Search Results

Search found 17944 results on 718 pages for 'size t'.

Page 69/718 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • How to calculate the correct image size in out pdf using itextsharp ?

    - by MK
    I' am trying to add an image to a pdf using itextsharp, regardless of the image size it always appears to be mapped to a different greater size inside the pdf ? The image I add is 624x500 pixel (DPI:72): And here is a screen of the output pdf: And here is how I created the document: Document document = new Document(); System.IO.MemoryStream stream = new MemoryStream(); PdfWriter writer = PdfWriter.GetInstance(document, stream); document.Open(); System.Drawing.Image pngImage = System.Drawing.Image.FromFile("test.png"); Image pdfImage = Image.GetInstance(pngImage, System.Drawing.Imaging.ImageFormat.Png); document.Add(pdfImage); document.Close(); byte[] buffer = stream.GetBuffer(); FileStream fs = new FileStream("test.pdf", FileMode.Create); fs.Write(buffer, 0, buffer.Length); fs.Close(); Any idea why on how to calculate the correct size ?

    Read the article

  • For Qt 4.6.x, how to auto-size text to fit in a specified width?

    - by darenchow
    Inside of my QGraphicsRectItem::paint(), I am trying to draw the name of the item within its rect(). However, for each of the different items, they can be of variable width and similarly names can be of variable length. Currently I am starting with a maximum font size, checking if it fits and decrementing it until I find a font size that fits. So far, I haven't been able to find a quick and easy way to do this. Is there a better, or more efficient way to do this? Thanks! void checkFontSize(QPainter *painter, const QString& name) { // check the font size - need a better algorithm... this could take awhile while (painter->fontMetrics().width(name) > rect().width()) { int newsize = painter->font().pointSize() - 1; painter->setFont(QFont(painter->font().family(), newsize)); } }

    Read the article

  • How can i initialize an array without knowing it size?

    - by Sara
    I have a situation where i have to apply a criteria on an input array and reuturn another array as output which will have smaller size based upon the filtering criteria. Now problem is i do not know the size of filtered results, so i can not initialize the array with specific value. And i do not want it to be large size will null values because i am using array.length; later on. One way is to first loop the original input array and set a counter, and then make another loop with that counter length and initialize and fill this array[]. But is there anyway to do the job in just one loop?

    Read the article

  • How do I determine the video file size on youtube in Java?

    - by user1753343
    I am using the youtube-API to gather different information about videos. The only missing attribute until now is size. The API itself doesn't provide any functionality. I googled, but didn't found any solution. Indirect way My next idea was to get the path to the video-file itself and make a get-request. In the response-headers I could check for the file size. So I searched for "video / download / youtube / java". Some time ago youtube used get_video_info but this doesn't work today. I also found an application called JavaYoutubeDownloader but it seems VERY complicated for just getting the file size and it doesn't work either (just prints finish, without downloading anything). So is there a way to get the filesize of a video on youtube by using Java? If not, what would be a practical solution for this problem (a list of video_ids exists)?

    Read the article

  • Why does Term::Size seem to mess up Perl's output encoding?

    - by sid_com
    Hello! The Term::Size-module jumbles up the encoding. How can I fix this? #!/usr/bin/env perl use warnings; use strict; use 5.010; use utf8; binmode STDOUT, ':encoding(UTF-8)'; use Term::Size; my $string = 'Hällö'; say $string; my $columns = ( Term::Size::chars *STDOUT{IO} )[0]; say $columns; say $string; Output: Hällö 140 H?ll?

    Read the article

  • What's the fastest way to get directory and subdirs size on unix using Perl?

    - by ivicas
    I am using Perl stat() function to get the size of directory and its subdirectories. I have a list of about 20 parent directories which have few thousand recursive subdirs and every subdir has few hundred records. Main computing part of script looks like this: sub getDirSize { my $dirSize = 0; my @dirContent = <*>; my $sizeOfFilesInDir = 0; foreach my $dirContent (@dirContent) { if (-f $dirContent) { my $size = (stat($dirContent))[7]; $dirSize += $size; } elsif (-d $dirContent) { $dirSize += getDirSize($dirContent); } } return $dirSize; } The script is executing for more than one hour and I want to make it faster. I was trying with the shell du command, but the output of du (transfered to bytes) is not accurate. And it is also quite time consuming. I am working on HP-UNIX 11i v1.

    Read the article

  • CSS Question - Any way to set (eg. a font-size) to a group of styles, by linking the style to anothe

    - by Joe
    .small_fonts{ font-size:10px; } .fonts_blue{ color:blue; } .fonts_red{ color:red; } .fonts_green{ color:green; } Any way to apply "small_fonts" to each of the "fonts_blue, _red, _green" w/o doing this: .fonts_blue, fonts_red, fonts_green { font-size:10px; } I am just trying to update my css to be more organized. I realised I don't need to define the font-size for each of the "small" fonts. When adding the class btw... I know you can do this: class="small_fonts fonts_blue" ~ however I'm talking about combining within the css stylesheet

    Read the article

  • How to apply dynamically scale down and up into a thumbnail images size?

    - by Qpixo
    I'm working on one current project, I don't have any issues to load a SWF into a main SWF but I can't figure out how to apply dynamically the scale down and up into a thumbnail images size while using the Resize event handler. I load SWF into a Loader object then add it into a container = currentMC. I want to size it and keep all the pieces inside this container. Therefore no matter browser size, I just want to be able to apply scale on it to fit it. Does anyone know how to do that? Any code examples would help me a lot. I'm using Flash.

    Read the article

  • How to work with images(png's) of size 2-4Mb.

    - by Sam
    I am working with images of size 2 to 4MB. I want to edit image of resolution 1200x1600. performing scaling, traslation and rotation operations. I want to another images on that and saving it to photo album. My app is crashing(giving memory warning) after i successfully edit one image and save to album. I have releasing some images when i get memory warning. But still it crashes as i am working with 2 images of size 3MB each and context of size 1200x1600 and getting a image from the context at the same time. Is there any way to compress images and work with it by performing scaling, traslation and rotation operations?

    Read the article

  • Core Data error when assigning variable with one-to-one relationship

    - by Hoang Pham
    I tried to assign a managed object (C) with its property another managed object (B) (a one-to-one relationship) in which this other managed object (B) has a to-many relationship with one other managed object (A). There is an error from this assignment in which I copied as follows: #0 0x020e53a7 in ___forwarding___ #1 0x020c16c2 in __forwarding_prep_0___ #2 0x02078988 in CFRetain #3 0x0207a728 in CFSetAddValue #4 0x020c2fb2 in CFSetCreate #5 0x01e51ce8 in -[_NSFaultingMutableSet copyWithZone:] #6 0x020afcca in -[NSObject copy] #7 0x01e50d22 in -[NSManagedObject(_NSInternalMethods) _newPropertiesForRetainedTypes:andCopiedTypes:preserveFaults:] #8 0x01e51aa0 in -[NSManagedObject(_NSInternalMethods) _newAllPropertiesWithRelationshipFaultsIntact__] #9 0x01e519b4 in -[NSManagedObjectContext(_NSInternalChangeProcessing) _establishEventSnapshotsForObject:] #10 0x01e51866 in _PFFastMOCObjectWillChange #11 0x01e516c5 in _PF_ManagedObject_WillChangeValueForKeyIndex #12 0x01e51525 in _sharedIMPL_setvfk_core #13 0x01e51483 in _PF_Handler_Public_SetProperty #14 0x01e546d1 in -[NSManagedObject(_NSInternalMethods) _didChangeValue:forRelationship:named:withInverse:] #15 0x0030ec1e in NSKVONotify #16 0x002aae2a in -[NSObject(NSKeyValueObserverNotification) didChangeValueForKey:] #17 0x01e5212f in _PF_ManagedObject_DidChangeValueForKeyIndex #18 0x01e515b1 in _sharedIMPL_setvfk_core #19 0x01e55827 in _svfk_5 I don't understand very well what the exact description of this error is. Can someone explain to me what it is and how to solve this one. Note that all other assignments in which the managed object B does not have any A items do not raise this error. ObjectC *objectC = [NSEntityDescription insertNewObjectForEntityForName:@"ObjectC" inManagedObjectContext:managedObjectContext]; objectC.objectB = objectB; Thank you in advance. I added some more NSZombieEnabled/MallocStackLogging generated log: 2010-05-18 17:28:05.327 Foo[2069:207] *** -[CFSet retain]: message sent to deallocated instance 0x800c880 (gdb) shell malloc_history 207 0x800c880 malloc_history cannot examine process 207 because the process does not exist. (gdb) shell malloc_history 2069 0x800c880 ALLOC 0x800c880-0x800c884 [size=5]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _endElementNs | -[Parser parser:didEndElement:namespaceURI:qualifiedName:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asl_set_query | strdup | malloc | malloc_zone_malloc ---- FREE 0x800c880-0x800c884 [size=5]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _endElementNs | -[Parser parser:didEndElement:namespaceURI:qualifiedName:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asl_free | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asl_set_query | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asl_set_query | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | asprintf | malloc | malloc_zone_malloc ---- FREE 0x800c860-0x800c8df [size=128]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlParseCharData | _characters | -[Parser parser:foundCharacters:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | asl_send | _asl_send_level_message | free ALLOC 0x800c700-0x800c893 [size=404]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _startElementNs | -[Parser parser:didStartElement:namespaceURI:qualifiedName:attributes:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | CFCalendarDecomposeAbsoluteTime | _CFCalendarDecomposeAbsoluteTimeV | __CFCalendarSetupCal | __CFCalendarCreateUCalendar | ucal_open | icu::Calendar::createInstance(icu::TimeZone*, icu::Locale const&, UErrorCode&) | malloc | malloc_zone_malloc ---- FREE 0x800c700-0x800c893 [size=404]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _startElementNs | -[Parser parser:didStartElement:namespaceURI:qualifiedName:attributes:] | NSLog | NSLogv | _CFLogvEx | __CFLogCString | _CFRelease | free ALLOC 0x800c880-0x800c8c7 [size=72]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __NSFireDelayedPerform | -[Step2ViewController downloadData] | -[Parser downloadVariantsWithPin:forTerminal:] | -[Parser parseByNSXMLParser:] | -[NSXMLParser parse] | xmlParseChunk | xmlIOParseDTD | _startElementNs | -[Parser parser:didStartElement:namespaceURI:qualifiedName:attributes:] | +[NSEntityDescription insertNewObjectForEntityForName:inManagedObjectContext:] | +[NSManagedObject(_PFDynamicAccessorsAndPropertySupport) allocWithEntity:] | _PFAllocateObject | malloc_zone_calloc ---- FREE 0x800c880-0x800c8c7 [size=72]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __CFRunLoopDoObservers | _performRunLoopAction | -[_PFManagedObjectReferenceQueue _processReferenceQueue:] | _PFDeallocateObject | malloc_zone_free ALLOC 0x800c880-0x800c8a7 [size=40]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __CFRunLoopDoObservers | CA::Transaction::observer_callback(__CFRunLoopObserver*, unsigned long, void*) | CA::Transaction::commit() | CA::Context::commit_transaction(CA::Transaction*) | CALayerDisplayIfNeeded | -[TileLayer display] | -[CALayer _display] | CABackingStoreUpdate | backing_callback(CGContext*, void*) | WebCore::TiledSurface::drawLayer(CALayer*, CGContext*) | WKWindowDrawRect | WKViewDisplayRect | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | -[WebHTMLView drawSingleRect:] | -[WebFrame(WebInternal) _drawRect:contentsOnly:] | WebCore::FrameView::paintContents(WebCore::GraphicsContext*, WebCore::IntRect const&) | WebCore::RenderLayer::paint(WebCore::GraphicsContext*, WebCore::IntRect const&, WebCore::PaintRestriction, WebCore::RenderObject*) | WebCore::RenderLayer::paintLayer(WebCore::RenderLayer*, WebCore::GraphicsContext*, WebCore::IntRect const&, bool, WebCore::PaintRestriction, WebCore::RenderObject*, bool, bool) | WebCore::RenderLayer::paintLayer(WebCore::RenderLayer*, WebCore::GraphicsContext*, WebCore::IntRect const&, bool, WebCore::PaintRestriction, WebCore::RenderObject*, bool, bool) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderFlow::paintLines(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RootInlineBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::InlineFlowBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::InlineTextBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::paintTextWithShadows(WebCore::GraphicsContext*, WebCore::Font const&, WebCore::TextRun const&, int, int, WebCore::IntPoint const&, int, int, int, int, WebCore::ShadowData*, bool) | WebCore::GraphicsContext::drawText(WebCore::Font const&, WebCore::TextRun const&, WebCore::IntPoint const&, int, int) | WebCore::Font::drawSimpleText(WebCore::GraphicsContext*, WebCore::TextRun const&, WebCore::FloatPoint const&, int, int) const | WebCore::Font::drawGlyphBuffer(WebCore::GraphicsContext*, WebCore::GlyphBuffer const&, WebCore::TextRun const&, WebCore::FloatPoint&) const | WebCore::Font::drawGlyphs(WebCore::GraphicsContext*, WebCore::SimpleFontData const*, WebCore::GlyphBuffer const&, int, int, WebCore::FloatPoint const&, bool) const | CGGStateSetFont | maybeCopyTextState | calloc | malloc_zone_calloc ---- FREE 0x800c880-0x800c8a7 [size=40]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | __CFRunLoopDoObservers | CA::Transaction::observer_callback(__CFRunLoopObserver*, unsigned long, void*) | CA::Transaction::commit() | CA::Context::commit_transaction(CA::Transaction*) | CALayerDisplayIfNeeded | -[TileLayer display] | -[CALayer _display] | CABackingStoreUpdate | backing_callback(CGContext*, void*) | WebCore::TiledSurface::drawLayer(CALayer*, CGContext*) | WKWindowDrawRect | WKViewDisplayRect | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | _WKViewDraw(CGContext*, WKView*, CGRect) | -[WebHTMLView drawSingleRect:] | -[WebFrame(WebInternal) _drawRect:contentsOnly:] | WebCore::FrameView::paintContents(WebCore::GraphicsContext*, WebCore::IntRect const&) | WebCore::RenderLayer::paint(WebCore::GraphicsContext*, WebCore::IntRect const&, WebCore::PaintRestriction, WebCore::RenderObject*) | WebCore::RenderLayer::paintLayer(WebCore::RenderLayer*, WebCore::GraphicsContext*, WebCore::IntRect const&, bool, WebCore::PaintRestriction, WebCore::RenderObject*, bool, bool) | WebCore::RenderLayer::paintLayer(WebCore::RenderLayer*, WebCore::GraphicsContext*, WebCore::IntRect const&, bool, WebCore::PaintRestriction, WebCore::RenderObject*, bool, bool) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintChildren(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderBlock::paintObject(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RenderFlow::paintLines(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::RootInlineBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::InlineFlowBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::InlineTextBox::paint(WebCore::RenderObject::PaintInfo&, int, int) | WebCore::paintTextWithShadows(WebCore::GraphicsContext*, WebCore::Font const&, WebCore::TextRun const&, int, int, WebCore::IntPoint const&, int, int, int, int, WebCore::ShadowData*, bool) | WebCore::GraphicsContext::restorePlatformState() | CGContextRestoreGState | CGGStackRestore | CGGStateRelease | textStateRelease | free ALLOC 0x800c880-0x800c8bf [size=64]: thread_a0a8c4e0 |start | main | UIApplicationMain | GSEventRun | GSEventRunModal | CFRunLoopRunInMode | CFRunLoopRunSpecific | CA::timer_callback(__CFRunLoopTimer*, void*) | run_animation_callbacks(double, void*) | -[UIViewAnimationState animationDidStop:finished:] | -[UIViewAnimationState sendDelegateAnimationDidStop:finished:] | -[UINavigationTransitionView _navigationTransitionDidStop] | -[UIView(Hierarchy) removeFromSuperview] | -[UITextField resignFirstResponder] | -[UIFieldEditor resignFirstResponder] | -[UIKeyboardImpl setDelegate:] | -[UIKeyboardImpl setDelegate:force:] | -[UITextInteractionAssistant setGestureRecognizers] | -[UITextInteractionAssistant addTwoFingerRangedSelectRecognizer] | -[UILongPressGestureRecognizer initWithTarget:action:] | -[__NSPlaceholderSet init] | -[__NSPlaceholderSet initWithCapacity:] | __CFSetInit | _CFRuntimeCreateInstance | malloc_zone_malloc

    Read the article

  • How can c let a function declaration with any parameter type ?

    - by kamil çakir
    it lets this function declaration print(int size,int table[size][size]){ int i,j; printf("-------TABLE-------\n"); for(i = 0;i gives error in this situation 44 C:\Users.. previous implicit declaration of 'print' was here (print(size,table); call in main) void print(int size,int table[size][size]){ int i,j; printf("-------TABLE-------\n"); for(i = 0;i

    Read the article

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • swapon --all --verbose : 'read swap header failed: Invalid argument'

    - by user66088
    Recently ran through EnableHibernateWithEncryptedSwap and ran the following command: swapon --all --verbose and received: 'read swap header failed: Invalid argument' How do I fix this? Here's some more pertinent output... Output of sudo fdisk -l: Disk /dev/sda: 80.0 GB, 80026361856 bytes 255 heads, 63 sectors/track, 9729 cylinders, total 156301488 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00006d20 Device Boot Start End Blocks Id System /dev/sda1 * 2048 499711 248832 83 Linux /dev/sda2 501758 156301311 77899777 5 Extended /dev/sda5 501760 156301311 77899776 8e Linux LVM Disk /dev/mapper/ubuntu--t10194-root: 75.5 GB, 75539415040 bytes 255 heads, 63 sectors/track, 9183 cylinders, total 147537920 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/mapper/ubuntu--t10194-root doesn't contain a valid partition table Disk /dev/mapper/ubuntu--t10194-swap_1: 4227 MB, 4227858432 bytes 255 heads, 63 sectors/track, 514 cylinders, total 8257536 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x08040000 Disk /dev/mapper/ubuntu--t10194-swap_1 doesn't contain a valid partition table Disk /dev/mapper/cryptswap1: 4225 MB, 4225761280 bytes 255 heads, 63 sectors/track, 513 cylinders, total 8253440 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xd2236983 Disk /dev/mapper/cryptswap1 doesn't contain a valid partition table Thanks for any and ALL help!

    Read the article

  • How do I reduce the size of mlocate database?

    - by MountainX
    I'm out of space on /var 25G 25G 0 100% /var It looks like mlocate.db is the problem: # find . -printf '%s %p\n' | sort -nr | head 13140140032 ./lib/mlocate/mlocate.db.cgLMAM 12409839616 ./lib/mlocate/mlocate.db.MqGeqe cat /etc/updatedb.conf PRUNE_BIND_MOUNTS="yes" PRUNENAMES=".git .bzr .hg .svn" PRUNEPATHS="/tmp /var/spool /media" PRUNEFS="NFS nfs nfs4 rpc_pipefs afs binfmt_misc proc smbfs autofs iso9660 ncpfs coda devpts ftpfs devfs mfs shfs sysfs cifs lustre_lite tmpfs usbfs udf" I don't see anything else to prune. So how can I fix this? Thanks

    Read the article

  • Opening images sorted by modification date/size/type/etc.

    - by menino bolinho
    Suppose I have a folder with pictures in them. If I sort them by name once I open one with Image Viewer and navigate to the others the order is respected. But if I sort my files by modification date, for example, I can't do that. Basically, the default Image Viewer only lets you navigate images by name. According to this post on the ubuntuforums this has been an issue since 2007! Is there a good/easy way to fix it? Seems like such a trivial thing to me.

    Read the article

  • Why does limiting my virtual memory to 512MB with ulimit -v crash the JVM?

    - by Narinder Kumar
    I am trying to enforce maximum memory a program can consume on a Unix system. I thought ulimit -v should do the trick. Here is a sample Java program I have written for testing : import java.util.*; import java.io.*; public class EatMem { public static void main(String[] args) throws IOException, InterruptedException { System.out.println("Starting up..."); System.out.println("Allocating 128 MB of Memory"); List<byte[]> list = new LinkedList<byte[]>(); list.add(new byte[134217728]); //128 MB System.out.println("Done...."); } } By default, my ulimit settings are (output of ulimit -a) : core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 31398 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) 31398 virtual memory (kbytes, -v) unlimited file locks (-x) unlimited When I execute my java program (java EatMem), it executes without any problems. Now I try to limit max memory available to any program launched in the current shell to 512MB by launching the following command : ulimit -v 524288 ulimit -a output shows the limit to be set correctly (I suppose): core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 31398 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) 31398 virtual memory (kbytes, -v) 524288 file locks (-x) unlimited If I now try to execute my java program, it gives me the following error: Error occurred during initialization of VM Could not reserve enough space for object heap Could not create the Java virtual machine. Ideally it should not happen as my Java program is only taking around 128MB of memory which is well within my specified ulimit parameters. If I change the arguments to my Java program as below: java -Xmx256m EatMem The program again works fine. While trying to give more memory than limited by ulimit like : java -Xmx800m EatMem results in expected error. Why the program fails to execute in the first case after setting ulimit ? I have tried the above test on Ubuntu 11.10 and 12.0.4 with Java 1.6 and Java 7

    Read the article

  • How do I increase maximum attachment size in Exchange 2007 SP1?

    - by AspNyc
    I've been looking all over for a relatively simple answer to a fairly straightforward question: "how do I increase the maximum size of attachments that can be sent and/or received in Exchange 2007?". But I have yet to find a solution that works. We have a pretty straightforward setup: Exchange 2007 SP1 running on a single server, with the OWA role delegated to a second server. We did a clean install of Exchange 2007 a year or two ago: we did not upgrade from a previous version. I forget if we installed RTM and then patched it to SP1, or if we installed with SP1 already baked in. I just thought I'd mention those items, in case they influence the answer. So far, I've tried running the following Powershell commands on the main Exchange server and verified that they've taken effect: Set-TransportConfig -MaxReceiveSize 40MB Set-ReceiveConnector "RcvConnector" -MaxMessageSize 40MB Set-MaxReceiveSize "MailboxName" -MaxReceiveSize 40MB As of right now, though, the specified mailbox is still rejecting messages over 10MB. You get brownie points if you can also tell me how to set the default mailbox attachment size limits, so that new accounts don't have default Set-MaxReceiveSize values of "unlimited" they currently do. Any advice or suggestions would be greatly appreciated. Tx in advance!

    Read the article

  • Package upgrade on Ubuntu raid server and grub setup issue

    - by RecNes
    I have remote Ubuntu 10.10 server running on raid system. I did package upgrade yesterday night for security reasons. During the upgrade, grub installation screen appeared and asked me which partition I wanted to install grub. Options are sda,sdb,md1 and md2. I decide to install them on both sda and sdb partitions. I wondering, was I make true decision? If machine get reboot is it can be boot up safely? You can find fdisk output and fstab mount points below: Fstab: proc /proc proc defaults 0 0 none /dev/pts devpts gid=5,mode=620 0 0 /dev/md0 none swap sw 0 0 /dev/md1 /boot ext3 defaults 0 0 /dev/md2 / ext3 defaults 0 0 Fdisk: Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00029bb5 Device Boot Start End Blocks Id System /dev/sda1 1 262 2102562 fd Linux raid autodetect /dev/sda2 263 295 265072+ fd Linux raid autodetect /dev/sda3 296 91201 730202445 fd Linux raid autodetect Disk /dev/md0: 2152 MB, 2152923136 bytes 2 heads, 4 sectors/track, 525616 cylinders Units = cylinders of 8 * 512 = 4096 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/md0 doesn't contain a valid partition table Disk /dev/md1: 271 MB, 271319040 bytes 2 heads, 4 sectors/track, 66240 cylinders Units = cylinders of 8 * 512 = 4096 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/md1 doesn't contain a valid partition table Disk /dev/md2: 747.7 GB, 747727224832 bytes 2 heads, 4 sectors/track, 182550592 cylinders Units = cylinders of 8 * 512 = 4096 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/md2 doesn't contain a valid partition table Disk /dev/sdb: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00088969 Device Boot Start End Blocks Id System /dev/sdb1 1 262 2102562 fd Linux raid autodetect /dev/sdb2 263 295 265072+ fd Linux raid autodetect /dev/sdb3 296 91201 730202445 fd Linux raid autodetect

    Read the article

  • Can I do an install onto a 4GB usb stick which is smaller than the recommended installation size?

    - by Radek
    I've read through this question: How do I install Ubuntu to a USB key? So I am aware how to install Ubuntu onto a USB stick. I'm also aware that the minimum recommended HDD requirement for ubuntu is 5GB. my question is specifically, can I squeeze the install of Ubuntu 11.10 onto a 4GB usb stick? Can I do so without downloading alternate version of Ubuntu? All I want is firefox wi-fi What I have live USB of Ubuntu 11.10 notebook without hdd internet access 4GB usb stick The reason why I need full install is to install new programs (skype) and do upgrade (of flash player)

    Read the article

  • How to use Hardware RAID in Ubuntu Server

    - by user2071938
    I have an Adaptec RAID-Controller and created an RAID-1(Mirroring) succesfully. Now I have installed Ubuntu Server 12.04.3. When I type fdisk -l I get this output: bf@fileserver:~$ sudo fdisk -l Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Disk /dev/sda doesn't contain a valid partition table Disk /dev/sdb: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Disk /dev/sdb doesn't contain a valid partition table Disk /dev/sdc: 80.0 GB, 80026361856 bytes 255 heads, 63 sectors/track, 9729 cylinders, total 156301488 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0004c454 Device Boot Start End Blocks Id System /dev/sdc1 * 2048 499711 248832 83 Linux /dev/sdc2 501758 156301311 77899777 5 Extended /dev/sdc5 501760 156301311 77899776 8e Linux LVM Disk /dev/mapper/fileserver--vg-root: 75.6 GB, 75606523904 bytes 255 heads, 63 sectors/track, 9191 cylinders, total 147668992 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/mapper/fileserver--vg-root doesn't contain a valid partition table Disk /dev/mapper/ddf1_Data: 1000.1 GB, 1000065728512 bytes 255 heads, 63 sectors/track, 121584 cylinders, total 1953253376 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Disk /dev/mapper/ddf1_Data doesn't contain a valid partition table Disk /dev/mapper/fileserver--vg-swap_1: 4160 MB, 4160749568 bytes 255 heads, 63 sectors/track, 505 cylinders, total 8126464 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/mapper/fileserver--vg-swap_1 doesn't contain a valid partition table The 80 GB HDD is for the System The 1000.2 GB HDD should be for my data. But I'm a bit confused becauser there are listed two 1000.2 GB HDDs, due the Hardware RAID shoudln't there be only one HDD vissible to the OS? (I have two 1000.2 GB HDDs in an Raid-1 Array) dmraid gives me bf@fileserver:~$ sudo dmraid -r /dev/sdb: ddf1, ".ddf1_disks", GROUP, ok, 1953253376 sectors, data@ 0 /dev/sda: ddf1, ".ddf1_disks", GROUP, ok, 1953253376 sectors, data@ 0 so It seems to be ok? But how do I partitionate this disks and which one should I mount(sdb or sda?) Hope you can help me thx Florian

    Read the article

  • How do I consistently re-size my game window and elements?

    - by Milo
    In my 2D game, I have a flow layout. Inside the flow layout are tables. I have a slider that lets the user make the tables larger or smaller. This makes the background larger or smaller too. Everything should scale proportionally which means the background should stay at the same position when I make things larger, and it almost does. When the scrollbar is at 0, it does exactly this. As the scrollbar gets further down problems arise. I'll toggle the slider maybe 3 times and on the fourth time, the background jumps a little lower on the Y axis. In order to be efficient, I only start rendering the background near the parent of the flow layout. Here it is: void LobbyTableManager::renderBG( GraphicsContext* g, agui::Rectangle& absRect, agui::Rectangle& childRect ) { int cx, cy, cw, ch; g->getClippingRect(cx,cy,cw,ch); g->setClippingRect(absRect.getX(),absRect.getY(),absRect.getWidth(),absRect.getHeight()); float scale = 0.35f; int w = m_bgSprite->getWidth() * getTableScale() * scale; int h = m_bgSprite->getHeight() * getTableScale() * scale; int numX = ceil(absRect.getWidth() / (float)w) + 2; int numY = ceil(absRect.getHeight() / (float)h) + 2; float offsetX = m_activeTables[0]->getLocation().getX() - w; float offsetY = m_activeTables[0]->getLocation().getY() - h; int startY = childRect.getY(); if(moo) { std::cout << "S=" << startY << ","; } int numAttempts = 0; while(startY + h < absRect.getY() && numAttempts < 1000) { startY += h; if(moo) { std::cout << startY << ","; } numAttempts++; } if(moo) { std::cout << "\n"; moo = false; } g->holdDrawing(); for(int i = 0; i < numX; ++i) { for(int j = 0; j < numY; ++j) { g->drawScaledSprite(m_bgSprite,0,0,m_bgSprite->getWidth(),m_bgSprite->getHeight(), absRect.getX() + (i * w) + (offsetX),absRect.getY() + (j * h) + startY,w,h,0); } } g->unholdDrawing(); g->setClippingRect(cx,cy,cw,ch); } The numeric problem seems to be in the value of startY. I outputted startY figuring out its value: As you can see here, this is me only zooming in, pay attention to the final number before the next s=. You'll notice that, what should happen is, the numbers should be linear, ex: -40, -38, -36, -34, -32, -30, etc. As you'll notice, the start numbers linearly correlate ex: 62k, 64k, 66k, 68k, 70k etc.. but the end result is wrong every third or 4th time. Here is most of the resize code: void LobbyTableManager::setTableScale( float scale ) { scale += 0.3f; scale *= 2.0f; agui::Gui* gotGui = getGui(); float scrollRel = m_vScroll->getRelativeValue(); setScale(scale); rescaleTables(); resizeFlow(); if(gotGui) { gotGui->toggleWidgetLocationChanged(false); } updateScrollBars(); float newVal = scrollRel * m_vScroll->getMaxValue(); if((int)(newVal + 0.5f) > (int)newVal) { newVal++; } m_vScroll->setValue(newVal); static int x = 0; x++; moo = true; //std::cout << m_vScroll->getValue() << std::endl; if(gotGui) { gotGui->toggleWidgetLocationChanged(true); } if(gotGui) { gotGui->_widgetLocationChanged(); } } void LobbyTableManager::valueChanged( agui::VScrollBar* source,int val ) { if(getGui()) { getGui()->toggleWidgetLocationChanged(false); } m_flow->setLocation(0,-val); if(getGui()) { getGui()->toggleWidgetLocationChanged(true); getGui()->_widgetLocationChanged(); } }

    Read the article

  • How do I list installed software with the installed size?

    - by Lewis Goddard
    I would like to have a list the installed software on my machine, with the disk space consumed by them alongside. I would prefer to be able to order by largest/smallest, but that is not a necessity. I am the sort of person who will install software to try it, and never clean up after myself. As a result, my 7GB (Windows and my Data are on separate partitions, as well as a swap area) Ubuntu 11.04 partition is suffering, and has started regularly showing warning messages. I have cleaned my browser cache, as well as everything under Package Cleaner in Ubuntu Tweak, and am left with 149.81 MB off free space.

    Read the article

  • Graphics Driver problem, ATI Radeon HD 3200, small screen size and slows everything down.

    - by Arvind Jangid
    Regards. I am using a: 2009 Compaq Presario CQ40-415AU Notebook AMD Athlon X2 Dual core Processor 2.1 GHz 1024 MB L2 cache 3GB DDR2 RAM ATI Radeon + HD 3200 Graphics 256 MB, screen is 14 inch widescreen with resolution of 1280*800. I installed Ubuntu 12.04 LTS 32bit on my laptop. It works brilliantly until I installed graphics driver. When I installed the driver, the graphics became slow. Everything slowed down. Even the splash screen resolution changed to something like 640*480. I have liked Ubuntu since 9.10 and for the freedom it provides and its versatility, but graphics problem remains the same. I even installed Ubuntu on a 50 GB partition with 6 GB swap partition. My HDD is 320 GB. Please tell me what is wrong.

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >