Search Results

Search found 22891 results on 916 pages for 'service layer'.

Page 69/916 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • How to correctly open WCF service

    - by Sergej Andrejev
    Hi there, I'm using WCF client like this... var client = new TestClient(); try { response = service.Operation(request); } finally { try { if (client.State != CommunicationState.Faulted) client.Close(); } catch (Exception) { client.Abort(); } } but from time to time I get 500 HTTP error which is the only answer I get for next 15 minutes, then everything is back to normal for 15 minutes and so on. I know there is some load balancing stuff going on service side but guys there can't find any problems with it. That's why I started wondering am I using WCF service correctly. I already made a mistake once when I was using "using" to close service connection and I'm afraid I doing something wrong again. So can anybody say whether my way of calling WCF service is correct or not in all (event the most rare) circumstances?

    Read the article

  • Windows Service And Thread Programming .NET

    - by Raghu
    I have developed windows service to process files whose records will be stored in database. When windows service finds a file it creates a thread and assigns each file to one thread. I have not used Thread Pool. I wanted to know when windows service is stopped, then how to identify how many threads are running and whether they are complete. If all the threads are executed then windows service can be stopped successfully. Otherwis windows service should wait until all threads are executed or aborted. How to implement this.

    Read the article

  • Running activity from remote service

    - by Moshik
    Hi, iam trying to run an activity from diffrent package from my remote service: this is how i implement the service.java ublic class CurrencyService extends Service { public class CurrencyServiceImpl extends ICurrencyService.Stub { int CALL_PUSH_SERVICE_ACTIVITY=10; @Override public void callSomeActivity(int activityId) throws RemoteException { Intent pushActivity=new Intent("com.pushservice.PushActivity"); pushActivity.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK); startActivity(pushActivity); .. ive also added a line in the manifest of the service: the service works fine, but i cant run the activity - PushActivity which is in diffrent package of diffrent application, thanks.

    Read the article

  • Secure web service works in Firefox but not in IE7

    - by tridium
    I am trying to call a C# web service from one data center to another. I am able to load the web service properly in Firefox 3.6.3 but it does not load at all in Internet Explorer 7. When I try to install the application which relies on this web service, it can't find the web service at all, just like IE7. Is there any setting or configuration that would allow one browser to load it properly but not the other? I suspect that there's no firewall or that sort of problem because the web service loads for at least one browser.

    Read the article

  • Install windows service without InstallUtil.exe

    - by annelie
    Hi, I'm trying to deploy a windows service but not quite sure how to do it right. I built it as a console app to start with, I've now turned it into a windows service project and just call my class from the OnStart method in the service. I now need to install this on a server which doesn't have Visual Studio on it, which if I've understood it correctly means I can't use the InstallUtil.exe and have to create an installer class instead. Is this correct? I did have a look at a previous question, http://stackoverflow.com/questions/255056/install-a-net-windows-service-without-installutil-exe, but I just want to make sure I've understood it correctly. If I create the class that question's accepted answer links to, what is the next step? Upload MyService.exe and MyService.exe.config to the server, double click the exe file and Bob's my uncle? The service will only ever be installed on one server. Thanks, Annelie

    Read the article

  • Android: Custom Clock widget Service work-around?

    - by Anthony Forloney
    I was interested in developing a clock widget for the homescreen and upon reading Home Screen Widgets tutorial, is there a pre-existing Service I could reference for updating the current time rather than re-inventing the wheel? I have currently Retro Clock on my android phone and noticed that when I click it, it pops up the Alarm Clock settings, but with the default Google Analog Clock widget, upon click does nothing. Is that because the Retro Clock widget implements the Alarm Clock service? If so, how can I go about referencing that service? Or do I have this all wrong and misunderstood? Any help is appreciated. EDIT: I believe implementing the service to update the clock would drain the battery life tremendously, any ideas on a work around or help shed some light on any performance issues with using Service?

    Read the article

  • The pros and cons of use JSON for WCF service

    - by brz dot net
    What are the pros and cons of the following 2 cases: Case I: Traditional way: Add service reference in project. Create object and Get data from service on server side and bind to asp.net grid. Case II: Update Service for JSON behavior. Add service reference in project. Call service from javascript to get data. Bind data to jquery grid. Which one is the best approach and why?(Not developer point of view) If there is another approach which is more optimized, please explain it.

    Read the article

  • Call REST service while impersonating a user that is already authorized to the glasfish server

    - by user1894489
    There are two web-applications deployed on a glassfish server. Both web applications provide a REST web service. the access to both web-services is secured via glassfish security constraints (at the moment BASIC Auth and file-realm). Let's say a user is accessing the service of web application A. After he is authorized, service A wants to call service B via REST client. Is there a way for a service to impersonate a user that is already authorized to the glasfish server? Maybe something like forwarding the security context or editing the headers? Is there another Filter? @Context private SecurityContext securityContext; username = securityContext.getUserPrincipal().getName(); password = ??? client.addFilter(new com.sun.jersey.api.client.filter.HTTPBasicAuthFilter(username, password)); Thanks!

    Read the article

  • web service and its configuration file

    - by qkrsppopcmpt
    I implemented one service and it has several configuration item, such as data type, next node, blablabla. What I want to do is to deploy the service and configuration file into tomcat within one .aar. However, if I jar the service and configuration file into the aar. The service can't read the file though the file is there in the same directory. Even I put the file into tomcat_home\bin, the service fails to read the file. I know it should work. Can anybody give me a hint? Thanks.

    Read the article

  • How call soap service using jQuery

    - by Alen D
    I have a problem with calling soap service from php page. I was implemented two page,first page was created in php, and second page was created in asp.net. In asp.net application I have SOAP service, which methods should be called from php. Method on my SOAP service, look like this: [WebMethod] [ScriptMethod(ResponseFormat = ResponseFormat.Json)] public bool UpdateVotes(string vote) { //Code } On PHP application I call UpdateVotes method on the next way: $.ajax({ type: "POST", url: "http://localhost:5690/VoteServices.asmx/UpdateVotes", data: "{'vote': '" + vote + "'}", contentType: "application/json; charset=utf-8", dataType: "json", success: function (msg) { }, error: function (xhr, status, error) { } }); First I run asp.net application with SOAP service, and than I start php aplication. When i click on button for calling web method on service i browser console i got this error: Failed to load resource: the server responded with a status of 500 (Internal Server Error) http://localhost:5690/VoteServices.asmx/UpdateVotes XMLHttpRequest cannot load http://localhost:5690/VoteServices.asmx/UpdateVotes. Origin http://localhost:8080 is not allowed by Access-Control-Allow-Origin.

    Read the article

  • Consuming a web service with the Netbeans Platform

    - by Dean
    I have an application that is written with the NetBeans Platform 5.5. I'm having trouble consuming a web service. If I create a Java SE application in NetBeans, I can add a web service reference without problem. Since my application is using the NetBeans Platform, many of the menu choices change. So, I cannot figure out how to add a reference to the web service. I've googled this topic a number of ways but haven't found any pages that deal with consuming a service through the platform. They all talk about consuming a service with a Java SE application. Changing the application from the Platform architecture is not an option.

    Read the article

  • Share data between local service and the hosting activity

    - by Moshik
    Hi, i need to share data between a local service and his hosting activity, i`am using sendBroadcast in order to send data to the hosting activity from the service, but if i want to send data back to the service from the hosting activity? so i though to create static method on the service, and call from the activity, and through it send the parameter, but then i cant do operations like toast inside that static method(which is inside the service).. coz you cant use "myclass.this" inside a static method, i guess there r more limits.. mybe another solution? mybe there is a proper way for this task? thanks, moshik.

    Read the article

  • How to make a service not receive messages at certain times

    - by miker169
    I'm currently learning wcf for an up and coming project. The service I am creating is using MSMQ to update the database, but the database can't accept messages at certain times. The service is going to be a windows service. The one thing I am coming up against at the moment is how I can get the service to stop reading messages from the queue at these times, for instance lets say I don't want to read messages from the queue on sundays. How would I go about implementing this. So that the client can send messages to the queue that update the database but the service doesn't read the messages until monday, so that the database gets all the updates on the monday? I have started looking at creating a customhost, but I'm not sure if I'm heading in the right direction with this. Thanks in advance.

    Read the article

  • RESTful web service, PUTting an unnamed resource?

    - by James L
    I have a back-end service that creates unique identifiers for resources. The general idea is that resources are saved and versioned, so you can perform: GET http://service/sales/targets/7818181919/latest or GET http://service/sales/targets/7818181919/4 for version 4, and so on. My question is about the most correct way to upload these resources in the first place. How about: PUT http://service/sales/targets/ returning 303 See other /service/sales/targets/ It seems a little wrong as you should PUT and GET from exactly the same place using a resource-oriented interface, but I can't think of a better option. Any ideas?

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • What's new in the RightNow November 2012 release?

    - by Richard Lefebvre
    What new in the RightNow November 2012? In order to find out, please watch this tutorial with imbedded demonstration or read the November 2012 Release notes.   News Facts The November 2012 release of     Oracle’s RightNow CX Cloud Service marks the completion of development efforts for 2012 and continues Oracle’s commitment to enhancing the Oracle RightNow offering following the acquisition. New release delivers key capabilities designed to help organizations improve customer experiences in order to increase customer acquisition and retention, while reducing total cost of ownership. Part of the Oracle Cloud, Oracle RightNow CX Cloud Service now integrates Oracle RightNow Chat Cloud Service with Oracle Engagement Engine Cloud Service, helping organizations intelligently and proactively engage with customers through the right channel at the right time. Chat solutions have emerged as an important component of a cross-channel customer experience strategy. According to Forrester Research, Inc., chat adoption has risen dramatically between 2009 and 2011 from 19% to 37%, and it has the highest satisfaction level of all customer service channels at 62% satisfaction. (*) To help companies deliver enhanced customer experiences, Oracle has made significant investments in Oracle RightNow Chat Cloud Service throughout 2012. With the addition of rules-based engagement to existing capabilities such as co-browse, mobile chat, and cross-channel knowledge integration with the contact center, all delivered via the cloud, Oracle RightNow Chat Cloud Service is differentiated as the industry-leading chat solution. The Oracle Cloud offers a broad portfolio of software as-a-service applications, including Oracle Customer Service and Support Cloud Service, which is based on the Oracle RightNow CX Cloud Service. New Capabilities Key Oracle RightNow Chat Cloud Service and other cross-channel capabilities include: Chat Business Rules, with over 70 built-in rule conditions, leverage the Oracle Engagement Engine to help enable organizations capture rich visitor data and invoke complex actions and triggers. Chat Business Rules allow granular control over when to engage a customer via the chat channel based on customer behavior, customer profile information and operational information. Click-to-Call provides the option for a customer to engage with a live agent over the phone during the Web browsing experience. Chat Availability Controls provide organizations with the ability to throttle volume through the chat channel based on real-time agent availability and wait time thresholds. This ability to manage the channel more efficiently allows organizations to provide a better experience to customers using the chat channel. Strategic and Operational Chat Channel Analytics provide better insight into channel and agent productivity and utilization and effectiveness with both out-of-the-box reports and ad hoc reports. New chat channel analytics provide comprehensive metrics with full data transparency. Background Service Updates improve high availability metrics for Oracle RightNow Chat Cloud Service during service update periods, setting the industry leading standard for sales and service delivery to customers via the chat channel. Additional Capabilities include: Improved Web developer tools for more efficient self-service user interface design Improved administration for enhanced user sessions management Increased cross-channel community collaboration Enhanced extensibility widgets and syndication management Streamlined content management and analytics capabilities Read the full announcement here

    Read the article

  • DNS client configuration steps in Oracle Solaris 11

    - by Gurubalan
    This guide covers Quick how to configure DNS client on Solaris 11. DNS client configuration in Solaris 11 is based on SMF service rather than file based. When you configure a system as DNS client, you will be performing the following two configurations. I. DNS client setup II. Configure Name service switch to use DNS I. DNS client setup 1. Configure using SMF service network/dns/client # svccfg -s network/dns/clientsvc:/network/dns/client> setprop config/search = astring: ("test.com" "service.test.com")svc:/network/dns/client> setprop config/nameserver = net_address: (192.168.10.10 192.168.10.11)svc:/network/dns/client> exit 2.  Enable the DNS client service (when you configure it for the first time) #svccfg enable -r dns/client 3. Restart/Refresh DNS client service (It is done when there is any update to the configuration) #svccfg refresh dns/client #svccfg restart dns/client 4. Verify /etc/resolv.conf if it is updated with the changes. # more /etc/resolv.conf ## _AUTOGENERATED_FROM_SMF_V1_## WARNING: THIS FILE GENERATED FROM SMF DATA.#   DO NOT EDIT THIS FILE.  EDITS WILL BE LOST.# See resolv.conf(4) for details.search               test.com service.test.comnameserver      192.168.10.10nameserver      192.168.10.11 --- II.  Configuring Name service switch to use DNS 1. Configure using SMF service  system/name-service/switch # svccfg -s system/name-service/switchsvc:/system/name-service/switch> setprop config/host = astring: "files dns"svc:/system/name-service/switch>exit 2.  Restart/Refresh name-service/switch service #svccfg refresh name-service/switch #svccfg restart  name-service/switch 3. Verfiy host entry in /etc/nsswitch.conf  is updated with dns. # more /etc/nsswitch.conf## _AUTOGENERATED_FROM_SMF_V1_## WARNING: THIS FILE GENERATED FROM SMF DATA.#   DO NOT EDIT THIS FILE.  EDITS WILL BE LOST.# See nsswitch.conf(4) for details.passwd: filesgroup:  fileshosts:  files dnsipnodes:        files dns . --- PS: Thank you ollasi for your motivation behind the screen.

    Read the article

  • json webservice security

    - by crisgomez
    I have a problem regarding json web service security. I tried to developed a sample web application using json webservice,but the problem is the url was exposed on the client side.So from there,anybody can make a program and call the service for a thousand times. Please take note, that the web service will be using for a registration page, in which checks if the user was exist on the database.So there is no authentication happened on this process. What are the approach to secure the calling of the exposed web service?

    Read the article

  • If I use a facade class with generic methods to access the JPA API, how should I provide additional processing for specific types?

    - by Shaun
    Let's say I'm making a fairly simple web application using JAVA EE specs (I've heard this is possible). In this app, I only have about 10 domain/data objects, and these are represented by JPA Entities. Architecturally, I would consider the JPA API to perform the role of a DAO. Of course, I don't want to use the EntityManager directly in my UI (JSF) and I need to manage transactions, so I delegate these tasks to the so-called service layer. More specifically, I would like to be able to handle these tasks in a single DataService class (often also called CrudService) with generic methods. See this article by Adam Bien for an example interface: http://www.adam-bien.com/roller/abien/entry/generic_crud_service_aka_dao My project differs from that article in that I can't use EJBs, so my service classes are essentially just named beans and I handle transactions manually. Regardless, what I want is a single interface for simple CRUD operations on my data objects because having a different class for each data type would lead to a lot of duplicate and/or unnecessary code. Ideally, my views would be able to use a method such as public <T> List<T> findAll(Class<T> type) { ... } to retrieve data. Using JSF, it might look something like this: <h:dataTable value="#{dataService.findAll(data.class)}" var="d"> ... </h:dataTable> Similarly, after validating forms, my controller could submit the data with a method such as: public <T> void add(T entity) { ... } Granted, you'd probably actually want to return something useful to the caller. In any case, this works well if your data can be treated as homogenous in this manner. Alas, it breaks down when you need to perform additional processing on certain objects before passing them on to JPA. For example, let's say I'm dealing with Books and Authors which have a many-to-many relationship. Each Book has a set of IDs referring to its authors, and each Author has a set of IDs referring to their books. Normally, JPA can manage this kind of relationship for you, but in some cases it can't (for example, the google app engine JPA provider doesn't support this). Thus, when I persist a new book for example, I may need to update the corresponding author entities. My question, then, is if there's an elegant way to handle this or if I should reconsider the sanity of my whole design. Here's a couple ways I see of dealing with it: The instanceof operator. I could use this to target certain classes when special processing is needed. Perhaps maintainability suffers and it isn't beautiful code, but if there's only 10 or so domain objects it can't be all that bad... could it? Make a different service for each entity type (ie, BookService and AuthorService). All services would inherit from a generic DataService base class and override methods if special processing is needed. At this point, you could probably also just call them DAOs instead. As always, I appreciate the help. Let me know if any clarifications are needed, as I left out many smaller details.

    Read the article

  • Understanding the value of Customer Experience & Loyalty for the Telecommunications Industry

    - by raul.goycoolea
    Worried by economic woes and market forces, especially in mature markets, communications service providers (CSPs) increasingly focus on improving customer experience. In fact, it seems difficult to find a major message by a C-level executive in the developed world that does not include something on "meeting and exceeding customers' needs". Frequently in customer satisfaction studies by prominent firms, CSPs fall short of the leadership demonstrated by other industries that take customer-centric approaches to their bottom-line strategies. Consider the following:Despite the continued impact of global economic crisis, in July 2010, Apple Computer posted record revenue and net quarterly profit. Those who attribute the results primarily to the iPhone 4 launch should note that Apple also shipped around 30% more Macintosh computers than the same period the previous year. Even sales of the iPod line increased by 8% in a highly commoditized, shrinking media player market. Finally, Apple began selling iPads during the quarter, with total sales of more than 3 million units. What does Apple have that the others lack? Well, some great products (and services) to be sure, but it also excels at customer service and support, marketing, and distribution, and has one of the strongest brands globally. Its products are useful, simple to use, easy to acquire and augment, high quality, and considered very cool. They also evoke such an emotional response from many of Apple's customers, which they turn up their noses at competitive products.In other words, Apple appears to have mastered virtually every aspect of customer experience and the resultant loyalty of its customer base - even in difficult financial times. Through that unwavering customer focus, Apple continues to drive its revenues and profits to new heights. Other customer loyalty leaders like Wal-Mart, Google, Toyota and Honda are also doing well by focusing on customer experience as an essential driver of profitability. Service providers should note this performance and ask themselves how they might leverage the same principles to increase their own profitability. After all, that is what customer experience and loyalty are all about: profitability.To successfully manage all the critical touch points of customer experience, CSPs must shun the one-size-fits-all approach. They can no longer afford to view customer service fundamentally as an act of altruism - which mentality dates back to the industry's civil service days, when CSPs were typically government organizations that were critical to economic development and public safety.As regulators and public officials have pushed, and continue to push, service providers to new heights of reliability - using incentives and punishments - most CSPs already have some of the fundamental building blocks of customer service in place. Yet despite that history and experience, service providers still lag other industries in providing what is seen as good customer service.As we observed in the TMF's 2009 Insights Research report, Customer Experience Management: Driving Loyalty & Profitability there has been resurgence in interest by CSPs. More and more of them have stated ambitions to catch up other industries, and they are realizing that good customer service is a powerful strategy for increasing business performance and profitability, not an act of good will.CSPs are recognizing the connection between customer experience and profitability, as demonstrated in many studies. For example, according to research by Bain & Company, a 5 percent improvement in customer retention rates can yield as much as a 75 percent increase in profits for companies across a range of industries.After decades of customer experience strategy formulation, Bain partner and business author, Frederick Reichheld, considers "would you recommend us to a friend?" as the ultimate question for a customer. How many times have you or your friends recommended an iPod, iPhone or a Mac? What do your children recommend to their peers? Their peers to them?There are certain steps service providers have to take to create more personalized relationships with their customers, as well as reduce churn and increase profitability, all while becoming leaner and more agile. First, they have to define customer experience, we define it as the result of the sum of observations, perceptions, thoughts and feelings arising from interactions and relationships between customers and their service provider(s). Virtually every customer touch point - whether directly or indirectly linked to service providers and their partners - contributes to customer perception, satisfaction, loyalty, and ultimately profitability. Gaining leadership in customer experience and satisfaction will not be a simple task, as it is affected by virtually every customer-facing aspect of the service provider, and in turn impacts the service provider deeply - especially on the all-important bottom line. The scope of issues affecting customer experience is complex and dynamic.With new services, devices and applications extending the basis of customer experience to domains beyond the direct control of the service provider, it is likely to increase in complexity and dynamism.Customer loyalty = increased profitsAs stated earlier, customer experience programs are not fundamentally altruistic exercises, but a strategic means of improving competitiveness and profitability in the short and long term. Loyalty is essential to deriving long term profits from customers.Some of the earliest loyalty programs date back to the 1930s, when packaged goods companies offered embedded coupons for rewards to buyers, and eventually retail chains began offering reward programs to frequent shoppers. These programs continued for decades but were leapfrogged in the 1980s by more aggressive programs from the airlines.This movement was led by American Airlines, which launched the first full-scale loyalty marketing program of the modern era with the AAdvantage frequent flyer scheme. It was the first to reward frequent fliers with notional air miles that could be accumulated and later redeemed for free travel. Figure 1: Opportunities example of Customer loyalty driven profitOther airlines and travel providers were quick to grasp the incredible value of providing customers with an incentive to use their company exclusively. Within a few years, dozens of travel industry companies launched similar initiatives and now loyalty programs are achieving near-ubiquity in many service industries, especially those in which it is difficult to differentiate offerings by product attributes.The belief is that increased profitability will result from customer retention efforts because:•    The cost of acquisition occurs only at the beginning of a relationship: the longer the relationship, the lower the amortized cost;•    Account maintenance costs decline as a percentage of total costs, or as a percentage of revenue, over the lifetime of the relationship;•    Long term customers tend to be less inclined to switch and less price sensitive which can result in stable unit sales volume and increases in dollar-sales volume;•    Long term customers may initiate word-of-mouth promotions and referrals, which cost the company nothing and arguably are the most effective form of advertising;•    Long-term customers are more likely to buy ancillary products and higher margin supplemental products;•    Long term customers tend to be satisfied with their relationship with the company and are less likely to switch to competitors, making market entry or competitors gaining market share difficult;•    Regular customers tend to be less expensive to service, as they are familiar with the processes involved, require less 'education', and are consistent in their order placement;•    Increased customer retention and loyalty makes the employees' jobs easier and more satisfying. In turn, happy employees feed back into higher customer satisfaction in a virtuous circle. Figure 2: The virtuous circle of customer loyaltyFigure 2 represents a high-level example of a virtuous cycle driven by customer satisfaction and loyalty, depicting how superiority in product and service offerings, as well as strong customer support by competent employees, lead to higher sales and ultimately profitability. As stated above, this is not a new concept, but succeeding with it is difficult. It has eluded many a company driven to achieve profitability goals. Of course, for this circle to be virtuous, the customer relationship(s) must be profitable.Trying to maintain the loyalty of unprofitable customers is not a viable business strategy. It is, therefore, important that marketers can assess the profitability of each customer (or customer segment), and either improve or terminate relationships that are not profitable. This means each customer's 'relationship costs' must be understood and compared to their 'relationship revenue'. Customer lifetime value (CLV) is the most commonly used metric here, as it is generally accepted as a representation of exactly how much each customer is worth in monetary terms, and therefore a determinant of exactly how much a service provider should be willing to spend to acquire or retain that customer.CLV models make several simplifying assumptions and often involve the following inputs:•    Churn rate represents the percentage of customers who end their relationship with a company in a given period;•    Retention rate is calculated by subtracting the churn rate percentage from 100;•    Period/horizon equates to the units of time into which a customer relationship can be divided for analysis. A year is the most commonly used period for this purpose. Customer lifetime value is a multi-period calculation, often projecting three to seven years into the future. In practice, analysis beyond this point is viewed as too speculative to be reliable. The model horizon is the number of periods used in the calculation;•    Periodic revenue is the amount of revenue collected from a customer in a given period (though this is often extended across multiple periods into the future to understand lifetime value), such as usage revenue, revenues anticipated from cross and upselling, and often some weighting for referrals by a loyal customer to others; •    Retention cost describes the amount of money the service provider must spend, in a given period, to retain an existing customer. Again, this is often forecast across multiple periods. Retention costs include customer support, billing, promotional incentives and so on;•    Discount rate means the cost of capital used to discount future revenue from a customer. Discounting is an advanced method used in more sophisticated CLV calculations;•    Profit margin is the projected profit as a percentage of revenue for the period. This may be reflected as a percentage of gross or net profit. Again, this is generally projected across the model horizon to understand lifetime value.A strong focus on managing these inputs can help service providers realize stronger customer relationships and profits, but there are some obstacles to overcome in achieving accurate calculations of CLV, such as the complexity of allocating costs across the customer base. There are many costs that serve all customers which must be properly allocated across the base, and often a simple proportional allocation across the whole base or a segment may not accurately reflect the true cost of serving that customer;  This is made worse by the fragmentation of customer information, which is likely to be across a variety of product or operations groups, and may be difficult to aggregate due to different representations.In addition, there is the complexity of account relationships and structures to take into consideration. Complex account structures may not be understood or properly represented. For example, a profitable customer may have a separate account for a second home or another family member, which may appear to be unprofitable. If the service provider cannot relate the two accounts, CLV is not properly represented and any resultant cancellation of the apparently unprofitable account may result in the customer churning from the profitable one.In summary, if service providers are to realize strong customer relationships and their attendant profits, there must be a very strong focus on data management. This needs to be coupled with analytics that help business managers and those who work in customer-facing functions offer highly personalized solutions to customers, while maintaining profitability for the service provider. It's clear that acquiring new customers is expensive. Advertising costs, campaign management expenses, promotional service pricing and discounting, and equipment subsidies make a serious dent in a new customer's profitability. That is especially true given the rising subsidies for Smartphone users, which service providers hope will result in greater profits from profits from data services profitability in future.  The situation is made worse by falling prices and greater competition in mature markets.Customer acquisition through industry consolidation isn't cheap either. A North American service provider spent about $2,000 per subscriber in its acquisition of a smaller company earlier this year. While this has allowed it to leapfrog to become the largest mobile service provider in the country, it required a total investment of more than $28 billion (including assumption of the acquiree's debt).While many operating cost synergies clearly made this deal more attractive to the acquiring company, this is certainly an expensive way to acquire customers: the cost per subscriber in this case is not out of line with the prices others have paid for acquisitions.While growth by acquisition certainly increases overall revenues, it often creates tremendous challenges for profitability. Organic growth through increased customer loyalty and retention is a more effective driver of profit, as well as a stronger predictor of future profitability. Service providers, especially those in mature markets, are increasingly recognizing this and taking steps toward a creating a more personalized, flexible and satisfying experience for their customers.In summary, the clearest path to profitability for companies in virtually all industries is through customer retention and maximization of lifetime value. Service providers would do well to recognize this and focus attention on profitable customer relationships.

    Read the article

  • Using design-patterns to transform web-service model classes into local model classes and vise versa

    - by Daniil Petrov
    There is a web-application built with play framework 1.2.7. It contains less than 10 model classes. The main purpose of the application is a lightweight access to a complex remote application (more than 50 model classes). The remote application has its own SOAP API and we use it for synchronization of data. There is a scheduled job in the web-app which makes requests to the remote app. It gets bunches of objects from the remote model and populates corresponding objects of the local model. Currently, there are two groups of classes - the local model and the remote model (generated from wsdl schema). It is not allowed to make any modifications to the remote model. Transformations are being made in the scheduled job class. When it gets objects from the remote app it creates local objects. Recently, it was decided to add a possibility to modify the remote objects. It requires more transformations on our side. We need to transform from remote to local model when reading objects and from local to remote when changing objects. I wonder if this would be possible to use some design-patterns to reduce a number of transformations?

    Read the article

  • Why is iTunes starting and stopping play randomly, and how do I stop it?

    - by Chris R
    Since yesterday morning my copy of iTunes has been starting and stopping randomly. If iTunes is not running, then it opens and sometimes begins playing, other times sits idle. Eventually, after a random interval it will begin playing a song, and then stop, and so on... Needless to say, it's driving me mad. (Mac OSX, 10.6.3, on a new-ish (< 1 year old) 24" iMac) I've made five changes to my system that may or may not be connected to this: My office phone was replaced with a Linksys IP Phone, which necessitated a change to my networking; where previously my Mac was connected directly to the office network port, now it is connected through the phone. My network connection now uses auto link detection in lieu of forcing 100Mbit I unpaired my bluetooth headset. I removed the USB audio device associated with another headset. I upgraded to Safari 5. I don't use it as a primary browser, but it's often open to run web apps that I'm developing. All of these things happened in pretty close proximity to each other, so one or more of them may be the culprit. One other thing that may or may not be related; for some reason my built-in microphone is no longer picking up audio. It seems like this might be connected to the iTunes issue, because it happened around the same time. In terms of things that I've tried in order to solve this, I'm at a bit of a loss. I followed the instructions at http://developer.apple.com/mac/library/technotes/tn2004/tn2124.html#SECLAUNCHDLOGGING to enable detailed launchd logging to see if I could track down which process was asking iTunes to open (when it's not already open) but I wasn't able to make heads or tails of the output. I'm not even sure if I'm looking in the right place, to be honest; it actually acts like something is activating the application with AppleScript, but I have no processes running that are doing that, as far as I know. I'm running a few apps that have iTunes integration: Adium, iChat with Chax, Quicksilver. None of these have been changed lately, so I consider them low risks of causing this, but it's not impossible. Moreover, I'm not using any of those features intentionally. This is a snippet of launchd debug logging from around the time it just launched: 10-06-09 9:14:29 AM com.apple.launchd[1] Dispatching kevent... 10-06-09 9:14:29 AM com.apple.launchd[1] KEVENT[0]: udata = 0x10002b230 data = 0x30 ident = 5 filter = EVFILT_READ flags = EV_ADD|EV_RECEIPT fflags = 0x0 10-06-09 9:14:29 AM com.apple.launchd[1] Dispatching kevent... 10-06-09 9:14:29 AM com.apple.launchd[1] KEVENT[0]: udata = 0x100802000 data = 0x0 ident = 26 filter = EVFILT_PROC flags = EV_ADD|EV_RECEIPT|EV_CLEAR fflags = NOTE_FORK 10-06-09 9:14:29 AM com.apple.launchd[1] (com.apple.coreservicesd[26]) Dispatching kevent callback. 10-06-09 9:14:29 AM com.apple.launchd[1] (com.apple.coreservicesd[26]) EVFILT_PROC event for job: 10-06-09 9:14:29 AM com.apple.launchd[1] KEVENT[0]: udata = 0x1004076f0 data = 0x0 ident = 26 filter = EVFILT_PROC flags = EV_ADD|EV_RECEIPT|EV_CLEAR fflags = NOTE_FORK 10-06-09 9:14:29 AM com.apple.launchd[1] (com.apple.coreservicesd[26]) fork()ed 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave) Conceived 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Created PID 22197 anonymously by PPID 26 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Looking up per user launchd for UID: 0 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Per user launchd job found for UID: 505 10-06-09 9:14:29 AM com.apple.launchd[1] System: Looking up service com.apple.system.notification_center 10-06-09 9:14:29 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.system.notification_center 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Looking up per user launchd for UID: 0 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Per user launchd job found for UID: 505 10-06-09 9:14:29 AM com.apple.launchd[1] System: Looking up service com.apple.system.DirectoryService.libinfo_v1 10-06-09 9:14:29 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.system.DirectoryService.libinfo_v1 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Looking up per user launchd for UID: 0 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Per user launchd job found for UID: 505 10-06-09 9:14:29 AM com.apple.launchd[1] System: Looking up service com.apple.system.DirectoryService.membership_v1 10-06-09 9:14:29 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.system.DirectoryService.membership_v1 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Looking up per user launchd for UID: 0 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Per user launchd job found for UID: 505 10-06-09 9:14:29 AM com.apple.launchd[1] System: Looking up service com.apple.CoreServices.coreservicesd 10-06-09 9:14:29 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.CoreServices.coreservicesd 10-06-09 9:14:29 AM com.apple.launchd[1] Dispatching kevent... 10-06-09 9:14:29 AM com.apple.launchd[1] KEVENT[0]: udata = 0x100802000 data = 0x0 ident = 22197 filter = EVFILT_PROC flags = EV_ADD|EV_RECEIPT|EV_CLEAR fflags = NOTE_EXIT 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Dispatching kevent callback. 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) EVFILT_PROC event for job: 10-06-09 9:14:29 AM com.apple.launchd[1] KEVENT[0]: udata = 0x100401720 data = 0x0 ident = 22197 filter = EVFILT_PROC flags = EV_ADD|EV_RECEIPT|EV_CLEAR fflags = NOTE_EXIT 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22197]) Reaping 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave) Total rusage: utime 0.000000 stime 0.000000 maxrss 0 ixrss 0 idrss 0 isrss 0 minflt 0 majflt 0 nswap 0 inblock 0 oublock 0 msgsnd 0 msgrcv 0 nsignals 0 nvcsw 0 nivcsw 0 10-06-09 9:14:29 AM com.apple.launchd[1] (0x100401720.anonymous.lssave) Removed 10-06-09 9:14:30 AM com.apple.launchd[1] Dispatching kevent... 10-06-09 9:14:30 AM com.apple.launchd[1] KEVENT[0]: udata = 0x100802000 data = 0x0 ident = 22197 filter = EVFILT_PROC flags = EV_ADD|EV_RECEIPT|EV_CLEAR|EV_EOF|EV_ONESHOT fflags = NOTE_REAP 10-06-09 9:14:32 AM com.apple.launchd[1] Dispatching kevent... 10-06-09 9:14:32 AM com.apple.launchd[1] KEVENT[0]: udata = 0x10002b230 data = 0x30 ident = 5 filter = EVFILT_READ flags = EV_ADD|EV_RECEIPT fflags = 0x0 10-06-09 9:14:33 AM com.apple.launchd[1] Dispatching kevent... 10-06-09 9:14:33 AM com.apple.launchd[1] KEVENT[0]: udata = 0x100802000 data = 0x0 ident = 143 filter = EVFILT_PROC flags = EV_ADD|EV_RECEIPT|EV_CLEAR fflags = NOTE_FORK 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Dispatching kevent callback. 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) EVFILT_PROC event for job: 10-06-09 9:14:33 AM com.apple.launchd[1] KEVENT[0]: udata = 0x10041e9a0 data = 0x0 ident = 143 filter = EVFILT_PROC flags = EV_ADD|EV_RECEIPT|EV_CLEAR fflags = NOTE_FORK 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) fork()ed 10-06-09 9:14:33 AM com.apple.launchd[1] System: Looking up service com.apple.distributed_notifications.2 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.distributed_notifications.2 10-06-09 9:14:33 AM com.apple.launchd[1] System: Looking up service com.apple.system.notification_center 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.system.notification_center 10-06-09 9:14:33 AM com.apple.launchd[1] System: Looking up service com.apple.system.DirectoryService.libinfo_v1 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.system.DirectoryService.libinfo_v1 10-06-09 9:14:33 AM com.apple.launchd[1] System: Looking up service com.apple.system.DirectoryService.membership_v1 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.system.DirectoryService.membership_v1 10-06-09 9:14:33 AM com.apple.launchd[1] System: Looking up service com.apple.CoreServices.coreservicesd 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.CoreServices.coreservicesd 10-06-09 9:14:33 AM com.apple.launchd[1] System: Looking up service com.apple.SystemConfiguration.configd 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.SystemConfiguration.configd 10-06-09 9:14:33 AM com.apple.launchd[1] System: Looking up service com.apple.audio.coreaudiod 10-06-09 9:14:33 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.audio.coreaudiod 10-06-09 9:14:34 AM com.apple.launchd[1] System: Looking up service com.apple.system.logger 10-06-09 9:14:34 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.system.logger 10-06-09 9:14:35 AM com.apple.launchd[1] Dispatching kevent... 10-06-09 9:14:35 AM com.apple.launchd[1] KEVENT[0]: udata = 0x10002b230 data = 0x30 ident = 5 filter = EVFILT_READ flags = EV_ADD|EV_RECEIPT fflags = 0x0 10-06-09 9:14:35 AM com.apple.launchd[1] System: Looking up service com.apple.DiskArbitration.diskarbitrationd 10-06-09 9:14:35 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.DiskArbitration.diskarbitrationd 10-06-09 9:14:35 AM com.apple.launchd[1] System: Looking up service com.apple.system.logger 10-06-09 9:14:35 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.system.logger 10-06-09 9:14:36 AM com.apple.launchd[1] System: Looking up service com.apple.FSEvents 10-06-09 9:14:36 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.FSEvents 10-06-09 9:14:36 AM com.apple.launchd[1] System: Looking up service com.apple.SystemConfiguration.configd 10-06-09 9:14:36 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.SystemConfiguration.configd 10-06-09 9:14:38 AM com.apple.launchd[1] Dispatching kevent... 10-06-09 9:14:38 AM com.apple.launchd[1] KEVENT[0]: udata = 0x10002b230 data = 0x30 ident = 5 filter = EVFILT_READ flags = EV_ADD|EV_RECEIPT fflags = 0x0 10-06-09 9:14:39 AM com.apple.launchd[1] Dispatching kevent... 10-06-09 9:14:39 AM com.apple.launchd[1] KEVENT[0]: udata = 0x100802000 data = 0x0 ident = 26 filter = EVFILT_PROC flags = EV_ADD|EV_RECEIPT|EV_CLEAR fflags = NOTE_FORK 10-06-09 9:14:39 AM com.apple.launchd[1] (com.apple.coreservicesd[26]) Dispatching kevent callback. 10-06-09 9:14:39 AM com.apple.launchd[1] (com.apple.coreservicesd[26]) EVFILT_PROC event for job: 10-06-09 9:14:39 AM com.apple.launchd[1] KEVENT[0]: udata = 0x1004076f0 data = 0x0 ident = 26 filter = EVFILT_PROC flags = EV_ADD|EV_RECEIPT|EV_CLEAR fflags = NOTE_FORK 10-06-09 9:14:39 AM com.apple.launchd[1] (com.apple.coreservicesd[26]) fork()ed 10-06-09 9:14:39 AM com.apple.launchd[1] (0x100401720.anonymous.lssave) Conceived 10-06-09 9:14:39 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22211]) Created PID 22211 anonymously by PPID 26 10-06-09 9:14:39 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22211]) Looking up per user launchd for UID: 0 10-06-09 9:14:39 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22211]) Per user launchd job found for UID: 505 10-06-09 9:14:39 AM com.apple.launchd[1] System: Looking up service com.apple.system.notification_center 10-06-09 9:14:39 AM com.apple.launchd[1] (com.apple.launchd.peruser.505[143]) Mach service lookup: com.apple.system.notification_center 10-06-09 9:14:39 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22211]) Looking up per user launchd for UID: 0 10-06-09 9:14:39 AM com.apple.launchd[1] (0x100401720.anonymous.lssave[22211]) Per user launchd job found for UID: 505 10-06-09 9:14:39 AM com.apple.launchd[1] System: Looking up service com.apple.system.DirectoryService.libinfo_v1

    Read the article

  • Oracle UCM GET_SEARCH_RESULTS service with full text search

    - by Lyudmil Pelov
    Newly I was working on portlet which should be able to do full text search through the UCM documents and I was experimenting with the Ridc and also with the CIS API's. There are some ticks you may take care of, for example using quotes is a very spacial case and most of situations UCM will throw an exception if you not use them well. So during my tests I was able to develop one solution which works very well for me doing full text search and here is it: final IdcClientManager idcManager = new IdcClientManager(); final IdcClient idcClient = idcManager.createClient("idc://127.0.0.1:4444"); final IdcContext idcContext = new IdcContext("sysadmin"); final DataBinder binder = idcClient.createBinder(); // populate the binder with the parameters binder.putLocal ("IdcService", "GET_SEARCH_RESULTS"); binder.putLocal ("QueryText", "dDocFullText <substring> <qsch>"+yourSearchWordOrWords+"</qsch>");  binder.putLocal ("SearchEngineName", "databasefulltext"); binder.putLocal ("ResultCount", "20"); // execute the request ServiceResponse response = idcClient.sendRequest (idcContext, binder); // get the binder DataBinder serverBinder = response.getResponseAsBinder (); DataResultSet resultSet = serverBinder.getResultSet ("SearchResults"); // loop over the results for (DataObject dataObject : resultSet.getRows ()) { System.out.println ("Title is: " + dataObject.get ("dDocTitle")); System.out.println ("Author is: " + dataObject.get ("dDocAuthor")); }Nothing special so far except the line which declares the full text search. To be able to proceed with the full text search you have to use dDocFullText attribute inside the search query. The tag <substring> is the same as 'like'. Also you have to put your searching string or words in quotes which could be a problem sometime, so I used the tag <qsch>. Using this tag you can have quotes now inside you searching string without to break the code and get parsing exceptions.To be able to test the example, you do have to enable full text search inside UCM. To do this follow the steps for example from this blog here and then re-index the documents in UCM.There is also one very nice article about how to define UCM queries if want to replace the full text search with something more specific, you can read this article from Kyle's Blog here.

    Read the article

  • C# Neural Networks with Encog

    - by JoshReuben
    Neural Networks ·       I recently read a book Introduction to Neural Networks for C# , by Jeff Heaton. http://www.amazon.com/Introduction-Neural-Networks-C-2nd/dp/1604390093/ref=sr_1_2?ie=UTF8&s=books&qid=1296821004&sr=8-2-spell. Not the 1st ANN book I've perused, but a nice revision.   ·       Artificial Neural Networks (ANNs) are a mechanism of machine learning – see http://en.wikipedia.org/wiki/Artificial_neural_network , http://en.wikipedia.org/wiki/Category:Machine_learning ·       Problems Not Suited to a Neural Network Solution- Programs that are easily written out as flowcharts consisting of well-defined steps, program logic that is unlikely to change, problems in which you must know exactly how the solution was derived. ·       Problems Suited to a Neural Network – pattern recognition, classification, series prediction, and data mining. Pattern recognition - network attempts to determine if the input data matches a pattern that it has been trained to recognize. Classification - take input samples and classify them into fuzzy groups. ·       As far as machine learning approaches go, I thing SVMs are superior (see http://en.wikipedia.org/wiki/Support_vector_machine ) - a neural network has certain disadvantages in comparison: an ANN can be overtrained, different training sets can produce non-deterministic weights and it is not possible to discern the underlying decision function of an ANN from its weight matrix – they are black box. ·       In this post, I'm not going to go into internals (believe me I know them). An autoassociative network (e.g. a Hopfield network) will echo back a pattern if it is recognized. ·       Under the hood, there is very little maths. In a nutshell - Some simple matrix operations occur during training: the input array is processed (normalized into bipolar values of 1, -1) - transposed from input column vector into a row vector, these are subject to matrix multiplication and then subtraction of the identity matrix to get a contribution matrix. The dot product is taken against the weight matrix to yield a boolean match result. For backpropogation training, a derivative function is required. In learning, hill climbing mechanisms such as Genetic Algorithms and Simulated Annealing are used to escape local minima. For unsupervised training, such as found in Self Organizing Maps used for OCR, Hebbs rule is applied. ·       The purpose of this post is not to mire you in technical and conceptual details, but to show you how to leverage neural networks via an abstraction API - Encog   Encog ·       Encog is a neural network API ·       Links to Encog: http://www.encog.org , http://www.heatonresearch.com/encog, http://www.heatonresearch.com/forum ·       Encog requires .Net 3.5 or higher – there is also a Silverlight version. Third-Party Libraries – log4net and nunit. ·       Encog supports feedforward, recurrent, self-organizing maps, radial basis function and Hopfield neural networks. ·       Encog neural networks, and related data, can be stored in .EG XML files. ·       Encog Workbench allows you to edit, train and visualize neural networks. The Encog Workbench can generate code. Synapses and layers ·       the primary building blocks - Almost every neural network will have, at a minimum, an input and output layer. In some cases, the same layer will function as both input and output layer. ·       To adapt a problem to a neural network, you must determine how to feed the problem into the input layer of a neural network, and receive the solution through the output layer of a neural network. ·       The Input Layer - For each input neuron, one double value is stored. An array is passed as input to a layer. Encog uses the interface INeuralData to hold these arrays. The class BasicNeuralData implements the INeuralData interface. Once the neural network processes the input, an INeuralData based class will be returned from the neural network's output layer. ·       convert a double array into an INeuralData object : INeuralData data = new BasicNeuralData(= new double[10]); ·       the Output Layer- The neural network outputs an array of doubles, wraped in a class based on the INeuralData interface. ·        The real power of a neural network comes from its pattern recognition capabilities. The neural network should be able to produce the desired output even if the input has been slightly distorted. ·       Hidden Layers– optional. between the input and output layers. very much a “black box”. If the structure of the hidden layer is too simple it may not learn the problem. If the structure is too complex, it will learn the problem but will be very slow to train and execute. Some neural networks have no hidden layers. The input layer may be directly connected to the output layer. Further, some neural networks have only a single layer. A single layer neural network has the single layer self-connected. ·       connections, called synapses, contain individual weight matrixes. These values are changed as the neural network learns. Constructing a Neural Network ·       the XOR operator is a frequent “first example” -the “Hello World” application for neural networks. ·       The XOR Operator- only returns true when both inputs differ. 0 XOR 0 = 0 1 XOR 0 = 1 0 XOR 1 = 1 1 XOR 1 = 0 ·       Structuring a Neural Network for XOR  - two inputs to the XOR operator and one output. ·       input: 0.0,0.0 1.0,0.0 0.0,1.0 1.0,1.0 ·       Expected output: 0.0 1.0 1.0 0.0 ·       A Perceptron - a simple feedforward neural network to learn the XOR operator. ·       Because the XOR operator has two inputs and one output, the neural network will follow suit. Additionally, the neural network will have a single hidden layer, with two neurons to help process the data. The choice for 2 neurons in the hidden layer is arbitrary, and often comes down to trial and error. ·       Neuron Diagram for the XOR Network ·       ·       The Encog workbench displays neural networks on a layer-by-layer basis. ·       Encog Layer Diagram for the XOR Network:   ·       Create a BasicNetwork - Three layers are added to this network. the FinalizeStructure method must be called to inform the network that no more layers are to be added. The call to Reset randomizes the weights in the connections between these layers. var network = new BasicNetwork(); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(1)); network.Structure.FinalizeStructure(); network.Reset(); ·       Neural networks frequently start with a random weight matrix. This provides a starting point for the training methods. These random values will be tested and refined into an acceptable solution. However, sometimes the initial random values are too far off. Sometimes it may be necessary to reset the weights again, if training is ineffective. These weights make up the long-term memory of the neural network. Additionally, some layers have threshold values that also contribute to the long-term memory of the neural network. Some neural networks also contain context layers, which give the neural network a short-term memory as well. The neural network learns by modifying these weight and threshold values. ·       Now that the neural network has been created, it must be trained. Training a Neural Network ·       construct a INeuralDataSet object - contains the input array and the expected output array (of corresponding range). Even though there is only one output value, we must still use a two-dimensional array to represent the output. public static double[][] XOR_INPUT ={ new double[2] { 0.0, 0.0 }, new double[2] { 1.0, 0.0 }, new double[2] { 0.0, 1.0 }, new double[2] { 1.0, 1.0 } };   public static double[][] XOR_IDEAL = { new double[1] { 0.0 }, new double[1] { 1.0 }, new double[1] { 1.0 }, new double[1] { 0.0 } };   INeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); ·       Training is the process where the neural network's weights are adjusted to better produce the expected output. Training will continue for many iterations, until the error rate of the network is below an acceptable level. Encog supports many different types of training. Resilient Propagation (RPROP) - general-purpose training algorithm. All training classes implement the ITrain interface. The RPROP algorithm is implemented by the ResilientPropagation class. Training the neural network involves calling the Iteration method on the ITrain class until the error is below a specific value. The code loops through as many iterations, or epochs, as it takes to get the error rate for the neural network to be below 1%. Once the neural network has been trained, it is ready for use. ITrain train = new ResilientPropagation(network, trainingSet);   for (int epoch=0; epoch < 10000; epoch++) { train.Iteration(); Debug.Print("Epoch #" + epoch + " Error:" + train.Error); if (train.Error > 0.01) break; } Executing a Neural Network ·       Call the Compute method on the BasicNetwork class. Console.WriteLine("Neural Network Results:"); foreach (INeuralDataPair pair in trainingSet) { INeuralData output = network.Compute(pair.Input); Console.WriteLine(pair.Input[0] + "," + pair.Input[1] + ", actual=" + output[0] + ",ideal=" + pair.Ideal[0]); } ·       The Compute method accepts an INeuralData class and also returns a INeuralData object. Neural Network Results: 0.0,0.0, actual=0.002782538818034049,ideal=0.0 1.0,0.0, actual=0.9903741937121177,ideal=1.0 0.0,1.0, actual=0.9836807956566187,ideal=1.0 1.0,1.0, actual=0.0011646072586172778,ideal=0.0 ·       the network has not been trained to give the exact results. This is normal. Because the network was trained to 1% error, each of the results will also be within generally 1% of the expected value.

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >