Looking for strategies for a very large table with data maintained for reporting and historical purposes, a very small subset of that data is used in daily operations.
Background:
We have Visitor and Visits tables which are continuously updated by our consumer facing site. These tables contain information on every visit and visitor, including bots and crawlers, direct traffic that does not result in a conversion, etc.
Our back end site allows management of the visitor's (leads) from the front end site. Most of the management occurs on a small subset of our visitors (visitors that become leads). The vast majority of the data in our visitor and visit tables is maintained only for a much smaller subset of user activity (basically reporting type functionality). This is NOT an indexing problem, we have done all we can with indexing and keeping our indexes clean, small, and not fragmented.
ps: We do not currently have the budget or expertise for a data warehouse.
The problem:
We would like the system to be more responsive to our end users when they are querying, for instance, the list of their assigned leads. Currently the query is against a huge data set of mostly irrelevant data.
I am pondering a few ideas. One involves new tables and a fairly major re-architecture, I'm not asking for help on that. The other involves creating redundant data, (for instance a Visitor_Archive and a Visitor_Small table) where the larger visitor and visit tables exist for inserts and history/reporting, the smaller visitor1 table would exist for managing leads, sending lead an email, need leads phone number, need my list of leads, etc..
The reason I am reaching out is that I would love opinions on the best way to keep the Visitor_Archive and the Visitor_Small tables in sync...
Replication? Can I use replication to replicate only data with a certain column value (FooID = x)
Any other strategies?