Search Results

Search found 10951 results on 439 pages for 'high definition'.

Page 69/439 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • I don't get object-oriented programming

    - by Joel J. Adamson
    Note: this question is an edited excerpt from a blog posting I wrote a few months ago. After placing a link to the blog in a comment on Programmers.SE someone requested that I post a question here so that they could answer it. This posting is my most popular, as people seem to type "I don't get object-oriented programming" into Google a lot. Feel free to answer here, or in a comment at Wordpress. What is object-oriented programming? No one has given me a satisfactory answer. I feel like you will not get a good definition from someone who goes around saying “object” and “object-oriented” with his nose in the air. Nor will you get a good definition from someone who has done nothing but object-oriented programming. No one who understands both procedural and object-oriented programming has ever given me a consistent idea of what an object-oriented program actually does. Can someone please give me their ideas of the advantages of object-oriented programming?

    Read the article

  • nagios check_ping: Invalid hostname/address

    - by lgt
    I'm trying to setup nagios for a host what has the following webroot: www.example.com/ui/html/, but nagios won't accept as host this kind of host path check_ping: Invalid hostname/address. Is there a workaround for this issue? # Define a host for the local machine define host{ use linux-server ; Name of host template to use ; This host definition will inherit all variables that are defined ; in (or inherited by) the linux-server host template definition. host_name example.com/ui/html alias example.com/ui/html address www.example.com/ui/html/ } ############################################################################### ############################################################################### # # SERVICE DEFINITIONS # ############################################################################### ############################################################################### # Define a service to check HTTP on the local machine. # Disable notifications for this service by default, as not all users may have HTTP enabled. define service{ use generic-service name http-service service_description HTTP is_volatile 0 check_period 24x7 max_check_attempts 3 normal_check_interval 5 retry_check_interval 1 notifications_enabled 1 notification_interval 0 notification_period 24x7 notification_options c,r check_command check_http!$HOSTADDRESS$ register 0 } Thanks

    Read the article

  • In Email, Image (img) Source (src) Tags are rewritten as relative links. How to fix?

    - by Noah Goodrich
    I'm working on sending out an html based email, and every time it sends the image src tags and some of the anchor href tags are modified to be relative url's. Update 2: This is happening between when the body of the email is generated and sent and when it arrives in my inbox. Update: I am using Postfix on a LAMPP server. In addition, I am using Zend_Mail to send the emails out. For example, I have a link: src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/header.jpg" And it gets rewritten as: src="../../../../images/email/highpoint_2009_04/header.jpg" What can cause this to occur and how is it corrected? Email headers: Return-Path: <[email protected]> X-Original-To: [email protected] Delivered-To: [email protected] Received: by mail.example.com (Postfix, from userid 0) id 6BF012252; Tue, 14 Apr 2009 12:15:20 -0600 (MDT) To: Gabriel <[email protected]> Subject: Free Map to Sales Success From: Somebody <[email protected]> Date: Tue, 14 Apr 2009 12:15:20 -0600 Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: multipart/related Content-Disposition: inline Message-Id: <[email protected]> Original content to be sent out: <table align="center" border="0" cellpadding="0" cellspacing="0" width="600"> <tbody> <tr> <td valign="top"> <a href="http://www.furnituretrainingcompany.com"> <img moz-do-not-send="true" alt="The Furniture Training Company - Know More. Sell More." src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/header.jpg" border="0" height="123" width="600"> </a> </td> </tr> </tbody> </table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="600"> <tbody> <tr> <td valign="top"><img alt="Visit us at High Point to receive your free training poster" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/hero.jpg" moz-do-not-send="true" height="150" width="600"><br> </td> </tr> </tbody> </table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="600"> <tbody> <tr> <td bgcolor="#ffffff" valign="top"><img alt="" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/spacer_content_left.jpg" moz-do-not-send="true" height="30" width="30"><br> </td> <td bgcolor="#ffffff" valign="top"><font originaltag="yes" style="font-size: 9px; font-family: Verdana,Arial,Helvetica,sans-serif;" color="#000000" face="Verdana, Arial, Helvetica, sans-serif" size="1"><big><big><big><big><small><big><b>See you at Market</b></big><br> </small></big></big></big></big></font> <font originaltag="yes" style="font-size: 9px; font-family: Verdana,Arial,Helvetica,sans-serif;" color="#000000" face="Verdana, Arial, Helvetica, sans-serif" size="1"><big><big><big><big><small><br> </small></big></big></big></big></font><small><font face="Helvetica, Arial, sans-serif">Visit our space to get your free Map to Sales Success poster! This unique 24 X 36 color poster is your guide to developing high volume salespeople with larger tickets. Find us in the new NHFA Retailer Resource Center located in the Plaza. <br> <br> Don&#8217;t miss Mark Lacy&#8217;s entertaining seminar "Help Wanted! My Sales Associates Can&#8217;t Sell Water to a Thirsty Camel." He&#8217;ll reveal powerful secrets for turning sales associates into furniture experts that will sell. See him Saturday, April 25th at 11:30 AM in the seminar room of the new NHFA Retail Resource Center in the Plaza. <br> <br> Stop by our space to learn how our ingenious internet-delivered training courses are easy to use, guaranteed to work, and cheaper than the daily donuts. Over 95% report increased sales. <br> <br> Plan to see us at High Point. </font></small> <font originaltag="yes" style="font-size: 9px; font-family: Verdana,Arial,Helvetica,sans-serif;" color="#000000" face="Verdana, Arial, Helvetica, sans-serif" size="1"><big><big><big><big><small><small><br> <br> <br> <br> </small></small></big></big></big></big></font><small><font originaltag="yes" style="font-size: 9px; font-family: Verdana,Arial,Helvetica,sans-serif;" color="#000000" face="Verdana, Arial, Helvetica, sans-serif" size="1"><big><big><big><small> </small></big></big></big></font></small> <a href="http://www.furnituretrainingcompany.com/map"><img alt="Find out more" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/image_content_left.jpg" moz-do-not-send="true" border="0" height="67" width="326"></a><br> <br> </td> <td bgcolor="#ffffff" valign="top"> <img alt="" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/spacer_content_middle.jpg" moz-do-not-send="true" height="28" width="28"><br> </td> <td bgcolor="#ffffff" valign="top"><img alt="Roadmap to Sales Success poster" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/image_content_right.jpg" moz-do-not-send="true" height="267" width="186"><br> <font face="Helvetica, Arial, sans-serif"><small><font originaltag="yes" style="font-size: 9px; font-family: Verdana,Arial,Helvetica,sans-serif;" color="#000000" size="1"><big><big><big><small><b>Road Map to Sales Success<br> </b><br> </small></big></big></big></font>This beautiful poster is yours free for simply stopping by and visiting with us at High Point. <span class="moz-txt-slash">Our space is located inside the </span>new NHFA Retailer Resource Center in the Plaza Suites, 222 South Main St, 1st Floor. We will be at market from Sat April 25th until Thur April 30th. </small></font><br> </td> <td bgcolor="#ffffff" valign="top"><img alt="" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/spacer_content_right.jpg" moz-do-not-send="true" height="30" width="30"><br> <br> </td> </tr> </tbody> </table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="600"> <tbody> <tr> <td bgcolor="#ffffff" valign="top"><img alt="" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/disclaimer_divider.jpg" moz-do-not-send="true" height="25" width="600"><br> </td> </tr> </tbody> </table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="600"> <tbody> <tr> <td bgcolor="#ffffff" valign="top"><img alt="" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/spacer_disclaimer_left.jpg" moz-do-not-send="true"></td> <td bgcolor="#ffffff" valign="top"><img alt="" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/spacer_disclaimer_middle.jpg" moz-do-not-send="true"><br> <font originaltag="yes" style="font-size: 9px; font-family: Verdana,Arial,Helvetica,sans-serif;" color="#666666" face="Verdana, Arial, Helvetica, sans-serif" size="1"><big><big><big><big><small><small><small>If you are not attending the High Point market in April but would still like to receive a free Road Map to Sales Success poster visit us on the web at <u><a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="http://www.furnituretrainingcompany.com">www.furnituretrainingcompany.com</a></u>, or to speak with a Furniture Training Company representative, call toll free (866) 755-5996. We do not offer free shipping outside of the U.S. and Canada. Retailers outside of the U.S. and Canada may call for more information. Limit one free Road Map to Sales Success per company. Other copies of the poster may be purchased on our web site.<br> <br> </small></small></small></big></big></big></big></font> <font color="#666666"><small><font originaltag="yes" style="font-size: 9px; font-family: Verdana,Arial,Helvetica,sans-serif;" face="Verdana, Arial, Helvetica, sans-serif" size="1"><big><big><big><small><small>We hope you found this message to be useful. However, if you'd rather not receive future emails of this sort from The Furniture Training Company, please <a moz-do-not-send="true" href="http://www.furnituretraining.com/contact">click here to unsubscribe</a>.<br> <br> </small></small></big></big></big></font></small><small><font originaltag="yes" style="font-size: 9px; font-family: Verdana,Arial,Helvetica,sans-serif;" face="Verdana, Arial, Helvetica, sans-serif" size="1"><big><big><big><small><small>&copy;Copyright 2009 The Furniture Training Company.<br> 1770 North Research Park Way, <br> North Logan, UT 84341. <br> All Rights Reserved.</small></small></big></big></big></font></small></font><br> </td> <td bgcolor="#ffffff" valign="top"><img alt="" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/spacer_disclaimer_right.jpg" moz-do-not-send="true"></td> </tr> </tbody> </table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="600"> <tbody> <tr> <td bgcolor="#ffffff" valign="top"><img alt="" src="http://www.furnituretrainingcompany.com/images/email/highpoint_2009_04/footer.jpg" moz-do-not-send="true"> </td> </tr> </tbody> </table> <br> <br> Content that gets sent: <table border=3D"0" cellspacing=3D"0" cellpadding=3D"0" width=3D"600" al= ign=3D"center">=0D=0A<tbody>=0D=0A<tr>=0D=0A<td valign=3D"top"><a href= =3D"http://www.furnituretrainingcompany.com"> <img src=3D"http://www.fur= nituretrainingcompany.com/images/email/highpoint_2009_04/header.jpg" bor= der=3D"0" alt=3D"The Furniture Training Company - Know More. Sell More."= width=3D"600" height=3D"123" /> </a></td>=0D=0A</tr>=0D=0A</tbody>=0D= =0A</table>=0D=0A<table border=3D"0" cellspacing=3D"0" cellpadding=3D"0"= width=3D"600" align=3D"center">=0D=0A<tbody>=0D=0A<tr>=0D=0A<td valign= =3D"top"><img src=3D"http://www.furnituretrainingcompany.com/images/emai= l/highpoint_2009_04/hero.jpg" alt=3D"Visit us at High Point to receive y= our free training poster" width=3D"600" height=3D"150" /><br /></td>=0D= =0A</tr>=0D=0A</tbody>=0D=0A</table>=0D=0A<table border=3D"0" cellspacin= g=3D"0" cellpadding=3D"0" width=3D"600" align=3D"center">=0D=0A<tbody>= =0D=0A<tr>=0D=0A<td valign=3D"top" bgcolor=3D"#ffffff"><img src=3D"http:= //www.furnituretrainingcompany.com/images/email/highpoint_2009_04/spacer= _content_left.jpg" alt=3D"" width=3D"30" height=3D"30" /><br /></td>=0D= =0A<td valign=3D"top" bgcolor=3D"#ffffff"><span style=3D"font-size: xx-s= mall; font-family: Verdana,Arial,Helvetica,sans-serif; color: #000000;">= <big><big><big><big><small><big><strong>See you at Market</strong></big>= <br /> </small></big></big></big></big></span> <span style=3D"font-size:= xx-small; font-family: Verdana,Arial,Helvetica,sans-serif; color: #0000= 00;"><big><big><big><big><small><br /> </small></big></big></big></big><= /span><small><span style=3D"font-family: Helvetica,Arial,sans-serif;">Vi= sit our space to get your free Map to Sales Success poster! This unique= 24 X 36 color poster is your guide to developing high volume salespeopl= e with larger tickets. Find us in the new NHFA Retailer Resource Center= located in the Plaza. <br /> <br /> Don&rsquo;t miss Mark Lacy&rsquo;s= entertaining seminar "Help Wanted! My Sales Associates Can&rsquo;t Sell= Water to a Thirsty Camel." He&rsquo;ll reveal powerful secrets for turn= ing sales associates into furniture experts that will sell. See him Satu= rday, April 25th at 11:30 AM in the seminar room of the new NHFA Retail= Resource Center in the Plaza. <br /> <br /> Stop by our space to learn= how our ingenious internet-delivered training courses are easy to use,= guaranteed to work, and cheaper than the daily donuts. Over 95% report= increased sales. <br /> <br /> Plan to see us at High Point. </span></s= mall> <span style=3D"font-size: xx-small; font-family: Verdana,Arial,Hel= vetica,sans-serif; color: #000000;"><big><big><big><big><small><small><b= r /> <br /> <br /> <br /> </small></small></big></big></big></big></span= ><small><span style=3D"font-size: xx-small; font-family: Verdana,Arial,H= elvetica,sans-serif; color: #000000;"><big><big><big><small> </small></b= ig></big></big></span></small> <a href=3D"http://www.furnituretrainingco= mpany.com/map"><img src=3D"http://www.furnituretrainingcompany.com/image= s/email/highpoint_2009_04/image_content_left.jpg" border=3D"0" alt=3D"Fi= nd out more" width=3D"326" height=3D"67" /></a><br /> <br /></td>=0D=0A<= td valign=3D"top" bgcolor=3D"#ffffff"><img src=3D"http://www.furnituretr= ainingcompany.com/images/email/highpoint_2009_04/spacer_content_middle.j= pg" alt=3D"" width=3D"28" height=3D"28" /><br /></td>=0D=0A<td valign=3D= "top" bgcolor=3D"#ffffff"><img src=3D"http://www.furnituretrainingcompan= y.com/images/email/highpoint_2009_04/image_content_right.jpg" alt=3D"Roa= dmap to Sales Success poster" width=3D"186" height=3D"267" /><br /> <spa= n style=3D"font-family: Helvetica,Arial,sans-serif;"><small><span style= =3D"font-size: xx-small; color: #000000;"><big><big><big><small><strong>= Road Map to Sales Success<br /> </strong><br /> </small></big></big></bi= g></span>This beautiful poster is yours free for simply stopping by and= visiting with us at High Point. <span class=3D"moz-txt-slash">Our space= is located inside the </span>new NHFA Retailer Resource Center in the P= laza Suites, 222 South Main St, 1st Floor. We will be at market from Sat= April 25th until Thur April 30th. </small></span><br /></td>=0D=0A<td v= align=3D"top" bgcolor=3D"#ffffff"><img src=3D"http://www.furnituretraini= ngcompany.com/images/email/highpoint_2009_04/spacer_content_right.jpg" a= lt=3D"" width=3D"30" height=3D"30" /><br /> <br /></td>=0D=0A</tr>=0D=0A= </tbody>=0D=0A</table>=0D=0A<table border=3D"0" cellspacing=3D"0" cellpa= dding=3D"0" width=3D"600" align=3D"center">=0D=0A<tbody>=0D=0A<tr>=0D=0A= <td valign=3D"top" bgcolor=3D"#ffffff"><img src=3D"http://www.furnituret= rainingcompany.com/images/email/highpoint_2009_04/disclaimer_divider.jpg= " alt=3D"" width=3D"600" height=3D"25" /><br /></td>=0D=0A</tr>=0D=0A</t= body>=0D=0A</table>=0D=0A<table border=3D"0" cellspacing=3D"0" cellpaddi= ng=3D"0" width=3D"600" align=3D"center">=0D=0A<tbody>=0D=0A<tr>=0D=0A<td= valign=3D"top" bgcolor=3D"#ffffff"><img src=3D"http://www.furnituretrai= ningcompany.com/images/email/highpoint_2009_04/spacer_disclaimer_left.jp= g" alt=3D"" /></td>=0D=0A<td valign=3D"top" bgcolor=3D"#ffffff"><img src= =3D"http://www.furnituretrainingcompany.com/images/email/highpoint_2009_= 04/spacer_disclaimer_middle.jpg" alt=3D"" /><br /> <span style=3D"font-s= ize: xx-small; font-family: Verdana,Arial,Helvetica,sans-serif; color: #= 666666;"><big><big><big><big><small><small><small>If you are not attendi= ng the High Point market in April but would still like to receive a free= Road Map to Sales Success poster visit us on the web at <span style=3D"= text-decoration: underline;"><a class=3D"moz-txt-link-abbreviated" href= =3D"http://www.furnituretrainingcompany.com">www.furnituretrainingcompan= y.com</a></span>, or to speak with a Furniture Training Company represen= tative, call toll free (866) 755-5996. We do not offer free shipping out= side of the U.S. and Canada. Retailers outside of the U.S. and Canada ma= y call for more information. Limit one free Road Map to Sales Success pe= r company. Other copies of the poster may be purchased on our web site.<= br /> <br /> </small></small></small></big></big></big></big></span> <sp= an style=3D"color: #666666;"><small><span style=3D"font-size: xx-small;= font-family: Verdana,Arial,Helvetica,sans-serif;"><big><big><big><small= ><small>We hope you found this message to be useful. However, if you'd r= ather not receive future emails of this sort from The Furniture Training= Company, please <a href=3D"http://www.furnituretraining.com/contact">cl= ick here to unsubscribe</a>.<br /> <br /> </small></small></big></big></= big></span></small><small><span style=3D"font-size: xx-small; font-famil= y: Verdana,Arial,Helvetica,sans-serif;"><big><big><big><small><small>&co= py;Copyright 2009 The Furniture Training Company.<br /> 1770 North Resea= rch Park Way, <br /> North Logan, UT 84341. <br /> All Rights Reserved.<= /small></small></big></big></big></span></small></span><br /></td>=0D=0A= <td valign=3D"top" bgcolor=3D"#ffffff"><img src=3D"http://www.furnituret= rainingcompany.com/images/email/highpoint_2009_04/spacer_disclaimer_righ= t.jpg" alt=3D"" /></td>=0D=0A</tr>=0D=0A</tbody>=0D=0A</table>=0D=0A<tab= le border=3D"0" cellspacing=3D"0" cellpadding=3D"0" width=3D"600" align= =3D"center">=0D=0A<tbody>=0D=0A<tr>=0D=0A<td valign=3D"top" bgcolor=3D"#= ffffff"><img src=3D"http://www.furnituretrainingcompany.com/images/email= /highpoint_2009_04/footer.jpg" alt=3D"" /></td>=0D=0A</tr>=0D=0A</tbody>= =0D=0A</table>=0D=0A<p><br /></p><br><hr><a href=3D'http://localhost/ftc= /app/unsubscribe.php?action=3DoptOut&pid=3D6121&cid=3D19&email=3Dmarkl@f= urnituretrainingcompany.com'>Click to Unsubscribe</a>

    Read the article

  • I don't get object-oriented programming

    - by Joel J. Adamson
    Note: this question is an edited excerpt from a blog posting I wrote a few months ago. After placing a link to the blog in a comment on Programmers.SE someone requested that I post a question here so that they could answer it. This posting is my most popular, as people seem to type "I don't get object-oriented programming" into Google a lot. Feel free to answer here, or in a comment at Wordpress. What is object-oriented programming? No one has given me a satisfactory answer. I feel like you will not get a good definition from someone who goes around saying “object” and “object-oriented” with his nose in the air. Nor will you get a good definition from someone who has done nothing but object-oriented programming. No one who understands both procedural and object-oriented programming has ever given me a consistent idea of what an object-oriented program actually does. Can someone please give me their ideas of the advantages of object-oriented programming?

