Search Results

Search found 12428 results on 498 pages for 'wait types'.

Page 69/498 | < Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • Cast problem with LINQ

    - by yigit
    I'm tring to get my product's types to a list with Linq. var types = (from t in NHibernateSession.Linq<Product>() select t.Type).Distinct().ToList<Type>(); return types; But its giving an Unable to cast object of type error '...Domain.Product' to type '...Domain.Type'. Please tell where am I going wrong.

    Read the article

  • PowerShell Script to Deploy Multiple VM on Azure in Parallel #azure #powershell

    - by Marco Russo (SQLBI)
    This blog is usually dedicated to Business Intelligence and SQL Server, but I didn’t found easily on the web simple PowerShell scripts to help me deploying a number of virtual machines on Azure that I use for testing and development. Since I need to deploy, start, stop and remove many virtual machines created from a common image I created (you know, Tabular is not part of the standard images provided by Microsoft…), I wanted to minimize the time required to execute every operation from my Windows Azure PowerShell console (but I suggest you using Windows PowerShell ISE), so I also wanted to fire the commands as soon as possible in parallel, without losing the result in the console. In order to execute multiple commands in parallel, I used the Start-Job cmdlet, and using Get-Job and Receive-Job I wait for job completion and display the messages generated during background command execution. This technique allows me to reduce execution time when I have to deploy, start, stop or remove virtual machines. Please note that a few operations on Azure acquire an exclusive lock and cannot be really executed in parallel, but only one part of their execution time is subject to this lock. Thus, you obtain a better response time also in these scenarios (this is the case of the provisioning of a new VM). Finally, when you remove the VMs you still have the disk containing the virtual machine to remove. This cannot be done just after the VM removal, because you have to wait that the removal operation is completed on Azure. So I wrote a script that you have to run a few minutes after VMs removal and delete disks (and VHD) no longer related to a VM. I just check that the disk were associated to the original image name used to provision the VMs (so I don’t remove other disks deployed by other batches that I might want to preserve). These examples are specific for my scenario, if you need more complex configurations you have to change and adapt the code. But if your need is to create multiple instances of the same VM running in a workgroup, these scripts should be good enough. I prepared the following PowerShell scripts: ProvisionVMs: Provision many VMs in parallel starting from the same image. It creates one service for each VM. RemoveVMs: Remove all the VMs in parallel – it also remove the service created for the VM StartVMs: Starts all the VMs in parallel StopVMs: Stops all the VMs in parallel RemoveOrphanDisks: Remove all the disks no longer used by any VMs. Run this script a few minutes after RemoveVMs script. ProvisionVMs # Name of subscription $SubscriptionName = "Copy the SubscriptionName property you get from Get-AzureSubscription"   # Name of storage account (where VMs will be deployed) $StorageAccount = "Copy the Label property you get from Get-AzureStorageAccount"   function ProvisionVM( [string]$VmName ) {     Start-Job -ArgumentList $VmName {         param($VmName) $Location = "Copy the Location property you get from Get-AzureStorageAccount" $InstanceSize = "A5" # You can use any other instance, such as Large, A6, and so on $AdminUsername = "UserName" # Write the name of the administrator account in the new VM $Password = "Password"      # Write the password of the administrator account in the new VM $Image = "Copy the ImageName property you get from Get-AzureVMImage" # You can list your own images using the following command: # Get-AzureVMImage | Where-Object {$_.PublisherName -eq "User" }         New-AzureVMConfig -Name $VmName -ImageName $Image -InstanceSize $InstanceSize |             Add-AzureProvisioningConfig -Windows -Password $Password -AdminUsername $AdminUsername|             New-AzureVM -Location $Location -ServiceName "$VmName" -Verbose     } }   # Set the proper storage - you might remove this line if you have only one storage in the subscription Set-AzureSubscription -SubscriptionName $SubscriptionName -CurrentStorageAccount $StorageAccount   # Select the subscription - this line is fundamental if you have access to multiple subscription # You might remove this line if you have only one subscription Select-AzureSubscription -SubscriptionName $SubscriptionName   # Every line in the following list provisions one VM using the name specified in the argument # You can change the number of lines - use a unique name for every VM - don't reuse names # already used in other VMs already deployed ProvisionVM "test10" ProvisionVM "test11" ProvisionVM "test12" ProvisionVM "test13" ProvisionVM "test14" ProvisionVM "test15" ProvisionVM "test16" ProvisionVM "test17" ProvisionVM "test18" ProvisionVM "test19" ProvisionVM "test20"   # Wait for all to complete While (Get-Job -State "Running") {     Get-Job -State "Completed" | Receive-Job     Start-Sleep 1 }   # Display output from all jobs Get-Job | Receive-Job   # Cleanup of jobs Remove-Job *   # Displays batch completed echo "Provisioning VM Completed" RemoveVMs # Name of subscription $SubscriptionName = "Copy the SubscriptionName property you get from Get-AzureSubscription"   function RemoveVM( [string]$VmName ) {     Start-Job -ArgumentList $VmName {         param($VmName)         Remove-AzureService -ServiceName $VmName -Force -Verbose     } }   # Select the subscription - this line is fundamental if you have access to multiple subscription # You might remove this line if you have only one subscription Select-AzureSubscription -SubscriptionName $SubscriptionName   # Every line in the following list remove one VM using the name specified in the argument # You can change the number of lines - use a unique name for every VM - don't reuse names # already used in other VMs already deployed RemoveVM "test10" RemoveVM "test11" RemoveVM "test12" RemoveVM "test13" RemoveVM "test14" RemoveVM "test15" RemoveVM "test16" RemoveVM "test17" RemoveVM "test18" RemoveVM "test19" RemoveVM "test20"   # Wait for all to complete While (Get-Job -State "Running") {     Get-Job -State "Completed" | Receive-Job     Start-Sleep 1 }   # Display output from all jobs Get-Job | Receive-Job   # Cleanup Remove-Job *   # Displays batch completed echo "Remove VM Completed" StartVMs # Name of subscription $SubscriptionName = "Copy the SubscriptionName property you get from Get-AzureSubscription"   function StartVM( [string]$VmName ) {     Start-Job -ArgumentList $VmName {         param($VmName)         Start-AzureVM -Name $VmName -ServiceName $VmName -Verbose     } }   # Select the subscription - this line is fundamental if you have access to multiple subscription # You might remove this line if you have only one subscription Select-AzureSubscription -SubscriptionName $SubscriptionName   # Every line in the following list starts one VM using the name specified in the argument # You can change the number of lines - use a unique name for every VM - don't reuse names # already used in other VMs already deployed StartVM "test10" StartVM "test11" StartVM "test11" StartVM "test12" StartVM "test13" StartVM "test14" StartVM "test15" StartVM "test16" StartVM "test17" StartVM "test18" StartVM "test19" StartVM "test20"   # Wait for all to complete While (Get-Job -State "Running") {     Get-Job -State "Completed" | Receive-Job     Start-Sleep 1 }   # Display output from all jobs Get-Job | Receive-Job   # Cleanup Remove-Job *   # Displays batch completed echo "Start VM Completed"   StopVMs # Name of subscription $SubscriptionName = "Copy the SubscriptionName property you get from Get-AzureSubscription"   function StopVM( [string]$VmName ) {     Start-Job -ArgumentList $VmName {         param($VmName)         Stop-AzureVM -Name $VmName -ServiceName $VmName -Verbose -Force     } }   # Select the subscription - this line is fundamental if you have access to multiple subscription # You might remove this line if you have only one subscription Select-AzureSubscription -SubscriptionName $SubscriptionName   # Every line in the following list stops one VM using the name specified in the argument # You can change the number of lines - use a unique name for every VM - don't reuse names # already used in other VMs already deployed StopVM "test10" StopVM "test11" StopVM "test12" StopVM "test13" StopVM "test14" StopVM "test15" StopVM "test16" StopVM "test17" StopVM "test18" StopVM "test19" StopVM "test20"   # Wait for all to complete While (Get-Job -State "Running") {     Get-Job -State "Completed" | Receive-Job     Start-Sleep 1 }   # Display output from all jobs Get-Job | Receive-Job   # Cleanup Remove-Job *   # Displays batch completed echo "Stop VM Completed" RemoveOrphanDisks $Image = "Copy the ImageName property you get from Get-AzureVMImage" # You can list your own images using the following command: # Get-AzureVMImage | Where-Object {$_.PublisherName -eq "User" }   # Remove all orphan disks coming from the image specified in $ImageName Get-AzureDisk |     Where-Object {$_.attachedto -eq $null -and $_.SourceImageName -eq $ImageName} |     Remove-AzureDisk -DeleteVHD -Verbose  

    Read the article

  • SQL SERVER – Identify Most Resource Intensive Queries – SQL in Sixty Seconds #028 – Video

    - by pinaldave
    During performance tuning conversation the very first question people often ask is what are the queries offending the server or in another word let us identify the queries which are the most resource intensive. The resources are often described as either Memory, CPU or IO. When we talk about the queries the same is applicable for them as well. The query which is doing lots of reads or writes are for sure resource intensive as well query which are taking maximum CPU time. Performance tuning is a very deep subject and we all have our own preference regarding what should be the first step to tuning and what should be looked with the salt of grain. Though there is no denying that a query which uses more resources than what it should be using for sure require tuning. There are many ways to do identify query using intense resources (e.g. Extended events etc) but in this one we will go by simple DMV. There is a small gotcha we all have to remember about usage of DMV is that it only brings back results from existing cache. So if you have a query which is very resource intensive but is not cached or if you have explicitly removed the query from the cache it will be not part of the result returned by this DMV. It is quite possible that a query is aged and removed from the cache if your cache is not huge. If your cache is large you may want to be careful in running this query during business hours as this query itself can be resource intensive. Get Script to identify resource intensive query from Here Related Tips in SQL in Sixty Seconds: SQL SERVER – Find Most Expensive Queries Using DMV Simple Example to Configure Resource Governor – Introduction to Resource Governor SQL SERVER – DMV – sys.dm_exec_query_optimizer_info – Statistics of Optimizer SQL SERVER – Wait Stats – Wait TypesWait Queues – Day 0 of 28 Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video Tagged: Excel

    Read the article

  • Not All “Viruses” Are Viruses: 10 Malware Terms Explained

    - by Chris Hoffman
    Most people seem to call every type of malware a “virus”, but that isn’t technically accurate. You’ve probably heard of many more terms beyond virus: malware, worm, Trojan, rootkit, keylogger, spyware, and more. But what do all these terms mean? These terms aren’t just used by geeks. They make their way into even mainstream news stories about the latest web security problems and tech scares. Understanding them will help you understand the dangers your\ hear about. Malware The word “malware” is short for “malicious software.” Many people use the word “virus” to indicate any type of harmful software, but a virus is actually just a specific type of malware. The word “malware” encompasses all harmful software, including all the ones listed below. Virus Let’s start with viruses. A virus is a type of malware that copies itself by infecting other files,  just as viruses in the real world infect biological cells and use those biological cells to reproduce copies of themselves. A virus can do many different things — watch in the background and steal your passwords, display advertisements, or just crash your computer — but the key thing that makes it a virus is how it spreads. When you run a virus, it will infect programs on your computer. When you run the program on another computer, the virus will infect programs on that computer, and so on. For example, a virus might infect program files on a USB stick. When the programs on that USB stick are run on another computer, the virus runs on the other computer and infects more program files. The virus will continue to spread in this way. Worm A worm is similar to a virus, but it spreads a different way. Rather than infecting files and relying on human activity to move those files around and run them on different systems, a worm spreads over computer networks on its own accord. For example, the Blaster and Sasser worms spread very quickly in the days of Windows XP because Windows XP did not come properly secured and exposed system services to the Internet. The worm accessed these system services over the Internet, exploited a vulnerability, and infected the computer. The worm then used the new infected computer to continue replicating itself. Such worms are less common now that Windows is properly firewalled by default, but worms can also spread in other ways — for example, by mass-emailing themselves to every email address in an effected user’s address book. Like a virus, a worm can do any number of other harmful things once it infects a computer. The key thing that makes it a worm is simply how it spreads copies of itself. Trojan (or Trojan Horse) A Trojan horse, or Trojan, is a type of malware that disguises itself as a legitimate file. When you download and run the program, the Trojan horse will run in the background, allowing third-parties to access your computer. Trojans can do this for any number of reasons — to monitor activity on your computer, to join your computer to a botnet. Trojans may also be used to open the floodgates and download many other types of malware onto your computer. The key thing that makes this type of malware a Trojan is how it arrives. It pretends to be a useful program and, when run, it hides in the background and gives malicious people access to your computer. It isn’t obsessed with copying itself into other files or spreading over the network, as viruses and worms are. For example, a piece of pirated software on an unscrupulous website may actually contain a Trojan. Spyware Spyware is a type of malicious software that spies on you without your knowledge. It collects a variety of different types of data, depending on the piece of spyware. Different types of malware can function as spyware — there may be malicious spyware included in Trojans that spies on your keystrokes to steal financial data, for example. More “legitimate” spyware may be bundled along with free software and simply monitor your web browsing habits, uploading this data to advertising servers so the software’s creator can make money from selling their knowledge of your activities. Adware Adware often comes along with spyware. It’s any type of software that displays advertising on your computer. Programs that display advertisements inside the program itself aren’t generally classified as malware. The kind of “adware” that’s particularly malicious is the kind that abuses its access to your system to display ads when it shouldn’t. For example, a piece of harmful adware may cause pop-up advertisements to appear on your computer when you’re not doing anything else. Or, adware may inject additional advertising into other web pages as you browse the web. Adware is often combined with spyware — a piece of malware may monitor your browsing habits and use them to serve you more targeted ads. Adware is more “socially acceptable” than other types of malware on Windows and you may see adware bundled with legitimate programs. For example, some people consider the Ask Toolbar included with Oracle’s Java software adware. Keylogger A keylogger is a type of malware that runs in the background, recording every key stroke you make. These keystrokes can include usernames, passwords, credit card numbers, and other sensitive data. The keylogger then, most likely, uploads these keystrokes to a malicious server, where it can be analyzed and people can pick out the useful passwords and credit card numbers. Other types of malware can act as keyloggers. A virus, worm, or Trojan may function as a keylogger, for example. Keyloggers may also be installed for monitoring purposes by businesses or even jealous spouses. Botnet, Bot A botnet is a large network of computers that are under the botnet creator’s control. Each computer functions as a “bot” because it’s infected with a specific piece of malware. Once the bot software infects the computer, ir will connect to some sort of control server and wait for instructions from the botnet’s creator. For example, a botnet may be used to initiate a DDoS (distributed denial of service) attack. Every computer in the botnet will be told to bombard a specific website or server with requests at once, and such millions or requests can cause a server to become unresponsive or crash. Botnet creators may sell access to their botnets, allowing other malicious individuals to use large botnets to do their dirty work. Rootkit A rootkit is a type of malware designed to burrow deep into your computer, avoiding detection by security programs and users. For example, a rootkit might load before most of Windows, burying itself deep into the system and modifying system functions so that security programs can’t detect it. A rootkit might hide itself completely, preventing itself from showing up in the Windows task manager. The key thing that makes a type of malware a rootkit is that it’s stealthy and focused on hiding itself once it arrives. Ransomware Ransomware is a fairly new type of malware. It holds your computer or files hostage and demands a ransom payment. Some ransomware may simply pop up a box asking for money before you can continue using your computer. Such prompts are easily defeated with antivirus software. More harmful malware like CryptoLocker literally encrypts your files and demands a payment before you can access them. Such types of malware are dangerous, especially if you don’t have backups. Most malware these days is produced for profit, and ransomware is a good example of that. Ransomware doesn’t want to crash your computer and delete your files just to cause you trouble. It wants to take something hostage and get a quick payment from you. So why is it called “antivirus software,” anyway? Well, most people continue to consider the word “virus” synonymous with malware as a whole. Antivirus software doesn’t just protect against viruses, but against all types of malware. It may be more accurately referred to as “antimalware” or “security” software. Image Credit: Marcelo Alves on Flickr, Tama Leaver on Flickr, Szilard Mihaly on Flickr     

    Read the article

  • Unable to cast transparent proxy to type &lt;type&gt;

    - by Rick Strahl
    This is not the first time I've run into this wonderful error while creating new AppDomains in .NET and then trying to load types and access them across App Domains. In almost all cases the problem I've run into with this error the problem comes from the two AppDomains involved loading different copies of the same type. Unless the types match exactly and come exactly from the same assembly the typecast will fail. The most common scenario is that the types are loaded from different assemblies - as unlikely as that sounds. An Example of Failure To give some context, I'm working on some old code in Html Help Builder that creates a new AppDomain in order to parse assembly information for documentation purposes. I create a new AppDomain in order to load up an assembly process it and then immediately unload it along with the AppDomain. The AppDomain allows for unloading that otherwise wouldn't be possible as well as isolating my code from the assembly that's being loaded. The process to accomplish this is fairly established and I use it for lots of applications that use add-in like functionality - basically anywhere where code needs to be isolated and have the ability to be unloaded. My pattern for this is: Create a new AppDomain Load a Factory Class into the AppDomain Use the Factory Class to load additional types from the remote domain Here's the relevant code from my TypeParserFactory that creates a domain and then loads a specific type - TypeParser - that is accessed cross-AppDomain in the parent domain:public class TypeParserFactory : System.MarshalByRefObject,IDisposable { …/// <summary> /// TypeParser Factory method that loads the TypeParser /// object into a new AppDomain so it can be unloaded. /// Creates AppDomain and creates type. /// </summary> /// <returns></returns> public TypeParser CreateTypeParser() { if (!CreateAppDomain(null)) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! TypeParser parser = null; try { Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; parser = (TypeParser) this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); } catch (Exception ex) { this.ErrorMessage = ex.GetBaseException().Message; return null; } return parser; } private bool CreateAppDomain(string lcAppDomain) { if (lcAppDomain == null) lcAppDomain = "wwReflection" + Guid.NewGuid().ToString().GetHashCode().ToString("x"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; //setup.PrivateBinPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "bin"); this.LocalAppDomain = AppDomain.CreateDomain(lcAppDomain,null,setup); // Need a custom resolver so we can load assembly from non current path AppDomain.CurrentDomain.AssemblyResolve += new ResolveEventHandler(CurrentDomain_AssemblyResolve); return true; } …} Note that the classes must be either [Serializable] (by value) or inherit from MarshalByRefObject in order to be accessible remotely. Here I need to call methods on the remote object so all classes are MarshalByRefObject. The specific problem code is the loading up a new type which points at an assembly that visible both in the current domain and the remote domain and then instantiates a type from it. This is the code in question:Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; parser = (TypeParser) this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); The last line of code is what blows up with the Unable to cast transparent proxy to type <type> error. Without the cast the code actually returns a TransparentProxy instance, but the cast is what blows up. In other words I AM in fact getting a TypeParser instance back but it can't be cast to the TypeParser type that is loaded in the current AppDomain. Finding the Problem To see what's going on I tried using the .NET 4.0 dynamic type on the result and lo and behold it worked with dynamic - the value returned is actually a TypeParser instance: Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; object objparser = this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); // dynamic works dynamic dynParser = objparser; string info = dynParser.GetVersionInfo(); // method call works // casting fails parser = (TypeParser)objparser; So clearly a TypeParser type is coming back, but nevertheless it's not the right one. Hmmm… mysterious.Another couple of tries reveal the problem however:// works dynamic dynParser = objparser; string info = dynParser.GetVersionInfo(); // method call works // c:\wwapps\wwhelp\wwReflection20.dll (Current Execution Folder) string info3 = typeof(TypeParser).Assembly.CodeBase; // c:\program files\vfp9\wwReflection20.dll (my COM client EXE's folder) string info4 = dynParser.GetType().Assembly.CodeBase; // fails parser = (TypeParser)objparser; As you can see the second value is coming from a totally different assembly. Note that this is even though I EXPLICITLY SPECIFIED an assembly path to load the assembly from! Instead .NET decided to load the assembly from the original ApplicationBase folder. Ouch! How I actually tracked this down was a little more tedious: I added a method like this to both the factory and the instance types and then compared notes:public string GetVersionInfo() { return ".NET Version: " + Environment.Version.ToString() + "\r\n" + "wwReflection Assembly: " + typeof(TypeParserFactory).Assembly.CodeBase.Replace("file:///", "").Replace("/", "\\") + "\r\n" + "Assembly Cur Dir: " + Directory.GetCurrentDirectory() + "\r\n" + "ApplicationBase: " + AppDomain.CurrentDomain.SetupInformation.ApplicationBase + "\r\n" + "App Domain: " + AppDomain.CurrentDomain.FriendlyName + "\r\n"; } For the factory I got: .NET Version: 4.0.30319.239wwReflection Assembly: c:\wwapps\wwhelp\bin\wwreflection20.dllAssembly Cur Dir: c:\wwapps\wwhelpApplicationBase: C:\Programs\vfp9\App Domain: wwReflection534cfa1f For the instance type I got: .NET Version: 4.0.30319.239wwReflection Assembly: C:\\Programs\\vfp9\wwreflection20.dllAssembly Cur Dir: c:\\wwapps\\wwhelpApplicationBase: C:\\Programs\\vfp9\App Domain: wwDotNetBridge_56006605 which clearly shows the problem. You can see that both are loading from different appDomains but the each is loading the assembly from a different location. Probably a better solution yet (for ANY kind of assembly loading problem) is to use the .NET Fusion Log Viewer to trace assembly loads.The Fusion viewer will show a load trace for each assembly loaded and where it's looking to find it. Here's what the viewer looks like: The last trace above that I found for the second wwReflection20 load (the one that is wonky) looks like this:*** Assembly Binder Log Entry (1/13/2012 @ 3:06:49 AM) *** The operation was successful. Bind result: hr = 0x0. The operation completed successfully. Assembly manager loaded from: C:\Windows\Microsoft.NET\Framework\V4.0.30319\clr.dll Running under executable c:\programs\vfp9\vfp9.exe --- A detailed error log follows. === Pre-bind state information === LOG: User = Ras\ricks LOG: DisplayName = wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null (Fully-specified) LOG: Appbase = file:///C:/Programs/vfp9/ LOG: Initial PrivatePath = NULL LOG: Dynamic Base = NULL LOG: Cache Base = NULL LOG: AppName = vfp9.exe Calling assembly : (Unknown). === LOG: This bind starts in default load context. LOG: Using application configuration file: C:\Programs\vfp9\vfp9.exe.Config LOG: Using host configuration file: LOG: Using machine configuration file from C:\Windows\Microsoft.NET\Framework\V4.0.30319\config\machine.config. LOG: Policy not being applied to reference at this time (private, custom, partial, or location-based assembly bind). LOG: Attempting download of new URL file:///C:/Programs/vfp9/wwReflection20.DLL. LOG: Assembly download was successful. Attempting setup of file: C:\Programs\vfp9\wwReflection20.dll LOG: Entering run-from-source setup phase. LOG: Assembly Name is: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null LOG: Binding succeeds. Returns assembly from C:\Programs\vfp9\wwReflection20.dll. LOG: Assembly is loaded in default load context. WRN: The same assembly was loaded into multiple contexts of an application domain: WRN: Context: Default | Domain ID: 2 | Assembly Name: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null WRN: Context: LoadFrom | Domain ID: 2 | Assembly Name: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null WRN: This might lead to runtime failures. WRN: It is recommended to inspect your application on whether this is intentional or not. WRN: See whitepaper http://go.microsoft.com/fwlink/?LinkId=109270 for more information and common solutions to this issue. Notice that the fusion log clearly shows that the .NET loader makes no attempt to even load the assembly from the path I explicitly specified. Remember your Assembly Locations As mentioned earlier all failures I've seen like this ultimately resulted from different versions of the same type being available in the two AppDomains. At first sight that seems ridiculous - how could the types be different and why would you have multiple assemblies - but there are actually a number of scenarios where it's quite possible to have multiple copies of the same assembly floating around in multiple places. If you're hosting different environments (like hosting the Razor Engine, or ASP.NET Runtime for example) it's common to create a private BIN folder and it's important to make sure that there's no overlap of assemblies. In my case of Html Help Builder the problem started because I'm using COM interop to access the .NET assembly and the above code. COM Interop has very specific requirements on where assemblies can be found and because I was mucking around with the loader code today, I ended up moving assemblies around to a new location for explicit loading. The explicit load works in the main AppDomain, but failed in the remote domain as I showed. The solution here was simple enough: Delete the extraneous assembly which was left around by accident. Not a common problem, but one that when it bites is pretty nasty to figure out because it seems so unlikely that types wouldn't match. I know I've run into this a few times and writing this down hopefully will make me remember in the future rather than poking around again for an hour trying to debug the issue as I did today. Hopefully it'll save some of you some time as well in the future.© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Moving while doing loop animation in RPGMaker

    - by AzDesign
    I made a custom class to display character portrait in RPGMaker XP Here is the class : class Poser attr_accessor :images def initialize @images = Sprite.new @images.bitmap = RPG::Cache.picture('Character.png') #100x300 @images.x = 540 #place it on the bottom right corner of the screen @images.y = 180 end end Create an event on the map to create an instance as global variable, tada! image popped out. Ok nice. But Im not satisfied, Now I want it to have bobbing-head animation-like (just like when we breathe, sometimes bob our head up and down) so I added another method : def move(x,y) @images.x += x @images.y += y end def animate(x,y,step,delay) forward = true 2.times { step.times { wait(delay) if forward move(x/step,y/step) else move(-x/step,-y/step) end } wait(delay*3) forward = false } end def wait(time) while time > 0 time -= 1 Graphics.update end end I called the method to run the animation and it works, so far so good, but the problem is, WHILE the portrait goes up and down, I cannot move my character until the animation is finished. So that's it, I'm stuck in the loop block, what I want is to watch the portrait moving up and down while I walk around village, talk to npc, etc. Anyone can solve my problem ? Or better solution ? Thanks in advance

    Read the article

  • How to properly multi thread an RPG

    - by Nagrom_17
    I am working on an RPG type game in Java and I would like to know a few things relating to threading, What is the best way to implement a "wait for this then do this" without hanging the whole thread? Like waiting for a player to move to a location then pick up an item? or to wait one second then attack? Currently I am spawning new threads every time I need to wait for something, but that doesn't feel like the best solution. Any help is appreciated. EDIT: Clarification and an example of how I currently do things. User clicks on an item The function walkToAndPickUp(item) is called which is basically this: Make a new thread so we don't freeze the thread handling input while the player moves. Tell player to move to the item While the player is not at the item(The player moves through an update() function called in a different thread, I don't know how else to do it without freezing threads) Repeat until the player is at the item If the player is at the item then call delete item from map and add to inventory.

    Read the article

  • Is using a dedicated thread just for sending gpu commands a good idea?

    - by tigrou
    The most basic game loop is like this : while(1) { update(); draw(); swapbuffers(); } This is very simple but have a problem : some drawing commands can be blocking and cpu will wait while he could do other things (like processing next update() call). Another possible solution i have in mind would be to use two threads : one for updating and preparing commands to be sent to gpu, and one for sending these commands to the gpu : //first thread while(1) { update(); render(); // use gamestate to generate all needed triangles and commands for gpu // put them in a buffer, no command is send to gpu // two buffers will be used, see below pulse(); //signal the other thread data is ready } //second thread while(1) { wait(); // wait for second thread for data to come send_data_togpu(); // send prepared commands from buffer to graphic card swapbuffers(); } also : two buffers would be used, so one buffer could be filled with gpu commands while the other would be processed by gpu. Do you thing such a solution would be effective ? What would be advantages and disadvantages of such a solution (especially against a simpler solution (eg : single threaded with triple buffering enabled) ?

    Read the article

  • How to troubleshoot a PHP script that causes a Segmenation Fault?

    - by johnlai2004
    I posted this on stackoverflow.com as well because I'm not sure if this is a programming problem or a server problem. I'm using ubuntu 9.10, apache2, mysql5 and php5. I've noticed an unusual problem with some of my php programs. Sometimes when visiting a page like profile.edit.php, the browser throws a dialogue box asking to download profile.edit.php page. When I download it, there's nothing in the file. profile.edit.php is supposed to be a web form that edits user information. I've noticed this on some of my other php pages as well. I look in my apache error logs, and I see a segmentation fault message: [Mon Mar 08 15:40:10 2010] [notice] child pid 480 exit signal Segmentation fault (11) And also, the issue may or may not appear depending on which server I deploy my application too. Additonal Details This doesn't happen all the time though. It only happens sometimes. For example, profile.edit.php will load properly. But as soon as I hit the save button (form action="profile.edit.php?save=true"), then the page asks me to download profile.edit.php. Could it be that sometimes my php scripts consume too much resources? Sample code Upon save action, my profile.edit.php includes a data_access_object.php file. I traced the code in data_access_object.php to this line here if($params[$this->primaryKey]) { $q = "UPDATE $this->tableName SET ".implode(', ', $fields)." WHERE ".$this->primaryKey." = ?$this->primaryKey"; $this->bind($this->primaryKey, $params[$this->primaryKey], $this->tblFields[$this->primaryKey]['mysqlitype']); } else { $q = "INSERT $this->tableName SET ".implode(', ', $fields); } // Code executes perfectly up to this point // echo 'print this'; exit; // if i uncomment this line, profile.edit.php will actually show 'print this'. If I leave it commented, the browser will ask me to download profile.edit.php if(!$this->execute($q)){ $this->errorSave = -3; return false;} // When I jumped into the function execute(), every line executed as expected, right up to the return statement. And if it helps, here's the function execute($sql) in data_access_object.php function execute($sql) { // find all list types and explode them // eg. turn ?listId into ?listId0,?listId1,?listId2 $arrListParam = array_bubble_up('arrayName', $this->arrBind); foreach($arrListParam as $listName) if($listName) { $explodeParam = array(); $arrList = $this->arrBind[$listName]['value']; foreach($arrList as $key=>$val) { $newParamName = $listName.$key; $this->bind($newParamName,$val,$this->arrBind[$listName]['type']); $explodeParam[] = '?'.$newParamName; } $sql = str_replace("?$listName", implode(',',$explodeParam), $sql); } // replace all ?varName with ? for syntax compliance $sqlParsed = preg_replace('/\?[\w\d_\.]+/', '?', $sql); $this->stmt->prepare($sqlParsed); // grab all the parameters from the sql to create bind conditions preg_match_all('/\?[\w\d_\.]+/', $sql, $matches); $matches = $matches[0]; // store bind conditions $types = ''; $params = array(); foreach($matches as $paramName) { $types .= $this->arrBind[str_replace('?', '', $paramName)]['type']; $params[] = $this->arrBind[str_replace('?', '', $paramName)]['value']; } $input = array('types'=>$types) + $params; // bind it if(!empty($types)) call_user_func_array(array($this->stmt, 'bind_param'), $input); $stat = $this->stmt->execute(); if($GLOBALS['DEBUG_SQL']) echo '<p style="font-weight:bold;">SQL error after execution:</p> ' . $this->stmt->error.'<p>&nbsp;</p>'; $this->arrBind = array(); return $stat; }

    Read the article

  • Why is my producer-consumer blocking?

    - by User007
    My code is here: http://pastebin.com/Fi3h0E0P Here is the output 0 Should we take order today (y or n): y Enter order number: 100 More customers (y or n): n Stop serving customers right now. Passing orders to cooker: There are total of 1 order(s) 1 Roger, waiter. I am processing order #100 The goal is waiter must take orders and then give them to the cook. The waiter has to wait cook finishes all pizza, deliver the pizza, and then take new orders. I asked how P-V work in my previous post here. I don't think it has anything to do with \n consuming? I tried all kinds of combination of wait(), but none work. Where did I make a mistake? The main part is here: //Producer process if(pid > 0) { while(1) { printf("0"); P(emptyShelf); // waiter as P finds no items on shelf; P(mutex); // has permission to use the shelf waiter_as_producer(); V(mutex); // cooker now can use the shelf V(orderOnShelf); // cooker now can pickup orders wait(); printf("2"); P(pizzaOnShelf); P(mutex); waiter_as_consumer(); V(mutex); V(emptyShelf); printf("3 "); } } if(pid == 0) { while(1) { printf("1"); P(orderOnShelf); // make sure there is an order on shelf P(mutex); //permission to work cooker_as_consumer(); // take order and put pizza on shelf printf("return from cooker"); V(mutex); //release permission printf("just released perm"); V(pizzaOnShelf); // pizza is now on shelf printf("after"); wait(); printf("4"); } } So I imagine this is the execution path: enter waiter_as_producer, then go to child process (cooker), then transfer the control back to parent, finish waiter_as_consumer, switch back to child. The two waits switch back to parent (like I said I tried all possible wait() combination...).

    Read the article

  • Global Cache CR Requested But Current Block Received

    - by Liu Maclean(???)
    ????????«MINSCN?Cache Fusion Read Consistent» ????,???????????? ??????????????????: SQL> select * from V$version; BANNER -------------------------------------------------------------------------------- Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production PL/SQL Release 11.2.0.3.0 - Production CORE 11.2.0.3.0 Production TNS for Linux: Version 11.2.0.3.0 - Production NLSRTL Version 11.2.0.3.0 - Production SQL> select count(*) from gv$instance; COUNT(*) ---------- 2 SQL> select * from global_name; GLOBAL_NAME -------------------------------------------------------------------------------- www.oracledatabase12g.com ?11gR2 2??RAC??????????status???XG,????Xcurrent block???INSTANCE 2?hold?,?????INSTANCE 1?????????,?????: SQL> select * from test; ID ---------- 1 2 SQL> select dbms_rowid.rowid_block_number(rowid),dbms_rowid.rowid_relative_fno(rowid) from test; DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) ------------------------------------ ------------------------------------ 89233 1 89233 1 SQL> alter system flush buffer_cache; System altered. INSTANCE 1 Session A: SQL> update test set id=id+1 where id=1; 1 row updated. INSTANCE 1 Session B: SQL> select state,cr_scn_bas from x$bh where file#=1 and dbablk=89233 and state!=0; STATE CR_SCN_BAS ---------- ---------- 1 0 3 1755287 SQL> oradebug setmypid; Statement processed. SQL> oradebug dump gc_elements 255; Statement processed. SQL> oradebug tracefile_name; /s01/orabase/diag/rdbms/vprod/VPROD1/trace/VPROD1_ora_19111.trc GLOBAL CACHE ELEMENT DUMP (address: 0xa4ff3080): id1: 0x15c91 id2: 0x1 pkey: OBJ#76896 block: (1/89233) lock: X rls: 0x0 acq: 0x0 latch: 3 flags: 0x20 fair: 0 recovery: 0 fpin: 'kdswh11: kdst_fetch' bscn: 0x0.146e20 bctx: (nil) write: 0 scan: 0x0 lcp: (nil) lnk: [NULL] lch: [0xa9f6a6f8,0xa9f6a6f8] seq: 32 hist: 58 145:0 118 66 144:0 192 352 197 48 121 113 424 180 58 LIST OF BUFFERS LINKED TO THIS GLOBAL CACHE ELEMENT: flg: 0x02000001 lflg: 0x1 state: XCURRENT tsn: 0 tsh: 2 addr: 0xa9f6a5c8 obj: 76896 cls: DATA bscn: 0x0.1ac898 BH (0xa9f6a5c8) file#: 1 rdba: 0x00415c91 (1/89233) class: 1 ba: 0xa9e56000 set: 5 pool: 3 bsz: 8192 bsi: 0 sflg: 3 pwc: 0,15 dbwrid: 0 obj: 76896 objn: 76896 tsn: 0 afn: 1 hint: f hash: [0x91f4e970,0xbae9d5b8] lru: [0x91f58848,0xa9f6a828] lru-flags: debug_dump obj-flags: object_ckpt_list ckptq: [0x9df6d1d8,0xa9f6a740] fileq: [0xa2ece670,0xbdf4ed68] objq: [0xb4964e00,0xb4964e00] objaq: [0xb4964de0,0xb4964de0] st: XCURRENT md: NULL fpin: 'kdswh11: kdst_fetch' tch: 2 le: 0xa4ff3080 flags: buffer_dirty redo_since_read LRBA: [0x19.5671.0] LSCN: [0x0.1ac898] HSCN: [0x0.1ac898] HSUB: [1] buffer tsn: 0 rdba: 0x00415c91 (1/89233) scn: 0x0000.001ac898 seq: 0x01 flg: 0x00 tail: 0xc8980601 frmt: 0x02 chkval: 0x0000 type: 0x06=trans data ??????block: (1/89233)?GLOBAL CACHE ELEMENT DUMP?LOCK????X ??XG , ??????Current Block????Instance??modify???,????????????? ????Instance 2 ????: Instance 2 Session C: SQL> update test set id=id+1 where id=2; 1 row updated. Instance 2 Session D: SQL> select state,cr_scn_bas from x$bh where file#=1 and dbablk=89233 and state!=0; STATE CR_SCN_BAS ---------- ---------- 1 0 3 1756658 SQL> oradebug setmypid; Statement processed. SQL> oradebug dump gc_elements 255; Statement processed. SQL> oradebug tracefile_name; /s01/orabase/diag/rdbms/vprod/VPROD2/trace/VPROD2_ora_13038.trc GLOBAL CACHE ELEMENT DUMP (address: 0x89fb25a0): id1: 0x15c91 id2: 0x1 pkey: OBJ#76896 block: (1/89233) lock: XG rls: 0x0 acq: 0x0 latch: 3 flags: 0x20 fair: 0 recovery: 0 fpin: 'kduwh01: kdusru' bscn: 0x0.1acdf3 bctx: (nil) write: 0 scan: 0x0 lcp: (nil) lnk: [NULL] lch: [0x96f4cf80,0x96f4cf80] seq: 61 hist: 324 21 143:0 19 16 352 329 144:6 14 7 352 197 LIST OF BUFFERS LINKED TO THIS GLOBAL CACHE ELEMENT: flg: 0x0a000001 state: XCURRENT tsn: 0 tsh: 1 addr: 0x96f4ce50 obj: 76896 cls: DATA bscn: 0x0.1acdf6 BH (0x96f4ce50) file#: 1 rdba: 0x00415c91 (1/89233) class: 1 ba: 0x96bd4000 set: 5 pool: 3 bsz: 8192 bsi: 0 sflg: 2 pwc: 0,15 dbwrid: 0 obj: 76896 objn: 76896 tsn: 0 afn: 1 hint: f hash: [0x96ee1fe8,0xbae9d5b8] lru: [0x96f4d0b0,0x96f4cdc0] obj-flags: object_ckpt_list ckptq: [0xbdf519b8,0x96f4d5a8] fileq: [0xbdf519d8,0xbdf519d8] objq: [0xb4a47b90,0xb4a47b90] objaq: [0x96f4d0e8,0xb4a47b70] st: XCURRENT md: NULL fpin: 'kduwh01: kdusru' tch: 1 le: 0x89fb25a0 flags: buffer_dirty redo_since_read remote_transfered LRBA: [0x11.9e18.0] LSCN: [0x0.1acdf6] HSCN: [0x0.1acdf6] HSUB: [1] buffer tsn: 0 rdba: 0x00415c91 (1/89233) scn: 0x0000.001acdf6 seq: 0x01 flg: 0x00 tail: 0xcdf60601 frmt: 0x02 chkval: 0x0000 type: 0x06=trans data GCS CLIENT 0x89fb2618,6 resp[(nil),0x15c91.1] pkey 76896.0 grant 2 cvt 0 mdrole 0x42 st 0x100 lst 0x20 GRANTQ rl G0 master 1 owner 2 sid 0 remote[(nil),0] hist 0x94121c601163423c history 0x3c.0x4.0xd.0xb.0x1.0xc.0x7.0x9.0x14.0x1. cflag 0x0 sender 1 flags 0x0 replay# 0 abast (nil).x0.1 dbmap (nil) disk: 0x0000.00000000 write request: 0x0000.00000000 pi scn: 0x0000.00000000 sq[(nil),(nil)] msgseq 0x1 updseq 0x0 reqids[6,0,0] infop (nil) lockseq x2b8 pkey 76896.0 hv 93 [stat 0x0, 1->1, wm 32768, RMno 0, reminc 18, dom 0] kjga st 0x4, step 0.0.0, cinc 20, rmno 6, flags 0x0 lb 0, hb 0, myb 15250, drmb 15250, apifrz 0 ?Instance 2??????block: (1/89233)? GLOBAL CACHE ELEMENT Lock Convert?lock: XG ????GC_ELEMENTS DUMP???XCUR Cache Fusion?,???????X$ VIEW,??? X$LE X$KJBR X$KJBL, ???X$ VIEW???????????????????: INSTANCE 2 Session D: SELECT * FROM x$le WHERE le_addr IN (SELECT le_addr FROM x$bh WHERE obj IN (SELECT data_object_id FROM dba_objects WHERE owner = 'SYS' AND object_name = 'TEST') AND class = 1 AND state != 3); ADDR INDX INST_ID LE_ADDR LE_ID1 LE_ID2 ---------------- ---------- ---------- ---------------- ---------- ---------- LE_RLS LE_ACQ LE_FLAGS LE_MODE LE_WRITE LE_LOCAL LE_RECOVERY ---------- ---------- ---------- ---------- ---------- ---------- ----------- LE_BLKS LE_TIME LE_KJBL ---------- ---------- ---------------- 00007F94CA14CF60 7003 2 0000000089FB25A0 89233 1 0 0 32 2 0 1 0 1 0 0000000089FB2618 PCM Resource NAME?[ID1][ID2],[BL]???, ID1?ID2 ??blockno? fileno????, ??????????GC_elements dump?? id1: 0x15c91 id2: 0×1 pkey: OBJ#76896 block: (1/89233)?? ,?  kjblname ? kjbrname ??”[0x15c91][0x1],[BL]” ??: INSTANCE 2 Session D: SQL> set linesize 80 pagesize 1400 SQL> SELECT * 2 FROM x$kjbl l 3 WHERE l.kjblname LIKE '%[0x15c91][0x1],[BL]%'; ADDR INDX INST_ID KJBLLOCKP KJBLGRANT KJBLREQUE ---------------- ---------- ---------- ---------------- --------- --------- KJBLROLE KJBLRESP KJBLNAME ---------- ---------------- ------------------------------ KJBLNAME2 KJBLQUEUE ------------------------------ ---------- KJBLLOCKST KJBLWRITING ---------------------------------------------------------------- ----------- KJBLREQWRITE KJBLOWNER KJBLMASTER KJBLBLOCKED KJBLBLOCKER KJBLSID KJBLRDOMID ------------ ---------- ---------- ----------- ----------- ---------- ---------- KJBLPKEY ---------- 00007F94CA22A288 451 2 0000000089FB2618 KJUSEREX KJUSERNL 0 00 [0x15c91][0x1],[BL][ext 0x0,0x 89233,1,BL 0 GRANTED 0 0 1 0 0 0 0 0 76896 SQL> SELECT r.* FROM x$kjbr r WHERE r.kjbrname LIKE '%[0x15c91][0x1],[BL]%'; no rows selected Instance 1 session B: SQL> SELECT r.* FROM x$kjbr r WHERE r.kjbrname LIKE '%[0x15c91][0x1],[BL]%'; ADDR INDX INST_ID KJBRRESP KJBRGRANT KJBRNCVL ---------------- ---------- ---------- ---------------- --------- --------- KJBRROLE KJBRNAME KJBRMASTER KJBRGRANTQ ---------- ------------------------------ ---------- ---------------- KJBRCVTQ KJBRWRITER KJBRSID KJBRRDOMID KJBRPKEY ---------------- ---------------- ---------- ---------- ---------- 00007F801ACA68F8 1355 1 00000000B5A62AE0 KJUSEREX KJUSERNL 0 [0x15c91][0x1],[BL][ext 0x0,0x 0 00000000B48BB330 00 00 0 0 76896 ??????Instance 1???block: (1/89233),??????Instance 2 build cr block ????Instance 1, ?????????? ????? Instance 1? Foreground Process ? Instance 2?LMS??????RAC  TRACE: Instance 2: [oracle@vrh2 ~]$ ps -ef|grep ora_lms|grep -v grep oracle 23364 1 0 Apr29 ? 00:33:15 ora_lms0_VPROD2 SQL> oradebug setospid 23364 Oracle pid: 13, Unix process pid: 23364, image: [email protected] (LMS0) SQL> oradebug event 10046 trace name context forever,level 8:10708 trace name context forever,level 103: trace[rac.*] disk high; Statement processed. SQL> oradebug tracefile_name /s01/orabase/diag/rdbms/vprod/VPROD2/trace/VPROD2_lms0_23364.trc Instance 1 session B : SQL> select state,cr_scn_bas from x$bh where file#=1 and dbablk=89233 and state!=0; STATE CR_SCN_BAS ---------- ---------- 3 1756658 3 1756661 3 1755287 Instance 1 session A : SQL> alter session set events '10046 trace name context forever,level 8:10708 trace name context forever,level 103: trace[rac.*] disk high'; Session altered. SQL> select * from test; ID ---------- 2 2 SQL> select state,cr_scn_bas from x$bh where file#=1 and dbablk=89233 and state!=0; STATE CR_SCN_BAS ---------- ---------- 3 1761520 ?x$BH?????,???????Instance 1???build??CR block,????? TRACE ??: Instance 1 foreground Process: PARSING IN CURSOR #140336527348792 len=18 dep=0 uid=0 oct=3 lid=0 tim=1335939136125254 hv=1689401402 ad='b1a4c828' sqlid='c99yw1xkb4f1u' select * from test END OF STMT PARSE #140336527348792:c=2999,e=2860,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=1,plh=1357081020,tim=1335939136125253 EXEC #140336527348792:c=0,e=40,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1357081020,tim=1335939136125373 WAIT #140336527348792: nam='SQL*Net message to client' ela= 6 driver id=1650815232 #bytes=1 p3=0 obj#=0 tim=1335939136125420 *** 2012-05-02 02:12:16.125 kclscrs: req=0 block=1/89233 2012-05-02 02:12:16.125574 : kjbcro[0x15c91.1 76896.0][4] *** 2012-05-02 02:12:16.125 kclscrs: req=0 typ=nowait-abort *** 2012-05-02 02:12:16.125 kclscrs: bid=1:3:1:0:f:1e:0:0:10:0:0:0:1:2:4:1:20:0:0:0:c3:49:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:4:3:2:1:2:0:1c:0:4d:26:a3:52:0:0:0:0:c7:c:ca:62:c3:49:0:0:0:0:1:0:14:8e:47:76:1:2:dc:5:a9:fe:17:75:0:0:0:0:0:0:0:0:0:0:0:0:99:ed:0:0:0:0:0:0:10:0:0:0 2012-05-02 02:12:16.125718 : kjbcro[0x15c91.1 76896.0][4] 2012-05-02 02:12:16.125751 : GSIPC:GMBQ: buff 0xba0ee018, queue 0xbb79a7b8, pool 0x60013fa0, freeq 0, nxt 0xbb79a7b8, prv 0xbb79a7b8 2012-05-02 02:12:16.125780 : kjbsentscn[0x0.1ae0f0][to 2] 2012-05-02 02:12:16.125806 : GSIPC:SENDM: send msg 0xba0ee088 dest x20001 seq 177740 type 36 tkts xff0000 mlen x1680198 2012-05-02 02:12:16.125918 : kjbmscr(0x15c91.1)reqid=0x8(req 0xa4ff30f8)(rinst 1)hldr 2(infosz 200)(lseq x2b8) 2012-05-02 02:12:16.126959 : GSIPC:KSXPCB: msg 0xba0ee088 status 30, type 36, dest 2, rcvr 1 *** 2012-05-02 02:12:16.127 kclwcrs: wait=0 tm=1233 *** 2012-05-02 02:12:16.127 kclwcrs: got 1 blocks from ksxprcv WAIT #140336527348792: nam='gc cr block 2-way' ela= 1233 p1=1 p2=89233 p3=1 obj#=76896 tim=1335939136127199 2012-05-02 02:12:16.127272 : kjbcrcomplete[0x15c91.1 76896.0][0] 2012-05-02 02:12:16.127309 : kjbrcvdscn[0x0.1ae0f0][from 2][idx 2012-05-02 02:12:16.127329 : kjbrcvdscn[no bscn <= rscn 0x0.1ae0f0][from 2] ???? kjbcro[0x15c91.1 76896.0][4] kjbsentscn[0x0.1ae0f0][to 2] ?Instance 2??SCN=1ae0f0=1761520? block: (1/89233),???’gc cr block 2-way’ ??,?????????CR block? Instance 2 LMS TRACE 2012-05-02 02:12:15.634057 : GSIPC:RCVD: ksxp msg 0x7f16e1598588 sndr 1 seq 0.177740 type 36 tkts 0 2012-05-02 02:12:15.634094 : GSIPC:RCVD: watq msg 0x7f16e1598588 sndr 1, seq 177740, type 36, tkts 0 2012-05-02 02:12:15.634108 : GSIPC:TKT: collect msg 0x7f16e1598588 from 1 for rcvr -1, tickets 0 2012-05-02 02:12:15.634162 : kjbrcvdscn[0x0.1ae0f0][from 1][idx 2012-05-02 02:12:15.634186 : kjbrcvdscn[no bscn1, wm 32768, RMno 0, reminc 18, dom 0] kjga st 0x4, step 0.0.0, cinc 20, rmno 6, flags 0x0 lb 0, hb 0, myb 15250, drmb 15250, apifrz 0 GCS CLIENT END 2012-05-02 02:12:15.635211 : kjbdowncvt[0x15c91.1 76896.0][1][options x0] 2012-05-02 02:12:15.635230 : GSIPC:AMBUF: rcv buff 0x7f16e1c56420, pool rcvbuf, rqlen 1103 2012-05-02 02:12:15.635308 : GSIPC:GPBMSG: new bmsg 0x7f16e1c56490 mb 0x7f16e1c56420 msg 0x7f16e1c564b0 mlen 152 dest x101 flushsz -1 2012-05-02 02:12:15.635334 : kjbmslset(0x15c91.1)) seq 0x4 reqid=0x6 (shadow 0xb48bb330.xb)(rsn 2)(mas@1) 2012-05-02 02:12:15.635355 : GSIPC:SPBMSG: send bmsg 0x7f16e1c56490 blen 184 msg 0x7f16e1c564b0 mtype 33 attr|dest x30101 bsz|fsz x1ffff 2012-05-02 02:12:15.635377 : GSIPC:SNDQ: enq msg 0x7f16e1c56490, type 65521 seq 118669, inst 1, receiver 1, queued 1 *** 2012-05-02 02:12:15.635 kclccctx: cleanup copy 0x7f16e1d94798 2012-05-02 02:12:15.635479 : [kjmpmsgi:compl][type 36][msg 0x7f16e1598588][seq 177740.0][qtime 0][ptime 1257] 2012-05-02 02:12:15.635511 : GSIPC:BSEND: flushing sndq 0xb491dd28, id 1, dcx 0xbc516778, inst 1, rcvr 1 qlen 0 1 2012-05-02 02:12:15.635536 : GSIPC:BSEND: no batch1 msg 0x7f16e1c56490 type 65521 len 184 dest (1:1) 2012-05-02 02:12:15.635557 : kjbsentscn[0x0.1ae0f1][to 1] 2012-05-02 02:12:15.635578 : GSIPC:SENDM: send msg 0x7f16e1c56490 dest x10001 seq 118669 type 65521 tkts x10002 mlen xb800e8 WAIT #0: nam='gcs remote message' ela= 180 waittime=1 poll=0 event=0 obj#=0 tim=1335939135635819 2012-05-02 02:12:15.635853 : GSIPC:RCVD: ksxp msg 0x7f16e167e0b0 sndr 1 seq 0.177741 type 32 tkts 0 2012-05-02 02:12:15.635875 : GSIPC:RCVD: watq msg 0x7f16e167e0b0 sndr 1, seq 177741, type 32, tkts 0 2012-05-02 02:12:15.636012 : GSIPC:TKT: collect msg 0x7f16e167e0b0 from 1 for rcvr -1, tickets 0 2012-05-02 02:12:15.636040 : kjbrcvdscn[0x0.1ae0f1][from 1][idx 2012-05-02 02:12:15.636060 : kjbrcvdscn[no bscn <= rscn 0x0.1ae0f1][from 1] 2012-05-02 02:12:15.636082 : GSIPC:TKT: dest (1:1) rtkt not acked 1  unassigned bufs 0  tkts 0  newbufs 0 2012-05-02 02:12:15.636102 : GSIPC:TKT: remove ctx dest (1:1) 2012-05-02 02:12:15.636125 : [kjmxmpm][type 32][seq 0.177741][msg 0x7f16e167e0b0][from 1] 2012-05-02 02:12:15.636146 : kjbmpocr(0xb0.6)seq 0x1,reqid=0x23a,(client 0x9fff7b58,0x1)(from 1)(lseq xdf0) 2????LMS????????? ??gcs remote message GSIPC ????SCN=[0x0.1ae0f0] block=1/89233???,??BAST kjbmpbast(0x15c91.1),?? block=1/89233??????? ??fairness??(?11.2.0.3???_fairness_threshold=2),?current block?KCL: F156: fairness downconvert,?Xcurrent DownConvert? Scurrent: Instance 2: SQL> select state,cr_scn_bas from x$bh where file#=1 and dbablk=89233 and state!=0; STATE CR_SCN_BAS ---------- ---------- 2 0 3 1756658 ??Instance 2 LMS ?cr block??? kjbmslset(0x15c91.1)) ????SEND QUEUE GSIPC:SNDQ: enq msg 0x7f16e1c56490? ???????Instance 1???? block: (1/89233)??? ??????: Instance 2: SQL> select CURRENT_RESULTS,LIGHT_WORKS from v$cr_block_server; CURRENT_RESULTS LIGHT_WORKS --------------- ----------- 29273 437 Instance 1 session A: SQL> SQL> select * from test; ID ---------- 2 2 SQL> select state,cr_scn_bas from x$bh where file#=1 and dbablk=89233 and state!=0; STATE CR_SCN_BAS ---------- ---------- 3 1761942 3 1761932 1 0 3 1761520 Instance 2: SQL> select CURRENT_RESULTS,LIGHT_WORKS from v$cr_block_server; CURRENT_RESULTS LIGHT_WORKS --------------- ----------- 29274 437 select * from test END OF STMT PARSE #140336529675592:c=0,e=337,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1357081020,tim=1335939668940051 EXEC #140336529675592:c=0,e=96,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=1357081020,tim=1335939668940204 WAIT #140336529675592: nam='SQL*Net message to client' ela= 5 driver id=1650815232 #bytes=1 p3=0 obj#=0 tim=1335939668940348 *** 2012-05-02 02:21:08.940 kclscrs: req=0 block=1/89233 2012-05-02 02:21:08.940676 : kjbcro[0x15c91.1 76896.0][5] *** 2012-05-02 02:21:08.940 kclscrs: req=0 typ=nowait-abort *** 2012-05-02 02:21:08.940 kclscrs: bid=1:3:1:0:f:21:0:0:10:0:0:0:1:2:4:1:20:0:0:0:c3:49:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:4:3:2:1:2:0:1f:0:4d:26:a3:52:0:0:0:0:c7:c:ca:62:c3:49:0:0:0:0:1:0:17:8e:47:76:1:2:dc:5:a9:fe:17:75:0:0:0:0:0:0:0:0:0:0:0:0:99:ed:0:0:0:0:0:0:10:0:0:0 2012-05-02 02:21:08.940799 : kjbcro[0x15c91.1 76896.0][5] 2012-05-02 02:21:08.940833 : GSIPC:GMBQ: buff 0xba0ee018, queue 0xbb79a7b8, pool 0x60013fa0, freeq 0, nxt 0xbb79a7b8, prv 0xbb79a7b8 2012-05-02 02:21:08.940859 : kjbsentscn[0x0.1ae28c][to 2] 2012-05-02 02:21:08.940870 : GSIPC:SENDM: send msg 0xba0ee088 dest x20001 seq 177810 type 36 tkts xff0000 mlen x1680198 2012-05-02 02:21:08.940976 : kjbmscr(0x15c91.1)reqid=0xa(req 0xa4ff30f8)(rinst 1)hldr 2(infosz 200)(lseq x2b8) 2012-05-02 02:21:08.941314 : GSIPC:KSXPCB: msg 0xba0ee088 status 30, type 36, dest 2, rcvr 1 *** 2012-05-02 02:21:08.941 kclwcrs: wait=0 tm=707 *** 2012-05-02 02:21:08.941 kclwcrs: got 1 blocks from ksxprcv 2012-05-02 02:21:08.941818 : kjbassume[0x15c91.1][sender 2][mymode x1][myrole x0][srole x0][flgs x0][spiscn 0x0.0][swscn 0x0.0] 2012-05-02 02:21:08.941852 : kjbrcvdscn[0x0.1ae28d][from 2][idx 2012-05-02 02:21:08.941871 : kjbrcvdscn[no bscn ??????????????SCN=[0x0.1ae28c]=1761932 Version?CR block, ????receive????Xcurrent Block??SCN=1ae28d=1761933,Instance 1???Xcurrent Block???build????????SCN=1761932?CR BLOCK, ????????Current block,?????????'gc current block 2-way'? ?????????????request current block,?????kjbcro;?????Instance 2?LMS???????Current Block: Instance 2 LMS trace: 2012-05-02 02:21:08.448743 : GSIPC:RCVD: ksxp msg 0x7f16e14a4398 sndr 1 seq 0.177810 type 36 tkts 0 2012-05-02 02:21:08.448778 : GSIPC:RCVD: watq msg 0x7f16e14a4398 sndr 1, seq 177810, type 36, tkts 0 2012-05-02 02:21:08.448798 : GSIPC:TKT: collect msg 0x7f16e14a4398 from 1 for rcvr -1, tickets 0 2012-05-02 02:21:08.448816 : kjbrcvdscn[0x0.1ae28c][from 1][idx 2012-05-02 02:21:08.448834 : kjbrcvdscn[no bscn <= rscn 0x0.1ae28c][from 1] 2012-05-02 02:21:08.448857 : GSIPC:TKT: dest (1:1) rtkt not acked 2  unassigned bufs 0  tkts 0  newbufs 0 2012-05-02 02:21:08.448875 : GSIPC:TKT: remove ctx dest (1:1) 2012-05-02 02:21:08.448970 : [kjmxmpm][type 36][seq 0.177810][msg 0x7f16e14a4398][from 1] 2012-05-02 02:21:08.448993 : kjbmpbast(0x15c91.1) reqid=0x6 (req 0xa4ff30f8)(reqinst 1)(reqid 10)(flags x0) *** 2012-05-02 02:21:08.449 kclcrrf: req=48054 block=1/89233 *** 2012-05-02 02:21:08.449 kcl_compress_block: compressed: 6 free space: 7680 2012-05-02 02:21:08.449085 : kjbsentscn[0x0.1ae28d][to 1] 2012-05-02 02:21:08.449142 : kjbdeliver[to 1][0xa4ff30f8][10][current 1] 2012-05-02 02:21:08.449164 : kjbmssch(reqlock 0xa4ff30f8,10)(to 1)(bsz 344) 2012-05-02 02:21:08.449183 : GSIPC:AMBUF: rcv buff 0x7f16e18bcec8, pool rcvbuf, rqlen 1102 *** 2012-05-02 02:21:08.449 kclccctx: cleanup copy 0x7f16e1d94838 *** 2012-05-02 02:21:08.449 kcltouched: touch seconds 3271 *** 2012-05-02 02:21:08.449 kclgrantlk: req=48054 2012-05-02 02:21:08.449347 : [kjmpmsgi:compl][type 36][msg 0x7f16e14a4398][seq 177810.0][qtime 0][ptime 1119] WAIT #0: nam='gcs remote message' ela= 568 waittime=1 poll=0 event=0 obj#=0 tim=1335939668449962 2012-05-02 02:21:08.450001 : GSIPC:RCVD: ksxp msg 0x7f16e1bb22a0 sndr 1 seq 0.177811 type 32 tkts 0 2012-05-02 02:21:08.450024 : GSIPC:RCVD: watq msg 0x7f16e1bb22a0 sndr 1, seq 177811, type 32, tkts 0 2012-05-02 02:21:08.450043 : GSIPC:TKT: collect msg 0x7f16e1bb22a0 from 1 for rcvr -1, tickets 0 2012-05-02 02:21:08.450060 : kjbrcvdscn[0x0.1ae28e][from 1][idx 2012-05-02 02:21:08.450078 : kjbrcvdscn[no bscn <= rscn 0x0.1ae28e][from 1] 2012-05-02 02:21:08.450097 : GSIPC:TKT: dest (1:1) rtkt not acked 3  unassigned bufs 0  tkts 0  newbufs 0 2012-05-02 02:21:08.450116 : GSIPC:TKT: remove ctx dest (1:1) 2012-05-02 02:21:08.450136 : [kjmxmpm][type 32][seq 0.177811][msg 0x7f16e1bb22a0][from 1] 2012-05-02 02:21:08.450155 : kjbmpocr(0xb0.6)seq 0x1,reqid=0x23e,(client 0x9fff7b58,0x1)(from 1)(lseq xdf4) ???Instance 2??LMS???,???build cr block,??????Instance 1?????Current Block??????Instance 2??v$cr_block_server??????LIGHT_WORKS?????current block transfer??????,??????? CR server? Light Work Rule(Light Work Rule?8i Cr Server?????????,?Remote LMS?? build CR????????,resource holder?LMS???????block,????CR build If creating the consistent read version block involves too much work (such as reading blocks from disk), then the holder sends the block to the requestor, and the requestor completes the CR fabrication. The holder maintains a fairness counter of CR requests. After the fairness threshold is reached, the holder downgrades it to lock mode.)? ??????? CR Request ????Current Block?? ???:??????class?block,CR server??????? ??undo block?? undo header block?CR quest, LMS????Current Block, ????? ???? ??????? block cleanout? CR  Version??????? ???????? data blocks, ??????? CR quest  & CR received?(???????Light Work Rule,LMS"??"), ??Current Block??DownConvert???S lock,??LMS???????ship??current version?block? ??????? , ?????? ,???????DownConvert?????”_fairness_threshold“???200,????Xcurrent Block?????Scurrent, ????LMS?????Current Version?Data Block: SQL> show parameter fair NAME TYPE VALUE ------------------------------------ ----------- ------------------------------ _fairness_threshold integer 200 Instance 1: SQL> update test set id=id+1 where id=4; 1 row updated. Instance 2: SQL> update test set id=id+1 where id=2; 1 row updated. SQL> select state,cr_scn_bas from x$bh where file#=1 and dbablk=89233 and state!=0; STATE CR_SCN_BAS ---------- ---------- 1 0 3 1838166 ?Instance 1? ????,? ??instance 2? v$cr_block_server?? instance 1 SQL> select * from test; ID ---------- 10 3 instance 2: SQL> select state,cr_scn_bas from x$bh where file#=1 and dbablk=89233 and state!=0; STATE CR_SCN_BAS ---------- ---------- 1 0 3 1883707 8 0 SQL> select * from test; ID ---------- 10 3 SQL> select state,cr_scn_bas from x$bh where file#=1 and dbablk=89233 and state!=0; STATE CR_SCN_BAS ---------- ---------- 1 0 3 1883707 8 0 ................... SQL> / STATE CR_SCN_BAS ---------- ---------- 2 0 3 1883707 3 1883695 repeat cr request on Instance 1 SQL> / STATE CR_SCN_BAS ---------- ---------- 8 0 3 1883707 3 1883695 ??????_fairness_threshold????????,?????200 ????????CR serve??Downgrade?lock, ????data block? CR Request????Receive? Current Block?

    Read the article

  • ZFS for Database Log Files

    - by user12620111
    I've been troubled by drop outs in CPU usage in my application server, characterized by the CPUs suddenly going from close to 90% CPU busy to almost completely CPU idle for a few seconds. Here is an example of a drop out as shown by a snippet of vmstat data taken while the application server is under a heavy workload. # vmstat 1  kthr      memory            page            disk          faults      cpu  r b w   swap  free  re  mf pi po fr de sr s3 s4 s5 s6   in   sy   cs us sy id  1 0 0 130160176 116381952 0 16 0 0 0 0  0  0  0  0  0 207377 117715 203884 70 21 9  12 0 0 130160160 116381936 0 25 0 0 0 0 0  0  0  0  0 200413 117162 197250 70 20 9  11 0 0 130160176 116381920 0 16 0 0 0 0 0  0  1  0  0 203150 119365 200249 72 21 7  8 0 0 130160176 116377808 0 19 0 0 0 0  0  0  0  0  0 169826 96144 165194 56 17 27  0 0 0 130160176 116377800 0 16 0 0 0 0  0  0  0  0  1 10245 9376 9164 2  1 97  0 0 0 130160176 116377792 0 16 0 0 0 0  0  0  0  0  2 15742 12401 14784 4 1 95  0 0 0 130160176 116377776 2 16 0 0 0 0  0  0  1  0  0 19972 17703 19612 6 2 92  14 0 0 130160176 116377696 0 16 0 0 0 0 0  0  0  0  0 202794 116793 199807 71 21 8  9 0 0 130160160 116373584 0 30 0 0 0 0  0  0 18  0  0 203123 117857 198825 69 20 11 This behavior occurred consistently while the application server was processing synthetic transactions: HTTP requests from JMeter running on an external machine. I explored many theories trying to explain the drop outs, including: Unexpected JMeter behavior Network contention Java Garbage Collection Application Server thread pool problems Connection pool problems Database transaction processing Database I/O contention Graphing the CPU %idle led to a breakthrough: Several of the drop outs were 30 seconds apart. With that insight, I went digging through the data again and looking for other outliers that were 30 seconds apart. In the database server statistics, I found spikes in the iostat "asvc_t" (average response time of disk transactions, in milliseconds) for the disk drive that was being used for the database log files. Here is an example:                     extended device statistics     r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 2053.6    0.0 8234.3  0.0  0.2    0.0    0.1   0  24 c3t60080E5...F4F6d0s0     0.0 2162.2    0.0 8652.8  0.0  0.3    0.0    0.1   0  28 c3t60080E5...F4F6d0s0     0.0 1102.5    0.0 10012.8  0.0  4.5    0.0    4.1   0  69 c3t60080E5...F4F6d0s0     0.0   74.0    0.0 7920.6  0.0 10.0    0.0  135.1   0 100 c3t60080E5...F4F6d0s0     0.0  568.7    0.0 6674.0  0.0  6.4    0.0   11.2   0  90 c3t60080E5...F4F6d0s0     0.0 1358.0    0.0 5456.0  0.0  0.6    0.0    0.4   0  55 c3t60080E5...F4F6d0s0     0.0 1314.3    0.0 5285.2  0.0  0.7    0.0    0.5   0  70 c3t60080E5...F4F6d0s0 Here is a little more information about my database configuration: The database and application server were running on two different SPARC servers. Storage for the database was on a storage array connected via 8 gigabit Fibre Channel Data storage and log file were on different physical disk drives Reliable low latency I/O is provided by battery backed NVRAM Highly available: Two Fibre Channel links accessed via MPxIO Two Mirrored cache controllers The log file physical disks were mirrored in the storage device Database log files on a ZFS Filesystem with cutting-edge technologies, such as copy-on-write and end-to-end checksumming Why would I be getting service time spikes in my high-end storage? First, I wanted to verify that the database log disk service time spikes aligned with the application server CPU drop outs, and they did: At first, I guessed that the disk service time spikes might be related to flushing the write through cache on the storage device, but I was unable to validate that theory. After searching the WWW for a while, I decided to try using a separate log device: # zpool add ZFS-db-41 log c3t60080E500017D55C000015C150A9F8A7d0 The ZFS log device is configured in a similar manner as described above: two physical disks mirrored in the storage array. This change to the database storage configuration eliminated the application server CPU drop outs: Here is the zpool configuration: # zpool status ZFS-db-41   pool: ZFS-db-41  state: ONLINE  scan: none requested config:         NAME                                     STATE         ZFS-db-41                                ONLINE           c3t60080E5...F4F6d0  ONLINE         logs           c3t60080E5...F8A7d0  ONLINE Now, the I/O spikes look like this:                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1053.5    0.0 4234.1  0.0  0.8    0.0    0.7   0  75 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1131.8    0.0 4555.3  0.0  0.8    0.0    0.7   0  76 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1167.6    0.0 4682.2  0.0  0.7    0.0    0.6   0  74 c3t60080E5...F8A7d0s0     0.0  162.2    0.0 19153.9  0.0  0.7    0.0    4.2   0  12 c3t60080E5...F4F6d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1247.2    0.0 4992.6  0.0  0.7    0.0    0.6   0  71 c3t60080E5...F8A7d0s0     0.0   41.0    0.0   70.0  0.0  0.1    0.0    1.6   0   2 c3t60080E5...F4F6d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1241.3    0.0 4989.3  0.0  0.8    0.0    0.6   0  75 c3t60080E5...F8A7d0s0                     extended device statistics                  r/s    w/s   kr/s   kw/s wait actv wsvc_t asvc_t  %w  %b device     0.0 1193.2    0.0 4772.9  0.0  0.7    0.0    0.6   0  71 c3t60080E5...F8A7d0s0 We can see the steady flow of 4k writes to the ZIL device from O_SYNC database log file writes. The spikes are from flushing the transaction group. Like almost all problems that I run into, once I thoroughly understand the problem, I find that other people have documented similar experiences. Thanks to all of you who have documented alternative approaches. Saved for another day: now that the problem is obvious, I should try "zfs:zfs_immediate_write_sz" as recommended in the ZFS Evil Tuning Guide. References: The ZFS Intent Log Solaris ZFS, Synchronous Writes and the ZIL Explained ZFS Evil Tuning Guide: Cache Flushes ZFS Evil Tuning Guide: Tuning ZFS for Database Performance

    Read the article

  • code metrics for .net code

    - by user20358
    While the code metrics tool gives a pretty good analysis of the code being analyzed, I was wondering if there was any such benchmark on acceptable standards for the following as well: Maximum number of types per assembly Maximum number of such types that can be accessible Maximum number of parameters per method Acceptable RFC count Acceptable Afferent coupling count Acceptable Efferent coupling count Any other metrics to judge the quality of .Net code by? Thanks for your time.

    Read the article

  • Is it possible to predict future using machine learning and/or AI?

    - by Shekhar
    Recently I have started reading about machine learning. From 3000 feet view, machine learning seems really great thing but as if now I have found that machine learning is limited to only 3 types of algorithms namely classification, clustering and recommendations. I would like to know if my assumption about types of machine learning algorithms is correct or not and What is the extreme thing which we can do using machine learning and/or AI? Is it possible to predict future (same way we predict weather) using AI and/or machine learning?

    Read the article

  • Defining Discovery: Core Concepts

    - by Joe Lamantia
    Discovery tools have had a referencable working definition since at least 2001, when Ben Shneiderman published 'Inventing Discovery Tools: Combining Information Visualization with Data Mining'.  Dr. Shneiderman suggested the combination of the two distinct fields of data mining and information visualization could manifest as new category of tools for discovery, an understanding that remains essentially unaltered over ten years later.  An industry analyst report titled Visual Discovery Tools: Market Segmentation and Product Positioning from March of this year, for example, reads, "Visual discovery tools are designed for visual data exploration, analysis and lightweight data mining." Tools should follow from the activities people undertake (a foundational tenet of activity centered design), however, and Dr. Shneiderman does not in fact describe or define discovery activity or capability. As I read it, discovery is assumed to be the implied sum of the separate fields of visualization and data mining as they were then understood.  As a working definition that catalyzes a field of product prototyping, it's adequate in the short term.  In the long term, it makes the boundaries of discovery both derived and temporary, and leaves a substantial gap in the landscape of core concepts around discovery, making consensus on the nature of most aspects of discovery difficult or impossible to reach.  I think this definitional gap is a major reason that discovery is still an ambiguous product landscape. To help close that gap, I'm suggesting a few definitions of four core aspects of discovery.  These come out of our sustained research into discovery needs and practices, and have the goal of clarifying the relationship between discvoery and other analytical categories.  They are suggested, but should be internally coherent and consistent.   Discovery activity is: "Purposeful sense making activity that intends to arrive at new insights and understanding through exploration and analysis (and for these we have specific defintions as well) of all types and sources of data." Discovery capability is: "The ability of people and organizations to purposefully realize valuable insights that address the full spectrum of business questions and problems by engaging effectively with all types and sources of data." Discovery tools: "Enhance individual and organizational ability to realize novel insights by augmenting and accelerating human sense making to allow engagement with all types of data at all useful scales." Discovery environments: "Enable organizations to undertake effective discovery efforts for all business purposes and perspectives, in an empirical and cooperative fashion." Note: applicability to a world of Big data is assumed - thus the refs to all scales / types / sources - rather than stated explicitly.  I like that Big Data doesn't have to be written into this core set of definitions, b/c I think it's a transitional label - the new version of Web 2.0 - and goes away over time. References and Resources: Inventing Discovery Tools Visual Discovery Tools: Market Segmentation and Product Positioning Logic versus usage: the case for activity-centered design A Taxonomy of Enterprise Search and Discovery

    Read the article

  • Architecture strategies for a complex competition scoring system

    - by mikewassmer
    Competition description: There are about 10 teams competing against each other over a 6-week period. Each team's total score (out of a 1000 total available points) is based on the total of its scores in about 25,000 different scoring elements. Most scoring elements are worth a small fraction of a point and there will about 10 X 25,000 = 250,000 total raw input data points. The points for some scoring elements are awarded at frequent regular time intervals during the competition. The points for other scoring elements are awarded at either irregular time intervals or at just one moment in time. There are about 20 different types of scoring elements. Each of the 20 types of scoring elements has a different set of inputs, a different algorithm for calculating the earned score from the raw inputs, and a different number of total available points. The simplest algorithms require one input and one simple calculation. The most complex algorithms consist of hundreds or thousands of raw inputs and a more complicated calculation. Some types of raw inputs are automatically generated. Other types of raw inputs are manually entered. All raw inputs are subject to possible manual retroactive adjustments by competition officials. Primary requirements: The scoring system UI for competitors and other competition followers will show current and historical total team scores, team standings, team scores by scoring element, raw input data (at several levels of aggregation, e.g. daily, weekly, etc.), and other metrics. There will be charts, tables, and other widgets for displaying historical raw data inputs and scores. There will be a quasi-real-time dashboard that will show current scores and raw data inputs. Aggregate scores should be updated/refreshed whenever new raw data inputs arrive or existing raw data inputs are adjusted. There will be a "scorekeeper UI" for manually entering new inputs, manually adjusting existing inputs, and manually adjusting calculated scores. Decisions: Should the scoring calculations be performed on the database layer (T-SQL/SQL Server, in my case) or on the application layer (C#/ASP.NET MVC, in my case)? What are some recommended approaches for calculating updated total team scores whenever new raw inputs arrives? Calculating each of the teams' total scores from scratch every time a new input arrives will probably slow the system to a crawl. I've considered some kind of "diff" approach, but that approach may pose problems for ad-hoc queries and some aggegates. I'm trying draw some sports analogies, but it's tough because most games consist of no more than 20 or 30 scoring elements per game (I'm thinking of a high-scoring baseball game; football and soccer have fewer scoring events per game). Perhaps a financial balance sheet analogy makes more sense because financial "bottom line" calcs may be calculated from 250,000 or more transactions. Should I be making heavy use of caching for this application? Are there any obvious approaches or similar case studies that I may be overlooking?

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 1

    - by Simon Cooper
    Before we look at the bytes comprising the CLR-specific data inside an assembly, we first need to understand the logical format of the metadata (For this post I only be looking at simple pure-IL assemblies; mixed-mode assemblies & other things complicates things quite a bit). Metadata streams Most of the CLR-specific data inside an assembly is inside one of 5 streams, which are analogous to the sections in a PE file. The name of each section in a PE file starts with a ., and the name of each stream in the CLR metadata starts with a #. All but one of the streams are heaps, which store unstructured binary data. The predefined streams are: #~ Also called the metadata stream, this stream stores all the information on the types, methods, fields, properties and events in the assembly. Unlike the other streams, the metadata stream has predefined contents & structure. #Strings This heap is where all the namespace, type & member names are stored. It is referenced extensively from the #~ stream, as we'll be looking at later. #US Also known as the user string heap, this stream stores all the strings used in code directly. All the strings you embed in your source code end up in here. This stream is only referenced from method bodies. #GUID This heap exclusively stores GUIDs used throughout the assembly. #Blob This heap is for storing pure binary data - method signatures, generic instantiations, that sort of thing. Items inside the heaps (#Strings, #US, #GUID and #Blob) are indexed using a simple binary offset from the start of the heap. At that offset is a coded integer giving the length of that item, then the item's bytes immediately follow. The #GUID stream is slightly different, in that GUIDs are all 16 bytes long, so a length isn't required. Metadata tables The #~ stream contains all the assembly metadata. The metadata is organised into 45 tables, which are binary arrays of predefined structures containing information on various aspects of the metadata. Each entry in a table is called a row, and the rows are simply concatentated together in the file on disk. For example, each row in the TypeRef table contains: A reference to where the type is defined (most of the time, a row in the AssemblyRef table). An offset into the #Strings heap with the name of the type An offset into the #Strings heap with the namespace of the type. in that order. The important tables are (with their table number in hex): 0x2: TypeDef 0x4: FieldDef 0x6: MethodDef 0x14: EventDef 0x17: PropertyDef Contains basic information on all the types, fields, methods, events and properties defined in the assembly. 0x1: TypeRef The details of all the referenced types defined in other assemblies. 0xa: MemberRef The details of all the referenced members of types defined in other assemblies. 0x9: InterfaceImpl Links the types defined in the assembly with the interfaces that type implements. 0xc: CustomAttribute Contains information on all the attributes applied to elements in this assembly, from method parameters to the assembly itself. 0x18: MethodSemantics Links properties and events with the methods that comprise the get/set or add/remove methods of the property or method. 0x1b: TypeSpec 0x2b: MethodSpec These tables provide instantiations of generic types and methods for each usage within the assembly. There are several ways to reference a single row within a table. The simplest is to simply specify the 1-based row index (RID). The indexes are 1-based so a value of 0 can represent 'null'. In this case, which table the row index refers to is inferred from the context. If the table can't be determined from the context, then a particular row is specified using a token. This is a 4-byte value with the most significant byte specifying the table, and the other 3 specifying the 1-based RID within that table. This is generally how a metadata table row is referenced from the instruction stream in method bodies. The third way is to use a coded token, which we will look at in the next post. So, back to the bytes Now we've got a rough idea of how the metadata is logically arranged, we can now look at the bytes comprising the start of the CLR data within an assembly: The first 8 bytes of the .text section are used by the CLR loader stub. After that, the CLR-specific data starts with the CLI header. I've highlighted the important bytes in the diagram. In order, they are: The size of the header. As the header is a fixed size, this is always 0x48. The CLR major version. This is always 2, even for .NET 4 assemblies. The CLR minor version. This is always 5, even for .NET 4 assemblies, and seems to be ignored by the runtime. The RVA and size of the metadata header. In the diagram, the RVA 0x20e4 corresponds to the file offset 0x2e4 Various flags specifying if this assembly is pure-IL, whether it is strong name signed, and whether it should be run as 32-bit (this is how the CLR differentiates between x86 and AnyCPU assemblies). A token pointing to the entrypoint of the assembly. In this case, 06 (the last byte) refers to the MethodDef table, and 01 00 00 refers to to the first row in that table. (after a gap) RVA of the strong name signature hash, which comes straight after the CLI header. The RVA 0x2050 corresponds to file offset 0x250. The rest of the CLI header is mainly used in mixed-mode assemblies, and so is zeroed in this pure-IL assembly. After the CLI header comes the strong name hash, which is a SHA-1 hash of the assembly using the strong name key. After that comes the bodies of all the methods in the assembly concatentated together. Each method body starts off with a header, which I'll be looking at later. As you can see, this is a very small assembly with only 2 methods (an instance constructor and a Main method). After that, near the end of the .text section, comes the metadata, containing a metadata header and the 5 streams discussed above. We'll be looking at this in the next post. Conclusion The CLI header data doesn't have much to it, but we've covered some concepts that will be important in later posts - the logical structure of the CLR metadata and the overall layout of CLR data within the .text section. Next, I'll have a look at the contents of the #~ stream, and how the table data is arranged on disk.

    Read the article

  • SQL SERVER What is Spatial Database? Developing with SQL Server Spatial and Deep Dive into Spatial

    What is Spatial Database?A spatial database is a database that is optimized to store and query data related to objects in space, including points, lines and polygons. While typical databases can understand various numeric and character types of data, additional functionality needs to be added for databases to process spatial data types. (Source: Wikipedia)Today [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • NHibernate 3.0 and FluentNHibernate, how to get up and running&hellip;.

    - by DesigningCode
    First up. Its actually really easy. I’m not very religious about my DB tech, I don’t really care, I just want something that works.  So I’m happy to consider all options if they provide an advantage, and recently I was considering jumping from NHibernate to EF 4.0.  However before ditching NHibernate and jumping to EF 4.0 I thought I should try the head version of NHibernates trunk and the Head version of FluentNHibernate. I currently have a “Repository / Unit of Work” Framework built up around these two techs.  All up it makes my life pretty simple for dealing with databases.   The problem is the current release of NHibernate + the Linq provider wasn’t too hot for our purposes.  Especially trying to plug it into older VB.NET code.   The Linq provider spat the dummy with VB.NET lambdas.  Mainly because in C# Query().Where(l => l.Name.Contains("x") || l.Name.Contains("y")).ToList(); is not the same as the VB.NET Query().Where(Function(l) l.Name.Contains("x") Or l.Name.Contains("y")).ToList VB.NET seems to spit out … well…. something different :-) so anyways… Compiling your own version of NHibernate and FluentNHibernate.  It’s actually pretty easy! First you’ll need to install tortisesvn NAnt and Git if you don’t already have them.  NHibernate first step, get the subversion trunk https://nhibernate.svn.sourceforge.net/svnroot/nhibernate/trunk/ into a directory somewhere.  eg \thirdparty\nhibernate Then use NAnt to build it.   (if you open the .sln it will show errors in that  AssemblyInfo.cs doesn’t exist ) to build it, there is a .txt document with sample command line build instructions,  I simply used :- NAnt -D:project.config=release clean build >output-release-build.log *wait* *wait* *wait* and ta da, you will have a bin directory with all the release dlls. FluentNHibernate This was pretty simple. there’s instructions here :- http://wiki.fluentnhibernate.org/Getting_started#Installation basically, with git, create a directory, and you issue the command git clone git://github.com/jagregory/fluent-nhibernate.git and wait, and soon enough you have the source. Now, from the bin directory that NHibernate spit out, take everything and dump it into the subdirectory “fluent-nhibernate\tools\NHibernate” Now, to build, you can use rake….which a ruby build system, however you can also just open the solution and build.   Which is what I did.  I had a few problems with the references which I simply re-added using the new ones.  Once built, I just took all the NHibnerate dlls, and the fluent ones and replaced my existing NHibernate / Fluent and killed off the old linq project. All I had to change is the places that used  .Linq<T>  and replace them with .Query<T>  (which was easy as I had wrapped it already to isolate my code from such changes) and hey presto, everything worked.  Even the VB.NET linq calls. I need to do some more testing as I’ve only done basic smoke tests, but its all looking pretty good, so for now, I will stick to NHibernate!

    Read the article

  • Recent improvements in Console Performance

    - by loren.konkus
    Recently, the WebLogic Server development and support organizations have worked with a number of customers to quantify and improve the performance of the Administration Console in large, distributed configurations where there is significant latency in the communications between the administration server and managed servers. These improvements fall into two categories: Constraining the amount of time that the Console stalls waiting for communication Reducing and streamlining the amount of data required for an update A few releases ago, we added support for a configurable domain-wide mbean "Invocation Timeout" value on the Console's configuration: general, advanced section for a domain. The default value for this setting is 0, which means wait indefinitely and was chosen for compatibility with the behavior of previous releases. This configuration setting applies to all mbean communications between the admin server and managed servers, and is the first line of defense against being blocked by a stalled or completely overloaded managed server. Each site should choose an appropriate timeout value for their environment and network latency. In the next release of WebLogic Server, we've added an additional console preference, "Management Operation Timeout", to the Console's shared preference page. This setting further constrains how long certain console pages will wait for slowly responding servers before returning partial results. While not all Console pages support this yet, key pages such as the Servers Configuration and Control table pages and the Deployments Control pages have been updated to support this. For example, if a user requests a Servers Table page and a Management Operation Timeout occurs, the table is displayed with both local configuration and remote runtime information from the responding managed servers and only local configuration information for servers that did not yet respond. This means that a troublesome managed server does not impede your ability to manage your domain using the Console. To support these changes, these Console pages have been re-written to use the Work Management feature of WebLogic Server to interact with each server or deployment concurrently, which further improves the responsiveness of these pages. The basic algorithm for these pages is: For each configuration mbean (ie, Servers) populate rows with configuration attributes from the fast, local mbean server Find a WorkManager For each server, Create a Work instance to obtain runtime mbean attributes for the server Schedule Work instance in the WorkManager Call WorkManager.waitForAll to wait WorkItems to finish, constrained by Management Operation Timeout For each WorkItem, if the runtime information obtained was not complete, add a message indicating which server has incomplete data Display collected data in table In addition to these changes to constrain how long the console waits for communication, a number of other changes have been made to reduce the amount and scope of managed server interactions for key pages. For example, in previous releases the Deployments Control table looked at the status of a deployment on every managed server, even those servers that the deployment was not currently targeted on. (This was done to handle an edge case where a deployment's target configuration was changed while it remained running on previously targeted servers.) We decided supporting that edge case did not warrant the performance impact for all, and instead only look at the status of a deployment on the servers it is targeted to. Comprehensive status continues to be available if a user clicks on the 'status' field for a deployment. Finally, changes have been made to the System Status portlet to reduce its impact on Console page display times. Obtaining health information for this display requires several mbean interactions with managed servers. In previous releases, this mbean interaction occurred with every display, and any delay or impediment in these interactions was reflected in the display time for every page. To reduce this impact, we've made several changes in this portlet: Using Work Management to obtain health concurrently Applying the operation timeout configuration to constrain how long we will wait Caching health information to reduce the cost during rapid navigation from page to page and only obtaining new health information if the previous information is over 30 seconds old. Eliminating heath collection if this portlet is minimized. Together, these Console changes have resulted in significant performance improvements for the customers with large configurations and high latency that we have worked with during their development, and some lesser performance improvements for those with small configurations and very fast networks. These changes will be included in the 11g Rel 1 patch set 2 (10.3.3.0) release of WebLogic Server.

    Read the article

  • YAHOO and BING support for Index, Image and Mobile sitemaps

    - by kishore
    I know Google webmaster supports submitting Image, mobile, video and other types of sitemaps. YAHOO also mentions about mobile site map here. But does it support Image and video sitemaps. I could not find if BING supports any of these types other than XML sitemaps. Can someone please point me to any documentation on submitting Index, Image and Mobile sitemaps. Also does YAHOO and Bing support index sitemap files?

    Read the article

  • Easy Profiling Point Insertion

    - by Geertjan
    One really excellent feature of NetBeans IDE is its Profiler. What's especially cool is that you can analyze code fragments, that is, you can right-click in a Java file and then choose Profiling | Insert Profiling Point. When you do that, you're able to analyze code fragments, i.e., from one statement to another statement, e.g., how long a particular piece of code takes to execute: https://netbeans.org/kb/docs/java/profiler-profilingpoints.html However, right-clicking a Java file and then going all the way down a longish list of menu items, to find "Profiling", and then "Insert Profiling Point" is a lot less easy than right-clicking in the sidebar (known as the glyphgutter) and then setting a profiling point in exactly the same way as a breakpoint: That's much easier and more intuitive and makes it far more likely that I'll use the Profiler at all. Once profiling points have been set then, as always, another menu item is added for managing the profiling point: To achieve this, I added the following to the "layer.xml" file: <folder name="Editors"> <folder name="AnnotationTypes"> <file name="profiler.xml" url="profiler.xml"/> <folder name="ProfilerActions"> <file name="org-netbeans-modules-profiler-ppoints-ui-InsertProfilingPointAction.shadow"> <attr name="originalFile" stringvalue="Actions/Profile/org-netbeans-modules-profiler-ppoints-ui-InsertProfilingPointAction.instance"/> <attr name="position" intvalue="300"/> </file> </folder> </folder> </folder> Notice that a "profiler.xml" file is referred to in the above, in the same location as where the "layer.xml" file is found. Here is the content: <!DOCTYPE type PUBLIC '-//NetBeans//DTD annotation type 1.1//EN' 'http://www.netbeans.org/dtds/annotation-type-1_1.dtd'> <type name='editor-profiler' description_key='HINT_PROFILER' localizing_bundle='org.netbeans.eppi.Bundle' visible='true' type='line' actions='ProfilerActions' severity='ok' browseable='false'/> Only disadvantage is that this registers the profiling point insertion in the glyphgutter for all file types. But that's true for the debugger too, i.e., there's no MIME type specific glyphgutter, instead, it is shared by all MIME types. Little bit confusing that the profiler point insertion can now, in theory, be set for all MIME types, but that's also true for the debugger, even though it doesn't apply to all MIME types. That probably explains why the profiling point insertion can only be done, officially, from the right-click popup menu of Java files, i.e., the developers wanted to avoid confusion and make it available to Java files only. However, I think that, since I'm already aware that I can't set the Java debugger in an HTML file, I'm also aware that the Java profiler can't be set that way as well. If you find this useful too, you can download and install the NBM from here: http://plugins.netbeans.org/plugin/55002

    Read the article

  • I see no LOBs!

    - by Paul White
    Is it possible to see LOB (large object) logical reads from STATISTICS IO output on a table with no LOB columns? I was asked this question today by someone who had spent a good fraction of their afternoon trying to work out why this was occurring – even going so far as to re-run DBCC CHECKDB to see if any corruption had taken place.  The table in question wasn’t particularly pretty – it had grown somewhat organically over time, with new columns being added every so often as the need arose.  Nevertheless, it remained a simple structure with no LOB columns – no TEXT or IMAGE, no XML, no MAX types – nothing aside from ordinary INT, MONEY, VARCHAR, and DATETIME types.  To add to the air of mystery, not every query that ran against the table would report LOB logical reads – just sometimes – but when it did, the query often took much longer to execute. Ok, enough of the pre-amble.  I can’t reproduce the exact structure here, but the following script creates a table that will serve to demonstrate the effect: IF OBJECT_ID(N'dbo.Test', N'U') IS NOT NULL DROP TABLE dbo.Test GO CREATE TABLE dbo.Test ( row_id NUMERIC IDENTITY NOT NULL,   col01 NVARCHAR(450) NOT NULL, col02 NVARCHAR(450) NOT NULL, col03 NVARCHAR(450) NOT NULL, col04 NVARCHAR(450) NOT NULL, col05 NVARCHAR(450) NOT NULL, col06 NVARCHAR(450) NOT NULL, col07 NVARCHAR(450) NOT NULL, col08 NVARCHAR(450) NOT NULL, col09 NVARCHAR(450) NOT NULL, col10 NVARCHAR(450) NOT NULL, CONSTRAINT [PK dbo.Test row_id] PRIMARY KEY CLUSTERED (row_id) ) ; The next script loads the ten variable-length character columns with one-character strings in the first row, two-character strings in the second row, and so on down to the 450th row: WITH Numbers AS ( -- Generates numbers 1 - 450 inclusive SELECT TOP (450) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) INSERT dbo.Test WITH (TABLOCKX) SELECT REPLICATE(N'A', N.n), REPLICATE(N'B', N.n), REPLICATE(N'C', N.n), REPLICATE(N'D', N.n), REPLICATE(N'E', N.n), REPLICATE(N'F', N.n), REPLICATE(N'G', N.n), REPLICATE(N'H', N.n), REPLICATE(N'I', N.n), REPLICATE(N'J', N.n) FROM Numbers AS N ORDER BY N.n ASC ; Once those two scripts have run, the table contains 450 rows and 10 columns of data like this: Most of the time, when we query data from this table, we don’t see any LOB logical reads, for example: -- Find the maximum length of the data in -- column 5 for a range of rows SELECT result = MAX(DATALENGTH(T.col05)) FROM dbo.Test AS T WHERE row_id BETWEEN 50 AND 100 ; But with a different query… -- Read all the data in column 1 SELECT result = MAX(DATALENGTH(T.col01)) FROM dbo.Test AS T ; …suddenly we have 49 LOB logical reads, as well as the ‘normal’ logical reads we would expect. The Explanation If we had tried to create this table in SQL Server 2000, we would have received a warning message to say that future INSERT or UPDATE operations on the table might fail if the resulting row exceeded the in-row storage limit of 8060 bytes.  If we needed to store more data than would fit in an 8060 byte row (including internal overhead) we had to use a LOB column – TEXT, NTEXT, or IMAGE.  These special data types store the large data values in a separate structure, with just a small pointer left in the original row. Row Overflow SQL Server 2005 introduced a feature called row overflow, which allows one or more variable-length columns in a row to move to off-row storage if the data in a particular row would otherwise exceed 8060 bytes.  You no longer receive a warning when creating (or altering) a table that might need more than 8060 bytes of in-row storage; if SQL Server finds that it can no longer fit a variable-length column in a particular row, it will silently move one or more of these columns off the row into a separate allocation unit. Only variable-length columns can be moved in this way (for example the (N)VARCHAR, VARBINARY, and SQL_VARIANT types).  Fixed-length columns (like INTEGER and DATETIME for example) never move into ‘row overflow’ storage.  The decision to move a column off-row is done on a row-by-row basis – so data in a particular column might be stored in-row for some table records, and off-row for others. In general, if SQL Server finds that it needs to move a column into row-overflow storage, it moves the largest variable-length column record for that row.  Note that in the case of an UPDATE statement that results in the 8060 byte limit being exceeded, it might not be the column that grew that is moved! Sneaky LOBs Anyway, that’s all very interesting but I don’t want to get too carried away with the intricacies of row-overflow storage internals.  The point is that it is now possible to define a table with non-LOB columns that will silently exceed the old row-size limit and result in ordinary variable-length columns being moved to off-row storage.  Adding new columns to a table, expanding an existing column definition, or simply storing more data in a column than you used to – all these things can result in one or more variable-length columns being moved off the row. Note that row-overflow storage is logically quite different from old-style LOB and new-style MAX data type storage – individual variable-length columns are still limited to 8000 bytes each – you can just have more of them now.  Having said that, the physical mechanisms involved are very similar to full LOB storage – a column moved to row-overflow leaves a 24-byte pointer record in the row, and the ‘separate storage’ I have been talking about is structured very similarly to both old-style LOBs and new-style MAX types.  The disadvantages are also the same: when SQL Server needs a row-overflow column value it needs to follow the in-row pointer a navigate another chain of pages, just like retrieving a traditional LOB. And Finally… In the example script presented above, the rows with row_id values from 402 to 450 inclusive all exceed the total in-row storage limit of 8060 bytes.  A SELECT that references a column in one of those rows that has moved to off-row storage will incur one or more lob logical reads as the storage engine locates the data.  The results on your system might vary slightly depending on your settings, of course; but in my tests only column 1 in rows 402-450 moved off-row.  You might like to play around with the script – updating columns, changing data type lengths, and so on – to see the effect on lob logical reads and which columns get moved when.  You might even see row-overflow columns moving back in-row if they are updated to be smaller (hint: reduce the size of a column entry by at least 1000 bytes if you hope to see this). Be aware that SQL Server will not warn you when it moves ‘ordinary’ variable-length columns into overflow storage, and it can have dramatic effects on performance.  It makes more sense than ever to choose column data types sensibly.  If you make every column a VARCHAR(8000) or NVARCHAR(4000), and someone stores data that results in a row needing more than 8060 bytes, SQL Server might turn some of your column data into pseudo-LOBs – all without saying a word. Finally, some people make a distinction between ordinary LOBs (those that can hold up to 2GB of data) and the LOB-like structures created by row-overflow (where columns are still limited to 8000 bytes) by referring to row-overflow LOBs as SLOBs.  I find that quite appealing, but the ‘S’ stands for ‘small’, which makes expanding the whole acronym a little daft-sounding…small large objects anyone? © Paul White 2011 email: [email protected] twitter: @SQL_Kiwi

    Read the article

< Previous Page | 65 66 67 68 69 70 71 72 73 74 75 76  | Next Page >