Search Results

Search found 3538 results on 142 pages for 'tcp hijacking'.

Page 68/142 | < Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Disable messages “Login failed for user” in Event log

    - by Michael Freidgeim
    I’ve noticed multiple messages in EventLog on my machineLogin failed for user 'NT AUTHORITY\ANONYMOUS LOGON'. Reason: Token-based server access validation failed with an infrastructure error. Check for previous errors. [CLIENT: 10.222.25.129]I’ve found that there are machines of my co-workers, but they were not sure, which processes tried to access my SQL server.I’ve tried a few things and finally in SQL Server Configuration Manager disabled tcp, as it was suggested inhttp://blogs.msdn.com/b/psssql/archive/2010/03/09/what-spn-do-i-use-and-how-does-it-get-there.aspx

    Read the article

  • Why Does Ejabberd Start Fail?

    - by Andrew
    I am trying to install ejabberd 2.1.10-2 on my Ubuntu 12.04.1 server. This is a fresh install, and ejabberd is never successfully installed. The Install Every time, apt-get hangs on this: Setting up ejabberd (2.1.10-2ubuntu1) ... Generating SSL certificate /etc/ejabberd/ejabberd.pem... Creating config file /etc/ejabberd/ejabberd.cfg with new version Starting jabber server: ejabberd............................................................ failed. The dots just go forever until it times out or I 'killall' beam, beam.smp, epmd, and ejabberd processes. I've turned off all firewall restrictions. Here's the output of epmd -names while the install is hung: epmd: up and running on port 4369 with data: name ejabberdctl at port 42108 name ejabberd at port 39621 And after it fails: epmd: up and running on port 4369 with data: name ejabberd at port 39621 At the same time (during and after), the output of both netstat -atnp | grep 5222 and netstat -atnp | grep 5280 is empty. The Crash File A crash dump file is create at /var/log/ejabber/erl_crash.dump. The slogan (i.e. reason for the crash) is: Slogan: Kernel pid terminated (application_controller) ({application_start_failure,kernel,{shutdown,{kernel,start,[normal,[]]}}}) It's alive? Whenever I try to relaunch ejabberd with service ejabberd start, the same thing happens - even if I've killed all processes before doing so. However, when I killall the processes listed above again, and run su - ejabberd -c /usr/sbin/ejabberd, this is the output I get: Erlang R14B04 (erts-5.8.5) [source] [64-bit] [rq:1] [async-threads:0] [kernel-poll:false] Eshell V5.8.5 (abort with ^G) (ejabberd@ns1)1> =INFO REPORT==== 15-Oct-2012::12:26:13 === I(<0.478.0>:ejabberd_listener:166) : Reusing listening port for 5222 =INFO REPORT==== 15-Oct-2012::12:26:13 === I(<0.479.0>:ejabberd_listener:166) : Reusing listening port for 5269 =INFO REPORT==== 15-Oct-2012::12:26:13 === I(<0.480.0>:ejabberd_listener:166) : Reusing listening port for 5280 =INFO REPORT==== 15-Oct-2012::12:26:13 === I(<0.40.0>:ejabberd_app:72) : ejabberd 2.1.10 is started in the node ejabberd@ns1 Then, the server appears to be running. I get a login prompt when I access http://mydomain.com:5280/admin/. Of course I can't login unless I create an account. At this time, the output of netstat -atnp | grep 5222 and netstat -atnp | grep 5280 is as follows: tcp 0 0 0.0.0.0:5222 0.0.0.0:* LISTEN 19347/beam tcp 0 0 0.0.0.0:5280 0.0.0.0:* LISTEN 19347/beam ejabberdctl Even when it appears ejabberd is running, trying to do anything with ejabberdctl fails. For example: trying to register a user: root@ns1:~# ejabberdctl register myusername mydomain.com mypassword Failed RPC connection to the node ejabberd@ns1: nodedown I have no idea what I'm doing wrong. This happens on two different servers I have with identical software installed (really not much of anything). Please help. Thanks.

    Read the article

  • As a programmer, should I know low and high-level programming languages?

    - by job
    I been contacted to do some work remote controlling LEDs displays over TCP/IP, but my experience and preparation is mostly about high-level programming language. I said that to the person who contact me about the work and he told me that: "if you call yourself a programmer you should know all these things" Should a programmer really know the details of low-level programming? Or can I treat it as a black box concept, as theoretical knowledge but not necessarily doing it or implementing low level language solutions, having in mind that low-level programming is not my expertise?

    Read the article

  • WebSocket Applications using Java: JSR 356 Early Draft Now Available (TOTD #183)

    - by arungupta
    WebSocket provide a full-duplex and bi-directional communication protocol over a single TCP connection. JSR 356 is defining a standard API for creating WebSocket applications in the Java EE 7 Platform. This Tip Of The Day (TOTD) will provide an introduction to WebSocket and how the JSR is evolving to support the programming model. First, a little primer on WebSocket! WebSocket is a combination of IETF RFC 6455 Protocol and W3C JavaScript API (still a Candidate Recommendation). The protocol defines an opening handshake and data transfer. The API enables Web pages to use the WebSocket protocol for two-way communication with the remote host. Unlike HTTP, there is no need to create a new TCP connection and send a chock-full of headers for every message exchange between client and server. The WebSocket protocol defines basic message framing, layered over TCP. Once the initial handshake happens using HTTP Upgrade, the client and server can send messages to each other, independent from the other. There are no pre-defined message exchange patterns of request/response or one-way between client and and server. These need to be explicitly defined over the basic protocol. The communication between client and server is pretty symmetric but there are two differences: A client initiates a connection to a server that is listening for a WebSocket request. A client connects to one server using a URI. A server may listen to requests from multiple clients on the same URI. Other than these two difference, the client and server behave symmetrically after the opening handshake. In that sense, they are considered as "peers". After a successful handshake, clients and servers transfer data back and forth in conceptual units referred as "messages". On the wire, a message is composed of one or more frames. Application frames carry payload intended for the application and can be text or binary data. Control frames carry data intended for protocol-level signaling. Now lets talk about the JSR! The Java API for WebSocket is worked upon as JSR 356 in the Java Community Process. This will define a standard API for building WebSocket applications. This JSR will provide support for: Creating WebSocket Java components to handle bi-directional WebSocket conversations Initiating and intercepting WebSocket events Creation and consumption of WebSocket text and binary messages The ability to define WebSocket protocols and content models for an application Configuration and management of WebSocket sessions, like timeouts, retries, cookies, connection pooling Specification of how WebSocket application will work within the Java EE security model Tyrus is the Reference Implementation for JSR 356 and is already integrated in GlassFish 4.0 Promoted Builds. And finally some code! The API allows to create WebSocket endpoints using annotations and interface. This TOTD will show a simple sample using annotations. A subsequent blog will show more advanced samples. A POJO can be converted to a WebSocket endpoint by specifying @WebSocketEndpoint and @WebSocketMessage. @WebSocketEndpoint(path="/hello")public class HelloBean {     @WebSocketMessage    public String sayHello(String name) {         return "Hello " + name + "!";     }} @WebSocketEndpoint marks this class as a WebSocket endpoint listening at URI defined by the path attribute. The @WebSocketMessage identifies the method that will receive the incoming WebSocket message. This first method parameter is injected with payload of the incoming message. In this case it is assumed that the payload is text-based. It can also be of the type byte[] in case the payload is binary. A custom object may be specified if decoders attribute is specified in the @WebSocketEndpoint. This attribute will provide a list of classes that define how a custom object can be decoded. This method can also take an optional Session parameter. This is injected by the runtime and capture a conversation between two endpoints. The return type of the method can be String, byte[] or a custom object. The encoders attribute on @WebSocketEndpoint need to define how a custom object can be encoded. The client side is an index.jsp with embedded JavaScript. The JSP body looks like: <div style="text-align: center;"> <form action="">     <input onclick="say_hello()" value="Say Hello" type="button">         <input id="nameField" name="name" value="WebSocket" type="text"><br>    </form> </div> <div id="output"></div> The code is relatively straight forward. It has an HTML form with a button that invokes say_hello() method and a text field named nameField. A div placeholder is available for displaying the output. Now, lets take a look at some JavaScript code: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/HelloWebSocket/hello";     var websocket = new WebSocket(wsUri);     websocket.onopen = function(evt) { onOpen(evt) };     websocket.onmessage = function(evt) { onMessage(evt) };     websocket.onerror = function(evt) { onError(evt) };     function init() {         output = document.getElementById("output");     }     function say_hello() {      websocket.send(nameField.value);         writeToScreen("SENT: " + nameField.value);     } This application is deployed as "HelloWebSocket.war" (download here) on GlassFish 4.0 promoted build 57. So the WebSocket endpoint is listening at "ws://localhost:8080/HelloWebSocket/hello". A new WebSocket connection is initiated by specifying the URI to connect to. The JavaScript API defines callback methods that are invoked when the connection is opened (onOpen), closed (onClose), error received (onError), or a message from the endpoint is received (onMessage). The client API has several send methods that transmit data over the connection. This particular script sends text data in the say_hello method using nameField's value from the HTML shown earlier. Each click on the button sends the textbox content to the endpoint over a WebSocket connection and receives a response based upon implementation in the sayHello method shown above. How to test this out ? Download the entire source project here or just the WAR file. Download GlassFish4.0 build 57 or later and unzip. Start GlassFish as "asadmin start-domain". Deploy the WAR file as "asadmin deploy HelloWebSocket.war". Access the application at http://localhost:8080/HelloWebSocket/index.jsp. After clicking on "Say Hello" button, the output would look like: Here are some references for you: WebSocket - Protocol and JavaScript API JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Binary data as payload Custom payloads using encoder/decoder Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API Capturing WebSocket on-the-wire messages

    Read the article

  • Windows Server 2003 network boogey men every DBA should know

    - by merrillaldrich
    Recently I was again visited by my old friends TCP Chimney and SynAttackProtect . (Yeah, sometimes I feel like I mostly blog about 5-year old problems, but many of us as DBA's have to work on older versions or older systems, and so repeat older problems :-). This has been written about before, but as I BinGoogled around I noticed you are more likely to find the documents if you search for the cause, and not the symptoms. Most people who face a problem, of course, know the symptoms but not the cause....(read more)

    Read the article

  • Setting up port forwarding for 7000 appliance VM in VirtualBox

    - by uejio
    I've been using the 7000 appliance VM for a lot of testing lately and relied on others to set up the networking for the VM for me, but finally, I decided to take the dive and do it myself.  After some experimenting, I came up with a very brief number of steps to do this all using the VirtualBox CLI instead of the GUI. First download the VM image and unpack it somewhere.  I put it in /var/tmp. Then, set your VBOX_USER_HOME to some place with lots of disk space and import the VM: export VBOX_USER_HOME=/var/tmp/MyVirtualBoxVBoxManage import /var/tmp/simulator/vbox-2011.1.0.0.1.1.8/Sun\ ZFS\ Storage\ 7000.ovf (go get a cup of tea...) Then, set up port forwarding of the VM appliance BUI and shell:First set up port as NAT:VBoxManage modifyvm Sun_ZFS_Storage_7000 --nic1 nat Then set up rules for port forwarding (pick some unused port numbers):VBoxManage modifyvm Sun_ZFS_Storage_7000 --natpf1 "guestssh,tcp,,4622,,22"VBoxManage modifyvm Sun_ZFS_Storage_7000 --natpf1 "guestbui,tcp,,46215,,215" Verify the settings using:VBoxManage showvminfo Sun_ZFS_Storage_7000 | grep -i nic Start the appliance:$ VBoxHeadless --startvm Sun_ZFS_Storage_7000 & Connect to it using your favorite RDP client.  I use a Sun Ray, so I use the Sun Ray Windows Connector client: $ /opt/SUNWuttsc/bin/uttsc -g 800x600 -P <portnumber> <your-hostname> & The portnumber is displayed in the output of the --startvm command.(This did not work after I updated to VirtualBox 4.1.12, so maybe at this point, you need to use the VirtualBox GUI.) It takes a while to first bring up the VM, so please be patient. The longest time is in loading the smf service descriptions, but fortunately, that only needs to be done the first time the VM boots.  There is also a delay in just booting the appliance, so give it some time. Be sure to set the NIC rule on only one port and not all ports otherwise there will be a conflict in ports and it won't work. After going through the initial configuration screen, you can connect to it using ssh or your browser: ssh -p 45022 root@<your-host-name> https://<your-host-name>:45215 BTW, for the initial configuration, I only had to set the hostname and password.  The rest of the defaults were set by VirtualBox and seemed to work fine.

    Read the article

  • Windows Server 2003 network boogey men every DBA should know

    - by merrillaldrich
    Recently I was again visited by my old friends TCP Chimney and SynAttackProtect . (Yeah, sometimes I feel like I mostly blog about 5-year old problems, but many of us as DBA's have to work on older versions or older systems, and so repeat older problems :-). This has been written about before, but as I BinGoogled around I noticed you are more likely to find the documents if you search for the cause, and not the symptoms. Most people who face a problem, of course, know the symptoms but not the cause....(read more)

    Read the article

  • Why does switching users completely hang my system every time?

    - by Stéphane
    I have a fresh install of 11.04 64bit, with 2 administrator accounts and 4 normal accounts. The 4 normal accounts (the kids' accounts) don't have passwords, they can login simply by clicking on their names. When any of the users -- either admin or normal -- tries to switch to another account by clicking in the top-right corner of the screen and selecting another user, the screen goes black and the entire system locks up. Even CTRL+ALT+F1 through F7 does nothing. This is reproducible 100% of the time on this system. I can ssh into the box when the console locks up, and by running top, I see that Xorg is consuming about 100% of the CPU. Looking at the output of "ps axfu" in bash while the system is in this "locked up" state, here is the lightdm and X process tree: USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1153 0.0 0.1 183508 4292 ? Ssl Dec26 0:00 lightdm root 2187 0.4 4.6 265976 164168 tty7 Ss+ 00:43 0:21 \_ /usr/bin/X :0 -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswitch stephane 2612 0.0 0.3 266400 10736 ? Ssl 01:52 0:00 \_ /usr/bin/gnome-session --session=ubuntu stephane 2650 0.0 0.0 12264 276 ? Ss 01:52 0:00 | \_ /usr/bin/ssh-agent /usr/bin/dbus-launch --exit-with-session /usr/bin/gnome-session --session=ubuntu stephane 2703 0.8 3.0 562068 106548 ? Sl 01:52 0:08 | \_ compiz stephane 2801 0.0 0.0 4264 584 ? Ss 01:52 0:00 | | \_ /bin/sh -c /usr/bin/compiz-decorator stephane 2802 0.0 0.3 265744 13772 ? Sl 01:52 0:00 | | \_ /usr/bin/unity-window-decorator ...cut... root 3024 80.6 0.3 107928 13088 tty8 Rs+ 01:53 12:34 \_ /usr/bin/X :1 -auth /var/run/lightdm/root/:1 -nolisten tcp vt8 -novtswitch That last process, pid #3024 in this case, is what has the CPU pegged. In case it matters (I suspect it might) here is what I think may be the relevant information for my video card, taken from /var/log/Xorg.0.log: [ 3392.653] (II) Loading /usr/lib/x86_64-linux-gnu/xorg/extra-modules/extra-modules.dpkg-tmp/modules/extensions/libglx.so [ 3392.653] (II) Module glx: vendor="FireGL - AMD Technologies Inc." [ 3392.653] compiled for 6.9.0, module version = 1.0.0 ... [ 3392.655] (II) LoadModule: "fglrx" [ 3392.655] (II) Loading /usr/lib/x86_64-linux-gnu/xorg/extra-modules/extra-modules.dpkg-tmp/modules/drivers/fglrx_drv.so [ 3392.672] (II) Module fglrx: vendor="FireGL - ATI Technologies Inc." [ 3392.672] compiled for 1.4.99.906, module version = 8.88.7 [ 3392.672] Module class: X.Org Video Driver ... [ 3392.759] (==) fglrx(0): ATI 2D Acceleration Architecture enabled [ 3392.759] (--) fglrx(0): Chipset: "AMD Radeon HD 6410D" (Chipset = 0x9644) Lastly: I did see this posting: Change user on 11.10 hangs system ...but I checked, and the libpam-smbpass package isn't installed on this system.

    Read the article

  • Modélisation réseau, un article de Philippe Latu sur la modélisation en couche des protocoles réseau

    La modélisation du fonctionnement des réseaux électroniques de communications a toujours fait l'objet de grandes luttes d'influence entre les organismes de normalisation, les compagnies de télécommunications et les constructeurs. Avec l'avènement de l'Internet, un modèle contemporain faisant la synthèse entre les modèles de référence historiques OSI et TCP/IP s'est imposé. L'objectif de cet article est d'introduire les concepts de modélisation, de présenter les deux modélisations dominantes et le...

    Read the article

  • WebSocket Protocol Updated

    WebSocket is "TCP for the Web," a next-generation full-duplex communication technology for web applications being standardized as a part of Web Applications 1.0 . The WebSocket protocol is...

    Read the article

  • Vermont IT Jobs: C# Developer in Burlington

    Senior C# Engineer Qualifications: 5+ years of programming experience Strong C# development skills Thorough grounding in Object-Oriented design principles and design patterns Bachelor's Degree in Computer Science or related field Strong message-oriented development skills (JMS, MSMQ, TCP/IP, Web Services, etc.) Agile development background (understanding of methodology, terms, and process) Demonstrated teamwork and flexibility in previous work assignments Experience working...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • SSH from external network refused

    - by wulfsdad
    I've installed open-ssh-server on my home computer(running Lubuntu 12.04.1) in order to connect to it from school. This is how I've set up the sshd_config file: # Package generated configuration file # See the sshd_config(5) manpage for details # What ports, IPs and protocols we listen for #Port 22 Port 2222 # Use these options to restrict which interfaces/protocols sshd will bind to #ListenAddress :: #ListenAddress 0.0.0.0 Protocol 2 # HostKeys for protocol version 2 HostKey /etc/ssh/ssh_host_rsa_key HostKey /etc/ssh/ssh_host_dsa_key HostKey /etc/ssh/ssh_host_ecdsa_key #Privilege Separation is turned on for security UsePrivilegeSeparation yes # Lifetime and size of ephemeral version 1 server key KeyRegenerationInterval 3600 ServerKeyBits 768 # Logging SyslogFacility AUTH #LogLevel INFO LogLevel VERBOSE # Authentication: LoginGraceTime 120 PermitRootLogin no StrictModes yes RSAAuthentication yes PubkeyAuthentication yes #AuthorizedKeysFile %h/.ssh/authorized_keys # Don't read the user's ~/.rhosts and ~/.shosts files IgnoreRhosts yes # For this to work you will also need host keys in /etc/ssh_known_hosts RhostsRSAAuthentication no # similar for protocol version 2 HostbasedAuthentication no # Uncomment if you don't trust ~/.ssh/known_hosts for RhostsRSAAuthentication #IgnoreUserKnownHosts yes # To enable empty passwords, change to yes (NOT RECOMMENDED) PermitEmptyPasswords no # Change to yes to enable challenge-response passwords (beware issues with # some PAM modules and threads) ChallengeResponseAuthentication no # Change to no to disable tunnelled clear text passwords #PasswordAuthentication yes # Kerberos options #KerberosAuthentication no #KerberosGetAFSToken no #KerberosOrLocalPasswd yes #KerberosTicketCleanup yes # GSSAPI options #GSSAPIAuthentication no #GSSAPICleanupCredentials yes X11Forwarding no X11DisplayOffset 10 PrintMotd no PrintLastLog yes TCPKeepAlive yes #UseLogin no #MaxStartups 10:30:60 #Banner /etc/issue.net Banner /etc/sshbanner.net # Allow client to pass locale environment variables AcceptEnv LANG LC_* Subsystem sftp /usr/lib/openssh/sftp-server # Set this to 'yes' to enable PAM authentication, account processing, # and session processing. If this is enabled, PAM authentication will # be allowed through the ChallengeResponseAuthentication and # PasswordAuthentication. Depending on your PAM configuration, # PAM authentication via ChallengeResponseAuthentication may bypass # the setting of "PermitRootLogin without-password". # If you just want the PAM account and session checks to run without # PAM authentication, then enable this but set PasswordAuthentication # and ChallengeResponseAuthentication to 'no'. UsePAM yes #specify which accounts can use SSH AllowUsers onlyme I've also configured my router's port forwarding table to include: LAN Ports: 2222-2222 Protocol: TCP LAN IP Address: "IP Address" displayed by viewing "connection information" from right-click menu of system tray Remote Ports[optional]: n/a Remote IP Address[optional]: n/a I've tried various other configurations as well, using primary and secondary dns, and also with specifying remote ports 2222-2222. I've also tried with TCP/UDP (actually two rules because my router requires separate rules for each protocol). With any router port forwarding configuration, I am able to log in with ssh -p 2222 -v localhost But, when I try to log in from school using ssh -p 2222 onlyme@IP_ADDRESS I get a "No route to host" message. Same thing when I use the "Broadcast Address" or "Default Route/Primary DNS". When I use the "subnet mask", ssh just hangs. However, when I use the "secondary DNS" I recieve a "Connection refused" message. :^( Someone please help me figure out how to make this work.

    Read the article

  • Accessing your web server via IPv6

    Being able to run your systems on IPv6, have automatic address assignment and the ability to resolve host names are the necessary building blocks in your IPv6 network infrastructure. Now, that everything is in place it is about time that we are going to enable another service to respond to IPv6 requests. The following article will guide through the steps on how to enable Apache2 httpd to listen and respond to incoming IPv6 requests. This is the fourth article in a series on IPv6 configuration: Configure IPv6 on your Linux system DHCPv6: Provide IPv6 information in your local network Enabling DNS for IPv6 infrastructure Accessing your web server via IPv6 Piece of advice: This is based on my findings on the internet while reading other people's helpful articles and going through a couple of man-pages on my local system. Surfing the web - IPv6 style Enabling IPv6 connections in Apache 2 is fairly simply. But first let's check whether your system has a running instance of Apache2 or not. You can check this like so: $ service apache2 status Apache2 is running (pid 2680). In case that you got a 'service unknown' you have to install Apache to proceed with the following steps: $ sudo apt-get install apache2 Out of the box, Apache binds to all your available network interfaces and listens to TCP port 80. To check this, run the following command: $ sudo netstat -lnptu | grep "apache2\W*$"tcp6       0      0 :::80                   :::*                    LISTEN      28306/apache2 In this case Apache2 is already binding to IPv6 (and implicitly to IPv4). If you only got a tcp output, then your HTTPd is not yet IPv6 enabled. Check your Listen directive, depending on your system this might be in a different location than the default in Ubuntu. $ sudo nano /etc/apache2/ports.conf # If you just change the port or add more ports here, you will likely also# have to change the VirtualHost statement in# /etc/apache2/sites-enabled/000-default# This is also true if you have upgraded from before 2.2.9-3 (i.e. from# Debian etch). See /usr/share/doc/apache2.2-common/NEWS.Debian.gz and# README.Debian.gzNameVirtualHost *:80Listen 80<IfModule mod_ssl.c>    # If you add NameVirtualHost *:443 here, you will also have to change    # the VirtualHost statement in /etc/apache2/sites-available/default-ssl    # to <VirtualHost *:443>    # Server Name Indication for SSL named virtual hosts is currently not    # supported by MSIE on Windows XP.    Listen 443</IfModule><IfModule mod_gnutls.c>    Listen 443</IfModule> Just in case that you don't have a ports.conf file, look for it like so: $ cd /etc/apache2/$ fgrep -r -i 'listen' ./* And modify the related file instead of the ports.conf. Which most probably might be either apache2.conf or httpd.conf anyways. Okay, please bear in mind that Apache can only bind once on the same interface and port. So, eventually, you might be interested to add another port which explicitly listens to IPv6 only. In that case, you would add the following in your configuration file: Listen 80Listen [2001:db8:bad:a55::2]:8080 But this is completely optional... Anyways, just to complete all steps, you save the file, and then check the syntax like so: $ sudo apache2ctl configtestSyntax OK Ok, now let's apply the modifications to our running Apache2 instances: $ sudo service apache2 reload * Reloading web server config apache2   ...done. $ sudo netstat -lnptu | grep "apache2\W*$"                                                                                               tcp6       0      0 2001:db8:bad:a55:::8080 :::*                    LISTEN      5922/apache2    tcp6       0      0 :::80                   :::*                    LISTEN      5922/apache2 There we have two daemons running and listening to different TCP ports. Now, that the basics are in place, it's time to prepare any website to respond to incoming requests on the IPv6 address. Open up any configuration file you have below your sites-enabled folder. $ ls -al /etc/apache2/sites-enabled/... $ sudo nano /etc/apache2/sites-enabled/000-default <VirtualHost *:80 [2001:db8:bad:a55::2]:8080>        ServerAdmin [email protected]        ServerName server.ios.mu        ServerAlias server Here, we have to check and modify the VirtualHost directive and enable it to respond to the IPv6 address and port our web server is listening to. Save your changes, run the configuration test and reload Apache2 in order to apply your modifications. After successful steps you can launch your favourite browser and navigate to your IPv6 enabled web server. Accessing an IPv6 address in the browser That looks like a successful surgery to me... Note: In case that you received a timeout, check whether your client is operating on IPv6, too.

    Read the article

  • ndd on Solaris 10

    - by user12620111
    This is mostly a repost of LaoTsao's Weblog with some tweaks. Last time that I tried to cut & paste directly off of his page, some of the XML was messed up. I run this from my MacBook. It should also work from your windows laptop if you use cygwin. ================If not already present, create a ssh key on you laptop================ # ssh-keygen -t rsa ================ Enable passwordless ssh from my laptop. Need to type in the root password for the remote machines. Then, I no longer need to type in the password when I ssh or scp from my laptop to servers. ================ #!/usr/bin/env bash for server in `cat servers.txt` do   echo root@$server   cat ~/.ssh/id_rsa.pub | ssh root@$server "cat >> .ssh/authorized_keys" done ================ servers.txt ================ testhost1testhost2 ================ etc_system_addins ================ set rpcmod:clnt_max_conns=8 set zfs:zfs_arc_max=0x1000000000 set nfs:nfs3_bsize=131072 set nfs:nfs4_bsize=131072 ================ ndd-nettune.txt ================ #!/sbin/sh # # ident   "@(#)ndd-nettune.xml    1.0     01/08/06 SMI" . /lib/svc/share/smf_include.sh . /lib/svc/share/net_include.sh # Make sure that the libraries essential to this stage of booting  can be found. LD_LIBRARY_PATH=/lib; export LD_LIBRARY_PATH echo "Performing Directory Server Tuning..." >> /tmp/smf.out # # Standard SuperCluster Tunables # /usr/sbin/ndd -set /dev/tcp tcp_max_buf 2097152 /usr/sbin/ndd -set /dev/tcp tcp_xmit_hiwat 1048576 /usr/sbin/ndd -set /dev/tcp tcp_recv_hiwat 1048576 # Reset the library path now that we are past the critical stage unset LD_LIBRARY_PATH ================ ndd-nettune.xml ================ <?xml version="1.0"?> <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <!-- ident "@(#)ndd-nettune.xml 1.0 04/09/21 SMI" --> <service_bundle type='manifest' name='SUNWcsr:ndd'>   <service name='network/ndd-nettune' type='service' version='1'>     <create_default_instance enabled='true' />     <single_instance />     <dependency name='fs-minimal' type='service' grouping='require_all' restart_on='none'>       <service_fmri value='svc:/system/filesystem/minimal' />     </dependency>     <dependency name='loopback-network' grouping='require_any' restart_on='none' type='service'>       <service_fmri value='svc:/network/loopback' />     </dependency>     <dependency name='physical-network' grouping='optional_all' restart_on='none' type='service'>       <service_fmri value='svc:/network/physical' />     </dependency>     <exec_method type='method' name='start' exec='/lib/svc/method/ndd-nettune' timeout_seconds='3' > </exec_method>     <exec_method type='method' name='stop'  exec=':true'                       timeout_seconds='3' > </exec_method>     <property_group name='startd' type='framework'>       <propval name='duration' type='astring' value='transient' />     </property_group>     <stability value='Unstable' />     <template>       <common_name>     <loctext xml:lang='C'> ndd network tuning </loctext>       </common_name>       <documentation>     <manpage title='ndd' section='1M' manpath='/usr/share/man' />       </documentation>     </template>   </service> </service_bundle> ================ system_tuning.sh ================ #!/usr/bin/env bash for server in `cat servers.txt` do   cat etc_system_addins | ssh root@$server "cat >> /etc/system"   scp ndd-nettune.xml root@${server}:/var/svc/manifest/site/ndd-nettune.xml   scp ndd-nettune.txt root@${server}:/lib/svc/method/ndd-nettune   ssh root@$server chmod +x /lib/svc/method/ndd-nettune   ssh root@$server svccfg validate /var/svc/manifest/site/ndd-nettune.xml   ssh root@$server svccfg import /var/svc/manifest/site/ndd-nettune.xml done

    Read the article

  • Network configuration problem with ubuntu

    - by Musti
    I am a new Ubuntu user. In my dorm there is a bit strange connection way for internet, I have to configure given "IP address, Subnetmask, Default gateway, Preferred DNS server, and Alternate DNS server" to have an internet connection, otherwise it is imposible. Actually it is very easy in windows, I am just opening Network and Sharing Center and then setting up TCP/IPv4. I had some attempt in Ubuntu, but just failed :/ Can anyone tell me how to configure? Thanks in advance... Musti

    Read the article

  • What is the correct fstab entry for automounting a remote filesystem?

    - by user101815
    I'm running Kubuntu 13.10 and I'm trying to arrange for a remote filesystem to be automounted on startup. I have the following entry for it in fstab: hpmediavault:/shares/Volume1/FileShare /mnt/mediavault nfs auto,noatime,nolock,bg,nfsvers=3,intr,tcp,actimeo=1800 0 0 I can mount it perfectly well with sudo mount /mnt/mediavault But what does it take so that it will be mounted on startup with no explicit action on my part?

    Read the article

  • iptables change destination address base on result from mysql

    - by user1812225
    I need to change destination address of tcp/ip packets based on result of execution mysql query... SELECT `score` FROM `reputation` WHERE `ip` = packet.source_ip if (score < a) then packet.destination_ip = ... else packet.destination_ip = ... What ways of solving this problem do you see? Thanks. P.S. this is important that destination host knows REAL ip address where packet came from, not IP address of firewall.

    Read the article

  • Garbled text in Screen [closed]

    - by Prabin Dahal
    The graphical Interface in my system is garbled with some text. At the beginning I thought it was due to java and tomcat that I installed. But after removing java and tomcat, it is still the same. I am using ubuntu server and i have installed xfce desktop environment with oboard softkey I have added my dmesg output to this message. What is the problem here. I am not able to figure it out. Thank you for your help. Prabin [ 0.390936] usbcore: registered new interface driver usbfs [ 0.391006] usbcore: registered new interface driver hub [ 0.391147] usbcore: registered new device driver usb [ 0.391580] PCI: Using ACPI for IRQ routing [ 0.400509] PCI: pci_cache_line_size set to 64 bytes [ 0.400669] reserve RAM buffer: 000000000009ec00 - 000000000009ffff [ 0.400681] reserve RAM buffer: 000000007f597000 - 000000007fffffff [ 0.400699] reserve RAM buffer: 000000007f6f0000 - 000000007fffffff [ 0.401135] NetLabel: Initializing [ 0.401155] NetLabel: domain hash size = 128 [ 0.401168] NetLabel: protocols = UNLABELED CIPSOv4 [ 0.401212] NetLabel: unlabeled traffic allowed by default [ 0.401466] HPET: 3 timers in total, 0 timers will be used for per-cpu timer [ 0.401494] hpet0: at MMIO 0xfed00000, IRQs 2, 8, 0 [ 0.401520] hpet0: 3 comparators, 64-bit 14.318180 MHz counter [ 0.408228] Switching to clocksource hpet [ 0.434341] AppArmor: AppArmor Filesystem Enabled [ 0.434447] pnp: PnP ACPI init [ 0.434531] ACPI: bus type pnp registered [ 0.434784] pnp 00:00: [bus 00-ff] [ 0.434794] pnp 00:00: [io 0x0cf8-0x0cff] [ 0.434804] pnp 00:00: [io 0x0000-0x0cf7 window] [ 0.434813] pnp 00:00: [io 0x0d00-0xffff window] [ 0.434822] pnp 00:00: [mem 0x000a0000-0x000bffff window] [ 0.434831] pnp 00:00: [mem 0x00000000 window] [ 0.434840] pnp 00:00: [mem 0x80000000-0xffffffff window] [ 0.435018] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) [ 0.435526] pnp 00:01: [mem 0xe0000000-0xefffffff] [ 0.435537] pnp 00:01: [mem 0x7f700000-0x7f7fffff] [ 0.435545] pnp 00:01: [mem 0x7f800000-0x7fffffff] [ 0.435554] pnp 00:01: [mem 0xfee00000-0xfeefffff] [ 0.435727] system 00:01: [mem 0xe0000000-0xefffffff] has been reserved [ 0.435754] system 00:01: [mem 0x7f700000-0x7f7fffff] has been reserved [ 0.435775] system 00:01: [mem 0x7f800000-0x7fffffff] has been reserved [ 0.435796] system 00:01: [mem 0xfee00000-0xfeefffff] has been reserved [ 0.435818] system 00:01: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.436233] pnp 00:02: [io 0x0000-0xffffffffffffffff disabled] [ 0.436245] pnp 00:02: [io 0x0000-0xffffffffffffffff disabled] [ 0.436414] system 00:02: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.436512] pnp 00:03: [io 0x0060] [ 0.436521] pnp 00:03: [io 0x0064] [ 0.436548] pnp 00:03: [irq 1] [ 0.436682] pnp 00:03: Plug and Play ACPI device, IDs PNP0303 PNP030b (active) [ 0.436825] pnp 00:04: [irq 12] [ 0.436958] pnp 00:04: Plug and Play ACPI device, IDs PNP0f03 PNP0f13 (active) [ 0.437835] pnp 00:05: [io 0x03f8-0x03ff] [ 0.437861] pnp 00:05: [irq 4] [ 0.437870] pnp 00:05: [dma 0 disabled] [ 0.438142] pnp 00:05: Plug and Play ACPI device, IDs PNP0501 (active) [ 0.439014] pnp 00:06: [io 0x02f8-0x02ff] [ 0.439036] pnp 00:06: [irq 3] [ 0.439045] pnp 00:06: [dma 0 disabled] [ 0.439297] pnp 00:06: Plug and Play ACPI device, IDs PNP0501 (active) [ 0.439346] pnp 00:07: [io 0x0000-0x000f] [ 0.439355] pnp 00:07: [io 0x0081-0x0083] [ 0.439363] pnp 00:07: [io 0x0087] [ 0.439371] pnp 00:07: [io 0x0089-0x008b] [ 0.439380] pnp 00:07: [io 0x008f] [ 0.439388] pnp 00:07: [io 0x00c0-0x00df] [ 0.439563] system 00:07: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.439617] pnp 00:08: [io 0x0070-0x0077] [ 0.439639] pnp 00:08: [irq 8] [ 0.439751] pnp 00:08: Plug and Play ACPI device, IDs PNP0b00 (active) [ 0.439788] pnp 00:09: [io 0x0061] [ 0.439893] pnp 00:09: Plug and Play ACPI device, IDs PNP0800 (active) [ 0.439977] pnp 00:0a: [io 0x0010-0x001f] [ 0.439986] pnp 00:0a: [io 0x0022-0x003f] [ 0.439994] pnp 00:0a: [io 0x0044-0x005f] [ 0.440055] pnp 00:0a: [io 0x0063] [ 0.440063] pnp 00:0a: [io 0x0065] [ 0.440071] pnp 00:0a: [io 0x0067-0x006f] [ 0.440079] pnp 00:0a: [io 0x0072-0x007f] [ 0.440086] pnp 00:0a: [io 0x0080] [ 0.440094] pnp 00:0a: [io 0x0084-0x0086] [ 0.440102] pnp 00:0a: [io 0x0088] [ 0.440109] pnp 00:0a: [io 0x008c-0x008e] [ 0.440117] pnp 00:0a: [io 0x0090-0x009f] [ 0.440125] pnp 00:0a: [io 0x00a2-0x00bf] [ 0.440133] pnp 00:0a: [io 0x00e0-0x00ef] [ 0.440141] pnp 00:0a: [io 0x04d0-0x04d1] [ 0.440150] pnp 00:0a: [io 0x0000-0xffffffffffffffff disabled] [ 0.440160] pnp 00:0a: [io 0x0000-0xffffffffffffffff disabled] [ 0.440168] pnp 00:0a: [io 0x03f4] [ 0.440175] pnp 00:0a: [io 0x03f5] [ 0.440183] pnp 00:0a: [io 0x0374] [ 0.440190] pnp 00:0a: [io 0x0375] [ 0.440405] system 00:0a: [io 0x04d0-0x04d1] has been reserved [ 0.440432] system 00:0a: [io 0x03f4] has been reserved [ 0.440451] system 00:0a: [io 0x03f5] has been reserved [ 0.440469] system 00:0a: [io 0x0374] has been reserved [ 0.440488] system 00:0a: [io 0x0375] has been reserved [ 0.440508] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.440550] pnp 00:0b: [io 0x00f0-0x00ff] [ 0.440572] pnp 00:0b: [irq 13] [ 0.440691] pnp 00:0b: Plug and Play ACPI device, IDs PNP0c04 (active) [ 0.440770] pnp 00:0c: [io 0x0810] [ 0.440779] pnp 00:0c: [io 0x0800-0x080f] [ 0.440787] pnp 00:0c: [io 0xffff] [ 0.440947] system 00:0c: [io 0x0810] has been reserved [ 0.440970] system 00:0c: [io 0x0800-0x080f] has been reserved [ 0.440989] system 00:0c: [io 0xffff] has been reserved [ 0.441010] system 00:0c: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.441620] pnp 00:0d: [io 0x0900-0x097f] [ 0.441630] pnp 00:0d: [io 0x09c0-0x09ff] [ 0.441639] pnp 00:0d: [io 0x0400-0x043f] [ 0.441647] pnp 00:0d: [io 0x0480-0x04bf] [ 0.441656] pnp 00:0d: [mem 0xfec00000-0xfec85fff] [ 0.441664] pnp 00:0d: [mem 0xfed1c000-0xfed1ffff] [ 0.441673] pnp 00:0d: [mem 0x000c0000-0x000dffff] [ 0.441689] pnp 00:0d: [mem 0x000e0000-0x000effff] [ 0.441697] pnp 00:0d: [mem 0x000f0000-0x000fffff] [ 0.441706] pnp 00:0d: [mem 0xff800000-0xffffffff] [ 0.441911] system 00:0d: [io 0x0900-0x097f] has been reserved [ 0.441935] system 00:0d: [io 0x09c0-0x09ff] has been reserved [ 0.441955] system 00:0d: [io 0x0400-0x043f] has been reserved [ 0.441975] system 00:0d: [io 0x0480-0x04bf] has been reserved [ 0.441997] system 00:0d: [mem 0xfec00000-0xfec85fff] could not be reserved [ 0.442019] system 00:0d: [mem 0xfed1c000-0xfed1ffff] has been reserved [ 0.442040] system 00:0d: [mem 0x000c0000-0x000dffff] could not be reserved [ 0.442061] system 00:0d: [mem 0x000e0000-0x000effff] could not be reserved [ 0.442082] system 00:0d: [mem 0x000f0000-0x000fffff] could not be reserved [ 0.442103] system 00:0d: [mem 0xff800000-0xffffffff] has been reserved [ 0.442126] system 00:0d: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.442308] pnp 00:0e: [mem 0xfed00000-0xfed003ff] [ 0.442454] pnp 00:0e: Plug and Play ACPI device, IDs PNP0103 (active) [ 0.442569] pnp 00:0f: [mem 0x7f6f0000-0x7f6fffff] [ 0.442762] system 00:0f: [mem 0x7f6f0000-0x7f6fffff] has been reserved [ 0.442788] system 00:0f: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.443360] pnp: PnP ACPI: found 16 devices [ 0.443378] ACPI: ACPI bus type pnp unregistered [ 0.443395] PnPBIOS: Disabled by ACPI PNP [ 0.486106] PCI: max bus depth: 3 pci_try_num: 4 [ 0.486189] pci 0000:00:1c.0: PCI bridge to [bus 01-01] [ 0.486217] pci 0000:00:1c.0: bridge window [io 0xe000-0xefff] [ 0.486241] pci 0000:00:1c.0: bridge window [mem 0xd0100000-0xd01fffff] [ 0.486266] pci 0000:00:1c.0: bridge window [mem 0xff700000-0xff7fffff pref] [ 0.486298] pci 0000:03:01.0: PCI bridge to [bus 04-04] [ 0.486319] pci 0000:03:01.0: bridge window [io 0xd000-0xdfff] [ 0.486348] pci 0000:03:01.0: bridge window [mem 0xd0000000-0xd00fffff] [ 0.486374] pci 0000:03:01.0: bridge window [mem 0xff600000-0xff6fffff 64bit pref] [ 0.486406] pci 0000:03:02.0: PCI bridge to [bus 05-05] [ 0.486444] pci 0000:03:03.0: PCI bridge to [bus 06-06] [ 0.486479] pci 0000:02:00.0: PCI bridge to [bus 03-06] [ 0.486499] pci 0000:02:00.0: bridge window [io 0xd000-0xdfff] [ 0.486522] pci 0000:02:00.0: bridge window [mem 0xd0000000-0xd00fffff] [ 0.486545] pci 0000:02:00.0: bridge window [mem 0xff600000-0xff6fffff 64bit pref] [ 0.486575] pci 0000:00:1c.1: PCI bridge to [bus 02-06] [ 0.486593] pci 0000:00:1c.1: bridge window [io 0xd000-0xdfff] [ 0.486615] pci 0000:00:1c.1: bridge window [mem 0xd0000000-0xd00fffff] [ 0.486637] pci 0000:00:1c.1: bridge window [mem 0xff600000-0xff6fffff pref] [ 0.486710] pci 0000:00:1c.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 0.486735] pci 0000:00:1c.0: setting latency timer to 64 [ 0.486774] pci 0000:00:1c.1: PCI INT B -> GSI 17 (level, low) -> IRQ 17 [ 0.486796] pci 0000:00:1c.1: setting latency timer to 64 [ 0.486817] pci 0000:02:00.0: setting latency timer to 64 [ 0.486836] pci 0000:03:01.0: setting latency timer to 64 [ 0.486858] pci 0000:03:02.0: setting latency timer to 64 [ 0.486880] pci 0000:03:03.0: setting latency timer to 64 [ 0.486893] pci_bus 0000:00: resource 4 [io 0x0000-0x0cf7] [ 0.486902] pci_bus 0000:00: resource 5 [io 0x0d00-0xffff] [ 0.486912] pci_bus 0000:00: resource 6 [mem 0x000a0000-0x000bffff] [ 0.486922] pci_bus 0000:00: resource 7 [mem 0x80000000-0xffffffff] [ 0.486932] pci_bus 0000:01: resource 0 [io 0xe000-0xefff] [ 0.486941] pci_bus 0000:01: resource 1 [mem 0xd0100000-0xd01fffff] [ 0.486951] pci_bus 0000:01: resource 2 [mem 0xff700000-0xff7fffff pref] [ 0.486961] pci_bus 0000:02: resource 0 [io 0xd000-0xdfff] [ 0.486970] pci_bus 0000:02: resource 1 [mem 0xd0000000-0xd00fffff] [ 0.486980] pci_bus 0000:02: resource 2 [mem 0xff600000-0xff6fffff pref] [ 0.486989] pci_bus 0000:03: resource 0 [io 0xd000-0xdfff] [ 0.486998] pci_bus 0000:03: resource 1 [mem 0xd0000000-0xd00fffff] [ 0.487008] pci_bus 0000:03: resource 2 [mem 0xff600000-0xff6fffff 64bit pref] [ 0.487018] pci_bus 0000:04: resource 0 [io 0xd000-0xdfff] [ 0.487028] pci_bus 0000:04: resource 1 [mem 0xd0000000-0xd00fffff] [ 0.487038] pci_bus 0000:04: resource 2 [mem 0xff600000-0xff6fffff 64bit pref] [ 0.487177] NET: Registered protocol family 2 [ 0.487405] IP route cache hash table entries: 32768 (order: 5, 131072 bytes) [ 0.488397] TCP established hash table entries: 131072 (order: 8, 1048576 bytes) [ 0.489792] TCP bind hash table entries: 65536 (order: 7, 524288 bytes) [ 0.490493] TCP: Hash tables configured (established 131072 bind 65536) [ 0.490525] TCP reno registered [ 0.490551] UDP hash table entries: 512 (order: 2, 16384 bytes) [ 0.490590] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes) [ 0.490898] NET: Registered protocol family 1 [ 0.490970] pci 0000:00:02.0: Boot video device [ 0.491052] pci 0000:00:1d.0: PCI INT A -> GSI 20 (level, low) -> IRQ 20 [ 0.491092] pci 0000:00:1d.0: PCI INT A disabled [ 0.491134] pci 0000:00:1d.1: PCI INT B -> GSI 21 (level, low) -> IRQ 21 [ 0.491174] pci 0000:00:1d.1: PCI INT B disabled [ 0.491220] pci 0000:00:1d.2: PCI INT C -> GSI 22 (level, low) -> IRQ 22 [ 0.491259] pci 0000:00:1d.2: PCI INT C disabled [ 0.491307] pci 0000:00:1d.7: PCI INT D -> GSI 23 (level, low) -> IRQ 23 [ 0.864431] Freeing initrd memory: 13820k freed [ 2.088042] pci 0000:00:1d.7: EHCI: BIOS handoff failed (BIOS bug?) 01010001 [ 2.088207] pci 0000:00:1d.7: PCI INT D disabled [ 2.088267] PCI: CLS 64 bytes, default 64 [ 2.089248] audit: initializing netlink socket (disabled) [ 2.089287] type=2000 audit(1349363630.084:1): initialized [ 2.144783] highmem bounce pool size: 64 pages [ 2.144808] HugeTLB registered 2 MB page size, pre-allocated 0 pages [ 2.160057] VFS: Disk quotas dquot_6.5.2 [ 2.160232] Dquot-cache hash table entries: 1024 (order 0, 4096 bytes) [ 2.161716] fuse init (API version 7.17) [ 2.161995] msgmni has been set to 1713 [ 2.162925] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 253) [ 2.163008] io scheduler noop registered [ 2.163023] io scheduler deadline registered [ 2.163048] io scheduler cfq registered (default) [ 2.163339] pcieport 0000:00:1c.0: setting latency timer to 64 [ 2.163530] pcieport 0000:00:1c.1: setting latency timer to 64 [ 2.163706] pcieport 0000:02:00.0: setting latency timer to 64 [ 2.163873] pcieport 0000:03:01.0: setting latency timer to 64 [ 2.163964] pcieport 0000:03:01.0: irq 40 for MSI/MSI-X [ 2.164193] pcieport 0000:03:02.0: setting latency timer to 64 [ 2.164272] pcieport 0000:03:02.0: irq 41 for MSI/MSI-X [ 2.164453] pcieport 0000:03:03.0: setting latency timer to 64 [ 2.164531] pcieport 0000:03:03.0: irq 42 for MSI/MSI-X [ 2.164783] pcieport 0000:00:1c.0: Signaling PME through PCIe PME interrupt [ 2.164801] pci 0000:01:00.0: Signaling PME through PCIe PME interrupt [ 2.164816] pcie_pme 0000:00:1c.0:pcie01: service driver pcie_pme loaded [ 2.164853] pcieport 0000:00:1c.1: Signaling PME through PCIe PME interrupt [ 2.164867] pcieport 0000:02:00.0: Signaling PME through PCIe PME interrupt [ 2.164880] pcieport 0000:03:01.0: Signaling PME through PCIe PME interrupt [ 2.164892] pci 0000:04:00.0: Signaling PME through PCIe PME interrupt [ 2.164904] pcieport 0000:03:02.0: Signaling PME through PCIe PME interrupt [ 2.164917] pcieport 0000:03:03.0: Signaling PME through PCIe PME interrupt [ 2.164932] pcie_pme 0000:00:1c.1:pcie01: service driver pcie_pme loaded [ 2.164988] pci_hotplug: PCI Hot Plug PCI Core version: 0.5 [ 2.165115] pciehp 0000:00:1c.0:pcie04: HPC vendor_id 8086 device_id 8110 ss_vid 8086 ss_did 8119 [ 2.165177] pciehp 0000:00:1c.0:pcie04: service driver pciehp loaded [ 2.165199] pciehp 0000:00:1c.1:pcie04: HPC vendor_id 8086 device_id 8112 ss_vid 8086 ss_did 8119 [ 2.165260] pciehp 0000:00:1c.1:pcie04: service driver pciehp loaded [ 2.165290] pciehp: PCI Express Hot Plug Controller Driver version: 0.4 [ 2.165488] intel_idle: MWAIT substates: 0x3020220 [ 2.165508] intel_idle: v0.4 model 0x1C [ 2.165513] intel_idle: lapic_timer_reliable_states 0x2 [ 2.165519] Marking TSC unstable due to TSC halts in idle states deeper than C2 [ 2.165779] input: Lid Switch as /devices/LNXSYSTM:00/device:00/PNP0C0D:00/input/input0 [ 2.165855] ACPI: Lid Switch [LID] [ 2.165983] input: Power Button as /devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/input1 [ 2.166005] ACPI: Power Button [PWRB] [ 2.173811] thermal LNXTHERM:00: registered as thermal_zone0 [ 2.173829] ACPI: Thermal Zone [TZ00] (48 C) [ 2.174004] thermal LNXTHERM:01: registered as thermal_zone1 [ 2.174018] ACPI: Thermal Zone [TZ01] (34 C) [ 2.174194] thermal LNXTHERM:02: registered as thermal_zone2 [ 2.174207] ACPI: Thermal Zone [TZ02] (34 C) [ 2.174378] thermal LNXTHERM:03: registered as thermal_zone3 [ 2.174392] ACPI: Thermal Zone [TZ03] (34 C) [ 2.174503] ERST: Table is not found! [ 2.174513] GHES: HEST is not enabled! [ 2.174601] isapnp: Scanning for PnP cards... [ 2.176175] Serial: 8250/16550 driver, 32 ports, IRQ sharing enabled [ 2.196702] serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 2.292409] serial8250: ttyS1 at I/O 0x2f8 (irq = 3) is a 16550A [ 2.528909] isapnp: No Plug & Play device found [ 2.588733] 00:05: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 2.624523] 00:06: ttyS1 at I/O 0x2f8 (irq = 3) is a 16550A [ 2.640702] Linux agpgart interface v0.103 [ 2.645138] brd: module loaded [ 2.647452] loop: module loaded [ 2.648149] pata_acpi 0000:00:1f.1: setting latency timer to 64 [ 2.649238] Fixed MDIO Bus: probed [ 2.649315] tun: Universal TUN/TAP device driver, 1.6 [ 2.649327] tun: (C) 1999-2004 Max Krasnyansky <[email protected]> [ 2.649524] PPP generic driver version 2.4.2 [ 2.649824] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver [ 2.649884] ehci_hcd 0000:00:1d.7: PCI INT D -> GSI 23 (level, low) -> IRQ 23 [ 2.649937] ehci_hcd 0000:00:1d.7: setting latency timer to 64 [ 2.649946] ehci_hcd 0000:00:1d.7: EHCI Host Controller [ 2.650082] ehci_hcd 0000:00:1d.7: new USB bus registered, assigned bus number 1 [ 2.650148] ehci_hcd 0000:00:1d.7: debug port 1 [ 2.654045] ehci_hcd 0000:00:1d.7: cache line size of 64 is not supported [ 2.654093] ehci_hcd 0000:00:1d.7: irq 23, io mem 0xd02c4000 [ 2.668035] ehci_hcd 0000:00:1d.7: USB 2.0 started, EHCI 1.00 [ 2.668392] hub 1-0:1.0: USB hub found [ 2.668413] hub 1-0:1.0: 8 ports detected [ 2.668618] ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver [ 2.668666] uhci_hcd: USB Universal Host Controller Interface driver [ 2.668726] uhci_hcd 0000:00:1d.0: PCI INT A -> GSI 20 (level, low) -> IRQ 20 [ 2.668751] uhci_hcd 0000:00:1d.0: setting latency timer to 64 [ 2.668759] uhci_hcd 0000:00:1d.0: UHCI Host Controller [ 2.668910] uhci_hcd 0000:00:1d.0: new USB bus registered, assigned bus number 2 [ 2.668981] uhci_hcd 0000:00:1d.0: irq 20, io base 0x0000f040 [ 2.669335] hub 2-0:1.0: USB hub found [ 2.669355] hub 2-0:1.0: 2 ports detected [ 2.669508] uhci_hcd 0000:00:1d.1: PCI INT B -> GSI 21 (level, low) -> IRQ 21 [ 2.669531] uhci_hcd 0000:00:1d.1: setting latency timer to 64 [ 2.669538] uhci_hcd 0000:00:1d.1: UHCI Host Controller [ 2.669675] uhci_hcd 0000:00:1d.1: new USB bus registered, assigned bus number 3 [ 2.669739] uhci_hcd 0000:00:1d.1: irq 21, io base 0x0000f020 [ 2.670099] hub 3-0:1.0: USB hub found [ 2.670118] hub 3-0:1.0: 2 ports detected [ 2.670271] uhci_hcd 0000:00:1d.2: PCI INT C -> GSI 22 (level, low) -> IRQ 22 [ 2.670295] uhci_hcd 0000:00:1d.2: setting latency timer to 64 [ 2.670302] uhci_hcd 0000:00:1d.2: UHCI Host Controller [ 2.670435] uhci_hcd 0000:00:1d.2: new USB bus registered, assigned bus number 4 [ 2.670502] uhci_hcd 0000:00:1d.2: irq 22, io base 0x0000f000 [ 2.670869] hub 4-0:1.0: USB hub found [ 2.670888] hub 4-0:1.0: 2 ports detected [ 2.671186] usbcore: registered new interface driver libusual [ 2.671332] i8042: PNP: PS/2 Controller [PNP0303:PS2K,PNP0f03:PS2M] at 0x60,0x64 irq 1,12 [ 2.673408] serio: i8042 KBD port at 0x60,0x64 irq 1 [ 2.673437] serio: i8042 AUX port at 0x60,0x64 irq 12 [ 2.673844] mousedev: PS/2 mouse device common for all mice [ 2.674272] rtc_cmos 00:08: RTC can wake from S4 [ 2.674482] rtc_cmos 00:08: rtc core: registered rtc_cmos as rtc0 [ 2.674529] rtc0: alarms up to one year, y3k, 242 bytes nvram, hpet irqs [ 2.674691] device-mapper: uevent: version 1.0.3 [ 2.674903] device-mapper: ioctl: 4.22.0-ioctl (2011-10-19) initialised: [email protected] [ 2.675024] EISA: Probing bus 0 at eisa.0 [ 2.675037] EISA: Cannot allocate resource for mainboard [ 2.675050] Cannot allocate resource for EISA slot 1 [ 2.675061] Cannot allocate resource for EISA slot 2 [ 2.675072] Cannot allocate resource for EISA slot 3 [ 2.675083] Cannot allocate resource for EISA slot 4 [ 2.675094] Cannot allocate resource for EISA slot 5 [ 2.675105] Cannot allocate resource for EISA slot 6 [ 2.675116] Cannot allocate resource for EISA slot 7 [ 2.675127] Cannot allocate resource for EISA slot 8 [ 2.675137] EISA: Detected 0 cards. [ 2.675161] cpufreq-nforce2: No nForce2 chipset. [ 2.675401] cpuidle: using governor ladder [ 2.675786] cpuidle: using governor menu [ 2.675797] EFI Variables Facility v0.08 2004-May-17 [ 2.676429] TCP cubic registered [ 2.676751] NET: Registered protocol family 10 [ 2.678031] NET: Registered protocol family 17 [ 2.678052] Registering the dns_resolver key type [ 2.678107] Using IPI No-Shortcut mode [ 2.678515] PM: Hibernation image not present or could not be loaded. [ 2.678543] registered taskstats version 1 [ 2.701145] Magic number: 0:84:234 [ 2.701312] rtc_cmos 00:08: setting system clock to 2012-10-04 15:13:51 UTC (1349363631) [ 2.702280] BIOS EDD facility v0.16 2004-Jun-25, 0 devices found [ 2.702294] EDD information not available. [ 2.702858] Freeing unused kernel memory: 740k freed [ 2.703630] Write protecting the kernel text: 5816k [ 2.703692] Write protecting the kernel read-only data: 2376k [ 2.703706] NX-protecting the kernel data: 4424k [ 2.751226] udevd[84]: starting version 175 [ 2.980162] usb 1-1: new high-speed USB device number 2 using ehci_hcd [ 3.001394] r8169 Gigabit Ethernet driver 2.3LK-NAPI loaded [ 3.001474] r8169 0000:01:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 3.001554] r8169 0000:01:00.0: setting latency timer to 64 [ 3.001654] r8169 0000:01:00.0: irq 43 for MSI/MSI-X [ 3.004220] r8169 0000:01:00.0: eth0: RTL8168c/8111c at 0xf8416000, 00:18:92:03:10:46, XID 1c4000c0 IRQ 43 [ 3.004254] r8169 0000:01:00.0: eth0: jumbo features [frames: 6128 bytes, tx checksumming: ko] [ 3.004347] r8169 Gigabit Ethernet driver 2.3LK-NAPI loaded [ 3.005085] r8169 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 [ 3.005182] r8169 0000:04:00.0: setting latency timer to 64 [ 3.005292] r8169 0000:04:00.0: irq 44 for MSI/MSI-X [ 3.007187] r8169 0000:04:00.0: eth1: RTL8168c/8111c at 0xf8418000, 00:18:92:03:10:47, XID 1c4000c0 IRQ 44 [ 3.007224] r8169 0000:04:00.0: eth1: jumbo features [frames: 6128 bytes, tx checksumming: ko] [ 3.034417] pata_sch 0000:00:1f.1: version 0.2 [ 3.034518] pata_sch 0000:00:1f.1: setting latency timer to 64 [ 3.036698] scsi0 : pata_sch [ 3.039842] scsi1 : pata_sch [ 3.040913] ata1: PATA max UDMA/100 cmd 0x1f0 ctl 0x3f6 bmdma 0xf060 irq 14 [ 3.040940] ata2: PATA max UDMA/100 cmd 0x170 ctl 0x376 bmdma 0xf068 irq 15 [ 3.131850] Initializing USB Mass Storage driver... [ 3.136405] scsi2 : usb-storage 1-1:1.0 [ 3.136642] usbcore: registered new interface driver usb-storage [ 3.136656] USB Mass Storage support registered. [ 3.524465] usb 3-1: new low-speed USB device number 2 using uhci_hcd [ 3.968144] usb 3-2: new full-speed USB device number 3 using uhci_hcd [ 4.137903] scsi 2:0:0:0: Direct-Access TS TS4GUFM-H 1100 PQ: 0 ANSI: 0 CCS [ 4.140067] sd 2:0:0:0: Attached scsi generic sg0 type 0 [ 4.140590] sd 2:0:0:0: [sda] 8028160 512-byte logical blocks: (4.11 GB/3.82 GiB) [ 4.141597] sd 2:0:0:0: [sda] Write Protect is off [ 4.141618] sd 2:0:0:0: [sda] Mode Sense: 43 00 00 00 [ 4.142974] sd 2:0:0:0: [sda] No Caching mode page present [ 4.143000] sd 2:0:0:0: [sda] Assuming drive cache: write through [ 4.145837] sd 2:0:0:0: [sda] No Caching mode page present [ 4.145858] sd 2:0:0:0: [sda] Assuming drive cache: write through [ 4.147931] sda: sda1 sda2 < sda5 > [ 4.150972] sd 2:0:0:0: [sda] No Caching mode page present [ 4.151001] sd 2:0:0:0: [sda] Assuming drive cache: write through [ 4.151023] sd 2:0:0:0: [sda] Attached SCSI disk [ 4.249168] input: HID 046a:004b as /devices/pci0000:00/0000:00:1d.1/usb3/3-1/3-1:1.0/input/input2 [ 4.249579] generic-usb 0003:046A:004B.0001: input,hidraw0: USB HID v1.11 Keyboard [HID 046a:004b] on usb-0000:00:1d.1-1/input0 [ 4.287805] input: HID 046a:004b as /devices/pci0000:00/0000:00:1d.1/usb3/3-1/3-1:1.1/input/input3 [ 4.289235] generic-usb 0003:046A:004B.0002: input,hidraw1: USB HID v1.11 Mouse [HID 046a:004b] on usb-0000:00:1d.1-1/input1 [ 4.297604] input: EloTouchSystems,Inc Elo TouchSystems 2216 AccuTouch\xffffffc2\xffffffae\xffffffae USB Touchmonitor Interface as /devices/pci0000:00/0000:00:1d.1/usb3/3-2/3-2:1.0/input/input4 [ 4.298913] generic-usb 0003:04E7:0050.0003: input,hidraw2: USB HID v1.00 Pointer [EloTouchSystems,Inc Elo TouchSystems 2216 AccuTouch\xffffffc2\xffffffae\xffffffae USB Touchmonitor Interface] on usb-0000:00:1d.1-2/input0 [ 4.299878] usbcore: registered new interface driver usbhid [ 4.299925] usbhid: USB HID core driver [ 4.352639] EXT4-fs (sda1): INFO: recovery required on readonly filesystem [ 4.352661] EXT4-fs (sda1): write access will be enabled during recovery [ 8.519257] EXT4-fs (sda1): recovery complete [ 8.564389] EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts: (null) [ 14.280922] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 14.280944] ADDRCONF(NETDEV_UP): eth1: link is not ready [ 14.310368] udevd[308]: starting version 175 [ 14.353873] Adding 1045500k swap on /dev/sda5. Priority:-1 extents:1 across:1045500k [ 14.428718] lp: driver loaded but no devices found [ 14.521667] EXT4-fs (sda1): re-mounted. Opts: errors=remount-ro [ 15.073459] [drm] Initialized drm 1.1.0 20060810 [ 15.097073] psb_gfx: module is from the staging directory, the quality is unknown, you have been warned. [ 15.180630] gma500 0000:00:02.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 15.180648] gma500 0000:00:02.0: setting latency timer to 64 [ 15.182117] Stolen memory information [ 15.182127] base in RAM: 0x7f800000 [ 15.182134] size: 7932K, calculated by (GTT RAM base) - (Stolen base), seems wrong [ 15.182143] the correct size should be: 8M(dvmt mode=3) [ 15.234889] Set up 1983 stolen pages starting at 0x7f800000, GTT offset 0K [ 15.235126] [drm] SGX core id = 0x01130000 [ 15.235135] [drm] SGX core rev major = 0x01, minor = 0x02 [ 15.235143] [drm] SGX core rev maintenance = 0x01, designer = 0x00 [ 15.268796] [Firmware Bug]: ACPI: No _BQC method, cannot determine initial brightness [ 15.269888] acpi device:04: registered as cooling_device2 [ 15.270568] acpi device:05: registered as cooling_device3 [ 15.270947] input: Video Bus as /devices/LNXSYSTM:00/device:00/PNP0A08:00/LNXVIDEO:00/input/input5 [ 15.271238] ACPI: Video Device [GFX0] (multi-head: yes rom: no post: no) [ 15.271424] [drm] Supports vblank timestamp caching Rev 1 (10.10.2010). [ 15.271434] [drm] No driver support for vblank timestamp query. [ 15.374694] type=1400 audit(1349363644.167:2): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=435 comm="apparmor_parser" [ 15.385518] type=1400 audit(1349363644.179:3): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=435 comm="apparmor_parser" [ 15.386369] type=1400 audit(1349363644.179:4): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=435 comm="apparmor_parser" [ 15.677514] r8169 0000:01:00.0: eth0: link down [ 15.694828] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 16.537490] gma500 0000:00:02.0: allocated 800x480 fb [ 16.558066] fbcon: psbfb (fb0) is primary device [ 16.747122] gma500 0000:00:02.0: BL bug: Reg 00000000 save 00000000 [ 16.775550] Console: switching to colour frame buffer device 100x30 [ 16.781804] fb0: psbfb frame buffer device [ 16.781812] drm: registered panic notifier [ 16.870168] [drm] Initialized gma500 1.0.0 2011-06-06 for 0000:00:02.0 on minor 0 [ 16.871166] snd_hda_intel 0000:00:1b.0: power state changed by ACPI to D0 [ 16.871186] snd_hda_intel 0000:00:1b.0: power state changed by ACPI to D0 [ 16.871207] snd_hda_intel 0000:00:1b.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 16.871284] snd_hda_intel 0000:00:1b.0: setting latency timer to 64 [ 29.338953] r8169 0000:01:00.0: eth0: link up [ 29.339471] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 31.427223] init: failsafe main process (675) killed by TERM signal [ 31.522411] type=1400 audit(1349363660.316:5): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=889 comm="apparmor_parser" [ 31.523956] type=1400 audit(1349363660.316:6): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=889 comm="apparmor_parser" [ 31.524882] type=1400 audit(1349363660.320:7): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=889 comm="apparmor_parser" [ 31.525940] type=1400 audit(1349363660.320:8): apparmor="STATUS" operation="profile_load" name="/usr/sbin/tcpdump" pid=891 comm="apparmor_parser" [ 34.526445] postgres (1003): /proc/1003/oom_adj is deprecated, please use /proc/1003/oom_score_adj instead. [ 40.144048] eth0: no IPv6 routers present

    Read the article

  • xt_TCPMSS: bad length messages

    - by Matic
    I'm getting loads of messages like: Jun 23 10:24:20 awakening kernel: [ 1691.596823] xt_TCPMSS: bad length (1492 bytes) Jun 23 10:24:21 awakening kernel: [ 1692.663362] xt_TCPMSS: bad length (1448 bytes) Jun 23 10:24:21 awakening kernel: [ 1692.663495] xt_TCPMSS: bad length (1448 bytes) Jun 23 10:24:21 awakening kernel: [ 1692.663588] xt_TCPMSS: bad length (1448 bytes) Jun 23 10:24:21 awakening kernel: [ 1692.663671] xt_TCPMSS: bad length (1440 bytes) Jun 23 10:24:26 awakening kernel: [ 1697.062914] xt_TCPMSS: bad length (474 bytes) Jun 23 10:24:26 awakening kernel: [ 1697.305525] xt_TCPMSS: bad length (1492 bytes) Jun 23 10:24:27 awakening kernel: [ 1698.946633] xt_TCPMSS: bad length (1492 bytes) Jun 23 10:24:36 awakening kernel: [ 1707.481198] xt_TCPMSS: bad length (1492 bytes) Jun 23 10:24:37 awakening kernel: [ 1708.723526] xt_TCPMSS: bad length (805 bytes) Jun 23 10:24:38 awakening kernel: [ 1709.599461] xt_TCPMSS: bad length (805 bytes) Jun 23 10:24:41 awakening kernel: [ 1712.211052] xt_TCPMSS: bad length (1492 bytes) Jun 23 10:24:41 awakening kernel: [ 1712.260588] xt_TCPMSS: bad length (1492 bytes) Jun 23 10:24:41 awakening kernel: [ 1712.976058] xt_TCPMSS: bad length (1492 bytes) Jun 23 10:24:43 awakening kernel: [ 1714.225209] xt_TCPMSS: bad length (1492 bytes) Jun 23 10:24:43 awakening kernel: [ 1714.914961] xt_TCPMSS: bad length (1492 bytes) Jun 23 10:24:55 awakening kernel: [ 1726.192696] xt_TCPMSS: bad length (1480 bytes) Jun 23 10:24:55 awakening kernel: [ 1726.192825] xt_TCPMSS: bad length (1480 bytes) In my dmesg/syslog. This linux machine is among other things used as an internet gateway. Connection is over PPPoE. I have the following line in my iptables script: $IPT -A FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu # PPPoE fix The frequency of this messages increased 10x when I upgraded from Debian lenny with 2.6.27 to squeeze with 2.6.32 few days ago. Why am I seeing this messages and how can I fix them?

    Read the article

  • Access to message queuing system is denied MSMQ?

    - by user1401694
    My problem is a little confusing. I have 2 servers (Windows Server 2008 R2) with MSMQ installed and I want to use Server B to consume a MessageQueue on Server A. When I try to Receive it always throws a message error: "Access to message queuing system is denied.". IP between them. Server A: 172.31.23.130 Server B: 172.31.23.195 FormatName:Direct=TCP:172.31.23.195\private$\queuesource (It's working for Sends) I can ping each server from the other; The firewall is disabled; The "queuesource" has Full Control to "Everyone", "Anonymous Logon", "Network", "Network Services"; Journal is disabled; Authentication is ok; The queue is Transactional. My code in .Net C# is basically like this: MessageQueue _sourceQueue = new MessageQueue(); _sourceQueue.Path = "FormatName:Direct=TCP:172.31.23.195\private$\queuesource"; _sourceQueue.Receive(); // << here throw an exception. Actually I'm using the Private Queue only to avoid Active Directory's problems. For example, if the server DNS fail all network fail. I don't know what do anymore.

    Read the article

  • How to disable windows server 2008 timestamp response

    - by Cal
    Posted this question on stackoverflow but then got instructed to post it here: I was using Rapid7's Nexpose to scan one of our web servers (windows server 2008), and got a vulnerability for timestamp response. According to Rapid7, timestamp response shall be disabled: http://www.rapid7.com/db/vulnerabilities/generic-tcp-timestamp So far I have tried several things: Edit the registry, add a "Tcp1323Opts" key to HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters, and set it to 0. http://technet.microsoft.com/en-us/library/cc938205.aspx Use this command: netsh int tcp set global timestamps=disabled Tried powershell command: Set-netTCPsetting -SettingName InternetCustom -Timestamps disabled (got error: Set-netTCPsetting : The term 'Set-netTCPsetting' is not recognized as the name of a cmdlet, function, script file, or operable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again.) None of above attempts was successful, after re-scan we still got the same alert. Rapid7 suggested using a firewall that's capable of blocking it, but we want to know if there is a setting on windows to achieve it. Is it through a specific port? If yes, what is the port number? If not, could you suggest a 3rd party firewall that is capable of blocking it? Thank you very much.

    Read the article

  • Connectivity with SQL Server Express 2008 r2 and SQL Server 2000 on same machine

    - by Jim R
    At first glance this may same a duplicate of Installing both SQL Server 2000 and SQL Server 2008 on the same machine, but it is not. I have SQL Server 2000 and SQL Server 2008 R2 installed on the same machine and working fine. My problem lies with connecting to the 2008 R2 server from a remote machine. My connectivity needs to be TCP. The legacy installation or SQL 2000 uses the default port of 1433. The named instance is by default configured to use 'Shared Memory' and is working fine. When I configured the 2008 R2 server to use 1433 (I did not think that thru) the service refused to start becasue 1433 was already in use by the legacy SQL 2000 default instance. Doh! What I want to do is have both servers available simultaneously via TCP. both servers need not be on the same port, put if I cannot run them on the same port, then how do I configure the clients? Is there not some kind of proxy available that can monitor the 1433 port and pass the request thru to the correct SQL instance by name? Is this capability built into SQL server already? Thanks, Jim

    Read the article

  • Windows Server 2008R2 - can't change or remove the default gateway

    - by disserman
    We've installed VMWare Server 2.0 on Windows 2008R2. After some time playing with it (actually only removing host-only and nat networks, and binding adapters to the specified vmnets) we've noticed a strange problem: if you change or remove the default gateway on the network card, the server completely loses a network connection you can't ping it from the subnet, it also can't connect to anyone. When the gateway is removed and a server tries to connect to the other machines, I can see some incoming packets using a sniffer, but I believe they are damaged in some kind (I'm not a mega-guru in TCP/IP and can't find a mistake in a binary translation of the packet) because the other side doesn't respond. What we tried: removed vmware server using add/remove programs deleted everything related to the vmware server and all installed network adapters in the windows registry double checked for the vmware bridged protocol driver file, it's physically absent and no any links in the registry. performed a tcp/ip reset with netsh and disabled/enabled all network adapters in the device manager to recreate a registry keys for them. tried another network adapter. and the situation is the same: as soon you remove or change the default gateway, windows stops working. The total absurd of the situation is that the default gateway points to the non-existing IP. But when it's set, you can ping a server from the subnet, when you remove it - you can't. Any help? I'm starting thinking the new build of the VMWare Server is some kind of the malware... :)

    Read the article

  • Unexpected behaviour when dynamically add node in HAproxy server

    - by Anand Soni
    I wanted to use HAProxy for my web app for load balancing purpose. I am trying to add a new rabbitmq node dynamically in HAProxy server using command : haproxy -p /var/run/haproxy.pid -sf $(cat /var/run/haproxy.pid). I am doing tcp connection mode with leastconn balance algorithm in load balancing. What is expected is when there is 3 connection in one rabbitmq, I add a new rabbit server in HAProxy server. so the next connection would pass to 2nd rabbitmq server which is not happening in my case. It distributes the connection in haphazardly manner. Here is my config file: defaults log global mode http option httplog option dontlognull retries 3 option redispatch maxconn 2000 contimeout 5000 clitimeout 5000 srvtimeout 5000 listen rabbitmq 0.0.0.0:5672 mode tcp stats enable balance leastconn option tcplog server rabbit01 xx.xx.xx.xx:5672 check server rabbit02 xx.xx.xx.xx:5672 check listen tomcatq 0.0.0.0:80 mode http stats enable balance roundrobin stats refresh 10s stats refresh 10s stats uri /lb?stats stats auth admin:admin option httplog What is the problem causing this behavior? Any suggestion will appreciated.

    Read the article

< Previous Page | 64 65 66 67 68 69 70 71 72 73 74 75  | Next Page >