    Read the article

  • Ubuntu 12.04, Can hear the sound but Sound option in settings shows no sound card

    - by Vivek Srivastava
    I have weired issue. I did a fresh installation of Ubuntu 12.04. Then I installed Nvidia drives for my graphics card. I executed the command "modprobe nvidia" after installing the Nvidia drivers and rebooted. After reboot, sound indicator in top panel is disabled and I can't control the volume from there. I opened Settings Sound and it does not show any sound card installed. However, I can hear the sound. Please help. Output of lspci | grep Audio 00:1b.0 Audio device: Intel Corporation N10/ICH 7 Family High Definition Audio Controller (rev 01) 01:00.1 Audio device: NVIDIA Corporation GF110 High Definition Audio Controller (rev a1) Output of lsmod | grep snd snd_hda_codec_hdmi 32191 4 snd_hda_codec_realtek 73851 1 snd_hda_intel 33367 0 snd_hda_codec 134156 3 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel snd_hwdep 13668 1 snd_hda_codec snd_pcm 97188 3 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec snd_timer 29990 1 snd_pcm snd 78855 7 snd_hda_codec_hdmi,snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_timer soundcore 15091 1 snd snd_page_alloc 18529 2 snd_hda_intel,snd_pcm

    Read the article

  • The Complementary Roles of PLM and PIM

    - by Ulf Köster
    Oracle Product Value Chain Solutions (aka Enterprise PLM Solutions) are a comprehensive set of product management solutions that work together to provide Oracle customers with a broad array of capabilities to manage all aspects of product life: innovation, design, launch, and supply chain / commercialization processes beyond the capabilities and boundaries of traditional engineering-focused Product Lifecycle Management applications. They support companies with an integrated managed view across the product value chain: From Lab to Launch, From Farm to Fork, From Concept to Product to Customer, From Product Innovation to Product Design and Product Commercialization. Product Lifecycle Management (PLM) represents a broad suite of software solutions to improve product-oriented business processes and data. PLM success stories prove that PLM helps companies improve time to market, increase product-related revenue, reduce product costs, reduce internal costs and improve product quality. As a maturing suite of enterprise solutions, PLM is still evolving to realize the promise it can provide across all facets of a business and all phases of the product lifecycle. The vision for PLM includes everything from gathering early requirements for a product through multiple stages of the product lifecycle from product design, through commercialization and eventual product retirement or replacement. In discrete or process industries, PLM is typically more focused on Product Definition as items with respect to the technical view of a material or part, including specifications, bills of material and manufacturing data. With Agile PLM, this is specifically related to capabilities addressing Product Collaboration, Governance and Compliance, Product Quality Management, Product Cost Management and Engineering Collaboration. PLM today is mainly addressing key requirements in the early product lifecycle, in engineering changes or in the “innovation cycle”, and primarily adds value related to product design, development, launch and engineering change process. In short, PLM is the master for Product Definition, wherever manufacturing takes place. Product Information Management (PIM) is a product suite that has evolved in parallel to PLM. Product Information Management (PIM) can extend the value of PLM implementations by providing complementary tools and capabilities. More relevant in the area of Product Commercialization, the vision for PIM is to manage product information throughout an enterprise and supply chain to improve product-related knowledge management, information sharing and synchronization from multiple data sources. PIM success stories have shown the ability to provide multiple benefits, with particular emphasis on reducing information complexity and information management costs. Product Information in PIM is typically treated as the commercial view of a material or part, including sales and marketing information and categorization. PIM collects information from multiple manufacturing sites and multiple suppliers into its repository, but also provides integration tools to push the information back out to the other systems, serving as an active central repository with the aim to provide a holistic view on any product sold by a company (hence the name “Product Hub”). In short, PIM is the master of commercial Product Information. So PIM is quickly becoming mandatory because of its value in optimizing multichannel selling processes and relationships with customers, as you can see from the following table: Viewpoint PLM Current State PIM Key Benefits PIM adds to PLM Product Lifecycle Primarily R&D Front end Innovation Cycle Change process Primarily commercial / transactional state of lifecycle Provides a seamless information flow from design and manufacturing through the ultimate selling and servicing of products Data Primarily focused on “item” vs. “product” data Product structures Specifications Technical information Repository for all product information. Reaches out to entire enterprise and its various silos of product information and descriptions Provides a “trusted source” of accurate product information to the internal organization and trading partners Data Lifecycle Repository for all design iterations Historical information Released, current information, with version management and time stamping Provides a single location to track and audit historical product information Communication PLM release finished product to ERP PLM is the master for Product Definition Captures information from disparate sources, including in-house data stores Recognizes the reality of today’s data “mess” across information silos Provides the ability to package product information to its audience in the desired, relevant format to meet their exacting business requirements Departmental R&D Manufacturing Quality Compliance Procurement Strategic Marketing Focus on Marketing and Sales Gathering information from other Departments, multiple sites, multiple suppliers A singular enterprise solution that leverages existing information silos and data stores Supply Chain Multi-site internal collaboration Supplier collaboration Customer collaboration Works with customers, exchanges / data pools, and trading partners to provide relevant product information packaged the way the customer desires Provides ability to provide trading partners and internal customers with information in a manner they desire, continuously Tools Data Management Collaboration Innovation Management Cleansing Synchronization Hub functions Consistent, clean and complete commercial product information The goals of both PLM and PIM, put simply, are to help companies make more profit from their products. PLM and PIM solutions can be easily added as they share some of the same goals, while coming from two different perspectives: the definition of the product and the commercialization of the product. Both can serve as a form of product “system of record”, but take different approaches to delivering value. Oracle Product Value Chain solutions offer rich new strategies for executives to collectively leverage Agile PLM, Product Data Hub, together with Enterprise Data Quality for Products, and other industry leading Oracle applications to achieve further incremental value, like Oracle Innovation Management. This is unique on the market today.

    Read the article

  • The Incremental Architect&acute;s Napkin &ndash; #3 &ndash; Make Evolvability inevitable

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/04/the-incremental-architectacutes-napkin-ndash-3-ndash-make-evolvability-inevitable.aspxThe easier something to measure the more likely it will be produced. Deviations between what is and what should be can be readily detected. That´s what automated acceptance tests are for. That´s what sprint reviews in Scrum are for. It´s no small wonder our software looks like it looks. It has all the traits whose conformance with requirements can easily be measured. And it´s lacking traits which cannot easily be measured. Evolvability (or Changeability) is such a trait. If an operation is correct, if an operation if fast enough, that can be checked very easily. But whether Evolvability is high or low, that cannot be checked by taking a measure or two. Evolvability might correlate with certain traits, e.g. number of lines of code (LOC) per function or Cyclomatic Complexity or test coverage. But there is no threshold value signalling “evolvability too low”; also Evolvability is hardly tangible for the customer. Nevertheless Evolvability is of great importance - at least in the long run. You can get away without much of it for a short time. Eventually, though, it´s needed like any other requirement. Or even more. Because without Evolvability no other requirement can be implemented. Evolvability is the foundation on which all else is build. Such fundamental importance is in stark contrast with its immeasurability. To compensate this, Evolvability must be put at the very center of software development. It must become the hub around everything else revolves. Since we cannot measure Evolvability, though, we cannot start watching it more. Instead we need to establish practices to keep it high (enough) at all times. Chefs have known that for long. That´s why everybody in a restaurant kitchen is constantly seeing after cleanliness. Hygiene is important as is to have clean tools at standardized locations. Only then the health of the patrons can be guaranteed and production efficiency is constantly high. Still a kitchen´s level of cleanliness is easier to measure than software Evolvability. That´s why important practices like reviews, pair programming, or TDD are not enough, I guess. What we need to keep Evolvability in focus and high is… to continually evolve. Change must not be something to avoid but too embrace. To me that means the whole change cycle from requirement analysis to delivery needs to be gone through more often. Scrum´s sprints of 4, 2 even 1 week are too long. Kanban´s flow of user stories across is too unreliable; it takes as long as it takes. Instead we should fix the cycle time at 2 days max. I call that Spinning. No increment must take longer than from this morning until tomorrow evening to finish. Then it should be acceptance checked by the customer (or his/her representative, e.g. a Product Owner). For me there are several resasons for such a fixed and short cycle time for each increment: Clear expectations Absolute estimates (“This will take X days to complete.”) are near impossible in software development as explained previously. Too much unplanned research and engineering work lurk in every feature. And then pervasive interruptions of work by peers and management. However, the smaller the scope the better our absolute estimates become. That´s because we understand better what really are the requirements and what the solution should look like. But maybe more importantly the shorter the timespan the more we can control how we use our time. So much can happen over the course of a week and longer timespans. But if push comes to shove I can block out all distractions and interruptions for a day or possibly two. That´s why I believe we can give rough absolute estimates on 3 levels: Noon Tonight Tomorrow Think of a meeting with a Product Owner at 8:30 in the morning. If she asks you, how long it will take you to implement a user story or bug fix, you can say, “It´ll be fixed by noon.”, or you can say, “I can manage to implement it until tonight before I leave.”, or you can say, “You´ll get it by tomorrow night at latest.” Yes, I believe all else would be naive. If you´re not confident to get something done by tomorrow night (some 34h from now) you just cannot reliably commit to any timeframe. That means you should not promise anything, you should not even start working on the issue. So when estimating use these four categories: Noon, Tonight, Tomorrow, NoClue - with NoClue meaning the requirement needs to be broken down further so each aspect can be assigned to one of the first three categories. If you like absolute estimates, here you go. But don´t do deep estimates. Don´t estimate dozens of issues; don´t think ahead (“Issue A is a Tonight, then B will be a Tomorrow, after that it´s C as a Noon, finally D is a Tonight - that´s what I´ll do this week.”). Just estimate so Work-in-Progress (WIP) is 1 for everybody - plus a small number of buffer issues. To be blunt: Yes, this makes promises impossible as to what a team will deliver in terms of scope at a certain date in the future. But it will give a Product Owner a clear picture of what to pull for acceptance feedback tonight and tomorrow. Trust through reliability Our trade is lacking trust. Customers don´t trust software companies/departments much. Managers don´t trust developers much. I find that perfectly understandable in the light of what we´re trying to accomplish: delivering software in the face of uncertainty by means of material good production. Customers as well as managers still expect software development to be close to production of houses or cars. But that´s a fundamental misunderstanding. Software development ist development. It´s basically research. As software developers we´re constantly executing experiments to find out what really provides value to users. We don´t know what they need, we just have mediated hypothesises. That´s why we cannot reliably deliver on preposterous demands. So trust is out of the window in no time. If we switch to delivering in short cycles, though, we can regain trust. Because estimates - explicit or implicit - up to 32 hours at most can be satisfied. I´d say: reliability over scope. It´s more important to reliably deliver what was promised then to cover a lot of requirement area. So when in doubt promise less - but deliver without delay. Deliver on scope (Functionality and Quality); but also deliver on Evolvability, i.e. on inner quality according to accepted principles. Always. Trust will be the reward. Less complexity of communication will follow. More goodwill buffer will follow. So don´t wait for some Kanban board to show you, that flow can be improved by scheduling smaller stories. You don´t need to learn that the hard way. Just start with small batch sizes of three different sizes. Fast feedback What has been finished can be checked for acceptance. Why wait for a sprint of several weeks to end? Why let the mental model of the issue and its solution dissipate? If you get final feedback after one or two weeks, you hardly remember what you did and why you did it. Resoning becomes hard. But more importantly youo probably are not in the mood anymore to go back to something you deemed done a long time ago. It´s boring, it´s frustrating to open up that mental box again. Learning is harder the longer it takes from event to feedback. Effort can be wasted between event (finishing an issue) and feedback, because other work might go in the wrong direction based on false premises. Checking finished issues for acceptance is the most important task of a Product Owner. It´s even more important than planning new issues. Because as long as work started is not released (accepted) it´s potential waste. So before starting new work better make sure work already done has value. By putting the emphasis on acceptance rather than planning true pull is established. As long as planning and starting work is more important, it´s a push process. Accept a Noon issue on the same day before leaving. Accept a Tonight issue before leaving today or first thing tomorrow morning. Accept a Tomorrow issue tomorrow night before leaving or early the day after tomorrow. After acceptance the developer(s) can start working on the next issue. Flexibility As if reliability/trust and fast feedback for less waste weren´t enough economic incentive, there is flexibility. After each issue the Product Owner can change course. If on Monday morning feature slices A, B, C, D, E were important and A, B, C were scheduled for acceptance by Monday evening and Tuesday evening, the Product Owner can change her mind at any time. Maybe after A got accepted she asks for continuation with D. But maybe, just maybe, she has gotten a completely different idea by then. Maybe she wants work to continue on F. And after B it´s neither D nor E, but G. And after G it´s D. With Spinning every 32 hours at latest priorities can be changed. And nothing is lost. Because what got accepted is of value. It provides an incremental value to the customer/user. Or it provides internal value to the Product Owner as increased knowledge/decreased uncertainty. I find such reactivity over commitment economically very benefical. Why commit a team to some workload for several weeks? It´s unnecessary at beast, and inflexible and wasteful at worst. If we cannot promise delivery of a certain scope on a certain date - which is what customers/management usually want -, we can at least provide them with unpredecented flexibility in the face of high uncertainty. Where the path is not clear, cannot be clear, make small steps so you´re able to change your course at any time. Premature completion Customers/management are used to premeditating budgets. They want to know exactly how much to pay for a certain amount of requirements. That´s understandable. But it does not match with the nature of software development. We should know that by now. Maybe there´s somewhere in the world some team who can consistently deliver on scope, quality, and time, and budget. Great! Congratulations! I, however, haven´t seen such a team yet. Which does not mean it´s impossible, but I think it´s nothing I can recommend to strive for. Rather I´d say: Don´t try this at home. It might hurt you one way or the other. However, what we can do, is allow customers/management stop work on features at any moment. With spinning every 32 hours a feature can be declared as finished - even though it might not be completed according to initial definition. I think, progress over completion is an important offer software development can make. Why think in terms of completion beyond a promise for the next 32 hours? Isn´t it more important to constantly move forward? Step by step. We´re not running sprints, we´re not running marathons, not even ultra-marathons. We´re in the sport of running forever. That makes it futile to stare at the finishing line. The very concept of a burn-down chart is misleading (in most cases). Whoever can only think in terms of completed requirements shuts out the chance for saving money. The requirements for a features mostly are uncertain. So how does a Product Owner know in the first place, how much is needed. Maybe more than specified is needed - which gets uncovered step by step with each finished increment. Maybe less than specified is needed. After each 4–32 hour increment the Product Owner can do an experient (or invite users to an experiment) if a particular trait of the software system is already good enough. And if so, she can switch the attention to a different aspect. In the end, requirements A, B, C then could be finished just 70%, 80%, and 50%. What the heck? It´s good enough - for now. 33% money saved. Wouldn´t that be splendid? Isn´t that a stunning argument for any budget-sensitive customer? You can save money and still get what you need? Pull on practices So far, in addition to more trust, more flexibility, less money spent, Spinning led to “doing less” which also means less code which of course means higher Evolvability per se. Last but not least, though, I think Spinning´s short acceptance cycles have one more effect. They excert pull-power on all sorts of practices known for increasing Evolvability. If, for example, you believe high automated test coverage helps Evolvability by lowering the fear of inadverted damage to a code base, why isn´t 90% of the developer community practicing automated tests consistently? I think, the answer is simple: Because they can do without. Somehow they manage to do enough manual checks before their rare releases/acceptance checks to ensure good enough correctness - at least in the short term. The same goes for other practices like component orientation, continuous build/integration, code reviews etc. None of that is compelling, urgent, imperative. Something else always seems more important. So Evolvability principles and practices fall through the cracks most of the time - until a project hits a wall. Then everybody becomes desperate; but by then (re)gaining Evolvability has become as very, very difficult and tedious undertaking. Sometimes up to the point where the existence of a project/company is in danger. With Spinning that´s different. If you´re practicing Spinning you cannot avoid all those practices. With Spinning you very quickly realize you cannot deliver reliably even on your 32 hour promises. Spinning thus is pulling on developers to adopt principles and practices for Evolvability. They will start actively looking for ways to keep their delivery rate high. And if not, management will soon tell them to do that. Because first the Product Owner then management will notice an increasing difficulty to deliver value within 32 hours. There, finally there emerges a way to measure Evolvability: The more frequent developers tell the Product Owner there is no way to deliver anything worth of feedback until tomorrow night, the poorer Evolvability is. Don´t count the “WTF!”, count the “No way!” utterances. In closing For sustainable software development we need to put Evolvability first. Functionality and Quality must not rule software development but be implemented within a framework ensuring (enough) Evolvability. Since Evolvability cannot be measured easily, I think we need to put software development “under pressure”. Software needs to be changed more often, in smaller increments. Each increment being relevant to the customer/user in some way. That does not mean each increment is worthy of shipment. It´s sufficient to gain further insight from it. Increments primarily serve the reduction of uncertainty, not sales. Sales even needs to be decoupled from this incremental progress. No more promises to sales. No more delivery au point. Rather sales should look at a stream of accepted increments (or incremental releases) and scoup from that whatever they find valuable. Sales and marketing need to realize they should work on what´s there, not what might be possible in the future. But I digress… In my view a Spinning cycle - which is not easy to reach, which requires practice - is the core practice to compensate the immeasurability of Evolvability. From start to finish of each issue in 32 hours max - that´s the challenge we need to accept if we´re serious increasing Evolvability. Fortunately higher Evolvability is not the only outcome of Spinning. Customer/management will like the increased flexibility and “getting more bang for the buck”.

    Read the article

  • Concurrent Business Events

    - by Manoj Madhusoodanan
    This blog describes the various business events related to concurrent requests.In the concurrent program definition screen we can see the various business events which are attached to concurrent processing. Following are the actual definition of above business events. Each event will have following parameters. Create subscriptions to above business events.Before testing enable profile option 'Concurrent: Business Intelligence Integration Enable' to Yes. ExampleI have created a scenario.Whenever my concurrent request completes normally I want to send out file as attachment to my mail.So following components I have created.1) Host file deployed on $XXCUST_TOP/bin to send mail.It accepts mail ids,subject and output file.(Code here)2) Concurrent Program to send mail which points to above host file.3) Subscription package to oracle.apps.fnd.concurrent.request.completed.(Code here)Choose a concurrent program which you want to send the out file as attachment.Check Request Completed check box.Submit the program.If it completes normally the business event subscription program will send the out file as attachment to the specified mail id.

    Read the article

  • C# 4.0: Covariance And Contravariance In Generics

    - by Paulo Morgado
    C# 4.0 (and .NET 4.0) introduced covariance and contravariance to generic interfaces and delegates. But what is this variance thing? According to Wikipedia, in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometrical or physical entities changes when passing from one coordinate system to another.(*) But what does this have to do with C# or .NET? In type theory, a the type T is greater (>) than type S if S is a subtype (derives from) T, which means that there is a quantitative description for types in a type hierarchy. So, how does covariance and contravariance apply to C# (and .NET) generic types? In C# (and .NET), variance applies to generic type parameters and not to the resulting generic type. A generic type parameter is: covariant if the ordering of the generic types follows the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. contravariant if the ordering of the generic types is reversed from the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. invariant if neither of the above apply. If this definition is applied to arrays, we can see that arrays have always been covariant because this is valid code: object[] objectArray = new string[] { "string 1", "string 2" }; objectArray[0] = "string 3"; objectArray[1] = new object(); However, when we try to run this code, the second assignment will throw an ArrayTypeMismatchException. Although the compiler was fooled into thinking this was valid code because an object is being assigned to an element of an array of object, at run time, there is always a type check to guarantee that the runtime type of the definition of the elements of the array is greater or equal to the instance being assigned to the element. In the above example, because the runtime type of the array is array of string, the first assignment of array elements is valid because string = string and the second is invalid because string = object. This leads to the conclusion that, although arrays have always been covariant, they are not safely covariant – code that compiles is not guaranteed to run without errors. In C#, the way to define that a generic type parameter as covariant is using the out generic modifier: public interface IEnumerable<out T> { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> { T Current { get; } bool MoveNext(); } Notice the convenient use the pre-existing out keyword. Besides the benefit of not having to remember a new hypothetic covariant keyword, out is easier to remember because it defines that the generic type parameter can only appear in output positions — read-only properties and method return values. In a similar way, the way to define a type parameter as contravariant is using the in generic modifier: public interface IComparer<in T> { int Compare(T x, T y); } Once again, the use of the pre-existing in keyword makes it easier to remember that the generic type parameter can only be used in input positions — write-only properties and method non ref and non out parameters. Because covariance and contravariance apply only to the generic type parameters, a generic type definition can have both covariant and contravariant generic type parameters in its definition: public delegate TResult Func<in T, out TResult>(T arg); A generic type parameter that is not marked covariant (out) or contravariant (in) is invariant. All the types in the .NET Framework where variance could be applied to its generic type parameters have been modified to take advantage of this new feature. In summary, the rules for variance in C# (and .NET) are: Variance in type parameters are restricted to generic interface and generic delegate types. A generic interface or generic delegate type can have both covariant and contravariant type parameters. Variance applies only to reference types; if you specify a value type for a variant type parameter, that type parameter is invariant for the resulting constructed type. Variance does not apply to delegate combination. That is, given two delegates of types Action<Derived> and Action<Base>, you cannot combine the second delegate with the first although the result would be type safe. Variance allows the second delegate to be assigned to a variable of type Action<Derived>, but delegates can combine only if their types match exactly. If you want to learn more about variance in C# (and .NET), you can always read: Covariance and Contravariance in Generics — MSDN Library Exact rules for variance validity — Eric Lippert Events get a little overhaul in C# 4, Afterward: Effective Events — Chris Burrows Note: Because variance is a feature of .NET 4.0 and not only of C# 4.0, all this also applies to Visual Basic 10.

    Read the article

  • MythTV GUI problems

    - by oli206
    Hi, I'm using MythTV to watch TV on my ubuntu computer and I'm having a problem with the resolution. It seems that the GUI resolution is matched with the channel resolution, so If I'm watching a HD channel, I get a nice GUI but If I'm watching a SD channel, then it's crap. A couple of screenshots to show the difference: High Definition Channel: Standard Definition Channel: I haven't found any similar issue in the internet and neither an option in the settings menu of MythTV (backend and frontend). I have another small problem that you can see in the first screenshot, the channel name is cut (it shows "Telemadri" and the last letter is not completely shown). Anyone know how can I fix this too? Thanks in advance

    Read the article

  • BAM Data Control in multiple ADF Faces Components

    - by [email protected]
    As we know Oracle BAM data control instance sharing is not supported.When two or more ADF Faces components must display the same data, and are bound to the same Oracle BAM data control definition, we have to make sure that we wrap each ADF Faces component in an ADF task flow, and set the Data Control Scope to isolated. This blog will show a small sample to demonstrate this. In this sample we will create a Pie and Bar using same BAM DC, such that both components use same Data control but have isolated scope.This sample can be downloaded  fromSample1.zip Set-up: Create a BAM data control using employees DO (sample) Steps: Right click on View Controller project and select "New->ADF Task Flow" Check "Create Bounded Task Flow" and give some meaningful name (ex:EmpPieTF.xml ) to the TaskFlow(TF) and click on "OK"CreateTF.bmpFrom the "Components Palette", drag and drop "View" into the task flow diagram. Give a meaningful name to the view. Double Click and Click "Ok" for  "Create New JSF Page Fragment" From "Data Controls" drag and drop "Employees->Query"  into this jsff page as "Graph->Pie" (Pie: Sales_Number and Slices: Salesperson) Repeat step 1 through 4 for another Task Flow (ex: EmpBarTF). From "Data Controls" drag and drop "Employees->Query"  into this jsff page as "Graph->Bar" (Bars :Sales_Number and X-axis : Salesperson). Open the Taskflow created in step 2. In the Structure Pane, right click on "Task Flow Definition -EmpPieTF" Click "Insert inside Task Flow Definition - EmpPieTF -> ADF Task Flow -> Data Control Scope". Click "OK"TFDCScope.bmpFor the "Data Control Scope", In the Property Inspector ->General section, change data control scope from Shared to Isolated. Repeat step 8 through 11 for the 2nd Task flow created. Now create a new jspx page example: Main.jspxDrag and drop both the Task flows (ex: "EmpPieTF" and "EmpBarTF") as regions. Surround with panel components as needed.Run the page Main.jspxMainPage.bmpNow when the page runs although both components are created using same Data control the bindings are not shared and each component will have a separate instance of the data control.

    Read the article

  • Code Reuse is (Damn) Hard

    - by James Michael Hare
    Being a development team lead, the task of interviewing new candidates was part of my job.  Like any typical interview, we started with some easy questions to get them warmed up and help calm their nerves before hitting the hard stuff. One of those easier questions was almost always: “Name some benefits of object-oriented development.”  Nearly every time, the candidate would chime in with a plethora of canned answers which typically included: “it helps ease code reuse.”  Of course, this is a gross oversimplification.  Tools only ease reuse, its developers that ultimately can cause code to be reusable or not, regardless of the language or methodology. But it did get me thinking…  we always used to say that as part of our mantra as to why Object-Oriented Programming was so great.  With polymorphism, inheritance, encapsulation, etc. we in essence set up the concepts to help facilitate reuse as much as possible.  And yes, as a developer now of many years, I unquestionably held that belief for ages before it really struck me how my views on reuse have jaded over the years.  In fact, in many ways Agile rightly eschews reuse as taking a backseat to developing what's needed for the here and now.  It used to be I was in complete opposition to that view, but more and more I've come to see the logic in it.  Too many times I've seen developers (myself included) get lost in design paralysis trying to come up with the perfect abstraction that would stand all time.  Nearly without fail, all of these pieces of code become obsolete in a matter of months or years. It’s not that I don’t like reuse – it’s just that reuse is hard.  In fact, reuse is DAMN hard.  Many times it is just a distraction that eats up architect and developer time, and worse yet can be counter-productive and force wrong decisions.  Now don’t get me wrong, I love the idea of reusable code when it makes sense.  These are in the few cases where you are designing something that is inherently reusable.  The problem is, most business-class code is inherently unfit for reuse! Furthermore, the code that is reusable will often fail to be reused if you don’t have the proper framework in place for effective reuse that includes standardized versioning, building, releasing, and documenting the components.  That should always be standard across the board when promoting reusable code.  All of this is hard, and it should only be done when you have code that is truly reusable or you will be exerting a large amount of development effort for very little bang for your buck. But my goal here is not to get into how to reuse (that is a topic unto itself) but what should be reused.  First, let’s look at an extension method.  There’s many times where I want to kick off a thread to handle a task, then when I want to reign that thread in of course I want to do a Join on it.  But what if I only want to wait a limited amount of time and then Abort?  Well, I could of course write that logic out by hand each time, but it seemed like a great extension method: 1: public static class ThreadExtensions 2: { 3: public static bool JoinOrAbort(this Thread thread, TimeSpan timeToWait) 4: { 5: bool isJoined = false; 6:  7: if (thread != null) 8: { 9: isJoined = thread.Join(timeToWait); 10:  11: if (!isJoined) 12: { 13: thread.Abort(); 14: } 15: } 16: return isJoined; 17: } 18: } 19:  When I look at this code, I can immediately see things that jump out at me as reasons why this code is very reusable.  Some of them are standard OO principles, and some are kind-of home grown litmus tests: Single Responsibility Principle (SRP) – The only reason this extension method need change is if the Thread class itself changes (one responsibility). Stable Dependencies Principle (SDP) – This method only depends on classes that are more stable than it is (System.Threading.Thread), and in itself is very stable, hence other classes may safely depend on it. It is also not dependent on any business domain, and thus isn't subject to changes as the business itself changes. Open-Closed Principle (OCP) – This class is inherently closed to change. Small and Stable Problem Domain – This method only cares about System.Threading.Thread. All-or-None Usage – A user of a reusable class should want the functionality of that class, not parts of that functionality.  That’s not to say they most use every method, but they shouldn’t be using a method just to get half of its result. Cost of Reuse vs. Cost to Recreate – since this class is highly stable and minimally complex, we can offer it up for reuse very cheaply by promoting it as “ready-to-go” and already unit tested (important!) and available through a standard release cycle (very important!). Okay, all seems good there, now lets look at an entity and DAO.  I don’t know about you all, but there have been times I’ve been in organizations that get the grand idea that all DAOs and entities should be standardized and shared.  While this may work for small or static organizations, it’s near ludicrous for anything large or volatile. 1: namespace Shared.Entities 2: { 3: public class Account 4: { 5: public int Id { get; set; } 6:  7: public string Name { get; set; } 8:  9: public Address HomeAddress { get; set; } 10:  11: public int Age { get; set;} 12:  13: public DateTime LastUsed { get; set; } 14:  15: // etc, etc, etc... 16: } 17: } 18:  19: ... 20:  21: namespace Shared.DataAccess 22: { 23: public class AccountDao 24: { 25: public Account FindAccount(int id) 26: { 27: // dao logic to query and return account 28: } 29:  30: ... 31:  32: } 33: } Now to be fair, I’m not saying there doesn’t exist an organization where some entites may be extremely static and unchanging.  But at best such entities and DAOs will be problematic cases of reuse.  Let’s examine those same tests: Single Responsibility Principle (SRP) – The reasons to change for these classes will be strongly dependent on what the definition of the account is which can change over time and may have multiple influences depending on the number of systems an account can cover. Stable Dependencies Principle (SDP) – This method depends on the data model beneath itself which also is largely dependent on the business definition of an account which can be very inherently unstable. Open-Closed Principle (OCP) – This class is not really closed for modification.  Every time the account definition may change, you’d need to modify this class. Small and Stable Problem Domain – The definition of an account is inherently unstable and in fact may be very large.  What if you are designing a system that aggregates account information from several sources? All-or-None Usage – What if your view of the account encompasses data from 3 different sources but you only care about one of those sources or one piece of data?  Should you have to take the hit of looking up all the other data?  On the other hand, should you have ten different methods returning portions of data in chunks people tend to ask for?  Neither is really a great solution. Cost of Reuse vs. Cost to Recreate – DAOs are really trivial to rewrite, and unless your definition of an account is EXTREMELY stable, the cost to promote, support, and release a reusable account entity and DAO are usually far higher than the cost to recreate as needed. It’s no accident that my case for reuse was a utility class and my case for non-reuse was an entity/DAO.  In general, the smaller and more stable an abstraction is, the higher its level of reuse.  When I became the lead of the Shared Components Committee at my workplace, one of the original goals we looked at satisfying was to find (or create), version, release, and promote a shared library of common utility classes, frameworks, and data access objects.  Now, of course, many of you will point to nHibernate and Entity for the latter, but we were looking at larger, macro collections of data that span multiple data sources of varying types (databases, web services, etc). As we got deeper and deeper in the details of how to manage and release these items, it quickly became apparent that while the case for reuse was typically a slam dunk for utilities and frameworks, the data access objects just didn’t “smell” right.  We ended up having session after session of design meetings to try and find the right way to share these data access components. When someone asked me why it was taking so long to iron out the shared entities, my response was quite simple, “Reuse is hard...”  And that’s when I realized, that while reuse is an awesome goal and we should strive to make code maintainable, often times you end up creating far more work for yourself than necessary by trying to force code to be reusable that inherently isn’t. Think about classes the times you’ve worked in a company where in the design session people fight over the best way to implement a class to make it maximally reusable, extensible, and any other buzzwordable.  Then think about how quickly that design became obsolete.  Many times I set out to do a project and think, “yes, this is the best design, I can extend it easily!” only to find out the business requirements change COMPLETELY in such a way that the design is rendered invalid.  Code, in general, tends to rust and age over time.  As such, writing reusable code can often be difficult and many times ends up being a futile exercise and worse yet, sometimes makes the code harder to maintain because it obfuscates the design in the name of extensibility or reusability. So what do I think are reusable components? Generic Utility classes – these tend to be small classes that assist in a task and have no business context whatsoever. Implementation Abstraction Frameworks – home-grown frameworks that try to isolate changes to third party products you may be depending on (like writing a messaging abstraction layer for publishing/subscribing that is independent of whether you use JMS, MSMQ, etc). Simplification and Uniformity Frameworks – To some extent this is similar to an abstraction framework, but there may be one chosen provider but a development shop mandate to perform certain complex items in a certain way.  Or, perhaps to simplify and dumb-down a complex task for the average developer (such as implementing a particular development-shop’s method of encryption). And what are less reusable? Application and Business Layers – tend to fluctuate a lot as requirements change and new features are added, so tend to be an unstable dependency.  May be reused across applications but also very volatile. Entities and Data Access Layers – these tend to be tuned to the scope of the application, so reusing them can be hard unless the abstract is very stable. So what’s the big lesson?  Reuse is hard.  In fact it’s damn hard.  And much of the time I’m not convinced we should focus too hard on it. If you’re designing a utility or framework, then by all means design it for reuse.  But you most also really set down a good versioning, release, and documentation process to maximize your chances.  For anything else, design it to be maintainable and extendable, but don’t waste the effort on reusability for something that most likely will be obsolete in a year or two anyway.

    Read the article

  • What are graphs in laymen's terms

    - by Justin984
    What are graphs, in computer science, and what are they used for? In laymen's terms preferably. I have read the definition on Wikipedia: In computer science, a graph is an abstract data type that is meant to implement the graph and hypergraph concepts from mathematics. A graph data structure consists of a finite (and possibly mutable) set of ordered pairs, called edges or arcs, of certain entities called nodes or vertices. As in mathematics, an edge (x,y) is said to point or go from x to y. The nodes may be part of the graph structure, or may be external entities represented by integer indices or references. but I'm looking for a less formal, easier to understand definition.

    Read the article

  • Adventures in Lab Management Configuration: Part 2 of 3

    - by Enrique Lima
    The first post was the high level overview. Now it is time for the details on what was done to the existing CMMI Project based on CMMI v 4.2. The first step was to go into Visual Studio, then from the Team Project Collection Settings and then to the Process Template Manager.  Once there, it was a matter of selecting the appropriate template (MSF for CMMI Process Improvement v5.0) and download to a point I could reference later (for example C:\Templates). Then on to using the steps from the guidance post. Since I was using an x64 deployment, I will make reference to the path as <toolpath>, however the actual path to reference in a 64-bit environment is “C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE”. As I mentioned on the previous post, make sure to first perform a backup of the Configuration, Collection and Warehouse DBs.  If you did not apply any changes to the names and such, then you will find those as tfs_Configuration, tfs_DefaultCollection and tfs_Warehouse. Now, the work needed with the witadmin tool: That includes the uploading of the structures that differ from v4.2 to v5.0 There is likely going to be an issue with the naming of some fields. For example, TFS 2010 likes something along the lines of “Area ID”, whereas TFS 2008 would have had it as “AreaID”.  So, this will need to be corrected.  Some posts will have you go through this after the errors pop up.  I would recommend doing this process prior to executing the importwitd process.  witadmin listfields /collection:<path to collection> > c:\ListFields.txt Review the following fields: AreaID, review the Name property and validate if it states “AreaID”, the you will need to rename the Name field to reflect “Area ID”. ExternalLinkCount, RelatedLinkCount, HyperLinkCount, AttachedFileCount and IterationID would be the other fields to check. To correct the issue, then execute the following: witadmin changefield /collection:<path to collection> /n:"System.ExternalLinkCount" /name:"External Link Count" Repeat for Area ID, Related Link Count, Hyperlink Count, Attached File Count and Iteration ID.  Once this is done, proceed with the commands below. witadmin importwitd /collection:<path to collection> /p:<project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\WorkItem Tracking\TypeDefinitions\TestCase.xml" witadmin importwitd /collection:<path to collection> /p:<project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\WorkItem Tracking\TypeDefinitions\SharedStep.xml" witadmin importcategories /collection:<path to collection> /p:<project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\WorkItem Tracking\categories.xml" Modifications to the Bug Definition: First step is to export the existing definition. witadmin exportwitd /collection<path to collection> /p:<project> /n:bug /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\MyBug.xml" Make modifications to recently exported MyBug.xml file.  Details for the modification are here:  http://msdn.microsoft.com/en-us/library/ff452591.aspx#ModifyTask Once the changes are done, proceed with the import command witadmin importwitd /collection:<path to collection> /p: <project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\MyBug.xml" Repeat the process for the the Scenario or Requirement Type Definition witadmin exportwitd /collection<path to collection> /p:<project> /n:requirement /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\MyRequirement.xml" Make modifications to recently exported MyRequirement.xml file.  Details for the modification are here:  http://msdn.microsoft.com/en-us/library/ff452591.aspx#ModifyTask Once the changes are done, proceed with the import command witadmin importwitd /collection:<path to collection> /p: <project> /f:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\MyRequirement.xml" Provide the Bug Field Mapping definition, after creating the file as specified here: http://msdn.microsoft.com/en-us/library/ff452591.aspx#TCMBugFieldMapping tcm bugfieldmapping /import /mappingfile:"<path to downloaded template>\MSF for CMMI Process Improvement v5.0\bugfieldmappings.xml" /collection:<path to collection> /teamproject:<project name>

    Read the article

  • Key ATG architecture principles

    - by Glen Borkowski
    Overview The purpose of this article is to describe some of the important foundational concepts of ATG.  This is not intended to cover all areas of the ATG platform, just the most important subset - the ones that allow ATG to be extremely flexible, configurable, high performance, etc.  For more information on these topics, please see the online product manuals. Modules The first concept is called the 'ATG Module'.  Simply put, you can think of modules as the building blocks for ATG applications.  The ATG development team builds the out of the box product using modules (these are the 'out of the box' modules).  Then, when a customer is implementing their site, they build their own modules that sit 'on top' of the out of the box ATG modules.  Modules can be very simple - containing minimal definition, and perhaps a small amount of configuration.  Alternatively, a module can be rather complex - containing custom logic, database schema definitions, configuration, one or more web applications, etc.  Modules generally will have dependencies on other modules (the modules beneath it).  For example, the Commerce Reference Store module (CRS) requires the DCS (out of the box commerce) module. Modules have a ton of value because they provide a way to decouple a customers implementation from the out of the box ATG modules.  This allows for a much easier job when it comes time to upgrade the ATG platform.  Modules are also a very useful way to group functionality into a single package which can be leveraged across multiple ATG applications. One very important thing to understand about modules, or more accurately, ATG as a whole, is that when you start ATG, you tell it what module(s) you want to start.  One of the first things ATG does is to look through all the modules you specified, and for each one, determine a list of modules that are also required to start (based on each modules dependencies).  Once this final, ordered list is determined, ATG continues to boot up.  One of the outputs from the ordered list of modules is that each module can contain it's own classes and configuration.  During boot, the ordered list of modules drives the unified classpath and configpath.  This is what determines which classes override others, and which configuration overrides other configuration.  Think of it as a layered approach. The structure of a module is well defined.  It simply looks like a folder in a filesystem that has certain other folders and files within it.  Here is a list of items that can appear in a module: MyModule: META-INF - this is required, along with a file called MANIFEST.MF which describes certain properties of the module.  One important property is what other modules this module depends on. config - this is typically present in most modules.  It defines a tree structure (folders containing properties files, XML, etc) that maps to ATG components (these are described below). lib - this contains the classes (typically in jarred format) for any code defined in this module j2ee - this is where any web-apps would be stored. src - in case you want to include the source code for this module, it's standard practice to put it here sql - if your module requires any additions to the database schema, you should place that schema here Here's a screenshots of a module: Modules can also contain sub-modules.  A dot-notation is used when referring to these sub-modules (i.e. MyModule.Versioned, where Versioned is a sub-module of MyModule). Finally, it is important to completely understand how modules work if you are going to be able to leverage them effectively.  There are many different ways to design modules you want to create, some approaches are better than others, especially if you plan to share functionality between multiple different ATG applications. Components A component in ATG can be thought of as a single item that performs a certain set of related tasks.  An example could be a ProductViews component - used to store information about what products the current customer has viewed.  Components have properties (also called attributes).  The ProductViews component could have properties like lastProductViewed (stores the ID of the last product viewed) or productViewList (stores the ID's of products viewed in order of their being viewed).  The previous examples of component properties would typically also offer get and set methods used to retrieve and store the property values.  Components typically will also offer other types of useful methods aside from get and set.  In the ProductViewed component, we might want to offer a hasViewed method which will tell you if the customer has viewed a certain product or not. Components are organized in a tree like hierarchy called 'nucleus'.  Nucleus is used to locate and instantiate ATG Components.  So, when you create a new ATG component, it will be able to be found 'within' nucleus.  Nucleus allows ATG components to reference one another - this is how components are strung together to perform meaningful work.  It's also a mechanism to prevent redundant configuration - define it once and refer to it from everywhere. Here is a screenshot of a component in nucleus:  Components can be extremely simple (i.e. a single property with a get method), or can be rather complex offering many properties and methods.  To be an ATG component, a few things are required: a class - you can reference an existing out of the box class or you could write your own a properties file - this is used to define your component the above items must be located 'within' nucleus by placing them in the correct spot in your module's config folder Within the properties file, you will need to point to the class you want to use: $class=com.mycompany.myclass You may also want to define the scope of the class (request, session, or global): $scope=session In summary, ATG Components live in nucleus, generally have links to other components, and provide some meaningful type of work.  You can configure components as well as extend their functionality by writing code. Repositories Repositories (a.k.a. Data Anywhere Architecture) is the mechanism that ATG uses to access data primarily stored in relational databases, but also LDAP or other backend systems.  ATG applications are required to be very high performance, and data access is critical in that if not handled properly, it could create a bottleneck.  ATG's repository functionality has been around for a long time - it's proven to be extremely scalable.  Developers new to ATG need to understand how repositories work as this is a critical aspect of the ATG architecture.   Repositories essentially map relational tables to objects in ATG, as well as handle caching.  ATG defines many repositories out of the box (i.e. user profile, catalog, orders, etc), and this is comprised of both the underlying database schema along with the associated repository definition files (XML).  It is fully expected that implementations will extend / change the out of the box repository definitions, so there is a prescribed approach to doing this.  The first thing to be sure of is to encapsulate your repository definition additions / changes within your own module (as described above).  The other important best practice is to never modify the out of the box schema - in other words, don't add columns to existing ATG tables, just create your own new tables.  These will help ensure you can easily upgrade your application at a later date. xml-combination As mentioned earlier, when you start ATG, the order of the modules will determine the final configpath.  Files within this configpath are 'layered' such that modules on top can override configuration of modules below it.  This is the same concept for repository definition files.  If you want to add a few properties to the out of the box user profile, you simply need to create an XML file containing only your additions, and place it in the correct location in your module.  At boot time, your definition will be combined (hence the term xml-combination) with the lower, out of the box modules, with the result being a user profile that contains everything (out of the box, plus your additions).  Aside from just adding properties, there are also ways to remove and change properties. types of properties Aside from the normal 'database backed' properties, there are a few other interesting types: transient properties - these are properties that are in memory, but not backed by any database column.  These are useful for temporary storage. java-backed properties - by nature, these are transient, but in addition, when you access this property (by called the get method) instead of looking up a piece of data, it performs some logic and returns the results.  'Age' is a good example - if you're storing a birth date on the profile, but your business rules are defined in terms of someones age, you could create a simple java-backed property to look at the birth date and compare it to the current date, and return the persons age. derived properties - this is what allows for inheritance within the repository structure.  You could define a property at the category level, and have the product inherit it's value as well as override it.  This is useful for setting defaults, with the ability to override. caching There are a number of different caching modes which are useful at different times depending on the nature of the data being cached.  For example, the simple cache mode is useful for things like user profiles.  This is because the user profile will typically only be used on a single instance of ATG at one time.  Simple cache mode is also useful for read-only types of data such as the product catalog.  Locked cache mode is useful when you need to ensure that only one ATG instance writes to a particular item at a time - an example would be a customers order.  There are many options in terms of configuring caching which are outside the scope of this article - please refer to the product manuals for more details. Other important concepts - out of scope for this article There are a whole host of concepts that are very important pieces to the ATG platform, but are out of scope for this article.  Here's a brief description of some of them: formhandlers - these are ATG components that handle form submissions by users. pipelines - these are configurable chains of logic that are used for things like handling a request (request pipeline) or checking out an order. special kinds of repositories (versioned, files, secure, ...) - there are a couple different types of repositories that are used in various situations.  See the manuals for more information. web development - JSP/ DSP tag library - ATG provides a traditional approach to developing web applications by providing a tag library called the DSP library.  This library is used throughout your JSP pages to interact with all the ATG components. messaging - a message sub-system used as another way for components to interact. personalization - ability for business users to define a personalized user experience for customers.  See the other blog posts related to personalization.

    Read the article

  • Team Foundation Server (TFS) Team Build Custom Activity C# Code for Assembly Stamping

    - by Bob Hardister
    For the full context and guidance on how to develop and implement a custom activity in Team Build see the Microsoft Visual Studio Rangers Team Foundation Build Customization Guide V.1 at http://vsarbuildguide.codeplex.com/ There are many ways to stamp or set the version number of your assemblies. This approach is based on the build number.   namespace CustomActivities { using System; using System.Activities; using System.IO; using System.Text.RegularExpressions; using Microsoft.TeamFoundation.Build.Client; [BuildActivity(HostEnvironmentOption.Agent)] public sealed class VersionAssemblies : CodeActivity { /// <summary> /// AssemblyInfoFileMask /// </summary> [RequiredArgument] public InArgument<string> AssemblyInfoFileMask { get; set; } /// <summary> /// SourcesDirectory /// </summary> [RequiredArgument] public InArgument<string> SourcesDirectory { get; set; } /// <summary> /// BuildNumber /// </summary> [RequiredArgument] public InArgument<string> BuildNumber { get; set; } /// <summary> /// BuildDirectory /// </summary> [RequiredArgument] public InArgument<string> BuildDirectory { get; set; } /// <summary> /// Publishes field values to the build report /// </summary> public OutArgument<string> DiagnosticTextOut { get; set; } // If your activity returns a value, derive from CodeActivity<TResult> and return the value from the Execute method. protected override void Execute(CodeActivityContext context) { // Obtain the runtime value of the input arguments string sourcesDirectory = context.GetValue(this.SourcesDirectory); string assemblyInfoFileMask = context.GetValue(this.AssemblyInfoFileMask); string buildNumber = context.GetValue(this.BuildNumber); string buildDirectory = context.GetValue(this.BuildDirectory); // ** Determine the version number values ** // Note: the format used here is: major.secondary.maintenance.build // ----------------------------------------------------------------- // Obtain the build definition name int nameStart = buildDirectory.LastIndexOf(@"\") + 1; string buildDefinitionName = buildDirectory.Substring(nameStart); // Set the primary.secondary.maintenance values // NOTE: these are hard coded in this example, but could be sourced from a file or parsed from a build definition name that includes them string p = "1"; string s = "5"; string m = "2"; // Initialize the build number string b; string na = "0"; // used for Assembly and Product Version instead of build number (see versioning best practices: **TBD reference) // Set qualifying product version information string productInfo = "RC2"; // Obtain the build increment number from the build number // NOTE: this code assumes the default build definition name format int buildIncrementNumberDelimterIndex = buildNumber.LastIndexOf("."); b = buildNumber.Substring(buildIncrementNumberDelimterIndex + 1); // Convert version to integer values int pVer = Convert.ToInt16(p); int sVer = Convert.ToInt16(s); int mVer = Convert.ToInt16(m); int bNum = Convert.ToInt16(b); int naNum = Convert.ToInt16(na); // ** Get all AssemblyInfo files and stamp them ** // Note: the mapping of AssemblyInfo.cs attributes to assembly display properties are as follows: // - AssemblyVersion = Assembly Version - used for the assembly version (does not change unless p, s or m values are changed) // - AssemblyFileVersion = File Version - used for the file version (changes with every build) // - AssemblyInformationalVersion = Product Version - used for the product version (can include additional version information) // ------------------------------------------------------------------------------------------------------------------------------------------------ Version assemblyVersion = new Version(pVer, sVer, mVer, naNum); Version newAssemblyFileVersion = new Version(pVer, sVer, mVer, bNum); Version productVersion = new Version(pVer, sVer, mVer); // Setup diagnostic fields int numberOfReplacements = 0; string addedAssemblyInformationalAttribute = "No"; // Enumerate over the assemblyInfo version attributes foreach (string attribute in new[] { "AssemblyVersion", "AssemblyFileVersion", "AssemblyInformationalVersion" }) { // Define the regular expression to find in each and every Assemblyinfo.cs files (which is for example 'AssemblyVersion("1.0.0.0")' ) Regex regex = new Regex(attribute + @"\(""\d+\.\d+\.\d+\.\d+""\)"); foreach (string file in Directory.EnumerateFiles(sourcesDirectory, assemblyInfoFileMask, SearchOption.AllDirectories)) { string text = File.ReadAllText(file); // Read the text from the AssemblyInfo file // If the AsemblyInformationalVersion attribute is not in the file, add it as the last line of the file // Note: by default the AssemblyInfo.cs files will not contain the AssemblyInformationalVersion attribute if (!text.Contains("[assembly: AssemblyInformationalVersion(\"")) { string lastLine = Environment.NewLine + "[assembly: AssemblyInformationalVersion(\"1.0.0.0\")]"; text = text + lastLine; addedAssemblyInformationalAttribute = "Yes"; } // Search for the expression Match match = regex.Match(text); if (match.Success) { // Get file attributes FileAttributes fileAttributes = File.GetAttributes(file); // Set file to read only File.SetAttributes(file, fileAttributes & ~FileAttributes.ReadOnly); // Insert AssemblyInformationalVersion attribute into the file text if does not already exist string newText = string.Empty; if (attribute == "AssemblyVersion") { newText = regex.Replace(text, attribute + "(\"" + assemblyVersion + "\")"); numberOfReplacements++; } if (attribute == "AssemblyFileVersion") { newText = regex.Replace(text, attribute + "(\"" + newAssemblyFileVersion + "\")"); numberOfReplacements++; } if (attribute == "AssemblyInformationalVersion") { newText = regex.Replace(text, attribute + "(\"" + productVersion + " " + productInfo + "\")"); numberOfReplacements++; } // Publish diagnostics to build report (diagnostic verbosity only) context.SetValue(this.DiagnosticTextOut, " Added AssemblyInformational Attribute: " + addedAssemblyInformationalAttribute + " Number of replacements: " + numberOfReplacements + " Build number: " + buildNumber + " Build directory: " + buildDirectory + " Build definition name: " + buildDefinitionName + " Assembly version: " + assemblyVersion + " New file version: " + newAssemblyFileVersion + " Product version: " + productVersion + " AssemblyInfo.cs Text Last Stamped: " + newText); // Write the new text in the AssemblyInfo file File.WriteAllText(file, newText); // restore the file's original attributes File.SetAttributes(file, fileAttributes); } } } } } }

    Read the article

  • What does it mean to treat data as an asset?

    What does it mean to treat data as an asset? When considering this concept, we must define what data is and how it can be considered an asset. Data can easily be defined as a collection of stored truths that are open to interpretation and manipulation.  Expanding on this definition, data can be viewed as a set of captured facts, measurements, and ideas used to make decisions. Furthermore, InvestorsWords.com defines asset as any item of economic value owned by an individual or corporation. Now let’s apply this definition of asset to our definition of data, and ask the following question. Can facts, measurements and ideas be items that are of economic value owned by an individual or corporation? The obvious answer is yes; data can be bought and sold like commodities or analyzed to make smarter business decisions.  We can look at the economic value of data in one of two ways. First, data can be sold as a commodity that can take the form of goods like eBooks, Training, Music, Movies, and so on. Customers are willing to pay to gain access to this data for their consumption. This directly implies that there is an economic value for data in the form of a commodity because customers see a value in obtaining it.  Secondly data can be used in making smarter business decisions that allow for companies to become more profitable and/or reduce their potential for risk in regards to how they operate.  In the past I have worked at companies where we had to analyze previous sales activities in conjunction with current activities to determine how the company was preforming for the quarter.  In addition trends can be formulated based on existing data that allow companies to forecast data so that they can make strategic business decisions based sound forecasted data. Companies that truly value their data are constantly trying to grow and upgrade their data and supporting applications because it is the life blood of a company. If we look at an eBook retailer for example, imagine if they lost all of their data. They would be in essence forced out of business because they would have nothing to sell. In turn, if we look at a company that was using data to facilitate better decision making processes and they lost all of their data then they could be losing potential revenue and/ or increasing the company’s losses by making important business decisions virtually in the dark compared to when they were made on solid data.

    Read the article

  • Basis of definitions

    - by Yttrill
    Let us suppose we have a set of functions which characterise something: in the OO world methods characterising a type. In mathematics these are propositions and we have two kinds: axioms and lemmas. Axioms are assumptions, lemmas are easily derived from them. In C++ axioms are pure virtual functions. Here's the problem: there's more than one way to axiomatise a system. Given a set of propositions or methods, a subset of the propositions which is necessary and sufficient to derive all the others is called a basis. So too, for methods or functions, we have a desired set which must be defined, and typically every one has one or more definitions in terms of the others, and we require the programmer to provide instance definitions which are sufficient to allow all the others to be defined, and, if there is an overspecification, then it is consistent. Let me give an example (in Felix, Haskell code would be similar): class Eq[t] { virtual fun ==(x:t,y:t):bool => eq(x,y); virtual fun eq(x:t, y:t)=> x == y; virtual fun != (x:t,y:t):bool => not (x == y); axiom reflex(x:t): x == x; axiom sym(x:t, y:t): (x == y) == (y == x); axiom trans(x:t, y:t, z:t): implies(x == y and y == z, x == z); } Here it is clear: the programmer must define either == or eq or both. If both are defined, the definitions must be equivalent. Failing to define one doesn't cause a compiler error, it causes an infinite loop at run time. Defining both inequivalently doesn't cause an error either, it is just inconsistent. Note the axioms specified constrain the semantics of any definition. Given a definition of == either directly or via a definition of eq, then != is defined automatically, although the programmer might replace the default with something more efficient, clearly such an overspecification has to be consistent. Please note, == could also be defined in terms of !=, but we didn't do that. A characterisation of a partial or total order is more complex. It is much more demanding since there is a combinatorial explosion of possible bases. There is an reason to desire overspecification: performance. There also another reason: choice and convenience. So here, there are several questions: one is how to check semantics are obeyed and I am not looking for an answer here (way too hard!). The other question is: How can we specify, and check, that an instance provides at least a basis? And a much harder question: how can we provide several default definitions which depend on the basis chosen?

    Read the article

  • Do you believe it's a good idea for Software Engineers to have to work as Quality Assurance Engineers for some period of time?

    - by Macy Abbey
    I believe it is. Why? I've encountered many Software Engineers who believe they are somehow superior to QA engineers. I think it may help quench this belief if they do the job of a QA engineer for some time, and realize that it is a unique and valuable skill-set of its own. The better a Software Engineer is at testing their own programs, the less cost in time their code incurs when making its way through the rest of the software development life-cycle. The more time a Software Engineer spends thinking about how a program can break, the more often they are to consider these cases as they are developing them, thus reducing bugs in the end product. A Software Engineer's definition of "complete" is always interesting...if they have spent time as a QA engineer maybe this definition will more closely match the designer of the software's. What do you all think?

    Read the article

  • Getting My Head Around Immutability

    - by Michael Mangold
    I'm new to object-oriented programming, and one concept that has been taking me a while to grasp is immutability. I think the light bulb went off last night but I want to verify: When I come across statements that an immutable object cannot be changed, I'm puzzled because I can, for instance, do the following: NSString *myName = @"Bob"; myName = @"Mike"; There, I just changed myName, of immutable type NSString. My problem is that the word, "object" can refer to the physical object in memory, or the abstraction, "myName." The former definition applies to the concept of immutability. As for the variable, a more clear (to me) definition of immutability is that the value of an immutable object can only be changed by also changing its location in memory, i.e. its reference (also known as its pointer). Is this correct, or am I still lost in the woods?

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • SharePoint Apps &ndash; the dark side

    - by Sahil Malik
    SharePoint 2010 Training: more information First of all, I am a proponent of SharePoint apps. As I have said many times over, SharePoint Apps make me very ‘appy, they are very app-propriate. But there are some points to consider that make a bit app-rehensive. These are all mentioned in my book “SharePoint 2013 - Planet of the Apps”, .. but here are some thoughts of the negatives of Apps that I think we need to consider before diving in, Mutliple Servers, More Complexity Apps, by definition will include an extra server. This excludes SharePoint-hosted apps of course. Extra servers by definition will add more complexity. As it is, when you introduce SharePoint to an organization, the number of servers multiply like bunnies. Now you will have additional servers, and these servers talking with each other. You will have to maintain trusts, and you will have to patch more stuff, reset more “admin” passwords – you get my point. Read full article ....

    Read the article

  • How to Install Linux on my PC

    - by Holic
    Hi i need some help to install the drivers from my pc, on Ubuntu 10.10 i just installed it, and i a newbie on Ubuntu, but i understand a bit of Windows...but i want to try ubuntu and then Maybe change to UBUNTU!!! My hardware: QuadCore Intel Core i7-870, 3266 MHz (24 x 136) Asus P7P55D-E (2 PCI, 3 PCI-E x1, 2 PCI-E x16, 4 DDR3 DIMM, Audio, Gigabit LAN, IEEE-1394) NVIDIA GeForce GTX 480 (1536 MB) nVIDIA HDMI @ nVIDIA GF100 - High Definition Audio Controller VIA VT1828S @ Intel Ibex Peak PCH - High Definition Audio Controller [B-3] DIMM1: G Skill F3-12800CL9-2GBRL 2 GB DDR3-1333 DDR3 SDRAM (8-8-8-22 @ 609 MHz) (7-7-7-20 @ 533 MHz) (6-6-6-17 @ 457 MHz) DIMM3: G Skill F3-12800CL9-2GBRL 2 GB DDR3-1333 DDR3 SDRAM (8-8-8-22 @ 609 MHz) (7-7-7-20 @ 533 MHz) (6-6-6-17 @ 457 MHz) my pc is not connected to the internet with a wire(RJ45) but with a wireless LAn Asus WL-167G-V3(wich i also whant to install if possible) Anything would've help me :) Cheers & Thank you!

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >