Search Results

Search found 19365 results on 775 pages for 'machine vision'.

Page 69/775 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • How does one use dynamic recompilation?

    - by acidzombie24
    It came to my attention some emulators and virtual machines use dynamic recompilation. How do they do that? In C i know how to call a function in ram using typecasting (although i never tried) but how does one read opcodes and generate code for it? Does the person need to have premade assembly chunks and copy/batch them together? is the assembly written in C? If so how do you find the length of the code? How do you account for system interrupts?

    Read the article

  • Cocoa app not launching on build & go but launching manually

    - by Matt S.
    I have quite the interesting problem. Yesterday my program worked perfectly, but now today I'm getting exc_bad_access when I hit build and go, but if I launch the app from the build folder it launches perfectly and there seems to be nothing wrong. The last bunch of lines from the debugger are: #0 0xffff07c2 in __memcpy #1 0x969f7961 in CFStringGetBytes #2 0x96a491b9 in CFStringCreateMutableCopy #3 0x991270cc in -[NSCFString mutableCopyWithZone:] #4 0x96a5572a in -[NSObject(NSObject) mutableCopy] #5 0x9913e6c7 in -[NSString stringByReplacingOccurrencesOfString:withString:options:range:] #6 0x9913e62f in -[NSString stringByReplacingOccurrencesOfString:withString:] #7 0x99181ad0 in -[NSScanner(NSDecimalNumberScanning) scanDecimal:] #8 0x991ce038 in -[NSDecimalNumberPlaceholder initWithString:locale:] #9 0x991cde75 in -[NSDecimalNumberPlaceholder initWithString:] #10 0x991ce44a in +[NSDecimalNumber decimalNumberWithString:] Why did my app work perfectly yesterday but not today?

    Read the article

  • how useful is Turing completeness? are neural nets turing complete?

    - by Albert
    While reading some papers about the Turing completeness of recurrent neural nets (for example: Turing computability with neural nets, Hava T. Siegelmann and Eduardo D. Sontag, 1991), I got the feeling that the proof which was given there was not really that practical. For example the referenced paper needs a neural network which neuron activity must be of infinity exactness (to reliable represent any rational number). Other proofs need a neural network of infinite size. Clearly, that is not really that practical. But I started to wonder now if it does make sense at all to ask for Turing completeness. By the strict definition, no computer system nowadays is Turing complete because none of them will be able to simulate the infinite tape. Interestingly, programming language specification leaves it most often open if they are turing complete or not. It all boils down to the question if they will always be able to allocate more memory and if the function call stack size is infinite. Most specification don't really specify this. Of course all available implementations are limited here, so all practical implementations of programming languages are not Turing complete. So, what you can say is that all computer systems are just equally powerful as finite state machines and not more. And that brings me to the question: How useful is the term Turing complete at all? And back to neural nets: For any practical implementation of a neural net (including our own brain), they will not be able to represent an infinite number of states, i.e. by the strict definition of Turing completeness, they are not Turing complete. So does the question if neural nets are Turing complete make sense at all? The question if they are as powerful as finite state machines was answered already much earlier (1954 by Minsky, the answer of course: yes) and also seems easier to answer. I.e., at least in theory, that was already the proof that they are as powerful as any computer.

    Read the article

  • Tag/Keyword based recommendation

    - by Hellnar
    Hello I am wondering what algorithm would be clever to use for a tag driven e-commerce enviroment: Each item has several tags. IE: Item name: "Metallica - Black Album CD", Tags: "metallica", "black-album", "rock", "music" Each user has several tags and friends(other users) bound to them. IE: Username: "testguy", Interests: "python", "rock", "metal", "computer-science" Friends: "testguy2", "testguy3" I need to generate recommendations to such users by checking their interest tags and generating recommendations in a sophisticated way. Ideas: A Hybrid recommendation algorithm can be used as each user has friends.(mixture of collaborative + context based recommendations). Maybe using user tags, similar users (peers) can be found to generate recommendations. Maybe directly matching tags between users and items via tags. Any suggestion is welcome. Any python based library is also welcome as I will be doing this experimental engine on python language.

    Read the article

  • Are there programs that iteratively write new programs?

    - by chris
    For about a year I have been thinking about writing a program that writes programs. This would primarily be a playful exercise that might teach me some new concepts. My inspiration came from negentropy and the ability for order to emerge from chaos and new chaos to arise out of order in infinite succession. To be more specific, the program would start by writing a short random string. If the string compiles the programs will log it for later comparison. If the string does not compile the program will try to rewrite it until it does compile. As more strings (mini 'useless' programs) are logged they can be parsed for similarities and used to generate a grammar. This grammar can then be drawn on to write more strings that have a higher probability of compilation than purely random strings. This is obviously more than a little silly, but I thought it would be fun to try and grow a program like this. And as a byproduct I get a bunch of unique programs that I can visualize and call art. I'll probably write this in Ruby due to its simple syntax and dynamic compilation and then I will visualize in processing using ruby-processing. What I would like to know is: Is there a name for this type of programming? What currently exists in this field? Who are the primary contributors? BONUS! - In what ways can I procedurally assign value to output programs beyond compiles(y/n)? I may want to extend the functionality of this program to generate a program based on parameters, but I want the program to define those parameters through running the programs that compile and assigning meaning to the programs output. This question is probably more involved than reasonable for a bonus, but if you can think of a simple way to get something like this done in less than 23 lines or one hyperlink, please toss it into your response. I know that this is not quite meta-programming and from the little I know of AI and generative algorithms they are usually more goal oriented than what I am thinking. What would be optimal is a program that continually rewrites and improves itself so I don't have to ^_^

    Read the article

  • Candidate Elimination Question---Please help!

    - by leon
    Hi , I am doing a question on Candidate Elimination Algorithm. I am a little confused with the general boundary G. Here is an example, I got G and S to the fourth case, but I am not sure with the last case. Sunny,Warm,Normal,Strong,Warm,Same,EnjoySport=yes Sunny,Warm,High,Strong,Warm,Same,EnjoySport=yes Rainy,Cold,High,Strong,Warm,Change,EnjoySport=no Sunny,Warm,High,Strong,Cool,Change,EnjoySport=yes Sunny,Warm,Normal,Weak,Warm,Same,EnjoySport=no What I have here is : S 0 :{0,0,0,0,0,0} S 1 :{Sunny,Warm,Normal,Strong,Warm,Same} S 2 , S 3 : {Sunny,Warm,?,Strong,Warm,Same} S 4 :{Sunny,Warm,?,Strong,?,?} G 4 :{Sunny,?,?,?,?,?,?,Warm,?,?,?,?} G 3 :{Sunny,?,?,?,?,?,?,Warm,?,?,?,?,?,?,?,?,?,Same} G 0 , G 1 , G 2 : {?,?,?,?,?,?} What would be the result of G5? Is it G5 empty? {}? or {???Strong??) ? Thanks

    Read the article

  • Naive Bayes matlab, row classification

    - by Jungle Boogie
    How do you classify a row of seperate cells in matlab? Atm I can classify single coloums like so: training = [1;0;-1;-2;4;0;1]; % this is the sample data. target_class = ['posi';'zero';'negi';'negi';'posi';'zero';'posi']; % target_class are the different target classes for the training data; here 'positive' and 'negetive' are the two classes for the given training data % Training and Testing the classifier (between positive and negative) test = 10*randn(25, 1); % this is for testing. I am generating random numbers. class = classify(test,training, target_class, 'diaglinear') % This command classifies the test data depening on the given training data using a Naive Bayes classifier Unlike the above im looking at wanting to classify: A B C Row A | 1 | 1 | 1 = a house Row B | 1 | 2 | 1 = a garden Can anyone help? Here is a code example from matlabs site: nb = NaiveBayes.fit(training, class) nb = NaiveBayes.fit(..., 'param1',val1, 'param2',val2, ...) I dont understand what param1 is or what val1 etc should be?

    Read the article

  • Rails: Multi-Step New User Signup Form (FSM?)

    - by neezer
    I've read the "Create Multi-Step Wizard" in Advanced Rails Recipes. I've also read and re-read the documentation for the updated FSM I'm using called Workflow, and looked here and here. The Advanced Rails Recipe focuses on records (quizzes) that already exist, and doesn't cover creating new ones. The Workflow docs don't cover any code for controllers or views, so I've no idea what to do with all this model magic, and the last two links barely touch on implementation either. From the aforementioned resources, I have a good understanding of what a FSM in Rails is and how to play with it in the console or IRB, but I've got very little direction or understanding how to implement one into my Rails app. What I would like is this: a simple, multi-step user signup process. Step 1: User enters in their critical details (with validations). Step 2: User enters in their search criteria, for their profile (with validations). Step 3: User agrees to the Terms of Service (with validations). Step 4: User is greeted by a confirmation page, including a link that takes them to their newly created account. I'd also like full navigation between the steps and full capture (saves to the database) with each transition. Can someone please give me a clear implementation of something similar to this? I would LOVE an example app that includes a multi-step signup process where I can look at the code (FULL source code--models AND controllers and views) under the hood, but I've been unable to find anything like that. Any guidance would be appreciated! EDIT: Please help make this a Railscast! Ryan B. (a.k.a. Superman), if you're reading this, we need you! http://feedback.railscasts.com/forums/77-episode-suggestions/suggestions/35553-multi-step-forms-and-wizards

    Read the article

  • Ngram IDF smoothing

    - by adi92
    I am trying to use IDF scores to find interesting phrases in my pretty huge corpus of documents. I basically need something like Amazon's Statistically Improbable Phrases, i.e. phrases that distinguish a document from all the others The problem that I am running into is that some (3,4)-grams in my data which have super-high idf actually consist of component unigrams and bigrams which have really low idf.. For example, "you've never tried" has a very high idf, while each of the component unigrams have very low idf.. I need to come up with a function that can take in document frequencies of an n-gram and all its component (n-k)-grams and return a more meaningful measure of how much this phrase will distinguish the parent document from the rest. If I were dealing with probabilities, I would try interpolation or backoff models.. I am not sure what assumptions/intuitions those models leverage to perform well, and so how well they would do for IDF scores. Anybody has any better ideas?

    Read the article

  • How do I create a good evaluation function for a new board game?

    - by A. Rex
    I write programs to play board game variants sometimes. The basic strategy is standard alpha-beta pruning or similar searches, sometimes augmented by the usual approaches to endgames or openings. I've mostly played around with chess variants, so when it comes time to pick my evaluation function, I use a basic chess evaluation function. However, now I am writing a program to play a completely new board game. How do I choose a good or even decent evaluation function? The main challenges are that the same pieces are always on the board, so a usual material function won't change based on position, and the game has been played less than a thousand times or so, so humans don't necessarily play it enough well yet to give insight. (PS. I considered a MoGo approach, but random games aren't likely to terminate.) Any ideas? Game details: The game is played on a 10-by-10 board with a fixed six pieces per side. The pieces have certain movement rules, and interact in certain ways, but no piece is ever captured. The goal of the game is to have enough of your pieces in certain special squares on the board. The goal of the computer program is to provide a player which is competitive with or better than current human players.

    Read the article

  • WITH_OBJECT_HEADERS enabled GC from Dalvik?

    - by Wonil
    Hello, As I know Dalvik VM does not support generational GC as default. But, I found "WITH_OBJECT_HEADERS" compilation flag which could be related with generational GC from HeapInternal.h file. typedef struct DvmHeapChunk { #if WITH_OBJECT_HEADERS u4 header; const Object *parent; const Object *parentOld; const Object *markFinger; const Object *markFingerOld; u2 birthGeneration; u2 markCount; u2 scanCount; u2 oldMarkGeneration; u2 markGeneration; u2 oldScanGeneration; u2 scanGeneration; #endif Does anyone try to build Dalvik with this option enabled? Do you know anything about generational GC support from Dalvik? Regards, Wonil.

    Read the article

  • Java text classification problem

    - by yox
    Hello, I have a set of Books objects, classs Book is defined as following : Class Book{ String title; ArrayList<tags> taglist; } Where title is the title of the book, example : Javascript for dummies. and taglist is a list of tags for our example : Javascript, jquery, "web dev", .. As I said a have a set of books talking about different things : IT, BIOLOGY, HISTORY, ... Each book has a title and a set of tags describing it.. I have to classify automaticaly those books into separated sets by topic, example : IT BOOKS : Java for dummies Javascript for dummies Learn flash in 30 days C++ programming HISTORY BOOKS : World wars America in 1960 Martin luther king's life BIOLOGY BOOKS : .... Do you guys know a classification algorithm/method to apply for that kind of problems ? A solution is to use an external API to define the category of the text, but the problem here is that books are in different languages : french, spanish, english ..

    Read the article

  • which Server I have to buy?

    - by sri
    Hello, Recently i have registered startup (home office). My intension is to have virtual(company) server for LAMP website development(virtual). Initially thinking, 2-5 people will be logging virtually to the server. a. but not sure where to shop or what to shop. b. Should I go for my own Server or i have to share some server. c. If i have to go My Server, should I go with rack or tower model. d. which brand and model i have to buy. d. If I have to go with shared(cloud), not sure which is the best place It will be great help, if some one provide in site. Thanks in advance. Sri

    Read the article

  • Automated Legal Processing

    - by Chris S
    Will it ever be possible to make legal systems quantifiable enough to process with computer algorithms? What technologies would have to be in place before this is possible? Are there any existing technologies that are already trying to accomplish this? Out of curiosity, I downloaded the text for laws in my local municipality, and tried applying some simple NLP tricks to extract rules from sentences. I had mixed results. Some sentences were very explicit (e.g. "Cars may not be left in the park overnight"), but other sentences seemed hopelessly vague (e.g. "The council's purpose is to ensure the well-being of the community"). I apologize if this is too open-ended a topic, but I've often wondered what society would look like if legal systems were based on less ambiguous language. Lawyers, and the legal process in general, are so expensive because they have to manually process a complex set of rules codified in ambiguous legal texts. If this system could be represented in software, this huge expense could potentially be eliminated, making the legal system more accessible for everyone.

    Read the article

  • Neural Networks test cases

    - by Betamoo
    Does increasing the number of test cases in case of Precision Neural Networks may led to problems (like over-fitting for example)..? Does it always good to increase test cases number? Will that always lead to conversion ? If no, what are these cases.. an example would be better.. Thanks,

    Read the article

  • "Anagram solver" based on statistics rather than a dictionary/table?

    - by James M.
    My problem is conceptually similar to solving anagrams, except I can't just use a dictionary lookup. I am trying to find plausible words rather than real words. I have created an N-gram model (for now, N=2) based on the letters in a bunch of text. Now, given a random sequence of letters, I would like to permute them into the most likely sequence according to the transition probabilities. I thought I would need the Viterbi algorithm when I started this, but as I look deeper, the Viterbi algorithm optimizes a sequence of hidden random variables based on the observed output. I am trying to optimize the output sequence. Is there a well-known algorithm for this that I can read about? Or am I on the right track with Viterbi and I'm just not seeing how to apply it?

    Read the article

  • problem with hierarchical clustering in Python

    - by user248237
    I am doing a hierarchical clustering a 2 dimensional matrix by correlation distance metric (i.e. 1 - Pearson correlation). My code is the following (the data is in a variable called "data"): from hcluster import * Y = pdist(data, 'correlation') cluster_type = 'average' Z = linkage(Y, cluster_type) dendrogram(Z) The error I get is: ValueError: Linkage 'Z' contains negative distances. What causes this error? The matrix "data" that I use is simply: [[ 156.651968 2345.168618] [ 158.089968 2032.840106] [ 207.996413 2786.779081] [ 151.885804 2286.70533 ] [ 154.33665 1967.74431 ] [ 150.060182 1931.991169] [ 133.800787 1978.539644] [ 112.743217 1478.903191] [ 125.388905 1422.3247 ]] I don't see how pdist could ever produce negative numbers when taking 1 - pearson correlation. Any ideas on this? thank you.

    Read the article

  • Operant conditioning algorithm?

    - by Ken
    What's the best way to implement real time operant conditioning (supervised reward/punishment-based learning) for an agent? Should I use a neural network (and what type)? Or something else? I want the agent to be able to be trained to follow commands like a dog. The commands would be in the form of gestures on a touchscreen. I want the agent to be able to be trained to follow a path (in continuous 2D space), make behavioral changes on command (modeled by FSM state transitions), and perform sequences of actions. The agent would be in a simulated physical environment.

    Read the article

  • Problems with real-valued input deep belief networks (of RBMs)

    - by Junier
    I am trying to recreate the results reported in Reducing the dimensionality of data with neural networks of autoencoding the olivetti face dataset with an adapted version of the MNIST digits matlab code, but am having some difficulty. It seems that no matter how much tweaking I do on the number of epochs, rates, or momentum the stacked RBMs are entering the fine-tuning stage with a large amount of error and consequently fail to improve much at the fine-tuning stage. I am also experiencing a similar problem on another real-valued dataset. For the first layer I am using a RBM with a smaller learning rate (as described in the paper) and with negdata = poshidstates*vishid' + repmat(visbiases,numcases,1); I'm fairly confident I am following the instructions found in the supporting material but I cannot achieve the correct errors. Is there something I am missing? See the code I'm using for real-valued visible unit RBMs below, and for the whole deep training. The rest of the code can be found here. rbmvislinear.m: epsilonw = 0.001; % Learning rate for weights epsilonvb = 0.001; % Learning rate for biases of visible units epsilonhb = 0.001; % Learning rate for biases of hidden units weightcost = 0.0002; initialmomentum = 0.5; finalmomentum = 0.9; [numcases numdims numbatches]=size(batchdata); if restart ==1, restart=0; epoch=1; % Initializing symmetric weights and biases. vishid = 0.1*randn(numdims, numhid); hidbiases = zeros(1,numhid); visbiases = zeros(1,numdims); poshidprobs = zeros(numcases,numhid); neghidprobs = zeros(numcases,numhid); posprods = zeros(numdims,numhid); negprods = zeros(numdims,numhid); vishidinc = zeros(numdims,numhid); hidbiasinc = zeros(1,numhid); visbiasinc = zeros(1,numdims); sigmainc = zeros(1,numhid); batchposhidprobs=zeros(numcases,numhid,numbatches); end for epoch = epoch:maxepoch, fprintf(1,'epoch %d\r',epoch); errsum=0; for batch = 1:numbatches, if (mod(batch,100)==0) fprintf(1,' %d ',batch); end %%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% data = batchdata(:,:,batch); poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1))); batchposhidprobs(:,:,batch)=poshidprobs; posprods = data' * poshidprobs; poshidact = sum(poshidprobs); posvisact = sum(data); %%%%%%%%% END OF POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% poshidstates = poshidprobs > rand(numcases,numhid); %%%%%%%%% START NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);% + randn(numcases,numdims) if not using mean neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1))); negprods = negdata'*neghidprobs; neghidact = sum(neghidprobs); negvisact = sum(negdata); %%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% err= sum(sum( (data-negdata).^2 )); errsum = err + errsum; if epoch>5, momentum=finalmomentum; else momentum=initialmomentum; end; %%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vishidinc = momentum*vishidinc + ... epsilonw*( (posprods-negprods)/numcases - weightcost*vishid); visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact); hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact); vishid = vishid + vishidinc; visbiases = visbiases + visbiasinc; hidbiases = hidbiases + hidbiasinc; %%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end fprintf(1, '\nepoch %4i error %f \n', epoch, errsum); end dofacedeepauto.m: clear all close all maxepoch=200; %In the Science paper we use maxepoch=50, but it works just fine. numhid=2000; numpen=1000; numpen2=500; numopen=30; fprintf(1,'Pretraining a deep autoencoder. \n'); fprintf(1,'The Science paper used 50 epochs. This uses %3i \n', maxepoch); load fdata %makeFaceData; [numcases numdims numbatches]=size(batchdata); fprintf(1,'Pretraining Layer 1 with RBM: %d-%d \n',numdims,numhid); restart=1; rbmvislinear; hidrecbiases=hidbiases; save mnistvh vishid hidrecbiases visbiases; maxepoch=50; fprintf(1,'\nPretraining Layer 2 with RBM: %d-%d \n',numhid,numpen); batchdata=batchposhidprobs; numhid=numpen; restart=1; rbm; hidpen=vishid; penrecbiases=hidbiases; hidgenbiases=visbiases; save mnisthp hidpen penrecbiases hidgenbiases; fprintf(1,'\nPretraining Layer 3 with RBM: %d-%d \n',numpen,numpen2); batchdata=batchposhidprobs; numhid=numpen2; restart=1; rbm; hidpen2=vishid; penrecbiases2=hidbiases; hidgenbiases2=visbiases; save mnisthp2 hidpen2 penrecbiases2 hidgenbiases2; fprintf(1,'\nPretraining Layer 4 with RBM: %d-%d \n',numpen2,numopen); batchdata=batchposhidprobs; numhid=numopen; restart=1; rbmhidlinear; hidtop=vishid; toprecbiases=hidbiases; topgenbiases=visbiases; save mnistpo hidtop toprecbiases topgenbiases; backpropface; Thanks for your time

    Read the article

  • git can I speed up committing?

    - by AndreasT
    I have a big repository in a shared folder. I use git from within a VM on that folder. Everything works nice, but the repository is big and git's searching through all directories and files when committing is slow. I cannot move this repository out of the shared folder. I tried to git add specific files and directories, but when I do git commit -m "something" it still goes off onto it's oddyssey through the directory tree. Can I do commits that ignore the rest of the tree?

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >