Search Results

Search found 1974 results on 79 pages for 'mfc serialization'.

Page 69/79 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • Unusual heap size limitations in VS2003 C++

    - by Shane MacLaughlin
    I have a C++ app that uses large arrays of data, and have noticed while testing that it is running out of memory, while there is still plenty of memory available. I have reduced the code to a sample test case as follows; void MemTest() { size_t Size = 500*1024*1024; // 512mb if (Size > _HEAP_MAXREQ) TRACE("Invalid Size"); void * mem = malloc(Size); if (mem == NULL) TRACE("allocation failed"); } If I create a new MFC project, include this function, and run it from InitInstance, it works fine in debug mode (memory allocated as expected), yet fails in release mode (malloc returns NULL). Single stepping through release into the C run times, my function gets inlined I get the following // malloc.c void * __cdecl _malloc_base (size_t size) { void *res = _nh_malloc_base(size, _newmode); RTCCALLBACK(_RTC_Allocate_hook, (res, size, 0)); return res; } Calling _nh_malloc_base void * __cdecl _nh_malloc_base (size_t size, int nhFlag) { void * pvReturn; // validate size if (size > _HEAP_MAXREQ) return NULL; ' ' And (size _HEAP_MAXREQ) returns true and hence my memory doesn't get allocated. Putting a watch on size comes back with the exptected 512MB, which suggests the program is linking into a different run-time library with a much smaller _HEAP_MAXREQ. Grepping the VC++ folders for _HEAP_MAXREQ shows the expected 0xFFFFFFE0, so I can't figure out what is happening here. Anyone know of any CRT changes or versions that would cause this problem, or am I missing something way more obvious?

    Read the article

  • C++ Dynamic Allocation Mismatch: Is this problematic?

    - by acanaday
    I have been assigned to work on some legacy C++ code in MFC. One of the things I am finding all over the place are allocations like the following: struct Point { float x,y,z; }; ... void someFunc( void ) { int numPoints = ...; Point* pArray = (Point*)new BYTE[ numPoints * sizeof(Point) ]; ... //do some stuff with points ... delete [] pArray; } I realize that this code is atrociously wrong on so many levels (C-style cast, using new like malloc, confusing, etc). I also realize that if Point had defined a constructor it would not be called and weird things would happen at delete [] if a destructor had been defined. Question: I am in the process of fixing these occurrences wherever they appear as a matter of course. However, I have never seen anything like this before and it has got me wondering. Does this code have the potential to cause memory leaks/corruption as it stands currently (no constructor/destructor, but with pointer type mismatch) or is it safe as long as the array just contains structs/primitive types?

    Read the article

  • accessing specific icons from a Multi-Icon (.ico) file

    - by Sagi1981
    Dear community. I would like to know if the following is possible. I have an .ico file, containing several sizes and color depths. However, it also contains some custom made sizes, that are going to be used inside my application. The application accesses the icon trough a resource DLL. (The intention is that the DLL is provided by a third party developer) Is there any way to pinpoint exactly which of the icons in the .ico file to use in my application? Like I want this size to appear here on my GUI etc. For instance, I am making a button in my application, and I would like my custom made 15*32 icon from my .ico file to be displayed on the button. I know this is possible by adding the bitmaps one at a time to the resource DLL, giving each of them a unique name. But it would be easier, if I am able to identify the different contents of the icon file instead. Is it possible in some way to look at the icon file as an array of icons or something like that? Any help is much appreciated. It seems quite hard to find information about this subject on the web. Oh, and I am writing my application in C#, using MFC DLL (from Visual C++ to create my resource DLL)

    Read the article

  • Tools for debugging when debugger can't get you there?

    - by brian1001
    I have a fairly complex (approx 200,000 lines of C++ code) application that has decided to crash, although it crashes a little differently on a couple of different systems. The trick is that it doesn't crash or trap out in debugger. It only crashes when the application .EXE is run independently (either the debug EXE or the release EXE - both behave the same way). When it crashes in the debug EXE, and I get it to start debugging, the call stack is buried down into the windows/MFC part of things, and isn't reflecting any of my code. Perhaps I'm seeing a stack corruption of some sort, but I'm just not sure at the moment. My question is more general - it's about tools and techniques. I'm an old programmer (C and assembly language days), and a relative newcomer (couple/few years) to C++ and Visual Studio (2003 for this projecT). Are there tricks or techniques anyone's had success with in tracking down crashing issues when you cannot make the software crash in a debugger session? Stuff like permission issues, for example? The only thing I've thought of is to start plugging in debug/status messages to a logfile, but that's a long, hard way to go. Been there, done that. Any better suggestions? Am I missing some tools that would help? Is VS 2008 better for this kind of thing? Thanks for any guidance. Some very smart people here (you know who you are!). cheers.

    Read the article

  • C# form - checkboxes do not respond to plus/minus keys - easy workaround?

    - by Scott
    On forms created with pre dotNET VB and C++ (MFC), a checkbox control responded to the plus/minus key without custom programming. When focus was on the checbox control, pressing PLUS would check the box, no matter what the previous state (checked/unchecked), while pressing MINUS would uncheck it, no matter the previous state. C# winform checkboxes do not seem to exhibit this behavior. Said behavior was very, very handy for automation, whereby the automating program would set focus to a checkbox control and issue a PLUS or MINUS to check or uncheck it. Without this capability, that cannot be done, as the automation program (at least the one I am using) is unable to query the current state of the checkbox (so it can decide whether to issue a SPACE key to toggle the state to the desired one). I've gone over the properties of a checkbox in the Visual Studio 2008 IDE and could not find anything that would restore/enable response to PLUS/MINUS. Since I am in control of the sourcecode for the WinForms in question, I could replace all checkbox controls with a custom checkbox control, but blech, I'd like to avoid that - heck, I don't think I could even consider that given the amount of refactoring that would need to be done. So the bottom line is: does anyone know of a way to get this behavior back more easily than a coding change?

    Read the article

  • Building a better mouse-trap &ndash; Improving the creation of XML Message Requests using Reflection, XML &amp; XSLT

    - by paulschapman
    Introduction The way I previously created messages to send to the GovTalk service I used the XMLDocument to create the request. While this worked it left a number of problems; not least that for every message a special function would need to created. This is OK for the short term but the biggest cost in any software project is maintenance and this would be a headache to maintain. So the following is a somewhat better way of achieving the same thing. For the purposes of this article I am going to be using the CompanyNumberSearch request of the GovTalk service – although this technique would work for any service that accepted XML. The C# functions which send and receive the messages remain the same. The magic sauce in this is the XSLT which defines the structure of the request, and the use of objects in conjunction with reflection to provide the content. It is a bit like Sweet Chilli Sauce added to Chicken on a bed of rice. So on to the Sweet Chilli Sauce The Sweet Chilli Sauce The request to search for a company based on it’s number is as follows; <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID>1</TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID>????????????????????????????????</SenderID> <Authentication> <Method>CHMD5</Method> <Value>????????????????????????????????</Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber>99999999</PartialCompanyNumber> <DataSet>LIVE</DataSet> <SearchRows>1</SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> This is the XML that we send to the GovTalk Service and we get back a list of companies that match the criteria passed A message is structured in two parts; The envelope which identifies the person sending the request, with the name of the request, and the body which gives the detail of the company we are looking for. The Chilli What makes it possible is the use of XSLT to define the message – and serialization to convert each request object into XML. To start we need to create an object which will represent the contents of the message we are sending. However there is a common properties in all the messages that we send to Companies House. These properties are as follows SenderId – the id of the person sending the message SenderPassword – the password associated with Id TransactionId – Unique identifier for the message AuthenticationValue – authenticates the request Because these properties are unique to the Companies House message, and because they are shared with all messages they are perfect candidates for a base class. The class is as follows; using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Security.Cryptography; using System.Text; using System.Text.RegularExpressions; using Microsoft.WindowsAzure.ServiceRuntime; namespace CompanyHub.Services { public class GovTalkRequest { public GovTalkRequest() { try { SenderID = RoleEnvironment.GetConfigurationSettingValue("SenderId"); SenderPassword = RoleEnvironment.GetConfigurationSettingValue("SenderPassword"); TransactionId = DateTime.Now.Ticks.ToString(); AuthenticationValue = EncodePassword(String.Format("{0}{1}{2}", SenderID, SenderPassword, TransactionId)); } catch (System.Exception ex) { throw ex; } } /// <summary> /// returns the Sender ID to be used when communicating with the GovTalk Service /// </summary> public String SenderID { get; set; } /// <summary> /// return the password to be used when communicating with the GovTalk Service /// </summary> public String SenderPassword { get; set; } // end SenderPassword /// <summary> /// Transaction Id - uses the Time and Date converted to Ticks /// </summary> public String TransactionId { get; set; } // end TransactionId /// <summary> /// calculate the authentication value that will be used when /// communicating with /// </summary> public String AuthenticationValue { get; set; } // end AuthenticationValue property /// <summary> /// encodes password(s) using MD5 /// </summary> /// <param name="clearPassword"></param> /// <returns></returns> public static String EncodePassword(String clearPassword) { MD5CryptoServiceProvider md5Hasher = new MD5CryptoServiceProvider(); byte[] hashedBytes; UTF32Encoding encoder = new UTF32Encoding(); hashedBytes = md5Hasher.ComputeHash(ASCIIEncoding.Default.GetBytes(clearPassword)); String result = Regex.Replace(BitConverter.ToString(hashedBytes), "-", "").ToLower(); return result; } } } There is nothing particularly clever here, except for the EncodePassword method which hashes the value made up of the SenderId, Password and Transaction id. Each message inherits from this object. So for the Company Number Search in addition to the properties above we need a partial number, which dataset to search – for the purposes of the project we only need to search the LIVE set so this can be set in the constructor and the SearchRows. Again all are set as properties. With the SearchRows and DataSet initialized in the constructor. public class CompanyNumberSearchRequest : GovTalkRequest, IDisposable { /// <summary> /// /// </summary> public CompanyNumberSearchRequest() : base() { DataSet = "LIVE"; SearchRows = 1; } /// <summary> /// Company Number to search against /// </summary> public String PartialCompanyNumber { get; set; } /// <summary> /// What DataSet should be searched for the company /// </summary> public String DataSet { get; set; } /// <summary> /// How many rows should be returned /// </summary> public int SearchRows { get; set; } public void Dispose() { DataSet = String.Empty; PartialCompanyNumber = String.Empty; DataSet = "LIVE"; SearchRows = 1; } } As well as inheriting from our base class, I have also inherited from IDisposable – not just because it is just plain good practice to dispose of objects when coding, but it gives also gives us more versatility when using the object. There are four stages in making a request and this is reflected in the four methods we execute in making a call to the Companies House service; Create a request Send a request Check the status If OK then get the results of the request I’ve implemented each of these stages within a static class called Toolbox – which also means I don’t need to create an instance of the class to use it. When making a request there are three stages; Get the template for the message Serialize the object representing the message Transform the serialized object using a predefined XSLT file. Each of my templates I have defined as an embedded resource. When retrieving a resource of this kind we have to include the full namespace to the resource. In making the code re-usable as much as possible I defined the full ‘path’ within the GetRequest method. requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); So we now have the full path of the file within the assembly. Now all we need do is retrieve the assembly and get the resource. asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); Once retrieved  So this can be returned to the calling function and we now have a stream of XSLT to define the message. Time now to serialize the request to create the other side of this message. // Serialize object containing Request, Load into XML Document t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); First off we need the type of the object so we make a call to the GetType method of the object containing the Message properties. Next we need a MemoryStream, XmlSerializer and an XMLTextWriter so these can be initialized. The object is serialized by making the call to the Serialize method of the serializer object. The result of that is then converted into a MemoryStream. That MemoryStream is then converted into a string. ConvertByteArrayToString This is a fairly simple function which uses an ASCIIEncoding object found within the System.Text namespace to convert an array of bytes into a string. public static String ConvertByteArrayToString(byte[] bytes) { System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding(); return enc.GetString(bytes); } I only put it into a function because I will be using this in various places. The Sauce When adding support for other messages outside of creating a new object to store the properties of the message, the C# components do not need to change. It is in the XSLT file that the versatility of the technique lies. The XSLT file determines the format of the message. For the CompanyNumberSearch the XSLT file is as follows; <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/"> <GovTalkMessage xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" > <EnvelopeVersion>1.0</EnvelopeVersion> <Header> <MessageDetails> <Class>NumberSearch</Class> <Qualifier>request</Qualifier> <TransactionID> <xsl:value-of select="CompanyNumberSearchRequest/TransactionId"/> </TransactionID> </MessageDetails> <SenderDetails> <IDAuthentication> <SenderID><xsl:value-of select="CompanyNumberSearchRequest/SenderID"/></SenderID> <Authentication> <Method>CHMD5</Method> <Value> <xsl:value-of select="CompanyNumberSearchRequest/AuthenticationValue"/> </Value> </Authentication> </IDAuthentication> </SenderDetails> </Header> <GovTalkDetails> <Keys/> </GovTalkDetails> <Body> <NumberSearchRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://xmlgw.companieshouse.gov.uk/v1-0/schema/NumberSearch.xsd"> <PartialCompanyNumber> <xsl:value-of select="CompanyNumberSearchRequest/PartialCompanyNumber"/> </PartialCompanyNumber> <DataSet> <xsl:value-of select="CompanyNumberSearchRequest/DataSet"/> </DataSet> <SearchRows> <xsl:value-of select="CompanyNumberSearchRequest/SearchRows"/> </SearchRows> </NumberSearchRequest> </Body> </GovTalkMessage> </xsl:template> </xsl:stylesheet> The outer two tags define that this is a XSLT stylesheet and the root tag from which the nodes are searched for. The GovTalkMessage is the format of the message that will be sent to Companies House. We first set up the XslCompiledTransform object which will transform the XSLT template and the serialized object into the request to Companies House. xslt = new XslCompiledTransform(); resultStream = new MemoryStream(); writer = new XmlTextWriter(resultStream, Encoding.ASCII); doc = new XmlDocument(); The Serialize method require XmlTextWriter to write the XML (writer) and a stream to place the transferred object into (writer). The XML will be loaded into an XMLDocument object (doc) prior to the transformation. // create XSLT Template xslTemplate = Toolbox.GetRequest(Template); xslTemplate.Seek(0, SeekOrigin.Begin); templateReader = XmlReader.Create(xslTemplate); xslt.Load(templateReader); I have stored all the templates as a series of Embedded Resources and the GetRequestCall takes the name of the template and extracts the relevent XSLT file. /// <summary> /// Gets the framwork XML which makes the request /// </summary> /// <param name="RequestFile"></param> /// <returns></returns> public static Stream GetRequest(String RequestFile) { String requestFile = String.Empty; Stream sr = null; Assembly asm = null; try { requestFile = String.Format("CompanyHub.Services.Schemas.{0}", RequestFile); asm = Assembly.GetExecutingAssembly(); sr = asm.GetManifestResourceStream(requestFile); } catch (Exception) { throw; } finally { asm = null; } return sr; } // end private static stream GetRequest We first take the template name and expand it to include the full namespace to the Embedded Resource I like to keep all my schemas in the same directory and so the namespace reflects this. The rest is the default namespace for the project. Then we get the currently executing assembly (which will contain the resources with the call to GetExecutingAssembly() ) Finally we get a stream which contains the XSLT file. We use this stream and then load an XmlReader with the contents of the template, and that is in turn loaded into the XslCompiledTransform object. We convert the object containing the message properties into Xml by serializing it; calling the Serialize() method of the XmlSerializer object. To set up the object we do the following; t = Obj.GetType(); ms = new MemoryStream(); serializer = new XmlSerializer(t); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); We first determine the type of the object being transferred by calling GetType() We create an XmlSerializer object by passing the type of the object being serialized. The serializer writes to a memory stream and that is linked to an XmlTextWriter. Next job is to serialize the object and load it into an XmlDocument. serializer.Serialize(xmlTextWriter, Obj); ms = (MemoryStream)xmlTextWriter.BaseStream; xmlRequest = new XmlTextReader(ms); GovTalkRequest = Toolbox.ConvertByteArrayToString(ms.ToArray()); doc.LoadXml(GovTalkRequest); Time to transform the XML to construct the full request. xslt.Transform(doc, writer); resultStream.Seek(0, SeekOrigin.Begin); request = Toolbox.ConvertByteArrayToString(resultStream.ToArray()); So that creates the full request to be sent  to Companies House. Sending the request So far we have a string with a request for the Companies House service. Now we need to send the request to the Companies House Service. Configuration within an Azure project There are entire blog entries written about configuration within an Azure project – most of this is out of scope for this article but the following is a summary. Configuration is defined in two files within the parent project *.csdef which contains the definition of configuration setting. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WebRole name="CompanyHub.Host"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="80" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="DataConnectionString" /> </ConfigurationSettings> </WebRole> <WebRole name="CompanyHub.Services"> <InputEndpoints> <InputEndpoint name="HttpIn" protocol="http" port="8080" /> </InputEndpoints> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> <Setting name="SenderId"/> <Setting name="SenderPassword" /> <Setting name="GovTalkUrl"/> </ConfigurationSettings> </WebRole> <WorkerRole name="CompanyHub.Worker"> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" /> </ConfigurationSettings> </WorkerRole> </ServiceDefinition>   Above is the configuration definition from the project. What we are interested in however is the ConfigurationSettings tag of the CompanyHub.Services WebRole. There are four configuration settings here, but at the moment we are interested in the second to forth settings; SenderId, SenderPassword and GovTalkUrl The value of these settings are defined in the ServiceDefinition.cscfg file; <?xml version="1.0"?> <ServiceConfiguration serviceName="OnlineCompanyHub" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration"> <Role name="CompanyHub.Host"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="DataConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> <Role name="CompanyHub.Services"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="SenderId" value="UserID"/> <Setting name="SenderPassword" value="Password"/> <Setting name="GovTalkUrl" value="http://xmlgw.companieshouse.gov.uk/v1-0/xmlgw/Gateway"/> </ConfigurationSettings> </Role> <Role name="CompanyHub.Worker"> <Instances count="2" /> <ConfigurationSettings> <Setting name="DiagnosticsConnectionString" value="UseDevelopmentStorage=true" /> </ConfigurationSettings> </Role> </ServiceConfiguration>   Look for the Role tag that contains our project name (CompanyHub.Services). Having configured the parameters we can now transmit the request. This is done by ‘POST’ing a stream of XML to the Companies House servers. govTalkUrl = RoleEnvironment.GetConfigurationSettingValue("GovTalkUrl"); request = WebRequest.Create(govTalkUrl); request.Method = "POST"; request.ContentType = "text/xml"; writer = new StreamWriter(request.GetRequestStream()); writer.WriteLine(RequestMessage); writer.Close(); We use the WebRequest object to send the object. Set the method of sending to ‘POST’ and the type of data as text/xml. Once set up all we do is write the request to the writer – this sends the request to Companies House. Did the Request Work Part I – Getting the response Having sent a request – we now need the result of that request. response = request.GetResponse(); reader = response.GetResponseStream(); result = Toolbox.ConvertByteArrayToString(Toolbox.ReadFully(reader));   The WebRequest object has a GetResponse() method which allows us to get the response sent back. Like many of these calls the results come in the form of a stream which we convert into a string. Did the Request Work Part II – Translating the Response Much like XSLT and XML were used to create the original request, so it can be used to extract the response and by deserializing the result we create an object that contains the response. Did it work? It would be really great if everything worked all the time. Of course if it did then I don’t suppose people would pay me and others the big bucks so that our programmes do not a) Collapse in a heap (this is an area of memory) b) Blow every fuse in the place in a shower of sparks (this will probably not happen this being real life and not a Hollywood movie, but it was possible to blow the sound system of a BBC Model B with a poorly coded setting) c) Go nuts and trap everyone outside the airlock (this was from a movie, and unless NASA get a manned moon/mars mission set up unlikely to happen) d) Go nuts and take over the world (this was also from a movie, but please note life has a habit of being of exceeding the wildest imaginations of Hollywood writers (note writers – Hollywood executives have no imagination and judging by recent output of that town have turned plagiarism into an art form). e) Freeze in total confusion because the cleaner pulled the plug to the internet router (this has happened) So anyway – we need to check to see if our request actually worked. Within the GovTalk response there is a section that details the status of the message and a description of what went wrong (if anything did). I have defined an XSLT template which will extract these into an XML document. <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <xsl:template match="/"> <GovTalkStatus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <Status> <xsl:value-of select="ev:GovTalkMessage/ev:Header/ev:MessageDetails/ev:Qualifier"/> </Status> <Text> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Text"/> </Text> <Location> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Location"/> </Location> <Number> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Number"/> </Number> <Type> <xsl:value-of select="ev:GovTalkMessage/ev:GovTalkDetails/ev:GovTalkErrors/ev:Error/ev:Type"/> </Type> </GovTalkStatus> </xsl:template> </xsl:stylesheet>   Only thing different about previous XSL files is the references to two namespaces ev & gt. These are defined in the GovTalk response at the top of the response; xsi:schemaLocation="http://www.govtalk.gov.uk/CM/envelope http://xmlgw.companieshouse.gov.uk/v1-0/schema/Egov_ch-v2-0.xsd" xmlns="http://www.govtalk.gov.uk/CM/envelope" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:gt="http://www.govtalk.gov.uk/schemas/govtalk/core" If we do not put these references into the XSLT template then  the XslCompiledTransform object will not be able to find the relevant tags. Deserialization is a fairly simple activity. encoder = new ASCIIEncoding(); ms = new MemoryStream(encoder.GetBytes(statusXML)); serializer = new XmlSerializer(typeof(GovTalkStatus)); xmlTextWriter = new XmlTextWriter(ms, Encoding.ASCII); messageStatus = (GovTalkStatus)serializer.Deserialize(ms);   We set up a serialization object using the object type containing the error state and pass to it the results of a transformation between the XSLT above and the GovTalk response. Now we have an object containing any error state, and the error message. All we need to do is check the status. If there is an error then we can flag an error. If not then  we extract the results and pass that as an object back to the calling function. We go this by guess what – defining an XSLT template for the result and using that to create an Xml Stream which can be deserialized into a .Net object. In this instance the XSLT to create the result of a Company Number Search is; <?xml version="1.0" encoding="us-ascii"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ev="http://www.govtalk.gov.uk/CM/envelope" xmlns:sch="http://xmlgw.companieshouse.gov.uk/v1-0/schema" exclude-result-prefixes="ev"> <xsl:template match="/"> <CompanySearchResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <CompanyNumber> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyNumber"/> </CompanyNumber> <CompanyName> <xsl:value-of select="ev:GovTalkMessage/ev:Body/sch:NumberSearch/sch:CoSearchItem/sch:CompanyName"/> </CompanyName> </CompanySearchResult> </xsl:template> </xsl:stylesheet> and the object definition is; using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace CompanyHub.Services { public class CompanySearchResult { public CompanySearchResult() { CompanyNumber = String.Empty; CompanyName = String.Empty; } public String CompanyNumber { get; set; } public String CompanyName { get; set; } } } Our entire code to make calls to send a request, and interpret the results are; String request = String.Empty; String response = String.Empty; GovTalkStatus status = null; fault = null; try { using (CompanyNumberSearchRequest requestObj = new CompanyNumberSearchRequest()) { requestObj.PartialCompanyNumber = CompanyNumber; request = Toolbox.CreateRequest(requestObj, "CompanyNumberSearch.xsl"); response = Toolbox.SendGovTalkRequest(request); status = Toolbox.GetMessageStatus(response); if (status.Status.ToLower() == "error") { fault = new HubFault() { Message = status.Text }; } else { Object obj = Toolbox.GetGovTalkResponse(response, "CompanyNumberSearchResult.xsl", typeof(CompanySearchResult)); } } } catch (FaultException<ArgumentException> ex) { fault = new HubFault() { FaultType = ex.Detail.GetType().FullName, Message = ex.Detail.Message }; } catch (System.Exception ex) { fault = new HubFault() { FaultType = ex.GetType().FullName, Message = ex.Message }; } finally { } Wrap up So there we have it – a reusable set of functions to send and interpret XML results from an internet based service. The code is reusable with a little change with any service which uses XML as a transport mechanism – and as for the Companies House GovTalk service all I need to do is create various objects for the result and message sent and the relevent XSLT files. I might need minor changes for other services but something like 70-90% will be exactly the same.

    Read the article

  • Fun with Python

    - by dotneteer
    I am taking a class on Coursera recently. My formal education is in physics. Although I have been working as a developer for over 18 years and have learnt a lot of programming on the job, I still would like to gain some systematic knowledge in computer science. Coursera courses taught by Standard professors provided me a wonderful chance. The three languages recommended for assignments are Java, C and Python. I am fluent in Java and have done some projects using C++/MFC/ATL in the past, but I would like to try something different this time. I first started with pure C. Soon I discover that I have to write a lot of code outside the question that I try to solve because the very limited C standard library. For example, to read a list of values from a file, I have to read characters by characters until I hit a delimiter. If I need a list that can grow, I have to create a data structure myself, something that I have taking for granted in .Net or Java. Out of frustration, I switched to Python. I was pleasantly surprised to find that Python is very easy to learn. The tutorial on the official Python site has the exactly the right pace for me, someone with experience in another programming. After a couple of hours on the tutorial and a few more minutes of toying with IDEL, I was in business. I like the “battery supplied” philosophy that gives everything that I need out of box. For someone from C# or Java background, curly braces are replaced by colon(:) and tab spaces. Although I tend to miss colon from time to time, I found that the idea of tab space is actually very nice once I get use to them. I also like to feature of multiple assignment and multiple return parameters. When I need to return a by-product, I just add it to the list of returns. When would use Python? I would use Python if I need to computer anything quick. The language is very easy to use. Python has a good collection of libraries (packages). The REPL of the interpreter allows me test ideas quickly before committing them into script. Lots of computer science work have been ported from Lisp to Python. Some universities are even teaching SICP in Python. When wouldn’t I use Python? I mostly would not use it in a managed environment, such as Ironpython or Jython. Both .Net and Java already have a rich library so one has to make a choice which library to use. If we use the managed runtime library, the code will tie to the particular runtime and thus not portable. If we use the Python library, then we will face the relatively long start-up time. For this reason, I would not recommend to use Ironpython for WP7 development. The only situation that I see merit with managed Python is in a server application where I can preload Python so that the start-up time is not a concern. Using Python as a managed glue language is an over-kill most of the time. A managed Scheme could be a better glue language as it is small enough to start-up very fast.

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • List of blogs - year 2010

    - by hajan
    This is the last day of year 2010 and I would like to add links to all blogs I have posted in this year. First, I would like to mention that I started blogging in ASP.NET Community in May / June 2010 and have really enjoyed writing for my favorite technologies, such as: ASP.NET, jQuery/JavaScript, C#, LINQ, Web Services etc. I also had great feedback either through comments on my blogs or in Twitter, Facebook, LinkedIn where I met many new experts just as a result of my blog posts. Thanks to the interesting topics I have in my blog, I became DZone MVB. Here is the list of blogs I made in 2010 in my ASP.NET Community Weblog: (newest to oldest) Great library of ASP.NET videos – Pluralsight! NDepend – Code Query Language (CQL) NDepend tool – Why every developer working with Visual Studio.NET must try it! jQuery Templates in ASP.NET - Blogs Series jQuery Templates - XHTML Validation jQuery Templates with ASP.NET MVC jQuery Templates - {Supported Tags} jQuery Templates – tmpl(), template() and tmplItem() Introduction to jQuery Templates ViewBag dynamic in ASP.NET MVC 3 - RC 2 Today I had a presentation on "Deep Dive into jQuery Templates in ASP.NET" jQuery Data Linking in ASP.NET How do you prefer getting bundles of technologies?? Case-insensitive XPath query search on XML Document in ASP.NET jQuery UI Accordion in ASP.NET MVC - feed with data from database (Part 3) jQuery UI Accordion in ASP.NET WebForms - feed with data from database (Part 2) jQuery UI Accordion in ASP.NET – Client side implementation (Part 1) Using Images embedded in Project’s Assembly Macedonian Code Camp 2010 event has finished successfully Tips and Tricks: Deferred execution using LINQ Using System.Diagnostics.Stopwatch class to measure the elapsed time Speaking at Macedonian Code Camp 2010 URL Routing in ASP.NET 4.0 Web Forms Conflicts between ASP.NET AJAX UpdatePanels & jQuery functions Integration of jQuery DatePicker in ASP.NET Website – Localization (part 3) Why not to use HttpResponse.Close and HttpResponse.End Calculate Business Days using LINQ Get Distinct values of an Array using LINQ Using CodeRun browser-based IDE to create ASP.NET Web Applications Using params keyword – Methods with variable number of parameters Working with Code Snippets in VS.NET  Working with System.IO.Path static class Calculating GridView total using JavaScript/JQuery The new SortedSet<T> Collection in .NET 4.0 JavaScriptSerializer – Dictionary to JSON Serialization and Deserialization Integration of jQuery DatePicker in ASP.NET Website – JS Validation Script (part 2) Integration of jQuery DatePicker in ASP.NET Website (part 1) Transferring large data when using Web Services Forums dedicated to WebMatrix Microsoft WebMatrix – Short overview & installation Working with embedded resources in Project's assembly Debugging ASP.NET Web Services Save and Display YouTube Videos on ASP.NET Website Hello ASP.NET World... In addition, I would like to mention that I have big list of blog posts in CodeASP.NET Community (total 60 blogs) and the local MKDOT.NET Community (total 61 blogs). You may find most of my weblogs.asp.net/hajan blogs posted there too, but there you can find many others. In my blog on MKDOT.NET Community you can find most of my ASP.NET Weblog posts translated in Macedonian language, some of them posted in English and some other blogs that were posted only there. By reading my blogs, I hope you have learnt something new or at least have confirmed your knowledge. And also, if you haven't, I encourage you to start blogging and share your Microsoft Tech. thoughts with all of us... Sharing and spreading knowledge is definitely one of the noblest things which we can do in our life. "Give a man a fish and he will eat for a day. Teach a man to fish and he will eat for a lifetime" HAPPY NEW 2011 YEAR!!! Best Regards, Hajan

    Read the article

  • wcf http 504: Working on a mystery

    - by James Fleming
    Ok,  So you're here because you've been trying to solve the mystery of why you're getting a 504 error. If you've made it to this lonely corner of the Internet, then the advice you're getting from other bloggers isn't the answer you are after. It wasn't the answer I needed either, so once I did solve my problem, I thought I'd share the answer with you. For starters, if by some miracle, you landed here first you may not already know that the 504 error is NOT coming from IIS or Casini, that response code is coming from Fiddler. HTTP/1.1 504 Fiddler - Receive Failure Content-Type: text/html Connection: close Timestamp: 09:43:05.193 ReadResponse() failed: The server did not return a response for this request.       The take away here is Fiddler won't help you with the diagnosis and any further digging in that direction is a red herring. Assuming you've dug around a bit, you may have arrived at posts which suggest you may be getting the error because you're trying to hump too much data over the wire, and have an urgent need to employ an anti-pattern: due to a special case: http://delphimike.blogspot.com/2010/01/error-504-in-wcfnet-35.html Or perhaps you're experiencing wonky behavior using WCF-CustomIsolated Adapter on Windows Server 2008 64bit environment, in which case the rather fly MVP Dwight Goins' advice is what you need. http://dgoins.wordpress.com/2009/12/18/64bit-wcf-custom-isolated-%E2%80%93-rest-%E2%80%93-%E2%80%9C504%E2%80%9D-response/ For me, none of that was helpful. I could perform a get on a single record  http://localhost:8783/Criterion/Skip(0)/Take(1) but I couldn't get more than one record in my collection as in:  http://localhost:8783/Criterion/Skip(0)/Take(2) I didn't have a big payload, or a large number of objects (as you can see by the size of one record below) - - A-1B f5abd850-ec52-401a-8bac-bcea22c74138 .biological/legal mother This item refers to the supervisor’s evaluation of the caseworker’s ability to involve the biological/legal mother in the permanency planning process. 75d8ecb7-91df-475f-aa17-26367aeb8b21 false true Admin account 2010-01-06T17:58:24.88 1.20 764a2333-f445-4793-b54d-1c3084116daa So while I was able to retrieve one record without a hitch (thus the record above) I wasn't able to return multiple records. I confirmed I could get each record individually, (Skip(1)/Take(1))so it stood to reason the problem wasn't with the data at all, so I suspected a serialization error. The first step to resolving this was to enable WCF Tracing. Instructions on how to set it up are here: http://msdn.microsoft.com/en-us/library/ms733025.aspx. The tracing log led me to the solution. The use of type 'Application.Survey.Model.Criterion' as a get-only collection is not supported with NetDataContractSerializer.  Consider marking the type with the CollectionDataContractAttribute attribute or the SerializableAttribute attribute or adding a setter to the property. So I was wrong (but close!). The problem was a deserializing issue in trying to recreate my read only collection. http://msdn.microsoft.com/en-us/library/aa347850.aspx#Y1455 So looking at my underlying model, I saw I did have a read only collection. Adding a setter was all it took.         public virtual ICollection<string> GoverningResponses         {             get             {                 if (!string.IsNullOrEmpty(GoverningResponse))                 {                     return GoverningResponse.Split(';');                 }                 else                     return null;             }                  } Hope this helps. If it does, post a comment.

    Read the article

  • How to store a shmup level?

    - by pek
    I am developing a 2D shmup (i.e. Aero Fighters) and I was wondering what are the various ways to store a level. Assuming that enemies are defined in their own xml file, how would you define when an enemy spawns in the level? Would it be based on time? Updates? Distance? Currently I do this based on "level time" (the amount of time the level is running - pausing doesn't update the time). Here is an example (the serialization was done by XNA): <?xml version="1.0" encoding="utf-8"?> <XnaContent xmlns:level="pekalicious.xanor.XanorContentShared.content.level"> <Asset Type="level:Level"> <Enemies> <Enemy> <EnemyType>data/enemies/smallenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>60</NumberOfSpawns> <SpawnOffset>PT0.2S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT20S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/boss1</EnemyType> <SpawnTime>PT30S</SpawnTime> <NumberOfSpawns>1</NumberOfSpawns> <SpawnOffset>PT0S</SpawnOffset> </Enemy> </Enemies> </Asset> </XnaContent> Each Enemy element is basically a wave of specific enemy types. The type is defined in EnemyType while SpawnTime is the "level time" this wave should appear. NumberOfSpawns and SpawnOffset is the number of enemies that will show up and the time it takes between each spawn respectively. This could be a good idea or there could be better ones out there. I'm not sure. I would like to see some opinions and ideas. I have two problems with this: spawning an enemy correctly and creating a level editor. The level editor thing is an entirely different problem (which I will probably post in the future :P). As for spawning correctly, the problem lies in the fact that I have a variable update time and so I need to make sure I don't miss an enemy spawn because the spawn offset is too small, or because the update took a little more time. I kinda fixed it for the most part, but it seems to me that the problem is with how I store the level. So, any ideas? Comments? Thank you in advance.

    Read the article

  • Replacing ASP.NET Forms Authentication with WIF Session Authentication (for the better)

    - by Your DisplayName here!
    ASP.NET Forms Authentication and WIF Session Authentication (which has *nothing* to do with ASP.NET sessions) are very similar. Both inspect incoming requests for a special cookie that contains identity information, if that cookie is present it gets validated and if that is successful, the identity information is made available to the application via HttpContext.User/Thread.CurrentPrincipal. The main difference between the two is the identity to cookie serialization engine that sits below. Whereas ForsmAuth can only store the name of the user and an additional UserData string. It is limited to a single cookie and hardcoded to protection via the machine key. WIF session authentication in turn has these additional features: Can serialize a complete ClaimsPrincipal (including claims) to the cookie(s). Has a cookie overflow mechanism when data gets too big. In total it can create up to 8 cookies (á 4 KB) per domain (not that I would recommend round tripping that much data). Supports server side caching (which is an extensible mechanism). Has an extensible mechanism for protection (DPAPI by default, RSA as an option for web farms, and machine key based protection is coming in .NET 4.5) So in other words – session authentication is the superior technology, and if done cleverly enough you can replace FormsAuth without any changes to your application code. The only features missing is the redirect mechanism to a login page and an easy to use API to set authentication cookies. But that’s easy to add ;) FormsSessionAuthenticationModule This module is a sub class of the standard WIF session module, adding the following features: Handling EndRequest to do the redirect on 401s to the login page configured for FormsAuth. Reads the FormsAuth cookie name, cookie domain, timeout and require SSL settings to configure the module accordingly. Implements sliding expiration if configured for FormsAuth. It also uses the same algorithm as FormsAuth to calculate when the cookie needs renewal. Implements caching of the principal on the server side (aka session mode) if configured in an AppSetting. Supports claims transformation via a ClaimsAuthenticationManager. As you can see, the whole module is designed to easily replace the FormsAuth mechanism. Simply set the authentication mode to None and register the module. In the spirit of the FormsAuthentication class, there is also now a SessionAuthentication class with the same methods and signatures (e.g. SetAuthCookie and SignOut). The rest of your application code should not be affected. In addition the session module looks for a HttpContext item called “NoRedirect”. If that exists, the redirect to the login page will *not* happen, instead the 401 is passed back to the client. Very useful if you are implementing services or web APIs where you want the actual status code to be preserved. A corresponding UnauthorizedResult is provided that gives you easy access to the context item. The download contains a sample app, the module and an inspector for session cookies and tokens. Let’s hope that in .NET 4.5 such a module comes out of the box. HTH

    Read the article

  • DataContractSerializer: type is not serializable because it is not public?

    - by Michael B. McLaughlin
    I recently ran into an odd and annoying error when working with the DataContractSerializer class for a WP7 project. I thought I’d share it to save others who might encounter it the same annoyance I had. So I had an instance of  ObservableCollection<T> that I was trying to serialize (with T being a class I wrote for the project) and whenever it would hit the code to save it, it would give me: The data contract type 'ProjectName.MyMagicItemsClass' is not serializable because it is not public. Making the type public will fix this error. Alternatively, you can make it internal, and use the InternalsVisibleToAttribute attribute on your assembly in order to enable serialization of internal members - see documentation for more details. Be aware that doing so has certain security implications. This, of course, was malarkey. I was trying to write an instance of MyAwesomeClass that looked like this: [DataContract] public class MyAwesomeClass { [DataMember] public ObservableCollection<MyMagicItemsClass> GreatItems { get; set; }   [DataMember] public ObservableCollection<MyMagicItemsClass> SuperbItems { get; set; }     public MyAwesomeClass { GreatItems = new ObservableCollection<MyMagicItemsClass>(); SuperbItems = new ObservableCollection<MyMagicItemsClass>(); } }   That’s all well and fine. And MyMagicItemsClass was also public with a parameterless public constructor. It too had DataContractAttribute applied to it and it had DataMemberAttribute applied to all the properties and fields I wanted to serialize. Everything should be cool, but it’s not because I keep getting that “not public” exception. I could tell you about all the things I tried (generating a List<T> on the fly to make sure it wasn’t ObservableCollection<T>, trying to serialize the the Collections directly, moving it all to a separate library project, etc.), but I want to keep this short. In the end, I remembered my the “Debug->Exceptions…” VS menu option that brings up the list of exception-related circumstances under which the Visual Studio debugger will break. I checked the “Thrown” checkbox for “Common Language Runtime Exceptions”, started the project under the debugger, and voilà: the true problem revealed itself. Some of my properties had fairly elaborate setters whose logic I wanted to ignore. So for some of them, I applied an IgnoreDataMember attribute to them and applied the DataMember attribute to the underlying fields instead. All of which, in line with good programming practices, were private. Well, it just so happens that WP7 apps run in a “partial trust” environment and outside of “full trust”-land, DataContractSerializer refuses to serialize or deserialize non-public members. Of course that exception was swallowed up internally by .NET so all I ever saw was that bizarre message about things that I knew for certain were public being “not public”. I changed all the private fields I was serializing to public and everything worked just fine. In hindsight it all makes perfect sense. The serializer uses reflection to build up its graph of the object in order to write it out. In partial trust, you don’t want people using reflection to get at non-public members of an object since there are potential security problems with allowing that (you could break out of the sandbox pretty quickly by reflecting and calling the appropriate methods and cause some havoc by reflecting and setting the appropriate fields in certain circumstances. The fact that you cannot reflect your own assembly seems a bit heavy-handed, but then again I’m not a compiler writer or a framework designer and I have no idea what sorts of difficulties would go into allowing that from a compilation standpoint or what sorts of security problems allowing that could present (if any). So, lesson learned. If you get an incomprehensible exception message, turn on break on all thrown exceptions and try running it again (it might take a couple of tries, depending) and see what pops out. Chances are you’ll find the buried exception that actually explains what was going on. And if you’re getting a weird exception when trying to use DataContractSerializer complaining about public types not being public, chances are you’re trying to serialize a private or protected field/property.

    Read the article

  • Incomplete upgrade 12.04 to 12.10

    - by David
    Everything was running smoothly. Everything had been downloaded from Internet, packages had been installed and a prompt asked for some obsolete programs/files to be removed or kept. After that the computer crashed and and to manually force a shutdown. I turned it on again and surprise I was on 12.10! Still the upgrade was not finished! How can I properly finish that upgrade? Here's the output I got in the command line after following posted instructions: i astrill - Astrill VPN client software i dayjournal - Simple, minimal, digital journal. i gambas2-gb-form - A gambas native form component i gambas2-gb-gtk - The Gambas gtk component i gambas2-gb-gtk-ext - The Gambas extended gtk GUI component i gambas2-gb-gui - The graphical toolkit selector component i gambas2-gb-qt - The Gambas Qt GUI component i gambas2-gb-settings - Gambas utilities class i A gambas2-runtime - The Gambas runtime i google-chrome-stable - The web browser from Google i google-talkplugin - Google Talk Plugin i indicator-keylock - Indicator for Lock Keys i indicator-ubuntuone - Indicator for Ubuntu One synchronization s i A language-pack-kde-zh-hans - KDE translation updates for language Simpl i language-pack-kde-zh-hans-base - KDE translations for language Simplified C i libapt-inst1.4 - deb package format runtime library idA libattica0.3 - a Qt library that implements the Open Coll idA libbabl-0.0-0 - Dynamic, any to any, pixel format conversi idA libboost-filesystem1.46.1 - filesystem operations (portable paths, ite idA libboost-program-options1.46.1 - program options library for C++ idA libboost-python1.46.1 - Boost.Python Library idA libboost-regex1.46.1 - regular expression library for C++ i libboost-serialization1.46.1 - serialization library for C++ idA libboost-signals1.46.1 - managed signals and slots library for C++ idA libboost-system1.46.1 - Operating system (e.g. diagnostics support idA libboost-thread1.46.1 - portable C++ multi-threading i libcamel-1.2-29 - Evolution MIME message handling library i libcmis-0.2-0 - CMIS protocol client library i libcupsdriver1 - Common UNIX Printing System(tm) - Driver l i libdconf0 - simple configuration storage system - runt i libdvdcss2 - Simple foundation for reading DVDs - runti i libebackend-1.2-1 - Utility library for evolution data servers i libecal-1.2-10 - Client library for evolution calendars i libedata-cal-1.2-13 - Backend library for evolution calendars i libedataserver-1.2-15 - Utility library for evolution data servers i libexiv2-11 - EXIF/IPTC metadata manipulation library i libgdu-gtk0 - GTK+ standard dialog library for libgdu i libgdu0 - GObject based Disk Utility Library idA libgegl-0.0-0 - Generic Graphics Library idA libglew1.5 - The OpenGL Extension Wrangler - runtime en i libglew1.6 - OpenGL Extension Wrangler - runtime enviro i libglewmx1.6 - OpenGL Extension Wrangler - runtime enviro i libgnome-bluetooth8 - GNOME Bluetooth tools - support library i libgnomekbd7 - GNOME library to manage keyboard configura idA libgsoap1 - Runtime libraries for gSOAP i libgweather-3-0 - GWeather shared library i libimobiledevice2 - Library for communicating with the iPhone i libkdcraw20 - RAW picture decoding library i libkexiv2-10 - Qt like interface for the libexiv2 library i libkipi8 - library for apps that want to use kipi-plu i libkpathsea5 - TeX Live: path search library for TeX (run i libmagickcore4 - low-level image manipulation library i libmagickwand4 - image manipulation library i libmarblewidget13 - Marble globe widget library idA libmusicbrainz4-3 - Library to access the MusicBrainz.org data i libnepomukdatamanagement4 - Basic Nepomuk data manipulation interface i libnux-2.0-0 - Visual rendering toolkit for real-time app i libnux-2.0-common - Visual rendering toolkit for real-time app i libpoppler19 - PDF rendering library i libqt3-mt - Qt GUI Library (Threaded runtime version), i librhythmbox-core5 - support library for the rhythmbox music pl i libusbmuxd1 - USB multiplexor daemon for iPhone and iPod i libutouch-evemu1 - KernelInput Event Device Emulation Library i libutouch-frame1 - Touch Frame Library i libutouch-geis1 - Gesture engine interface support i libutouch-grail1 - Gesture Recognition And Instantiation Libr idA libx264-120 - x264 video coding library i libyajl1 - Yet Another JSON Library i linux-headers-3.2.0-29 - Header files related to Linux kernel versi i linux-headers-3.2.0-29-generic - Linux kernel headers for version 3.2.0 on i linux-image-3.2.0-29-generic - Linux kernel image for version 3.2.0 on 64 i mplayerthumbs - video thumbnail generator using mplayer i myunity - Unity configurator i A openoffice.org-calc - office productivity suite -- spreadsheet i A openoffice.org-writer - office productivity suite -- word processo i python-brlapi - Python bindings for BrlAPI i python-louis - Python bindings for liblouis i rts-bpp-dkms - rts-bpp driver in DKMS format. i system76-driver - Universal driver for System76 computers. i systemconfigurator - Unified Configuration API for Linux Instal i systemimager-client - Utilities for creating an image and upgrad i systemimager-common - Utilities and libraries common to both the i systemimager-initrd-template-am - SystemImager initrd template for amd64 cli i touchpad-indicator - An indicator for the touchpad i ubuntu-tweak - Ubuntu Tweak i A unity-lens-utilities - Unity Utilities lens i A unity-scope-calculator - Calculator engine i unity-scope-cities - Cities engine i unity-scope-rottentomatoes - Unity Scope Rottentomatoes

    Read the article

  • How to parse a CSV file containing serialized PHP? [migrated]

    - by garbetjie
    I've just started dabbling in Perl, to try and gain some exposure to different programming languages - so forgive me if some of the following code is horrendous. I needed a quick and dirty CSV parser that could receive a CSV file, and split it into file batches containing "X" number of CSV lines (taking into account that entries could contain embedded newlines). I came up with a working solution, and it was going along just fine. However, as one of the CSV files that I'm trying to split, I came across one that contains serialized PHP code. This seems to break the CSV parsing. As soon as I remove the serialization - the CSV file is parsed correctly. Are there any tricks I need to know when it comes to parsing serialized data in CSV files? Here is a shortened sample of the code: use strict; use warnings; my $csv = Text::CSV_XS->new({ eol => $/, always_quote => 1, binary => 1 }); my $out; my $in; open $in, "<:encoding(utf8)", "infile.csv" or die("cannot open input file $inputfile"); open $out, ">outfile.000"; binmode($out, ":utf8"); while (my $line = $csv->getline($in)) { $lines++; $csv->print($out, $line); } I'm never able to get into the while loop shown above. As soon as I remove the serialized data, I suddenly am able to get into the loop. Edit: An example of a line that is causing me trouble (taken straight from Vim - hence the ^M): "26","other","1","20,000 Subscriber Plan","Some text here.^M\ Some more text","on","","18","","0","","0","0","recurring","0","","payment","totalsend","0","tsadmin","R34bL9oq","37","0","0","","","","","","","","","","","","","","","","","","","","","","","0","0","0","a:18:{i:0;s:1:\"3\";i:1;s:1:\"2\";i:2;s:2:\"59\";i:3;s:2:\"60\";i:4;s:2:\"61\";i:5;s:2:\"62\";i:6;s:2:\"63\";i:7;s:2:\"64\";i:8;s:2:\"65\";i:9;s:2:\"66\";i:10;s:2:\"67\";i:11;s:2:\"68\";i:12;s:2:\"69\";i:13;s:2:\"70\";i:14;s:2:\"71\";i:15;s:2:\"72\";i:16;s:2:\"73\";i:17;s:2:\"74\";}","","","0","0","","0","0","0.0000","0.0000","0","","","0.00","","6","1" "27","other","1","35,000 Subscriber Plan","Some test here.^M\ Some more text","on","","18","","0","","0","0","recurring","0","","payment","totalsend","0","tsadmin","R34bL9oq","38","0","0","","","","","","","","","","","","","","","","","","","","","","","0","0","0","a:18:{i:0;s:1:\"3\";i:1;s:1:\"2\";i:2;s:2:\"59\";i:3;s:2:\"60\";i:4;s:2:\"61\";i:5;s:2:\"62\";i:6;s:2:\"63\";i:7;s:2:\"64\";i:8;s:2:\"65\";i:9;s:2:\"66\";i:10;s:2:\"67\";i:11;s:2:\"68\";i:12;s:2:\"69\";i:13;s:2:\"70\";i:14;s:2:\"71\";i:15;s:2:\"72\";i:16;s:2:\"73\";i:17;s:2:\"74\";}","","","0","0","","0","0","0.0000","0.0000","0","","","0.00","","7","1" "28","other","1","50,000 Subscriber Plan","Some text here.^M\ Some more text","on","","18","","0","","0","0","recurring","0","","payment","totalsend","0","tsadmin","R34bL9oq","39","0","0","","","","","","","","","","","","","","","","","","","","","","","0","0","0","a:18:{i:0;s:1:\"3\";i:1;s:1:\"2\";i:2;s:2:\"59\";i:3;s:2:\"60\";i:4;s:2:\"61\";i:5;s:2:\"62\";i:6;s:2:\"63\";i:7;s:2:\"64\";i:8;s:2:\"65\";i:9;s:2:\"66\";i:10;s:2:\"67\";i:11;s:2:\"68\";i:12;s:2:\"69\";i:13;s:2:\"70\";i:14;s:2:\"71\";i:15;s:2:\"72\";i:16;s:2:\"73\";i:17;s:2:\"74\";}","","","0","0","","0","0","0.0000","0.0000","0","","","0.00","","8","1""73","other","8","10,000,000","","","","0","","0","","0","0","recurring","0","","payment","","0","","","75","0","10000000","","","","","","","","","","","","","","","","","","","","","","","0","0","0","a:17:{i:0;s:1:\"3\";i:1;s:1:\"2\";i:2;s:2:\"59\";i:3;s:2:\"60\";i:4;s:2:\"61\";i:5;s:2:\"62\";i:6;s:2:\"63\";i:7;s:2:\"64\";i:8;s:2:\"65\";i:9;s:2:\"66\";i:10;s:2:\"67\";i:11;s:2:\"68\";i:12;s:2:\"69\";i:13;s:2:\"70\";i:14;s:2:\"71\";i:15;s:2:\"72\";i:16;s:2:\"74\";}","","","0","0","","0","0","0.0000","0.0000","0","","","0.00","","14","0"

    Read the article

  • using ILMerge with .NET 4 libraries

    - by Sarah Vessels
    I'm having trouble using ILMerge in my post-build after upgrading from .NET 3.5/Visual Studio 2008 to .NET 4/Visual Studio 2010. I have a Solution with several projects whose target framework is set to ".NET Framework 4". I use the following ILMerge command to merge the individual project DLLs into a single DLL: if not $(ConfigurationName) == Debug if exist "C:\Program Files (x86)\Microsoft\ILMerge\ILMerge.exe" "C:\Program Files (x86)\Microsoft\ILMerge\ILMerge.exe" /lib:"C:\Windows\Microsoft.NET\Framework64\v4.0.30319" /lib:"C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies" /keyfile:"$(SolutionDir)$(SolutionName).snk" /targetplatform:v4 /out:"$(SolutionDir)bin\development\$(SolutionName).dll" "$(SolutionDir)Connection\$(OutDir)Connection.dll" ...other project DLLs... /xmldocs If I leave off specifying the location of the .NET 4 framework directory, I get an "Unresolved assembly reference not allowed: System" error from ILMerge. If I leave off specifying the location of the MSTest directory, I get an "Unresolved assembly reference not allowed: Microsoft.VisualStudio.QualityTools.UnitTestFramework" error. The ILMerge command above works and produces a DLL. When I reference that DLL in another .NET 4 C# project, however, and try to use code within it, I get the following warning: The primary reference "MyILMergedDLL" could not be resolved because it has an indirect dependency on the .NET Framework assembly "mscorlib, Version=4.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" which has a higher version "4.0.65535.65535" than the version "4.0.0.0" in the current target framework. If I then remove the /targetplatform:v4 flag and try to use MyILMergedDLL.dll, I get the following error: The type 'System.Xml.Serialization.IXmlSerializable' is defined in an assembly that is not referenced. You must add a reference to assembly 'System.Xml, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089'. It doesn't seem like I should have to do that. Whoever uses my MyILMergedDLL.dll API should not have to add references to whatever libraries it references. How can I get around this?

    Read the article

  • JavaScriptSerializer().Serialize(Entity Framework object)

    - by loviji
    May be, it is not so problematic for you. but i'm trying first time with json serialization. and also read other articles in stackowerflow. I have created Entity Framework data model. then by method get all data from object: private uqsEntities _db = new uqsEntities(); //get all data from table sysMainTableColumns where tableName=paramtableName public List<sysMainTableColumns> getDataAboutMainTable(string tableName) { return (from column in _db.sysMainTableColumns where column.TableName==tableName select column).ToList(); } my webservice: public string getDataAboutMainTable() { penta.DAC.Tables dictTable = new penta.DAC.Tables(); var result = dictTable.getDataAboutMainTable("1"); return new JavaScriptSerializer().Serialize(result); } and jQuery ajax method $('#loadData').click(function() { $.ajax({ type: "POST", url: "WS/ConstructorWS.asmx/getDataAboutMainTable", data: "{}", contentType: "application/json; charset=utf-8", dataType: "json", success: function(msg) { $("#jsonResponse").html(msg); var data = eval("(" + msg + ")"); //do something with data }, error: function(msg) { } }); }); problem with data, code fails there. and i think i'm not use JavaScriptSerializer().Serialize() method very well. Please, tell me, what a big mistake I made in C# code?

    Read the article

  • Designer issue in VS: Events cannot be set on the object passed to the event binding service ...

    - by serhio
    I have a little problem: the Winform control (that contains between others WPF) suddenly stopped to be displayed in Designer. Message: Events cannot be set on the object passed to the event binding service because a site associated with the object could not be located. Call Stack: at System.ComponentModel.Design.EventBindingService.EventPropertyDescriptor.SetValue(Object component, Object value) at System.ComponentModel.Design.Serialization.CodeDomSerializerBase.DeserializeAttachEventStatement(IDesignerSerializationManager manager, CodeAttachEventStatement statement) at System.ComponentModel.Design.Serialization.CodeDomSerializerBase.DeserializeStatement(IDesignerSerializationManager manager, CodeStatement statement) Where could be the problem? InitializeComponent code Private Sub InitializeComponent() Dim resources As System.ComponentModel.ComponentResourceManager = New System.ComponentModel.ComponentResourceManager(GetType(PlanDeLigne)) Dim Appearance1 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance2 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance3 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance4 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance5 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance6 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance7 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance8 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance9 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance10 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance11 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Dim Appearance12 As Infragistics.Win.Appearance = New Infragistics.Win.Appearance() Me.mnbMenu = New System.Windows.Forms.ToolStrip() Me.mncMode = New System.Windows.Forms.ToolStripComboBox() Me.mnbSeparator1 = New System.Windows.Forms.ToolStripSeparator() Me.mnbAdd = New System.Windows.Forms.ToolStripButton() Me.mnbDelete = New System.Windows.Forms.ToolStripButton() Me.mnbSeparator2 = New System.Windows.Forms.ToolStripSeparator() Me.mnbDropDownAction = New System.Windows.Forms.ToolStripDropDownButton() Me.mnbDropDownActionSens = New System.Windows.Forms.ToolStripMenuItem() Me.mnbDropDownActionSeparator1 = New System.Windows.Forms.ToolStripSeparator() Me.mnbDropDownActionDistances = New System.Windows.Forms.ToolStripMenuItem() Me.mnbDropDownActionSeparator2 = New System.Windows.Forms.ToolStripSeparator() Me.mnbDropDownActionArretsPhysiques = New System.Windows.Forms.ToolStripMenuItem() Me.mnbSeparator3 = New System.Windows.Forms.ToolStripSeparator() Me.mnbSelectionZoom = New System.Windows.Forms.ToolStripButton() Me.mnbCancelZoom = New System.Windows.Forms.ToolStripButton() Me.mnbSeparator4 = New System.Windows.Forms.ToolStripSeparator() Me.mnbParametrage = New System.Windows.Forms.ToolStripButton() Me.mncSPlacerArret = New System.Windows.Forms.ToolStripMenuItem() Me.mncSSeparator1 = New System.Windows.Forms.ToolStripSeparator() Me.mncSImage = New System.Windows.Forms.ToolStripMenuItem() Me.mncSDefinirLastArret = New System.Windows.Forms.ToolStripMenuItem() Me.mncSSeparator2 = New System.Windows.Forms.ToolStripSeparator() Me.mncSSupprimerArrets = New System.Windows.Forms.ToolStripMenuItem() Me.mncSInsererArret = New System.Windows.Forms.ToolStripMenuItem() Me.mncSSeparator3 = New System.Windows.Forms.ToolStripSeparator() Me.mncSInformations = New System.Windows.Forms.ToolStripMenuItem() Me.mncSSupprimerSegment = New System.Windows.Forms.ToolStripMenuItem() Me.mncSSeparator4 = New System.Windows.Forms.ToolStripSeparator() Me.mncSBatirTroncon = New System.Windows.Forms.ToolStripMenuItem() Me.mncTInformations = New System.Windows.Forms.ToolStripMenuItem() Me.mncTDistances = New System.Windows.Forms.ToolStripMenuItem() Me.mncTSeparator1 = New System.Windows.Forms.ToolStripSeparator() Me.mncTTempsDeParcours = New System.Windows.Forms.ToolStripMenuItem() Me.mncTSeparator2 = New System.Windows.Forms.ToolStripSeparator() Me.mncTCreerSensInverse = New System.Windows.Forms.ToolStripMenuItem() Me.mncTSeparator3 = New System.Windows.Forms.ToolStripSeparator() Me.mncTSupprimerTroncon = New System.Windows.Forms.ToolStripMenuItem() Me.mncTBatirItineraire = New System.Windows.Forms.ToolStripMenuItem() Me.mncIInformations = New System.Windows.Forms.ToolStripMenuItem() Me.mncISeparator1 = New System.Windows.Forms.ToolStripSeparator() Me.mncISupprimerItineraire = New System.Windows.Forms.ToolStripMenuItem() Me.SplitContainer = New System.Windows.Forms.SplitContainer() Me.ElementHost1 = New System.Windows.Forms.Integration.ElementHost() Me._StopsCanvas = New Keolis.ctlWpfPlanDeLigne.StopsCanvas() Me.lblTitreCreation = New Keolis.ctlComponents.Label() Me.Panel1 = New System.Windows.Forms.Panel() Me.btnOk = New Keolis.ctlComponents.Button() Me.btnAnnuler = New Keolis.ctlComponents.Button() Me.grdCreation = New Keolis.ctlWinGrid.WinGrid() Me.mnbMenu.SuspendLayout() CType(Me.SplitContainer, System.ComponentModel.ISupportInitialize).BeginInit() Me.SplitContainer.Panel1.SuspendLayout() Me.SplitContainer.Panel2.SuspendLayout() Me.SplitContainer.SuspendLayout() Me.Panel1.SuspendLayout() CType(Me.grdCreation, System.ComponentModel.ISupportInitialize).BeginInit() Me.SuspendLayout() ' 'mnbMenu ' Me.mnbMenu.GripStyle = System.Windows.Forms.ToolStripGripStyle.Hidden Me.mnbMenu.Items.AddRange(New System.Windows.Forms.ToolStripItem() {Me.mncMode, Me.mnbSeparator1, Me.mnbAdd, Me.mnbDelete, Me.mnbSeparator2, Me.mnbDropDownAction, Me.mnbSeparator3, Me.mnbSelectionZoom, Me.mnbCancelZoom, Me.mnbSeparator4, Me.mnbParametrage}) Me.mnbMenu.Location = New System.Drawing.Point(0, 0) Me.mnbMenu.Name = "mnbMenu" Me.mnbMenu.Size = New System.Drawing.Size(605, 25) Me.mnbMenu.TabIndex = 2 ' 'mncMode ' Me.mncMode.DropDownStyle = System.Windows.Forms.ComboBoxStyle.DropDownList Me.mncMode.Name = "mncMode" Me.mncMode.Size = New System.Drawing.Size(121, 25) Me.mncMode.ToolTipText = "Mode du plan de ligne" ' 'mnbSeparator1 ' Me.mnbSeparator1.AutoSize = False Me.mnbSeparator1.Name = "mnbSeparator1" Me.mnbSeparator1.Size = New System.Drawing.Size(20, 25) ' 'mnbAdd ' Me.mnbAdd.DisplayStyle = System.Windows.Forms.ToolStripItemDisplayStyle.Image Me.mnbAdd.Image = CType(resources.GetObject("mnbAdd.Image"), System.Drawing.Image) Me.mnbAdd.ImageTransparentColor = System.Drawing.Color.Magenta Me.mnbAdd.Name = "mnbAdd" Me.mnbAdd.Size = New System.Drawing.Size(23, 22) Me.mnbAdd.Text = "Création Tronçon / Itinéraire" ' 'mnbDelete ' Me.mnbDelete.DisplayStyle = System.Windows.Forms.ToolStripItemDisplayStyle.Image Me.mnbDelete.Image = CType(resources.GetObject("mnbDelete.Image"), System.Drawing.Image) Me.mnbDelete.ImageTransparentColor = System.Drawing.Color.Magenta Me.mnbDelete.Name = "mnbDelete" Me.mnbDelete.Size = New System.Drawing.Size(23, 22) Me.mnbDelete.Text = "Supprimer les éléments sélectionnés" ' 'mnbSeparator2 ' Me.mnbSeparator2.AutoSize = False Me.mnbSeparator2.Name = "mnbSeparator2" Me.mnbSeparator2.Size = New System.Drawing.Size(20, 25) ' 'mnbDropDownAction ' Me.mnbDropDownAction.DisplayStyle = System.Windows.Forms.ToolStripItemDisplayStyle.Image Me.mnbDropDownAction.DropDownItems.AddRange(New System.Windows.Forms.ToolStripItem() {Me.mnbDropDownActionSens, Me.mnbDropDownActionSeparator1, Me.mnbDropDownActionDistances, Me.mnbDropDownActionSeparator2, Me.mnbDropDownActionArretsPhysiques}) Me.mnbDropDownAction.Image = CType(resources.GetObject("mnbDropDownAction.Image"), System.Drawing.Image) Me.mnbDropDownAction.ImageTransparentColor = System.Drawing.Color.Magenta Me.mnbDropDownAction.Name = "mnbDropDownAction" Me.mnbDropDownAction.Size = New System.Drawing.Size(29, 22) Me.mnbDropDownAction.Text = "Action sur le plan de ligne" ' 'mnbDropDownActionSens ' Me.mnbDropDownActionSens.Checked = True Me.mnbDropDownActionSens.CheckOnClick = True Me.mnbDropDownActionSens.CheckState = System.Windows.Forms.CheckState.Checked Me.mnbDropDownActionSens.Name = "mnbDropDownActionSens" Me.mnbDropDownActionSens.Size = New System.Drawing.Size(222, 22) Me.mnbDropDownActionSens.Text = "Afficher le sens" ' 'mnbDropDownActionSeparator1 ' Me.mnbDropDownActionSeparator1.Name = "mnbDropDownActionSeparator1" Me.mnbDropDownActionSeparator1.Size = New System.Drawing.Size(219, 6) ' 'mnbDropDownActionDistances ' Me.mnbDropDownActionDistances.Checked = True Me.mnbDropDownActionDistances.CheckOnClick = True Me.mnbDropDownActionDistances.CheckState = System.Windows.Forms.CheckState.Checked Me.mnbDropDownActionDistances.Name = "mnbDropDownActionDistances" Me.mnbDropDownActionDistances.Size = New System.Drawing.Size(222, 22) Me.mnbDropDownActionDistances.Text = "Afficher les distances" ' 'mnbDropDownActionSeparator2 ' Me.mnbDropDownActionSeparator2.Name = "mnbDropDownActionSeparator2" Me.mnbDropDownActionSeparator2.Size = New System.Drawing.Size(219, 6) ' 'mnbDropDownActionArretsPhysiques ' Me.mnbDropDownActionArretsPhysiques.Checked = True Me.mnbDropDownActionArretsPhysiques.CheckOnClick = True Me.mnbDropDownActionArretsPhysiques.CheckState = System.Windows.Forms.CheckState.Checked Me.mnbDropDownActionArretsPhysiques.Name = "mnbDropDownActionArretsPhysiques" Me.mnbDropDownActionArretsPhysiques.Size = New System.Drawing.Size(222, 22) Me.mnbDropDownActionArretsPhysiques.Text = "Afficher les arrêts physiques" ' 'mnbSeparator3 ' Me.mnbSeparator3.AutoSize = False Me.mnbSeparator3.Name = "mnbSeparator3" Me.mnbSeparator3.Size = New System.Drawing.Size(20, 25) ' 'mnbSelectionZoom ' Me.mnbSelectionZoom.CheckOnClick = True Me.mnbSelectionZoom.DisplayStyle = System.Windows.Forms.ToolStripItemDisplayStyle.Image Me.mnbSelectionZoom.Image = CType(resources.GetObject("mnbSelectionZoom.Image"), System.Drawing.Image) Me.mnbSelectionZoom.ImageTransparentColor = System.Drawing.Color.Magenta Me.mnbSelectionZoom.Name = "mnbSelectionZoom" Me.mnbSelectionZoom.Size = New System.Drawing.Size(23, 22) Me.mnbSelectionZoom.Text = "Zoom par sélection" ' 'mnbCancelZoom ' Me.mnbCancelZoom.DisplayStyle = System.Windows.Forms.ToolStripItemDisplayStyle.Image Me.mnbCancelZoom.Image = CType(resources.GetObject("mnbCancelZoom.Image"), System.Drawing.Image) Me.mnbCancelZoom.ImageTransparentColor = System.Drawing.Color.Magenta Me.mnbCancelZoom.Name = "mnbCancelZoom" Me.mnbCancelZoom.Size = New System.Drawing.Size(23, 22) Me.mnbCancelZoom.Text = "Annuler le zoom" ' 'mnbSeparator4 ' Me.mnbSeparator4.AutoSize = False Me.mnbSeparator4.Name = "mnbSeparator4" Me.mnbSeparator4.Size = New System.Drawing.Size(20, 25) ' 'mnbParametrage ' Me.mnbParametrage.DisplayStyle = System.Windows.Forms.ToolStripItemDisplayStyle.Image Me.mnbParametrage.Image = CType(resources.GetObject("mnbParametrage.Image"), System.Drawing.Image) Me.mnbParametrage.ImageTransparentColor = System.Drawing.Color.Magenta Me.mnbParametrage.Name = "mnbParametrage" Me.mnbParametrage.Size = New System.Drawing.Size(23, 22) Me.mnbParametrage.Text = "Paramétrage" ' 'mncSPlacerArret ' Me.mncSPlacerArret.Name = "mncSPlacerArret" Me.mncSPlacerArret.Size = New System.Drawing.Size(216, 22) Me.mncSPlacerArret.Text = "Placer un arrêt" ' 'mncSSeparator1 ' Me.mncSSeparator1.Name = "mncSSeparator1" Me.mncSSeparator1.Size = New System.Drawing.Size(213, 6) ' 'mncSImage ' Me.mncSImage.Name = "mncSImage" Me.mncSImage.Size = New System.Drawing.Size(216, 22) Me.mncSImage.Text = "Image..." ' 'mncSDefinirLastArret ' Me.mncSDefinirLastArret.Name = "mncSDefinirLastArret" Me.mncSDefinirLastArret.Size = New System.Drawing.Size(216, 22) Me.mncSDefinirLastArret.Text = "Définir comme dernier arrêt" ' 'mncSSeparator2 ' Me.mncSSeparator2.Name = "mncSSeparator2" Me.mncSSeparator2.Size = New System.Drawing.Size(213, 6) ' 'mncSSupprimerArrets ' Me.mncSSupprimerArrets.Name = "mncSSupprimerArrets" Me.mncSSupprimerArrets.Size = New System.Drawing.Size(216, 22) Me.mncSSupprimerArrets.Text = "Supprimer le ou les arrêts" ' 'mncSInsererArret ' Me.mncSInsererArret.Name = "mncSInsererArret" Me.mncSInsererArret.Size = New System.Drawing.Size(216, 22) Me.mncSInsererArret.Text = "Insérer un arrêt" ' 'mncSSeparator3 ' Me.mncSSeparator3.Name = "mncSSeparator3" Me.mncSSeparator3.Size = New System.Drawing.Size(213, 6) ' 'mncSInformations ' Me.mncSInformations.Name = "mncSInformations" Me.mncSInformations.Size = New System.Drawing.Size(216, 22) Me.mncSInformations.Text = "Modifier les informations" ' 'mncSSupprimerSegment ' Me.mncSSupprimerSegment.Name = "mncSSupprimerSegment" Me.mncSSupprimerSegment.Size = New System.Drawing.Size(216, 22) Me.mncSSupprimerSegment.Text = "Supprimer le segment" ' 'mncSSeparator4 ' Me.mncSSeparator4.Name = "mncSSeparator4" Me.mncSSeparator4.Size = New System.Drawing.Size(213, 6) ' 'mncSBatirTroncon ' Me.mncSBatirTroncon.Name = "mncSBatirTroncon" Me.mncSBatirTroncon.Size = New System.Drawing.Size(216, 22) Me.mncSBatirTroncon.Text = "Bâtir un tronçon" ' 'mncTInformations ' Me.mncTInformations.Name = "mncTInformations" Me.mncTInformations.Size = New System.Drawing.Size(201, 22) Me.mncTInformations.Text = "Modifier les informations" ' 'mncTDistances ' Me.mncTDistances.Name = "mncTDistances" Me.mncTDistances.Size = New System.Drawing.Size(201, 22) Me.mncTDistances.Text = "Modifier les distances" ' 'mncTSeparator1 ' Me.mncTSeparator1.Name = "mncTSeparator1" Me.mncTSeparator1.Size = New System.Drawing.Size(198, 6) ' 'mncTTempsDeParcours ' Me.mncTTempsDeParcours.Name = "mncTTempsDeParcours" Me.mncTTempsDeParcours.Size = New System.Drawing.Size(201, 22) Me.mncTTempsDeParcours.Text = "Temps de parcours" ' 'mncTSeparator2 ' Me.mncTSeparator2.Name = "mncTSeparator2" Me.mncTSeparator2.Size = New System.Drawing.Size(198, 6) ' 'mncTCreerSensInverse ' Me.mncTCreerSensInverse.Name = "mncTCreerSensInverse" Me.mncTCreerSensInverse.Size = New System.Drawing.Size(201, 22) Me.mncTCreerSensInverse.Text = "Créer le sens inverse" ' 'mncTSeparator3 ' Me.mncTSeparator3.Name = "mncTSeparator3" Me.mncTSeparator3.Size = New System.Drawing.Size(198, 6) ' 'mncTSupprimerTroncon ' Me.mncTSupprimerTroncon.Name = "mncTSupprimerTroncon" Me.mncTSupprimerTroncon.Size = New System.Drawing.Size(201, 22) Me.mncTSupprimerTroncon.Text = "Supprimer le tronçon" ' 'mncTBatirItineraire ' Me.mncTBatirItineraire.Name = "mncTBatirItineraire" Me.mncTBatirItineraire.Size = New System.Drawing.Size(201, 22) Me.mncTBatirItineraire.Text = "Bâtir un itinéraire" ' 'mncIInformations ' Me.mncIInformations.Name = "mncIInformations" Me.mncIInformations.Size = New System.Drawing.Size(201, 22) Me.mncIInformations.Text = "Modifier les informations" ' 'mncISeparator1 ' Me.mncISeparator1.Name = "mncISeparator1" Me.mncISeparator1.Size = New System.Drawing.Size(198, 6) ' 'mncISupprimerItineraire ' Me.mncISupprimerItineraire.Name = "mncISupprimerItineraire" Me.mncISupprimerItineraire.Size = New System.Drawing.Size(201, 22) Me.mncISupprimerItineraire.Text = "Supprimer l'itinéraires" ' 'SplitContainer ' Me.SplitContainer.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D Me.SplitContainer.Dock = System.Windows.Forms.DockStyle.Fill Me.SplitContainer.FixedPanel = System.Windows.Forms.FixedPanel.Panel2 Me.SplitContainer.Location = New System.Drawing.Point(0, 25) Me.SplitContainer.Name = "SplitContainer" ' 'SplitContainer.Panel1 ' Me.SplitContainer.Panel1.AutoScroll = True Me.SplitContainer.Panel1.Controls.Add(Me.ElementHost1) ' 'SplitContainer.Panel2 ' Me.SplitContainer.Panel2.Controls.Add(Me.lblTitreCreation) Me.SplitContainer.Panel2.Controls.Add(Me.Panel1) Me.SplitContainer.Panel2.Controls.Add(Me.grdCreation) Me.SplitContainer.Panel2MinSize = 0 Me.SplitContainer.Size = New System.Drawing.Size(605, 418) Me.SplitContainer.SplitterDistance = 428 Me.SplitContainer.SplitterWidth = 2 Me.SplitContainer.TabIndex = 1 ' 'ElementHost1 ' Me.ElementHost1.Dock = System.Windows.Forms.DockStyle.Fill Me.ElementHost1.Location = New System.Drawing.Point(0, 0) Me.ElementHost1.Name = "ElementHost1" Me.ElementHost1.Size = New System.Drawing.Size(424, 414) Me.ElementHost1.TabIndex = 0 Me.ElementHost1.Text = "ElementHost1" Me.ElementHost1.Child = Me._StopsCanvas ' 'lblTitreCreation ' Me.lblTitreCreation.Anchor = CType(((System.Windows.Forms.AnchorStyles.Top Or System.Windows.Forms.AnchorStyles.Left) _ Or System.Windows.Forms.AnchorStyles.Right), System.Windows.Forms.AnchorStyles) Me.lblTitreCreation.Location = New System.Drawing.Point(3, 4) Me.lblTitreCreation.Name = "lblTitreCreation" Me.lblTitreCreation.Size = New System.Drawing.Size(167, 16) Me.lblTitreCreation.TabIndex = 4 ' 'Panel1 ' Me.Panel1.AutoSize = True Me.Panel1.AutoSizeMode = System.Windows.Forms.AutoSizeMode.GrowAndShrink Me.Panel1.Controls.Add(Me.btnOk) Me.Panel1.Controls.Add(Me.btnAnnuler) Me.Panel1.Dock = System.Windows.Forms.DockStyle.Bottom Me.Panel1.Location = New System.Drawing.Point(0, 385) Me.Panel1.Name = "Panel1" Me.Panel1.Size = New System.Drawing.Size(171, 29) Me.Panel1.TabIndex = 3 ' 'btnOk ' Me.btnOk.Anchor = CType((System.Windows.Forms.AnchorStyles.Top Or System.Windows.Forms.AnchorStyles.Right), System.Windows.Forms.AnchorStyles) Me.btnOk.BackColor = System.Drawing.SystemColors.Control Me.btnOk.FlatAppearance.MouseDownBackColor = System.Drawing.Color.LightSlateGray Me.btnOk.FlatAppearance.MouseOverBackColor = System.Drawing.Color.LightSteelBlue Me.btnOk.FlatStyle = System.Windows.Forms.FlatStyle.Flat Me.btnOk.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.btnOk.ForeColor = System.Drawing.SystemColors.ControlText Me.btnOk.Location = New System.Drawing.Point(12, 3) Me.btnOk.Name = "btnOk" Me.btnOk.Size = New System.Drawing.Size(75, 23) Me.btnOk.TabIndex = 6 Me.btnOk.Text = "OK" Me.btnOk.UseVisualStyleBackColor = True ' 'btnAnnuler ' Me.btnAnnuler.Anchor = CType((System.Windows.Forms.AnchorStyles.Top Or System.Windows.Forms.AnchorStyles.Right), System.Windows.Forms.AnchorStyles) Me.btnAnnuler.BackColor = System.Drawing.SystemColors.Control Me.btnAnnuler.DialogResult = System.Windows.Forms.DialogResult.Cancel Me.btnAnnuler.FlatAppearance.MouseDownBackColor = System.Drawing.Color.LightSlateGray Me.btnAnnuler.FlatAppearance.MouseOverBackColor = System.Drawing.Color.LightSteelBlue Me.btnAnnuler.FlatStyle = System.Windows.Forms.FlatStyle.Flat Me.btnAnnuler.Font = New System.Drawing.Font("Microsoft Sans Serif", 8.25!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.btnAnnuler.ForeColor = System.Drawing.SystemColors.ControlText Me.btnAnnuler.Location = New System.Drawing.Point(93, 3) Me.btnAnnuler.Name = "btnAnnuler" Me.btnAnnuler.Size = New System.Drawing.Size(75, 23) Me.btnAnnuler.TabIndex = 7 Me.btnAnnuler.Text = "Annuler" Me.btnAnnuler.UseVisualStyleBackColor = True ' 'grdCreation ' Me.grdCreation.Anchor = CType((((System.Windows.Forms.AnchorStyles.Top Or System.Windows.Forms.AnchorStyles.Bottom) _ Or System.Windows.Forms.AnchorStyles.Left) _ Or System.Windows.Forms.AnchorStyles.Right), System.Windows.Forms.AnchorStyles) Me.grdCreation.AutoResizeColumns = False Me.grdCreation.ColumnsFiltreActif = False Appearance1.BackColor = System.Drawing.SystemColors.Window Appearance1.BorderColor = System.Drawing.SystemColors.InactiveCaption Me.grdCreation.DisplayLayout.Appearance = Appearance1 Me.grdCreation.DisplayLayout.BorderStyle = Infragistics.Win.UIElementBorderStyle.Solid Me.grdCreation.DisplayLayout.CaptionVisible = Infragistics.Win.DefaultableBoolean.[False] Appearance2.BackColor = System.Drawing.SystemColors.ActiveBorder Appearance2.BackColor2 = System.Drawing.SystemColors.ControlDark Appearance2.BackGradientStyle = Infragistics.Win.GradientStyle.Vertical Appearance2.BorderColor = System.Drawing.SystemColors.Window Me.grdCreation.DisplayLayout.GroupByBox.Appearance = Appearance2 Appearance3.ForeColor = System.Drawing.SystemColors.GrayText Me.grdCreation.DisplayLayout.GroupByBox.BandLabelAppearance = Appearance3 Me.grdCreation.DisplayLayout.GroupByBox.BorderStyle = Infragistics.Win.UIElementBorderStyle.Solid Appearance4.BackColor = System.Drawing.SystemColors.ControlLightLight Appearance4.BackColor2 = System.Drawing.SystemColors.Control Appearance4.BackGradientStyle = Infragistics.Win.GradientStyle.Horizontal Appearance4.ForeColor = System.Drawing.SystemColors.GrayText Me.grdCreation.DisplayLayout.GroupByBox.PromptAppearance = Appearance4 Me.grdCreation.DisplayLayout.MaxColScrollRegions = 1 Me.grdCreation.DisplayLayout.MaxRowScrollRegions = 1 Appearance5.BackColor = System.Drawing.SystemColors.Window Appearance5.ForeColor = System.Drawing.SystemColors.ControlText Me.grdCreation.DisplayLayout.Override.ActiveCellAppearance = Appearance5 Appearance6.BackColor = System.Drawing.SystemColors.Highlight Appearance6.ForeColor = System.Drawing.SystemColors.HighlightText Me.grdCreation.DisplayLayout.Override.ActiveRowAppearance = Appearance6 Me.grdCreation.DisplayLayout.Override.AllowRowFiltering = Infragistics.Win.DefaultableBoolean.[False] Me.grdCreation.DisplayLayout.Override.BorderStyleCell = Infragistics.Win.UIElementBorderStyle.Dotted Me.grdCreation.DisplayLayout.Override.BorderStyleRow = Infragistics.Win.UIElementBorderStyle.Dotted Appearance7.BackColor = System.Drawing.SystemColors.Window Me.grdCreation.DisplayLayout.Override.CardAreaAppearance = Appearance7 Appearance8.BorderColor = System.Drawing.Color.Silver Appearance8.TextTrimming = Infragistics.Win.TextTrimming.EllipsisCharacter Me.grdCreation.DisplayLayout.Override.CellAppearance = Appearance8 Me.grdCreation.DisplayLayout.Override.CellPadding = 0 Appearance9.BackColor = System.Drawing.SystemColors.Control Appearance9.BackColor2 = System.Drawing.SystemColors.ControlDark Appearance9.BackGradientAlignment = Infragistics.Win.GradientAlignment.Element Appearance9.BackGradientStyle = Infragistics.Win.GradientStyle.Horizontal Appearance9.BorderColor = System.Drawing.SystemColors.Window Me.grdCreation.DisplayLayout.Override.GroupByRowAppearance = Appearance9 Appearance10.TextHAlignAsString = "Left" Me.grdCreation.DisplayLayout.Override.HeaderAppearance = Appearance10 Me.grdCreation.DisplayLayout.Override.HeaderClickAction = Infragistics.Win.UltraWinGrid.HeaderClickAction.SortMulti Me.grdCreation.DisplayLayout.Override.HeaderStyle = Infragistics.Win.HeaderStyle.WindowsXPCommand Appearance11.BackColor = System.Drawing.SystemColors.Window Appearance11.BorderColor = System.Drawing.Color.Silver Me.grdCreation.DisplayLayout.Override.RowAppearance = Appearance11 Me.grdCreation.DisplayLayout.Override.RowSelectors = Infragistics.Win.DefaultableBoolean.[False] Appearance12.BackColor = System.Drawing.SystemColors.ControlLight Me.grdCreation.DisplayLayout.Override.TemplateAddRowAppearance = Appearance12 Me.grdCreation.DisplayLayout.ScrollBounds = Infragistics.Win.UltraWinGrid.ScrollBounds.ScrollToFill Me.grdCreation.DisplayLayout.ScrollStyle = Infragistics.Win.UltraWinGrid.ScrollStyle.Immediate Me.grdCreation.DisplayLayout.ViewStyleBand = Infragistics.Win.UltraWinGrid.ViewStyleBand.OutlookGroupBy Me.grdCreation.Font = New System.Drawing.Font("Times New Roman", 8.25!, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType(0, Byte)) Me.grdCreation.Location = New System.Drawing.Point(0, 23) Me.grdCreation.Name = "grdCreation" Me.grdCreation.PrintColumnsKey = Nothing Me.grdCreation.PrintRowsIndex = Nothing Me.grdCreation.PrintTitle = Nothing Me.grdCreation.RowsActivation = Infragistics.Win.UltraWinGrid.Activation.AllowEdit Me.grdCreation.Size = New System.Drawing.Size(175, 391) Me.grdCreation.TabIndex = 5 Me.grdCreation.Tag = "" ' 'PlanDeLigne ' Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!) Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font Me.Controls.Add(Me.SplitContainer) Me.Controls.Add(Me.mnbMenu) Me.MinimumSize = New System.Drawing.Size(605, 431) Me.Name = "PlanDeLigne" Me.Size = New System.Drawing.Size(605, 443) Me.mnbMenu.ResumeLayout(False) Me.mnbMenu.PerformLayout() Me.SplitContainer.Panel1.ResumeLayout(False) Me.SplitContainer.Panel2.ResumeLayout(False) Me.SplitContainer.Panel2.PerformLayout() CType(Me.SplitContainer, System.ComponentModel.ISupportInitialize).EndInit() Me.SplitContainer.ResumeLayout(False) Me.Panel1.ResumeLayout(False) CType(Me.grdCreation, System.ComponentModel.ISupportInitialize).EndInit() Me.ResumeLayout(False) Me.PerformLayout() End Sub

    Read the article

  • SGEN doesn't work after upgrading from VS2008 to VS2010

    - by emddudley
    I just recently upgraded a VS2008/.NET 3.5 SP1 project to VS2010 and .NET 4. I have a post-build event which calls SGEN to generate the XmlSerializers assembly. Whenever I try to run it I get the following error. "C:\Program Files\Microsoft SDKs\Windows\v7.0A\bin\sgen.exe" /debug /force /verbose /c:"platform:x86" "C:\path\to\SomeAssembly.dll" Microsoft (R) Xml Serialization support utility [Microsoft (R) .NET Framework, Version 2.0.50727.3038] Copyright (C) Microsoft Corporation. All rights reserved. Error: An attempt was made to load an assembly with an incorrect format: c:\path\to\someassembly.dll. - Could not load file or assembly 'file:///c:\path\to\someassembly.dll' or one of its dependencies. This assembly is built by a runtime newer than the currently loaded runtime and cannot be loaded. If you would like more help, please type "sgen /?". I get the same error running SGEN from the command line, but I can't figure out what the problem is. Any ideas?

    Read the article

  • DynamicObject and WCF support

    - by rboarman
    Hi, I was wondering if anyone has had any luck getting a DynamicObject to serialize and work with WCF? Here’s my little test: [DataContract] class MyDynamicObject : DynamicObject { [DataMember] private Dictionary<string, object> _attributes = new Dictionary<string, object>(); public override bool TryGetMember(GetMemberBinder binder, out object result) { string key = binder.Name; result = null; if (_attributes.ContainsKey(key)) result = _attributes[key]; return true; } public override bool TrySetMember(SetMemberBinder binder, object value) { _attributes.Add(binder.Name, value); return true; } } var dy = new MyDynamicObject(); var ser = new DataContractSerializer(typeof(MyDynamicObject)); var mem = new MemoryStream(); ser.WriteObject(mem, dy); The error I get is: System.Runtime.Serialization.InvalidDataContractException was unhandled Message=Type 'ElasticTest1.MyDynamicObject' cannot inherit from a type that is not marked with DataContractAttribute or SerializableAttribute. Consider marking the base type 'System.Dynamic.DynamicObject' with DataContractAttribute or SerializableAttribute, or removing them from the derived type. Any suggestions? Thanks, Rick

    Read the article

  • Parsing concatenated, non-delimited XML messages from TCP-stream using C#

    - by thaller
    I am trying to parse XML messages which are send to my C# application over TCP. Unfortunately, the protocol can not be changed and the XML messages are not delimited and no length prefix is used. Moreover the character encoding is not fixed but each message starts with an XML declaration <?xml>. The question is, how can i read one XML message at a time, using C#. Up to now, I tried to read the data from the TCP stream into a byte array and use it through a MemoryStream. The problem is, the buffer might contain more than one XML messages or the first message may be incomplete. In these cases, I get an exception when trying to parse it with XmlReader.Read or XmlDocument.Load, but unfortunately the XmlException does not really allow me to distinguish the problem (except parsing the localized error string). I tried using XmlReader.Read and count the number of Element and EndElement nodes. That way I know when I am finished reading the first, entire XML message. However, there are several problems. If the buffer does not yet contain the entire message, how can I distinguish the XmlException from an actually invalid, non-well-formed message? In other words, if an exception is thrown before reading the first root EndElement, how can I decide whether to abort the connection with error, or to collect more bytes from the TCP stream? If no exception occurs, the XmlReader is positioned at the start of the root EndElement. Casting the XmlReader to IXmlLineInfo gives me the current LineNumber and LinePosition, however it is not straight forward to get the byte position where the EndElement really ends. In order to do that, I would have to convert the byte array into a string (with the encoding specified in the XML declaration), seek to LineNumber,LinePosition and convert that back to the byte offset. I try to do that with StreamReader.ReadLine, but the stream reader gives no public access to the current byte position. All this seams very inelegant and non robust. I wonder if you have ideas for a better solution. Thank you. EDIT: I looked around and think that the situation is as follows (I might be wrong, corrections are welcome): I found no method so that the XmlReader can continue parsing a second XML message (at least not, if the second message has an XmlDeclaration). XmlTextReader.ResetState could do something similar, but for that I would have to assume the same encoding for all messages. Therefor I could not connect the XmlReader directly to the TcpStream. After closing the XmlReader, the buffer is not positioned at the readers last position. So it is not possible to close the reader and use a new one to continue with the next message. I guess the reason for this is, that the reader could not successfully seek on every possible input stream. When XmlReader throws an exception it can not be determined whether it happened because of an premature EOF or because of a non-wellformed XML. XmlReader.EOF is not set in case of an exception. As workaround I derived my own MemoryBuffer, which returns the very last byte as a single byte. This way I know that the XmlReader was really interested in the last byte and the following exception is likely due to a truncated message (this is kinda sloppy, in that it might not detect every non-wellformed message. However, after appending more bytes to the buffer, sooner or later the error will be detected. I could cast my XmlReader to the IXmlLineInfo interface, which gives access to the LineNumber and the LinePosition of the current node. So after reading the first message I remember these positions and use it to truncate the buffer. Here comes the really sloppy part, because I have to use the character encoding to get the byte position. I am sure you could find test cases for the code below where it breaks (e.g. internal elements with mixed encoding). But up to now it worked for all my tests. The parser class follows here -- may it be useful (I know, its very far from perfect...) class XmlParser { private byte[] buffer = new byte[0]; public int Length { get { return buffer.Length; } } // Append new binary data to the internal data buffer... public XmlParser Append(byte[] buffer2) { if (buffer2 != null && buffer2.Length > 0) { // I know, its not an efficient way to do this. // The EofMemoryStream should handle a List<byte[]> ... byte[] new_buffer = new byte[buffer.Length + buffer2.Length]; buffer.CopyTo(new_buffer, 0); buffer2.CopyTo(new_buffer, buffer.Length); buffer = new_buffer; } return this; } // MemoryStream which returns the last byte of the buffer individually, // so that we know that the buffering XmlReader really locked at the last // byte of the stream. // Moreover there is an EOF marker. private class EofMemoryStream: Stream { public bool EOF { get; private set; } private MemoryStream mem_; public override bool CanSeek { get { return false; } } public override bool CanWrite { get { return false; } } public override bool CanRead { get { return true; } } public override long Length { get { return mem_.Length; } } public override long Position { get { return mem_.Position; } set { throw new NotSupportedException(); } } public override void Flush() { mem_.Flush(); } public override long Seek(long offset, SeekOrigin origin) { throw new NotSupportedException(); } public override void SetLength(long value) { throw new NotSupportedException(); } public override void Write(byte[] buffer, int offset, int count) { throw new NotSupportedException(); } public override int Read(byte[] buffer, int offset, int count) { count = Math.Min(count, Math.Max(1, (int)(Length - Position - 1))); int nread = mem_.Read(buffer, offset, count); if (nread == 0) { EOF = true; } return nread; } public EofMemoryStream(byte[] buffer) { mem_ = new MemoryStream(buffer, false); EOF = false; } protected override void Dispose(bool disposing) { mem_.Dispose(); } } // Parses the first xml message from the stream. // If the first message is not yet complete, it returns null. // If the buffer contains non-wellformed xml, it ~should~ throw an exception. // After reading an xml message, it pops the data from the byte array. public Message deserialize() { if (buffer.Length == 0) { return null; } Message message = null; Encoding encoding = Message.default_encoding; //string xml = encoding.GetString(buffer); using (EofMemoryStream sbuffer = new EofMemoryStream (buffer)) { XmlDocument xmlDocument = null; XmlReaderSettings settings = new XmlReaderSettings(); int LineNumber = -1; int LinePosition = -1; bool truncate_buffer = false; using (XmlReader xmlReader = XmlReader.Create(sbuffer, settings)) { try { // Read to the first node (skipping over some element-types. // Don't use MoveToContent here, because it would skip the // XmlDeclaration too... while (xmlReader.Read() && (xmlReader.NodeType==XmlNodeType.Whitespace || xmlReader.NodeType==XmlNodeType.Comment)) { }; // Check for XML declaration. // If the message has an XmlDeclaration, extract the encoding. switch (xmlReader.NodeType) { case XmlNodeType.XmlDeclaration: while (xmlReader.MoveToNextAttribute()) { if (xmlReader.Name == "encoding") { encoding = Encoding.GetEncoding(xmlReader.Value); } } xmlReader.MoveToContent(); xmlReader.Read(); break; } // Move to the first element. xmlReader.MoveToContent(); // Read the entire document. xmlDocument = new XmlDocument(); xmlDocument.Load(xmlReader.ReadSubtree()); } catch (XmlException e) { // The parsing of the xml failed. If the XmlReader did // not yet look at the last byte, it is assumed that the // XML is invalid and the exception is re-thrown. if (sbuffer.EOF) { return null; } throw e; } { // Try to serialize an internal data structure using XmlSerializer. Type type = null; try { type = Type.GetType("my.namespace." + xmlDocument.DocumentElement.Name); } catch (Exception e) { // No specialized data container for this class found... } if (type == null) { message = new Message(); } else { // TODO: reuse the serializer... System.Xml.Serialization.XmlSerializer ser = new System.Xml.Serialization.XmlSerializer(type); message = (Message)ser.Deserialize(new XmlNodeReader(xmlDocument)); } message.doc = xmlDocument; } // At this point, the first XML message was sucessfully parsed. // Remember the lineposition of the current end element. IXmlLineInfo xmlLineInfo = xmlReader as IXmlLineInfo; if (xmlLineInfo != null && xmlLineInfo.HasLineInfo()) { LineNumber = xmlLineInfo.LineNumber; LinePosition = xmlLineInfo.LinePosition; } // Try to read the rest of the buffer. // If an exception is thrown, another xml message appears. // This way the xml parser could tell us that the message is finished here. // This would be prefered as truncating the buffer using the line info is sloppy. try { while (xmlReader.Read()) { } } catch { // There comes a second message. Needs workaround for trunkating. truncate_buffer = true; } } if (truncate_buffer) { if (LineNumber < 0) { throw new Exception("LineNumber not given. Cannot truncate xml buffer"); } // Convert the buffer to a string using the encoding found before // (or the default encoding). string s = encoding.GetString(buffer); // Seek to the line. int char_index = 0; while (--LineNumber > 0) { // Recognize \r , \n , \r\n as newlines... char_index = s.IndexOfAny(new char[] {'\r', '\n'}, char_index); // char_index should not be -1 because LineNumber>0, otherwise an RangeException is // thrown, which is appropriate. char_index++; if (s[char_index-1]=='\r' && s.Length>char_index && s[char_index]=='\n') { char_index++; } } char_index += LinePosition - 1; var rgx = new System.Text.RegularExpressions.Regex(xmlDocument.DocumentElement.Name + "[ \r\n\t]*\\>"); System.Text.RegularExpressions.Match match = rgx.Match(s, char_index); if (!match.Success || match.Index != char_index) { throw new Exception("could not find EndElement to truncate the xml buffer."); } char_index += match.Value.Length; // Convert the character offset back to the byte offset (for the given encoding). int line1_boffset = encoding.GetByteCount(s.Substring(0, char_index)); // remove the bytes from the buffer. buffer = buffer.Skip(line1_boffset).ToArray(); } else { buffer = new byte[0]; } } return message; } }

    Read the article

  • Installed VS Express 2010 with .NET 4.0 and now .NET 3.5 setup project adds 15 dependencies

    - by Heckflosse_230
    Hi, I installed VS Express 2010 with .NET 4.0 and now a .NET 3.5 setup project in VS 2008 adds 15 dependencies (below), what is going on??? I did not change anything in the project in between installing VS 2010, VS 2008 is packagin the following files in the project: ==================== Packaging file 'Microsoft.Transactions.Bridge.dll'... Packaging file 'System.Core.dll'... Packaging file 'System.Data.DataSetExtensions.dll'... Packaging file 'System.Data.Entity.dll'... Packaging file 'System.Data.Linq.dll'... Packaging file 'System.Data.Services.Client.dll'... Packaging file 'System.Data.Services.Design.dll'... Packaging file 'System.IdentityModel.Selectors.dll'... Packaging file 'System.IdentityModel.dll'... Packaging file 'System.Runtime.Serialization.dll'... Packaging file 'System.ServiceModel.Web.dll'... Packaging file 'System.ServiceModel.dll'... Packaging file 'System.Web.Abstractions.dll'... Packaging file 'System.Web.Extensions.dll'... Packaging file 'System.Xml.Linq.dll'... ==================== I've uninstalled VS 2010 and .NET 4.0 but to no avail, same problem. Lesson learned: DON'T EXPERIMENT ON DEVELOPMENT MACHINE! Thanks, Chris

    Read the article

  • Accessing an enum stored in a QVariant

    - by Henry Thacker
    Hi, I have registered an enumeration type "ClefType" within my header file - this enum is registered with the MetaObject system using the Q_DECLARE_METATYPE and Q_ENUMS macros. qRegisterMetaType is also called in the class constructor. This allows me to use this type in a Q_PROPERTY, this all works fine. However, later on, I need to be able to get hold of the Q_PROPERTY of this enum type, given the object - in a form that is suitable for serialization. Ideally, it would be useful to store the integer value for that enum member, because I don't want this to be specific to the type of enum that is used - eventually I want to have several different enums. // This is inside a loop over all the properties on a given object QMetaProperty property = metaObject->property(propertyId); QString propertyName = propertyMeta.name(); QVariant variantValue = propertyMeta.read(serializeObject); // If, internally, this QVariant is of type 'ClefType', // how do I pull out the integer value for this enum? Unfortunately variantValue.toInt(); does not work - custom enums don't seem to be directly 'castable' to an integer value. Thanks in advance, Henry

    Read the article

  • WCF Service Layer in n-layered application: performance considerations

    - by Marconline
    Hi all. When I went to University, teachers used to say that in good structured application you have presentation layer, business layer and data layer. This is what I heard for more than 5 years. When I started working I discovered that this is true but sometimes is better to have more than just three layers. Two or three days ago I discovered this article by John Papa that explain how to use Entity Framework in layered application. According to that article you should have: UI Layer and Presentation Layer (Model View Pattern) Service Layer (WCF) Business Layer Data Access Layer Service Layer is, to me, one of the best ideas I've ever heard since I work. Your UI is then completely "diconnected" from Business and Data Layer. Now when I went deeper by looking into provided source code, I began to have some questions. Can you help me in answering them? Question #0: is this a good enterpise application template in your opinion? Question #1: where should I host the service layer? Should it be a Windows Service or what else? Question #2: in the source code provided the service layer expose just an endpoint with WSHttpBinding. This is the most interoperable binding but (I think) the worst in terms of performances (due to serialization and deserializations of objects). Do you agree? Question #3: if you agree with me at Question 2, which kind of binding would you use? Looking forward to hear from you. Have a nice weekend! Marco

    Read the article

  • ServerIdentity memory leak with IHttpAsyncHandler

    - by Anton
    I have a .NET web application that consists of a single HTTP handler class that implements IHttpAsyncHandler. All requests to this handler are handled asynchronously, though some requests are short-lived and some are long-lived (nothing over a few seconds). The problem is that memory consumption grows over time as requests are handled. All profiling results point to an unbounded growth of String objects held by instances of System.Runtime.Remoting.ServerIdentity. Every String value is different, but they all look similar to: /dd41c00e_1566_4702_b660_c81cdea18a43/vigefresi5pfv8n0ekddg57z_1154.rem There is nothing in my application that uses ServerIdentity directly, and unless I am mistaken, the ServerIdentity instances are proportional to the number of incoming requests. If this is an internal .NET structure, it looks like the CLR is not cleaning up after itself. What could be causing the leak? UPDATE A little less than half of the String objects are being held by System.Runtime.Remoting. The remaining String objects are being held by System.Runtime.Serialization and look similar to: +1sgess5rjcrgbmp3kqr6bmv_3474.rem Also, the problem only seems to occur when lots of simultaneous HTTP web requests arrive.

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >