questions are: Am I right in saying that Java's way is more similar to C++ as described in the third paragraph. I do not understand what is meant by interface inheritance in the last paragraph. In Java interface inheritance is one interface extending from another interface. But I think the word interface has some other overloaded meaning here. Can some one provide an example in Java of what is meant by interface inheritance here so that I understand it better?

    Read the article

  • Should developers be responsible for tests other than unit tests?

    - by Jackie
    I am currently working on a rather large project, and I have used JUnit and EasyMock to fairly extensively unit test functionality. I am now interested in what other types of testing I should worry about. As a developer is it my responsibility to worry about things like functional, or regression testing? Is there a good way to integrate these in a useable way in tools such as Maven/Ant/Gradle? Are these better suited for a Tester or BA? Are there other useful types of testing that I am missing?

    Read the article

  • Extending SSIS with custom Data Flow components (Presentation)

    Download the slides and sample code from my Extending SSIS with custom Data Flow components presentation, first presented at the SQLBits II (The SQL) Community Conference. Abstract Get some real-world insights into developing data flow components for SSIS. This starts with an introduction to the data flow pipeline engine, and explains the real differences between adapters and the three sub-types of transformation. Understanding how the different types of component behave and manage data is key to writing components of your own, and probably should but be required knowledge for anyone building packages at all. Using sample code throughout, I will show you how to write components, as well as highlighting best practice and lessons learned. The sample code includes fully working example projects for source, destination and transformation components. Presentation & Samples (358KB) Extending SSIS with custom Data Flow components.zip

    Read the article

  • Composing Silverlight Applications With MEF

    - by PeterTweed
    Anyone who has written an application with complexity enough to warrant multiple controls on multiple pages/forms should understand the benefit of composite application development.  That is defining your application architecture that can be separated into separate pieces each with it’s own distinct purpose that can then be “composed” together into the solution. Composition can be useful in any layer of the application, from the presentation layer, the business layer, common services or data access.  Historically people have had different options to achieve composing applications from distinct well known pieces – their own version of dependency injection, containers to aid with composition like Unity, the composite application guidance for WPF and Silverlight and before that the composite application block. Microsoft has been working on another mechanism to aid composition and extension of applications for some time now – the Managed Extensibility Framework or MEF for short.  With Silverlight 4 it is part of the Silverlight environment.  MEF allows a much simplified mechanism for composition and extensibility compared to other mechanisms – which has always been the primary issue for adoption of the earlier mechanisms/frameworks. This post will guide you through the simple use of MEF for the scenario of composition of an application – using exports, imports and composition.  Steps: 1.     Create a new Silverlight 4 application. 2.     Add references to the following assemblies: System.ComponentModel.Composition.dll System.ComponentModel.Composition.Initialization.dll 3.     Add a new user control called LeftControl. 4.     Replace the LayoutRoot Grid with the following xaml:     <Grid x:Name="LayoutRoot" Background="Beige" Margin="40" >         <Button Content="Left Content" Margin="30"></Button>     </Grid> 5.     Add the following statement to the top of the LeftControl.xaml.cs file using System.ComponentModel.Composition; 6.     Add the following attribute to the LeftControl class     [Export(typeof(LeftControl))]   This attribute tells MEF that the type LeftControl will be exported – i.e. made available for other applications to import and compose into the application. 7.     Add a new user control called RightControl. 8.     Replace the LayoutRoot Grid with the following xaml:     <Grid x:Name="LayoutRoot" Background="Green" Margin="40"  >         <TextBlock Margin="40" Foreground="White" Text="Right Control" FontSize="16" VerticalAlignment="Center" HorizontalAlignment="Center" ></TextBlock>     </Grid> 9.     Add the following statement to the top of the RightControl.xaml.cs file using System.ComponentModel.Composition; 10.   Add the following attribute to the RightControl class     [Export(typeof(RightControl))] 11.   Add the following xaml to the LayoutRoot Grid in MainPage.xaml:         <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">             <Border Name="LeftContent" Background="Red" BorderBrush="Gray" CornerRadius="20"></Border>             <Border Name="RightContent" Background="Red" BorderBrush="Gray" CornerRadius="20"></Border>         </StackPanel>   The borders will hold the controls that will be imported and composed via MEF. 12.   Add the following statement to the top of the MainPage.xaml.cs file using System.ComponentModel.Composition; 13.   Add the following properties to the MainPage class:         [Import(typeof(LeftControl))]         public LeftControl LeftUserControl { get; set; }         [Import(typeof(RightControl))]         public RightControl RightUserControl { get; set; }   This defines properties accepting LeftControl and RightControl types.  The attrributes are used to tell MEF the discovered type that should be applied to the property when composition occurs. 14.   Replace the MainPage constructore with the following code:         public MainPage()         {             InitializeComponent();             CompositionInitializer.SatisfyImports(this);             LeftContent.Child = LeftUserControl;             RightContent.Child = RightUserControl;         }   The CompositionInitializer.SatisfyImports(this) function call tells MEF to discover types related to the declared imports for this object (the MainPage object).  At that point, types matching those specified in the import defintions are discovered in the executing assembly location of the application and instantiated and assigned to the matching properties of the current object. 15.   Run the application and you will see the left control and right control types displayed in the MainPage:   Congratulations!  You have used MEF to dynamically compose user controls into a parent control in a composite application model. In the next post we will build on this topic to cover using MEF to compose Silverlight applications dynamically in download on demand scenarios – so .xap packages can be downloaded only when needed, avoiding large initial download for the main application xap. Take the Slalom Challenge at www.slalomchallenge.com!

    Read the article

  • Key ATG architecture principles

    - by Glen Borkowski
    Overview The purpose of this article is to describe some of the important foundational concepts of ATG.  This is not intended to cover all areas of the ATG platform, just the most important subset - the ones that allow ATG to be extremely flexible, configurable, high performance, etc.  For more information on these topics, please see the online product manuals. Modules The first concept is called the 'ATG Module'.  Simply put, you can think of modules as the building blocks for ATG applications.  The ATG development team builds the out of the box product using modules (these are the 'out of the box' modules).  Then, when a customer is implementing their site, they build their own modules that sit 'on top' of the out of the box ATG modules.  Modules can be very simple - containing minimal definition, and perhaps a small amount of configuration.  Alternatively, a module can be rather complex - containing custom logic, database schema definitions, configuration, one or more web applications, etc.  Modules generally will have dependencies on other modules (the modules beneath it).  For example, the Commerce Reference Store module (CRS) requires the DCS (out of the box commerce) module. Modules have a ton of value because they provide a way to decouple a customers implementation from the out of the box ATG modules.  This allows for a much easier job when it comes time to upgrade the ATG platform.  Modules are also a very useful way to group functionality into a single package which can be leveraged across multiple ATG applications. One very important thing to understand about modules, or more accurately, ATG as a whole, is that when you start ATG, you tell it what module(s) you want to start.  One of the first things ATG does is to look through all the modules you specified, and for each one, determine a list of modules that are also required to start (based on each modules dependencies).  Once this final, ordered list is determined, ATG continues to boot up.  One of the outputs from the ordered list of modules is that each module can contain it's own classes and configuration.  During boot, the ordered list of modules drives the unified classpath and configpath.  This is what determines which classes override others, and which configuration overrides other configuration.  Think of it as a layered approach. The structure of a module is well defined.  It simply looks like a folder in a filesystem that has certain other folders and files within it.  Here is a list of items that can appear in a module: MyModule: META-INF - this is required, along with a file called MANIFEST.MF which describes certain properties of the module.  One important property is what other modules this module depends on. config - this is typically present in most modules.  It defines a tree structure (folders containing properties files, XML, etc) that maps to ATG components (these are described below). lib - this contains the classes (typically in jarred format) for any code defined in this module j2ee - this is where any web-apps would be stored. src - in case you want to include the source code for this module, it's standard practice to put it here sql - if your module requires any additions to the database schema, you should place that schema here Here's a screenshots of a module: Modules can also contain sub-modules.  A dot-notation is used when referring to these sub-modules (i.e. MyModule.Versioned, where Versioned is a sub-module of MyModule). Finally, it is important to completely understand how modules work if you are going to be able to leverage them effectively.  There are many different ways to design modules you want to create, some approaches are better than others, especially if you plan to share functionality between multiple different ATG applications. Components A component in ATG can be thought of as a single item that performs a certain set of related tasks.  An example could be a ProductViews component - used to store information about what products the current customer has viewed.  Components have properties (also called attributes).  The ProductViews component could have properties like lastProductViewed (stores the ID of the last product viewed) or productViewList (stores the ID's of products viewed in order of their being viewed).  The previous examples of component properties would typically also offer get and set methods used to retrieve and store the property values.  Components typically will also offer other types of useful methods aside from get and set.  In the ProductViewed component, we might want to offer a hasViewed method which will tell you if the customer has viewed a certain product or not. Components are organized in a tree like hierarchy called 'nucleus'.  Nucleus is used to locate and instantiate ATG Components.  So, when you create a new ATG component, it will be able to be found 'within' nucleus.  Nucleus allows ATG components to reference one another - this is how components are strung together to perform meaningful work.  It's also a mechanism to prevent redundant configuration - define it once and refer to it from everywhere. Here is a screenshot of a component in nucleus:  Components can be extremely simple (i.e. a single property with a get method), or can be rather complex offering many properties and methods.  To be an ATG component, a few things are required: a class - you can reference an existing out of the box class or you could write your own a properties file - this is used to define your component the above items must be located 'within' nucleus by placing them in the correct spot in your module's config folder Within the properties file, you will need to point to the class you want to use: $class=com.mycompany.myclass You may also want to define the scope of the class (request, session, or global): $scope=session In summary, ATG Components live in nucleus, generally have links to other components, and provide some meaningful type of work.  You can configure components as well as extend their functionality by writing code. Repositories Repositories (a.k.a. Data Anywhere Architecture) is the mechanism that ATG uses to access data primarily stored in relational databases, but also LDAP or other backend systems.  ATG applications are required to be very high performance, and data access is critical in that if not handled properly, it could create a bottleneck.  ATG's repository functionality has been around for a long time - it's proven to be extremely scalable.  Developers new to ATG need to understand how repositories work as this is a critical aspect of the ATG architecture.   Repositories essentially map relational tables to objects in ATG, as well as handle caching.  ATG defines many repositories out of the box (i.e. user profile, catalog, orders, etc), and this is comprised of both the underlying database schema along with the associated repository definition files (XML).  It is fully expected that implementations will extend / change the out of the box repository definitions, so there is a prescribed approach to doing this.  The first thing to be sure of is to encapsulate your repository definition additions / changes within your own module (as described above).  The other important best practice is to never modify the out of the box schema - in other words, don't add columns to existing ATG tables, just create your own new tables.  These will help ensure you can easily upgrade your application at a later date. xml-combination As mentioned earlier, when you start ATG, the order of the modules will determine the final configpath.  Files within this configpath are 'layered' such that modules on top can override configuration of modules below it.  This is the same concept for repository definition files.  If you want to add a few properties to the out of the box user profile, you simply need to create an XML file containing only your additions, and place it in the correct location in your module.  At boot time, your definition will be combined (hence the term xml-combination) with the lower, out of the box modules, with the result being a user profile that contains everything (out of the box, plus your additions).  Aside from just adding properties, there are also ways to remove and change properties. types of properties Aside from the normal 'database backed' properties, there are a few other interesting types: transient properties - these are properties that are in memory, but not backed by any database column.  These are useful for temporary storage. java-backed properties - by nature, these are transient, but in addition, when you access this property (by called the get method) instead of looking up a piece of data, it performs some logic and returns the results.  'Age' is a good example - if you're storing a birth date on the profile, but your business rules are defined in terms of someones age, you could create a simple java-backed property to look at the birth date and compare it to the current date, and return the persons age. derived properties - this is what allows for inheritance within the repository structure.  You could define a property at the category level, and have the product inherit it's value as well as override it.  This is useful for setting defaults, with the ability to override. caching There are a number of different caching modes which are useful at different times depending on the nature of the data being cached.  For example, the simple cache mode is useful for things like user profiles.  This is because the user profile will typically only be used on a single instance of ATG at one time.  Simple cache mode is also useful for read-only types of data such as the product catalog.  Locked cache mode is useful when you need to ensure that only one ATG instance writes to a particular item at a time - an example would be a customers order.  There are many options in terms of configuring caching which are outside the scope of this article - please refer to the product manuals for more details. Other important concepts - out of scope for this article There are a whole host of concepts that are very important pieces to the ATG platform, but are out of scope for this article.  Here's a brief description of some of them: formhandlers - these are ATG components that handle form submissions by users. pipelines - these are configurable chains of logic that are used for things like handling a request (request pipeline) or checking out an order. special kinds of repositories (versioned, files, secure, ...) - there are a couple different types of repositories that are used in various situations.  See the manuals for more information. web development - JSP/ DSP tag library - ATG provides a traditional approach to developing web applications by providing a tag library called the DSP library.  This library is used throughout your JSP pages to interact with all the ATG components. messaging - a message sub-system used as another way for components to interact. personalization - ability for business users to define a personalized user experience for customers.  See the other blog posts related to personalization.

    Read the article

  • WebSocket API 1.1 released!

    - by Pavel Bucek
    Its my please to announce that JSR 356 – Java API for WebSocket maintenance release ballot vote finished with majority of “yes” votes (actually, only one eligible voter did not vote, all other votes were “yeses”). New release is maintenance release and it addresses only one issue:  WEBSOCKET_SPEC-226. What changed in the 1.1? Version 1.1 is fully backwards compatible with version 1.0, there are only two methods added to javax.websocket.Session: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 /** * Register to handle to incoming messages in this conversation. A maximum of one message handler per * native websocket message type (text, binary, pong) may be added to each Session. I.e. a maximum * of one message handler to handle incoming text messages a maximum of one message handler for * handling incoming binary messages, and a maximum of one for handling incoming pong * messages. For further details of which message handlers handle which of the native websocket * message types please see {@link MessageHandler.Whole} and {@link MessageHandler.Partial}. * Adding more than one of any one type will result in a runtime exception. * * @param clazz   type of the message processed by message handler to be registered. * @param handler whole message handler to be added. * @throws IllegalStateException if there is already a MessageHandler registered for the same native *                               websocket message type as this handler. */ public void addMessageHandler(Class<T> clazz, MessageHandler.Whole<T> handler); /** * Register to handle to incoming messages in this conversation. A maximum of one message handler per * native websocket message type (text, binary, pong) may be added to each Session. I.e. a maximum * of one message handler to handle incoming text messages a maximum of one message handler for * handling incoming binary messages, and a maximum of one for handling incoming pong * messages. For further details of which message handlers handle which of the native websocket * message types please see {@link MessageHandler.Whole} and {@link MessageHandler.Partial}. * Adding more than one of any one type will result in a runtime exception. * * * @param clazz   type of the message processed by message handler to be registered. * @param handler partial message handler to be added. * @throws IllegalStateException if there is already a MessageHandler registered for the same native *                               websocket message type as this handler. */ public void addMessageHandler(Class<T> clazz, MessageHandler.Partial<T> handler); Why do we need to add those methods? Short and not precise version: to support Lambda expressions as MessageHandlers. Longer and slightly more precise explanation: old Session#addMessageHandler method (which is still there and works as it worked till now) does rely on getting the generic parameter during the runtime, which is not (always) possible. The unfortunate part is that it works for some common cases and the expert group did not catch this issue before 1.0 release because of that. The issue is really clearly visible when Lambdas are used as message handlers: 1 2 3 session.addMessageHandler(message -> { System.out.println("### Received: " + message); }); There is no way for the JSR 356 implementation to get the type of the used Lambda expression, thus this call will always result in an exception. Since all modern IDEs do recommend to use Lambda expressions when possible and MessageHandler interfaces are single method interfaces, it basically just scream “use Lambdas” all over the place but when you do that, the application will fail during runtime. Only solution we currently have is to explicitly provide the type of registered MessageHandler. (There might be another sometime in the future when generic type reification is introduced, but that is not going to happen soon enough). So the example above will then be: 1 2 3 session.addMessageHandler(String.class, message -> { System.out.println("### Received: " + message); }); and voila, it works. There are some limitations – you cannot do 1 List<String>.class , so you will need to encapsulate these types when you want to use them in MessageHandler implementation (something like “class MyType extends ArrayList<String>”). There is no better way how to solve this issue, because Java currently does not provide good way how to describe generic types. The api itself is available on maven central, look for javax.websocket:javax.websocket-api:1.1. The reference implementation is project Tyrus, which implements WebSocket API 1.1 from version 1.8.

    Read the article

  • The chart web server control

    - by nikolaosk
    In this post I am going to present a hands on example on how to use the Chart web server control. It is built into ASP.Net 4.0 and it is available from the Toolbox in VS 2010.It is a very rich feature control that supports many chart types, had support for 3-D chart types,supports smart data labels and client side ajax support. Let's move on with our example. 1) Launch VS 2010. I am using the Ultimate edition but the express edition will work fine. 2) Create an empty web site from the available templates...(read more)

    Read the article

  • Application qos involving priority and bandwidth

    - by Steve Peng
    Our manager wants us to do applicaiton qos which is quite different from the well-known system qos. We have many services of three types, they have priorites, the manager wants to suspend low priority services requests when there are not enough bandwidth for high priority services. But if the high priority services requests decrease, the bandwidth for low priority services should increase and low priority service requests are allowed again. There should be an algorithm involving priority and bandwidth. I don't know how to design the algorithm, is there any example on the internet? Somebody can give suggestion? Thanks. UPDATE All these services are within a same process. We are setting the maximum bandwidth for the three types of services via ports of services via TC (TC is the linux qos tool whose name means traffic control).

    Read the article

< Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >