Search Results

Search found 7551 results on 303 pages for 'pre optimization'.

Page 69/303 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • efficacy of register allocation algorithms!

    - by aksci
    i'm trying to do a research/project on register allocation using graph coloring where i am to test the efficiency of different optimizing register allocation algorithms in different scenarios. how do i start? what are the prerequisites and the grounds with which i can test them. what all algos can i use? thank you!

    Read the article

  • Profiling short-lived Java applications

    - by ejel
    Is there any Java profiler that allows profiling short-lived applications? The profilers I found so far seem to work with applications that keep running until user termination. However, I want to profile applications that work like command-line utilities, it runs and exits immediately. Tools like visualvm or NetBeans Profiler do not even recognize that the application was ran. I am looking for something similar to Python's cProfile, in that the profiler result is returned when the application exits.

    Read the article

  • How to optimise MySQL query containing a subquery?

    - by aidan
    I have two tables, House and Person. For any row in House, there can be 0, 1 or many corresponding rows in Person. But, of those people, a maximum of one will have a status of "ACTIVE", the others will all have a status of "CANCELLED". e.g. SELECT * FROM House LEFT JOIN Person ON House.ID = Person.HouseID House.ID | Person.ID | Person.Status 1 | 1 | CANCELLED 1 | 2 | CANCELLED 1 | 3 | ACTIVE 2 | 1 | ACTIVE 3 | NULL | NULL 4 | 4 | CANCELLED I want to filter out the cancelled rows, and get something like this: House.ID | Person.ID | Person.Status 1 | 3 | ACTIVE 2 | 1 | ACTIVE 3 | NULL | NULL 4 | NULL | NULL I've achieved this with the following sub select: SELECT * FROM House LEFT JOIN ( SELECT * FROM Person WHERE Person.Status != "CANCELLED" ) Person ON House.ID = Person.HouseID ...which works, but breaks all the indexes. Is there a better solution that doesn't? I'm using MySQL and all relevant columns are indexed. EXPLAIN lists nothing in possible_keys. Thanks.

    Read the article

  • Searching with Linq

    - by Phil
    I have a collection of objects, each with an int Frame property. Given an int, I want to find the object in the collection that has the closest Frame. Here is what I'm doing so far: public static void Search(int frameNumber) { var differences = (from rec in _records select new { FrameDiff = Math.Abs(rec.Frame - frameNumber), Record = rec }).OrderBy(x => x.FrameDiff); var closestRecord = differences.FirstOrDefault().Record; //continue work... } This is great and everything, except there are 200,000 items in my collection and I call this method very frequently. Is there a relatively easy, more efficient way to do this?

    Read the article

  • Can my loop be optimized any more? (C++)

    - by Sagekilla
    Below is one of my inner loops that's run several thousand times, with input sizes of 20 - 1000 or more. Is there anything I can do to help squeeze any more performance out of this? I'm not looking to move this code to something like using tree codes (Barnes-Hut), but towards optimizing the actual calculations happening inside, since the same calculations occur in the Barnes-Hut algorithm. Any help is appreciated! typedef double real; struct Particle { Vector pos, vel, acc, jerk; Vector oldPos, oldVel, oldAcc, oldJerk; real mass; }; class Vector { private: real vec[3]; public: // Operators defined here }; real Gravity::interact(Particle *p, size_t numParticles) { PROFILE_FUNC(); real tau_q = 1e300; for (size_t i = 0; i < numParticles; i++) { p[i].jerk = 0; p[i].acc = 0; } for (size_t i = 0; i < numParticles; i++) { for (size_t j = i+1; j < numParticles; j++) { Vector r = p[j].pos - p[i].pos; Vector v = p[j].vel - p[i].vel; real r2 = lengthsq(r); real v2 = lengthsq(v); // Calculate inverse of |r|^3 real r3i = Constants::G * pow(r2, -1.5); // da = r / |r|^3 // dj = (v / |r|^3 - 3 * (r . v) * r / |r|^5 Vector da = r * r3i; Vector dj = (v - r * (3 * dot(r, v) / r2)) * r3i; // Calculate new acceleration and jerk p[i].acc += da * p[j].mass; p[i].jerk += dj * p[j].mass; p[j].acc -= da * p[i].mass; p[j].jerk -= dj * p[i].mass; // Collision estimation // Metric 1) tau = |r|^2 / |a(j) - a(i)| // Metric 2) tau = |r|^4 / |v|^4 real mij = p[i].mass + p[j].mass; real tau_est_q1 = r2 / (lengthsq(da) * mij * mij); real tau_est_q2 = (r2*r2) / (v2*v2); if (tau_est_q1 < tau_q) tau_q = tau_est_q1; if (tau_est_q2 < tau_q) tau_q = tau_est_q2; } } return sqrt(sqrt(tau_q)); }

    Read the article

  • One letter game problem?

    - by Alex K
    Recently at a job interview I was given the following problem: Write a script capable of running on the command line as python It should take in two words on the command line (or optionally if you'd prefer it can query the user to supply the two words via the console). Given those two words: a. Ensure they are of equal length b. Ensure they are both words present in the dictionary of valid words in the English language that you downloaded. If so compute whether you can reach the second word from the first by a series of steps as follows a. You can change one letter at a time b. Each time you change a letter the resulting word must also exist in the dictionary c. You cannot add or remove letters If the two words are reachable, the script should print out the path which leads as a single, shortest path from one word to the other. You can /usr/share/dict/words for your dictionary of words. My solution consisted of using breadth first search to find a shortest path between two words. But apparently that wasn't good enough to get the job :( Would you guys know what I could have done wrong? Thank you so much. import collections import functools import re def time_func(func): import time def wrapper(*args, **kwargs): start = time.time() res = func(*args, **kwargs) timed = time.time() - start setattr(wrapper, 'time_taken', timed) return res functools.update_wrapper(wrapper, func) return wrapper class OneLetterGame: def __init__(self, dict_path): self.dict_path = dict_path self.words = set() def run(self, start_word, end_word): '''Runs the one letter game with the given start and end words. ''' assert len(start_word) == len(end_word), \ 'Start word and end word must of the same length.' self.read_dict(len(start_word)) path = self.shortest_path(start_word, end_word) if not path: print 'There is no path between %s and %s (took %.2f sec.)' % ( start_word, end_word, find_shortest_path.time_taken) else: print 'The shortest path (found in %.2f sec.) is:\n=> %s' % ( self.shortest_path.time_taken, ' -- '.join(path)) def _bfs(self, start): '''Implementation of breadth first search as a generator. The portion of the graph to explore is given on demand using get_neighboors. Care was taken so that a vertex / node is explored only once. ''' queue = collections.deque([(None, start)]) inqueue = set([start]) while queue: parent, node = queue.popleft() yield parent, node new = set(self.get_neighbours(node)) - inqueue inqueue = inqueue | new queue.extend([(node, child) for child in new]) @time_func def shortest_path(self, start, end): '''Returns the shortest path from start to end using bfs. ''' assert start in self.words, 'Start word not in dictionnary.' assert end in self.words, 'End word not in dictionnary.' paths = {None: []} for parent, child in self._bfs(start): paths[child] = paths[parent] + [child] if child == end: return paths[child] return None def get_neighbours(self, word): '''Gets every word one letter away from the a given word. We do not keep these words in memory because bfs accesses a given vertex only once. ''' neighbours = [] p_word = ['^' + word[0:i] + '\w' + word[i+1:] + '$' for i, w in enumerate(word)] p_word = '|'.join(p_word) for w in self.words: if w != word and re.match(p_word, w, re.I|re.U): neighbours += [w] return neighbours def read_dict(self, size): '''Loads every word of a specific size from the dictionnary into memory. ''' for l in open(self.dict_path): l = l.decode('latin-1').strip().lower() if len(l) == size: self.words.add(l) if __name__ == '__main__': import sys if len(sys.argv) not in [3, 4]: print 'Usage: python one_letter_game.py start_word end_word' else: g = OneLetterGame(dict_path = '/usr/share/dict/words') try: g.run(*sys.argv[1:]) except AssertionError, e: print e

    Read the article

  • Most Efficient Alternative Method of Storing Settings for iPhone Apps

    - by JPK
    I am not using the Settings bundle to store the settings for my app, as I prefer to allow the user to access the settings within the app (they may be changed fairly often). I do realize that there is the option to do both, but for now, I am trying to find the most optimal place to store the settings within the app. I have a good number of settings (from what I have read, probably too many for NSUserDefaults), and the two main options I am considering are: 1) storing the settings in a dictionary in the plist, loading the settings into a NSDictionary property in the app delegate and accessing them via the sharedDelegate 2) storing the settings in a Core Data entity (1 row on Settings entity), loading the settings into a Settings object in the app delegate and accessing them via the sharedDelegate Of these two, which would be the optimal method, performance wise?

    Read the article

  • Webcrawler, feedback?

    - by Jan Kuboschek
    Hey folks, every once in a while I have the need to automate data collection tasks from websites. Sometimes I need a bunch of URLs from a directory, sometimes I need an XML sitemap (yes, I know there is lots of software for that and online services). Anyways, as follow up to my previous question I've written a little webcrawler that can visit websites. Basic crawler class to easily and quickly interact with one website. Override "doAction(String URL, String content)" to process the content further (e.g. store it, parse it). Concept allows for multi-threading of crawlers. All class instances share processed and queued lists of links. Instead of keeping track of processed links and queued links within the object, a JDBC connection could be established to store links in a database. Currently limited to one website at a time, however, could be expanded upon by adding an externalLinks stack and adding to it as appropriate. JCrawler is intended to be used to quickly generate XML sitemaps or parse websites for your desired information. It's lightweight. Is this a good/decent way to write the crawler, provided the limitations above? http://pastebin.com/VtgC4qVE - Main.java http://pastebin.com/gF4sLHEW - JCrawler.java http://pastebin.com/VJ1grArt - HTMLUtils.java Thanks for your feedback in advance! :)

    Read the article

  • Is ToString() optimized by compiler?

    - by TheVillageIdiot
    Suppose I've following Code: Console.WriteLine("Value1: " + SomeEnum.Value1.ToString() + "\r\nValue2: " + SomeOtherEnum.Value2.ToString()); Will Compiler Optimize this to: Console.WriteLine("Value1: " + SomeEnum.Value1 + "\r\nValue2: " + SomeOtherEnum.Value2); I've checked it with IL Disassembler and there are calls to IL_005a: callvirt instance string [mscorlib]System.Object::ToString() I don't know if JIT optimizes this.

    Read the article

  • Can this MySQL subquery be optimised?

    - by Dan
    I have two tables, news and news_views. Every time an article is viewed, the news id, IP address and date is recorded in news_views. I'm using a query with a subquery to fetch the most viewed titles from news, by getting the total count of views in the last 24 hours for each one. It works fine except that it takes between 5-10 seconds to run, presumably because there's hundreds of thousands of rows in news_views and it has to go through the entire table before it can finish. The query is as follows, is there any way at all it can be improved? SELECT n.title , nv.views FROM news n LEFT JOIN ( SELECT news_id , count( DISTINCT ip ) AS views FROM news_views WHERE datetime >= SUBDATE(now(), INTERVAL 24 HOUR) GROUP BY news_id ) AS nv ON nv.news_id = n.id ORDER BY views DESC LIMIT 15

    Read the article

  • How Do You Profile & Optimize CUDA Kernels?

    - by John Dibling
    I am somewhat familiar with the CUDA visual profiler and the occupancy spreadsheet, although I am probably not leveraging them as well as I could. Profiling & optimizing CUDA code is not like profiling & optimizing code that runs on a CPU. So I am hoping to learn from your experiences about how to get the most out of my code. There was a post recently looking for the fastest possible code to identify self numbers, and I provided a CUDA implementation. I'm not satisfied that this code is as fast as it can be, but I'm at a loss as to figure out both what the right questions are and what tool I can get the answers from. How do you identify ways to make your CUDA kernels perform faster?

    Read the article

  • Fastest way to put contents of Set<String> to a single String with words separated by a whitespace?

    - by Lars Andren
    I have a few Set<String>s and want to transform each of these into a single String where each element of the original Set is separated by a whitespace " ". A naive first approach is doing it like this Set<String> set_1; Set<String> set_2; StringBuilder builder = new StringBuilder(); for (String str : set_1) { builder.append(str).append(" "); } this.string_1 = builder.toString(); builder = new StringBuilder(); for (String str : set_2) { builder.append(str).append(" "); } this.string_2 = builder.toString(); Can anyone think of a faster, prettier or more efficient way to do this?

    Read the article

  • Float compile-time calculation not happening?

    - by Klaim
    A little test program: #include <iostream> const float TEST_FLOAT = 1/60; const float TEST_A = 1; const float TEST_B = 60; const float TEST_C = TEST_A / TEST_B; int main() { std::cout << TEST_FLOAT << std::endl; std::cout << TEST_C << std::endl; std::cin.ignore(); return 0; } Result : 0 0.0166667 Tested on Visual Studio 2008 & 2010. I worked on other compilers that, if I remember well, made the first result like the second result. Now my memory could be wrong, but shouldn't TEST_FLOAT have the same value than TEST_C? If not, why? Is TEST_C value resolved at compile time or at runtime? I always assumed the former but now that I see those results I have some doubts...

    Read the article

  • SEO for Ultraseek 5.7

    - by Adam N
    We've got Ultraseek 5.7 indexing the content on our corporate intranet site, and we'd like to make sure our web pages are being optimized for it. Which SEO techniques are useful for Ultraseek, and where can I find documentation about these features? Features I've considered implementing: Make the title and first H1 contain the most valuable information about the page Implement a sitemap.xml file Ping the Ultraseek xpa interface when new content is added Use "SEO-Friendly" URL strings Add Meta keywords to the HTML pages.

    Read the article

  • Find the closest vector

    - by Alexey Lebedev
    Hello! Recently I wrote the algorithm to quantize an RGB image. Every pixel is represented by an (R,G,B) vector, and quantization codebook is a couple of 3-dimensional vectors. Every pixel of the image needs to be mapped to (say, "replaced by") the codebook pixel closest in terms of euclidean distance (more exactly, squared euclidean). I did it as follows: class EuclideanMetric(DistanceMetric): def __call__(self, x, y): d = x - y return sqrt(sum(d * d, -1)) class Quantizer(object): def __init__(self, codebook, distanceMetric = EuclideanMetric()): self._codebook = codebook self._distMetric = distanceMetric def quantize(self, imageArray): quantizedRaster = zeros(imageArray.shape) X = quantizedRaster.shape[0] Y = quantizedRaster.shape[1] for i in xrange(0, X): print i for j in xrange(0, Y): dist = self._distMetric(imageArray[i,j], self._codebook) code = argmin(dist) quantizedRaster[i,j] = self._codebook[code] return quantizedRaster ...and it works awfully, almost 800 seconds on my Pentium Core Duo 2.2 GHz, 4 Gigs of memory and an image of 2600*2700 pixels:( Is there a way to somewhat optimize this? Maybe the other algorithm or some Python-specific optimizations.

    Read the article

  • How to simplify this code or a better design?

    - by Tattat
    I am developing a game, the game have different mode. Easy, Normal, and Difficult. So, I'm thinking about how to store the game mode. My first idea is using number to represent the difficulty. Easy = 0 Normal = 1 Difficult = 2 So, my code will have something like this: switch(gameMode){ case 0: //easy break; case 1: //normal break; case 3: //difficult break; } But I think it have some problems, if I add a new mode, for example, "Extreme", I need to add case 4... ... it seems not a gd design. So, I am thinking making a gameMode object, and different gameMode is sub class of the super class gameMode. The gameMode object is something like this: class GameMode{ int maxEnemyNumber; int maxWeaponNumber; public static GameMode init(){ GameMode gm = GameMode(); gm.maxEnemyNumber = 0; gm.maxWeaponNumber = 0; return gm; } } class EasyMode extends GameMode{ public static GameMode init(){ GameMode gm = super.init(); gm.maxEnemyNumber = 10; gm.maxWeaponNumber = 100; return gm; } } class NormalMode extends GameMode{ public static GameMode init(){ GameMode gm = super.init(); gm.maxEnemyNumber = 20; gm.maxWeaponNumber = 80; return gm; } } But I think it seems too "bulky" to create an object to store gameMode, my "gameMode" only store different variables for game settings.... Is that any simple way to store data only instead of making an Object? thz u.

    Read the article

  • What's the best way to measure and track performance over various calls at runtime?

    - by bitcruncher
    Hello. I'm trying to optimize the performance of my code, but I'm not familiar with xcode's debuggers or debuggers in general. Is it possible to track the execution time and frequency of calls being made at runtime? Imagine a chain of events with some recursive calls over a fraction of a second. What's the best way to track where the CPU spends most of its time? Many thanks. Edit: Maybe this is better asked by saying, how do I use the xcode debug tools to do a stack trace?

    Read the article

  • Combine query results from one table with the defaults from another

    - by pulegium
    This is a dumbed down version of the real table data, so may look bit silly. Table 1 (users): id INT username TEXT favourite_food TEXT food_pref_id INT Table 2 (food_preferences): id INT food_type TEXT The logic is as follows: Let's say I have this in my food preference table: 1, 'VEGETARIAN' and this in the users table: 1, 'John', NULL, 1 2, 'Pete', 'Curry', 1 In which case John defaults to be a vegetarian, but Pete should show up as a person who enjoys curry. Question, is there any way to combine the query into one select statement, so that it would get the default from the preferences table if the favourite_food column is NULL? I can obviously do this in application logic, but would be nice just to offload this to SQL, if possible. DB is SQLite3...

    Read the article

  • what are all the Optimize tricks that you know for asp.net code ?

    - by Aristos
    After some time of many code programming on asp.net, I discover the very big speed different between string and StringBuilder. I know that is very common and known but I just mention it for start. The second think that I have found to speed up the code, is to use the const, and not the static, for declare my configuration constants value (especial the strings). With the const, the compiler not create new object, but just place the value, on the point that you have ask it, but with the static declaration, is create a new memory object and keep its on the memory. My third trick, is when I search for string, I use hash values, and not the string itself. For example, if I need a List<string SomeValues, and place inside strings that I need to search them, I prefer to use List<int SomeHashValue, and I use the hash value to locate the strings. My forth thought that I was wandering, is if is better to place big strings in one line, or separate them in different lines with the + symbol to be more easy to read out. I make some tests and see that the compiler make a good job is some split the string, in many lines, using the + symbol. What other tricks/tips do you know and use on your programming to make it run faster, and maybe use less memory. Well I know, that some times, to make something run faster, you need more memory, more cache. My priority is on speed. Because Speed Counts.

    Read the article

  • Why does adding Crossover to my Genetic Algorithm give me worse results?

    - by MahlerFive
    I have implemented a Genetic Algorithm to solve the Traveling Salesman Problem (TSP). When I use only mutation, I find better solutions than when I add in crossover. I know that normal crossover methods do not work for TSP, so I implemented both the Ordered Crossover and the PMX Crossover methods, and both suffer from bad results. Here are the other parameters I'm using: Mutation: Single Swap Mutation or Inverted Subsequence Mutation (as described by Tiendil here) with mutation rates tested between 1% and 25%. Selection: Roulette Wheel Selection Fitness function: 1 / distance of tour Population size: Tested 100, 200, 500, I also run the GA 5 times so that I have a variety of starting populations. Stop Condition: 2500 generations With the same dataset of 26 points, I usually get results of about 500-600 distance using purely mutation with high mutation rates. When adding crossover my results are usually in the 800 distance range. The other confusing thing is that I have also implemented a very simple Hill-Climbing algorithm to solve the problem and when I run that 1000 times (faster than running the GA 5 times) I get results around 410-450 distance, and I would expect to get better results using a GA. Any ideas as to why my GA performing worse when I add crossover? And why is it performing much worse than a simple Hill-Climb algorithm which should get stuck on local maxima as it has no way of exploring once it finds a local max?

    Read the article

  • Optimizing sorting container of objects with heap-allocated buffers - how to avoid hard-copying buff

    - by Kache4
    I was making sure I knew how to do the op= and copy constructor correctly in order to sort() properly, so I wrote up a test case. After getting it to work, I realized that the op= was hard-copying all the data_. I figure if I wanted to sort a container with this structure (its elements have heap allocated char buffer arrays), it'd be faster to just swap the pointers around. Is there a way to do that? Would I have to write my own sort/swap function? #include <deque> //#include <string> //#include <utility> //#include <cstdlib> #include <cstring> #include <iostream> //#include <algorithm> // I use sort(), so why does this still compile when commented out? #include <boost/filesystem.hpp> #include <boost/foreach.hpp> using namespace std; namespace fs = boost::filesystem; class Page { public: // constructor Page(const char* path, const char* data, int size) : path_(fs::path(path)), size_(size), data_(new char[size]) { // cout << "Creating Page..." << endl; strncpy(data_, data, size); // cout << "done creating Page..." << endl; } // copy constructor Page(const Page& other) : path_(fs::path(other.path())), size_(other.size()), data_(new char[other.size()]) { // cout << "Copying Page..." << endl; strncpy(data_, other.data(), size_); // cout << "done copying Page..." << endl; } // destructor ~Page() { delete[] data_; } // accessors const fs::path& path() const { return path_; } const char* data() const { return data_; } int size() const { return size_; } // operators Page& operator = (const Page& other) { if (this == &other) return *this; char* newImage = new char[other.size()]; strncpy(newImage, other.data(), other.size()); delete[] data_; data_ = newImage; path_ = fs::path(other.path()); size_ = other.size(); return *this; } bool operator < (const Page& other) const { return path_ < other.path(); } private: fs::path path_; int size_; char* data_; }; class Book { public: Book(const char* path) : path_(fs::path(path)) { cout << "Creating Book..." << endl; cout << "pushing back #1" << endl; pages_.push_back(Page("image1.jpg", "firstImageData", 14)); cout << "pushing back #3" << endl; pages_.push_back(Page("image3.jpg", "thirdImageData", 14)); cout << "pushing back #2" << endl; pages_.push_back(Page("image2.jpg", "secondImageData", 15)); cout << "testing operator <" << endl; cout << pages_[0].path().string() << (pages_[0] < pages_[1]? " < " : " > ") << pages_[1].path().string() << endl; cout << pages_[1].path().string() << (pages_[1] < pages_[2]? " < " : " > ") << pages_[2].path().string() << endl; cout << pages_[0].path().string() << (pages_[0] < pages_[2]? " < " : " > ") << pages_[2].path().string() << endl; cout << "sorting" << endl; BOOST_FOREACH (Page p, pages_) cout << p.path().string() << endl; sort(pages_.begin(), pages_.end()); cout << "done sorting\n"; BOOST_FOREACH (Page p, pages_) cout << p.path().string() << endl; cout << "checking datas" << endl; BOOST_FOREACH (Page p, pages_) { char data[p.size() + 1]; strncpy((char*)&data, p.data(), p.size()); data[p.size()] = '\0'; cout << p.path().string() << " " << data << endl; } cout << "done Creating Book" << endl; } private: deque<Page> pages_; fs::path path_; }; int main() { Book* book = new Book("/some/path/"); }

    Read the article

  • Database indexes - what should they be

    - by WebweaverD
    Most of my database tables have a clear unique index through which lookups are done 90% of the time but I am a bit unsure on this one - I have a table which keeps track of user rating totals for items in my database, I now want to add another table, to track individual ratings with an ip address column to make sure no one can rate something twice. Since I can see this becoming a big, high use table it is important to optimize it correctly. (MYSQL table) This table will have the following fields: rating_id(always - unique), item_id (always - not unique), user_id (optional - not unique), ip_address (always - not unique), rating_value(always - not unique), has_review(bool) Now I envisions 90% the queries going something like this: When a user rates something - select where item_id = x and ip_address = y, (if rows = 0) insert rating When in user account pages - select where ip_address = x or username = y Now none of the fields searched on are unique, can I still use them as indexes (for example item _id and ip_address), can I have two indexes and will this still improve performance over a non indexed table?

    Read the article

  • Javascript + Firebug : "cannot access optimized closure" What does it mean?

    - by interstar
    I just got the following error in a piece of javascript (in Firefox 3.5, with Firebug running) cannot access optimized closure I know, superficially, what caused the error. I had a line options.length() instead of options.length Fixing this bug, made the message go away. But I'm curious. What does this mean? What is an optimized closure? Is optimizing an enclosure something that the javascript interpretter does automatically? What does it do?

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >