Search Results

Search found 17550 results on 702 pages for 'real world'.

Page 699/702 | < Previous Page | 695 696 697 698 699 700 701 702  | Next Page >

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "\n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Android Remote Service Keeps Restarting

    - by user244190
    Ok so I've built an app that uses a remote service to do some real time GPS tracking. I am using the below code to start and bind to the service. The remote service uses aidl, sets up a notification icon, runs the GPS and locationListener. In onLocationChanged, a handler sends data back to the caller via the callback. Pretty much straight out of the examples and resources online. I want to allow the service to continue running even if the app closes. When the app is restarted, I want the app to again bind to the service (using the existing service if running) and again receive data from the tracker. I currently have the app mode set to singleTask and cannot use singleinstance due to another issue. My problem is that quit often even after the app and service are shut down either from the app itself, or from AdvancedTaskKiller, or a Forceclose, the service will restart and initialize the GPS. touching on the notification will open the app. I again stop the tracking which removes the notification and turns off the GPS Close the app, and again after a few seconds the service restarts. The only way to stop it is to power off the phone. What can I do to stop this from happening. Does it have to do with the mode of operation? START_NOT_STICKY or START_REDELIVER_INTENT? Or do I need to use stopSelf()? My understanding is that if the service is not running when I use bindService() that the service will be created...so do I really need to use start/stopService also? I thought I would need to use it if I want the service to run even after the app is closed. That is why i do not unbind/stop the service in onDestroy(). Is this correct? I've not seen any other info an this, so I,m not sure where to look. Please Help! Thanks Patrick //Remote Service Startup try{ startService(); }catch (Exception e) { Toast.makeText(ctx, e.getMessage().toString(), Toast.LENGTH_SHORT).show(); } } try{ bindService(); }catch (Exception e) { Toast.makeText(ctx, e.getMessage().toString(), Toast.LENGTH_SHORT).show(); } //Remote service shutdown try { unbindService(); }catch(Exception e) { Toast.makeText(ctx, e.getMessage().toString(), Toast.LENGTH_SHORT).show(); } try{ stopService(); }catch(Exception e) { Toast.makeText(ctx, e.getMessage().toString(), Toast.LENGTH_SHORT).show(); } private void startService() { if( myAdapter.trackServiceStarted() ) { if(SETTING_DEBUG_MODE) Toast.makeText(this, "Service already started", Toast.LENGTH_SHORT).show(); started = true; if(!myAdapter.trackDataExists()) insertTrackData(); updateServiceStatus(); } else { startService( new Intent ( "com.codebase.TRACKING_SERVICE" ) ); Log.d( "startService()", "startService()" ); started = true; updateServiceStatus(); } } private void stopService() { stopService( new Intent ( "com.codebase.TRACKING_SERVICE" ) ); Log.d( "stopService()", "stopService()" ); started = false; updateServiceStatus(); } private void bindService() { bindService(new Intent(ITrackingService.class.getName()), mConnection, Context.BIND_AUTO_CREATE); bindService(new Intent(ITrackingSecondary.class.getName()), mTrackingSecondaryConnection, Context.BIND_AUTO_CREATE); started = true; } private void unbindService() { try { mTrackingService.unregisterCallback(mCallback); } catch (RemoteException e) { // There is nothing special we need to do if the service // has crashed. e.getMessage(); } try { unbindService(mTrackingSecondaryConnection); unbindService(mConnection); } catch (Exception e) { // There is nothing special we need to do if the service // has crashed. e.getMessage(); } started = false; } private ServiceConnection mConnection = new ServiceConnection() { public void onServiceConnected(ComponentName className, IBinder service) { // This is called when the connection with the service has been // established, giving us the service object we can use to // interact with the service. We are communicating with our // service through an IDL interface, so get a client-side // representation of that from the raw service object. mTrackingService = ITrackingService.Stub.asInterface(service); // We want to monitor the service for as long as we are // connected to it. try { mTrackingService.registerCallback(mCallback); } catch (RemoteException e) { // In this case the service has crashed before we could even // do anything with it; we can count on soon being // disconnected (and then reconnected if it can be restarted) // so there is no need to do anything here. } } public void onServiceDisconnected(ComponentName className) { // This is called when the connection with the service has been // unexpectedly disconnected -- that is, its process crashed. mTrackingService = null; } }; private ServiceConnection mTrackingSecondaryConnection = new ServiceConnection() { public void onServiceConnected(ComponentName className, IBinder service) { // Connecting to a secondary interface is the same as any // other interface. mTrackingSecondaryService = ITrackingSecondary.Stub.asInterface(service); try{ mTrackingSecondaryService.setTimePrecision(SETTING_TIME_PRECISION); mTrackingSecondaryService.setDistancePrecision(SETTING_DISTANCE_PRECISION); } catch (RemoteException e) { // In this case the service has crashed before we could even // do anything with it; we can count on soon being // disconnected (and then reconnected if it can be restarted) // so there is no need to do anything here. } } public void onServiceDisconnected(ComponentName className) { mTrackingSecondaryService = null; } }; //TrackService onDestry() public void onDestroy() { try{ if(lm != null) { lm.removeUpdates(this); } if(mNotificationManager != null) { mNotificationManager.cancel(R.string.local_service_started); } Toast.makeText(this, "Service stopped", Toast.LENGTH_SHORT).show(); }catch (Exception e){ Toast.makeText(this, e.getMessage(), Toast.LENGTH_SHORT).show(); } // Unregister all callbacks. mCallbacks.kill(); // Remove the next pending message to increment the counter, stopping // the increment loop. mHandler.removeMessages(REPORT_MSG); super.onDestroy(); } ServiceConnectionLeaked: I'm seeing a lot of these: 04-21 09:25:23.347: ERROR/ActivityThread(3246): Activity com.codebase.GPSTest has leaked ServiceConnection com.codebase.GPSTest$6@4482d428 that was originally bound here 04-21 09:25:23.347: ERROR/ActivityThread(3246): android.app.ServiceConnectionLeaked: Activity com.codebase.GPSTest has leaked ServiceConnection com.codebase.GPSTest$6@4482d428 that was originally bound here 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread$PackageInfo$ServiceDispatcher.<init>(ActivityThread.java:977) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread$PackageInfo.getServiceDispatcher(ActivityThread.java:872) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ApplicationContext.bindService(ApplicationContext.java:796) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.content.ContextWrapper.bindService(ContextWrapper.java:337) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.codebase.GPSTest.bindService(GPSTest.java:2206) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.codebase.GPSTest.onStartStopClick(GPSTest.java:1589) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.codebase.GPSTest.onResume(GPSTest.java:1210) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.Instrumentation.callActivityOnResume(Instrumentation.java:1149) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.Activity.performResume(Activity.java:3763) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.performResumeActivity(ActivityThread.java:2937) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.handleResumeActivity(ActivityThread.java:2965) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2516) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.handleRelaunchActivity(ActivityThread.java:3625) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.access$2300(ActivityThread.java:119) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1867) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.os.Handler.dispatchMessage(Handler.java:99) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.os.Looper.loop(Looper.java:123) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at android.app.ActivityThread.main(ActivityThread.java:4363) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at java.lang.reflect.Method.invokeNative(Native Method) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at java.lang.reflect.Method.invoke(Method.java:521) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618) 04-21 09:25:23.347: ERROR/ActivityThread(3246): at dalvik.system.NativeStart.main(Native Method) And These: Is this ok, or do I need to make sure i deactivate/close 04-21 09:58:55.487: INFO/dalvikvm(3440): Uncaught exception thrown by finalizer (will be discarded): 04-21 09:58:55.487: INFO/dalvikvm(3440): Ljava/lang/IllegalStateException;: Finalizing cursor android.database.sqlite.SQLiteCursor@447ef258 on gps_data that has not been deactivated or closed 04-21 09:58:55.487: INFO/dalvikvm(3440): at android.database.sqlite.SQLiteCursor.finalize(SQLiteCursor.java:596) 04-21 09:58:55.487: INFO/dalvikvm(3440): at dalvik.system.NativeStart.run(Native Method)

    Read the article

  • AngularJS on top of ASP.NET: Moving the MVC framework out to the browser

    - by Varun Chatterji
    Heavily drawing inspiration from Ruby on Rails, MVC4’s convention over configuration model of development soon became the Holy Grail of .NET web development. The MVC model brought with it the goodness of proper separation of concerns between business logic, data, and the presentation logic. However, the MVC paradigm, was still one in which server side .NET code could be mixed with presentation code. The Razor templating engine, though cleaner than its predecessors, still encouraged and allowed you to mix .NET server side code with presentation logic. Thus, for example, if the developer required a certain <div> tag to be shown if a particular variable ShowDiv was true in the View’s model, the code could look like the following: Fig 1: To show a div or not. Server side .NET code is used in the View Mixing .NET code with HTML in views can soon get very messy. Wouldn’t it be nice if the presentation layer (HTML) could be pure HTML? Also, in the ASP.NET MVC model, some of the business logic invariably resides in the controller. It is tempting to use an anti­pattern like the one shown above to control whether a div should be shown or not. However, best practice would indicate that the Controller should not be aware of the div. The ShowDiv variable in the model should not exist. A controller should ideally, only be used to do the plumbing of getting the data populated in the model and nothing else. The view (ideally pure HTML) should render the presentation layer based on the model. In this article we will see how Angular JS, a new JavaScript framework by Google can be used effectively to build web applications where: 1. Views are pure HTML 2. Controllers (in the server sense) are pure REST based API calls 3. The presentation layer is loaded as needed from partial HTML only files. What is MVVM? MVVM short for Model View View Model is a new paradigm in web development. In this paradigm, the Model and View stuff exists on the client side through javascript instead of being processed on the server through postbacks. These frameworks are JavaScript frameworks that facilitate the clear separation of the “frontend” or the data rendering logic from the “backend” which is typically just a REST based API that loads and processes data through a resource model. The frameworks are called MVVM as a change to the Model (through javascript) gets reflected in the view immediately i.e. Model > View. Also, a change on the view (through manual input) gets reflected in the model immediately i.e. View > Model. The following figure shows this conceptually (comments are shown in red): Fig 2: Demonstration of MVVM in action In Fig 2, two text boxes are bound to the same variable model.myInt. Thus, changing the view manually (changing one text box through keyboard input) also changes the other textbox in real time demonstrating V > M property of a MVVM framework. Furthermore, clicking the button adds 1 to the value of model.myInt thus changing the model through JavaScript. This immediately updates the view (the value in the two textboxes) thus demonstrating the M > V property of a MVVM framework. Thus we see that the model in a MVVM JavaScript framework can be regarded as “the single source of truth“. This is an important concept. Angular is one such MVVM framework. We shall use it to build a simple app that sends SMS messages to a particular number. Application, Routes, Views, Controllers, Scope and Models Angular can be used in many ways to construct web applications. For this article, we shall only focus on building Single Page Applications (SPAs). Many of the approaches we will follow in this article have alternatives. It is beyond the scope of this article to explain every nuance in detail but we shall try to touch upon the basic concepts and end up with a working application that can be used to send SMS messages using Sent.ly Plus (a service that is itself built using Angular). Before you read on, we would like to urge you to forget what you know about Models, Views, Controllers and Routes in the ASP.NET MVC4 framework. All these words have different meanings in the Angular world. Whenever these words are used in this article, they will refer to Angular concepts and not ASP.NET MVC4 concepts. The following figure shows the skeleton of the root page of an SPA: Fig 3: The skeleton of a SPA The skeleton of the application is based on the Bootstrap starter template which can be found at: http://getbootstrap.com/examples/starter­template/ Apart from loading the Angular, jQuery and Bootstrap JavaScript libraries, it also loads our custom scripts /app/js/controllers.js /app/js/app.js These scripts define the routes, views and controllers which we shall come to in a moment. Application Notice that the body tag (Fig. 3) has an extra attribute: ng­app=”smsApp” Providing this tag “bootstraps” our single page application. It tells Angular to load a “module” called smsApp. This “module” is defined /app/js/app.js angular.module('smsApp', ['smsApp.controllers', function () {}]) Fig 4: The definition of our application module The line shows above, declares a module called smsApp. It also declares that this module “depends” on another module called “smsApp.controllers”. The smsApp.controllers module will contain all the controllers for our SPA. Routing and Views Notice that in the Navbar (in Fig 3) we have included two hyperlinks to: “#/app” “#/help” This is how Angular handles routing. Since the URLs start with “#”, they are actually just bookmarks (and not server side resources). However, our route definition (in /app/js/app.js) gives these URLs a special meaning within the Angular framework. angular.module('smsApp', ['smsApp.controllers', function () { }]) //Configure the routes .config(['$routeProvider', function ($routeProvider) { $routeProvider.when('/binding', { templateUrl: '/app/partials/bindingexample.html', controller: 'BindingController' }); }]); Fig 5: The definition of a route with an associated partial view and controller As we can see from the previous code sample, we are using the $routeProvider object in the configuration of our smsApp module. Notice how the code “asks for” the $routeProvider object by specifying it as a dependency in the [] braces and then defining a function that accepts it as a parameter. This is known as dependency injection. Please refer to the following link if you want to delve into this topic: http://docs.angularjs.org/guide/di What the above code snippet is doing is that it is telling Angular that when the URL is “#/binding”, then it should load the HTML snippet (“partial view”) found at /app/partials/bindingexample.html. Also, for this URL, Angular should load the controller called “BindingController”. We have also marked the div with the class “container” (in Fig 3) with the ng­view attribute. This attribute tells Angular that views (partial HTML pages) defined in the routes will be loaded within this div. You can see that the Angular JavaScript framework, unlike many other frameworks, works purely by extending HTML tags and attributes. It also allows you to extend HTML with your own tags and attributes (through directives) if you so desire, you can find out more about directives at the following URL: http://www.codeproject.com/Articles/607873/Extending­HTML­with­AngularJS­Directives Controllers and Models We have seen how we define what views and controllers should be loaded for a particular route. Let us now consider how controllers are defined. Our controllers are defined in the file /app/js/controllers.js. The following snippet shows the definition of the “BindingController” which is loaded when we hit the URL http://localhost:port/index.html#/binding (as we have defined in the route earlier as shown in Fig 5). Remember that we had defined that our application module “smsApp” depends on the “smsApp.controllers” module (see Fig 4). The code snippet below shows how the “BindingController” defined in the route shown in Fig 5 is defined in the module smsApp.controllers: angular.module('smsApp.controllers', [function () { }]) .controller('BindingController', ['$scope', function ($scope) { $scope.model = {}; $scope.model.myInt = 6; $scope.addOne = function () { $scope.model.myInt++; } }]); Fig 6: The definition of a controller in the “smsApp.controllers” module. The pieces are falling in place! Remember Fig.2? That was the code of a partial view that was loaded within the container div of the skeleton SPA shown in Fig 3. The route definition shown in Fig 5 also defined that the controller called “BindingController” (shown in Fig 6.) was loaded when we loaded the URL: http://localhost:22544/index.html#/binding The button in Fig 2 was marked with the attribute ng­click=”addOne()” which added 1 to the value of model.myInt. In Fig 6, we can see that this function is actually defined in the “BindingController”. Scope We can see from Fig 6, that in the definition of “BindingController”, we defined a dependency on $scope and then, as usual, defined a function which “asks for” $scope as per the dependency injection pattern. So what is $scope? Any guesses? As you might have guessed a scope is a particular “address space” where variables and functions may be defined. This has a similar meaning to scope in a programming language like C#. Model: The Scope is not the Model It is tempting to assign variables in the scope directly. For example, we could have defined myInt as $scope.myInt = 6 in Fig 6 instead of $scope.model.myInt = 6. The reason why this is a bad idea is that scope in hierarchical in Angular. Thus if we were to define a controller which was defined within the another controller (nested controllers), then the inner controller would inherit the scope of the parent controller. This inheritance would follow JavaScript prototypal inheritance. Let’s say the parent controller defined a variable through $scope.myInt = 6. The child controller would inherit the scope through java prototypical inheritance. This basically means that the child scope has a variable myInt that points to the parent scopes myInt variable. Now if we assigned the value of myInt in the parent, the child scope would be updated with the same value as the child scope’s myInt variable points to the parent scope’s myInt variable. However, if we were to assign the value of the myInt variable in the child scope, then the link of that variable to the parent scope would be broken as the variable myInt in the child scope now points to the value 6 and not to the parent scope’s myInt variable. But, if we defined a variable model in the parent scope, then the child scope will also have a variable model that points to the model variable in the parent scope. Updating the value of $scope.model.myInt in the parent scope would change the model variable in the child scope too as the variable is pointed to the model variable in the parent scope. Now changing the value of $scope.model.myInt in the child scope would ALSO change the value in the parent scope. This is because the model reference in the child scope is pointed to the scope variable in the parent. We did no new assignment to the model variable in the child scope. We only changed an attribute of the model variable. Since the model variable (in the child scope) points to the model variable in the parent scope, we have successfully changed the value of myInt in the parent scope. Thus the value of $scope.model.myInt in the parent scope becomes the “single source of truth“. This is a tricky concept, thus it is considered good practice to NOT use scope inheritance. More info on prototypal inheritance in Angular can be found in the “JavaScript Prototypal Inheritance” section at the following URL: https://github.com/angular/angular.js/wiki/Understanding­Scopes. Building It: An Angular JS application using a .NET Web API Backend Now that we have a perspective on the basic components of an MVVM application built using Angular, let’s build something useful. We will build an application that can be used to send out SMS messages to a given phone number. The following diagram describes the architecture of the application we are going to build: Fig 7: Broad application architecture We are going to add an HTML Partial to our project. This partial will contain the form fields that will accept the phone number and message that needs to be sent as an SMS. It will also display all the messages that have previously been sent. All the executable code that is run on the occurrence of events (button clicks etc.) in the view resides in the controller. The controller interacts with the ASP.NET WebAPI to get a history of SMS messages, add a message etc. through a REST based API. For the purposes of simplicity, we will use an in memory data structure for the purposes of creating this application. Thus, the tasks ahead of us are: Creating the REST WebApi with GET, PUT, POST, DELETE methods. Creating the SmsView.html partial Creating the SmsController controller with methods that are called from the SmsView.html partial Add a new route that loads the controller and the partial. 1. Creating the REST WebAPI This is a simple task that should be quite straightforward to any .NET developer. The following listing shows our ApiController: public class SmsMessage { public string to { get; set; } public string message { get; set; } } public class SmsResource : SmsMessage { public int smsId { get; set; } } public class SmsResourceController : ApiController { public static Dictionary<int, SmsResource> messages = new Dictionary<int, SmsResource>(); public static int currentId = 0; // GET api/<controller> public List<SmsResource> Get() { List<SmsResource> result = new List<SmsResource>(); foreach (int key in messages.Keys) { result.Add(messages[key]); } return result; } // GET api/<controller>/5 public SmsResource Get(int id) { if (messages.ContainsKey(id)) return messages[id]; return null; } // POST api/<controller> public List<SmsResource> Post([FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { SmsResource res = (SmsResource) value; res.smsId = currentId++; messages.Add(res.smsId, res); //SentlyPlusSmsSender.SendMessage(value.to, value.message); return Get(); } } // PUT api/<controller>/5 public List<SmsResource> Put(int id, [FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { if (messages.ContainsKey(id)) { //Update the message messages[id].message = value.message; messages[id].to = value.message; } return Get(); } } // DELETE api/<controller>/5 public List<SmsResource> Delete(int id) { if (messages.ContainsKey(id)) { messages.Remove(id); } return Get(); } } Once this class is defined, we should be able to access the WebAPI by a simple GET request using the browser: http://localhost:port/api/SmsResource Notice the commented line: //SentlyPlusSmsSender.SendMessage The SentlyPlusSmsSender class is defined in the attached solution. We have shown this line as commented as we want to explain the core Angular concepts. If you load the attached solution, this line is uncommented in the source and an actual SMS will be sent! By default, the API returns XML. For consumption of the API in Angular, we would like it to return JSON. To change the default to JSON, we make the following change to WebApiConfig.cs file located in the App_Start folder. public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); var appXmlType = config.Formatters.XmlFormatter. SupportedMediaTypes. FirstOrDefault( t => t.MediaType == "application/xml"); config.Formatters.XmlFormatter.SupportedMediaTypes.Remove(appXmlType); } } We now have our backend REST Api which we can consume from Angular! 2. Creating the SmsView.html partial This simple partial will define two fields: the destination phone number (international format starting with a +) and the message. These fields will be bound to model.phoneNumber and model.message. We will also add a button that we shall hook up to sendMessage() in the controller. A list of all previously sent messages (bound to model.allMessages) will also be displayed below the form input. The following code shows the code for the partial: <!--­­ If model.errorMessage is defined, then render the error div -­­> <div class="alert alert-­danger alert-­dismissable" style="margin­-top: 30px;" ng­-show="model.errorMessage != undefined"> <button type="button" class="close" data­dismiss="alert" aria­hidden="true">&times;</button> <strong>Error!</strong> <br /> {{ model.errorMessage }} </div> <!--­­ The input fields bound to the model --­­> <div class="well" style="margin-­top: 30px;"> <table style="width: 100%;"> <tr> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Phone number (eg; +44 7778 609466)" ng­-model="model.phoneNumber" class="form-­control" style="width: 90%" onkeypress="return checkPhoneInput();" /> </td> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Message" ng­-model="model.message" class="form-­control" style="width: 90%" /> </td> <td style="text-­align: center;"> <button class="btn btn-­danger" ng-­click="sendMessage();" ng-­disabled="model.isAjaxInProgress" style="margin­right: 5px;">Send</button> <img src="/Content/ajax-­loader.gif" ng­-show="model.isAjaxInProgress" /> </td> </tr> </table> </div> <!--­­ The past messages ­­--> <div style="margin-­top: 30px;"> <!­­-- The following div is shown if there are no past messages --­­> <div ng­-show="model.allMessages.length == 0"> No messages have been sent yet! </div> <!--­­ The following div is shown if there are some past messages --­­> <div ng-­show="model.allMessages.length == 0"> <table style="width: 100%;" class="table table-­striped"> <tr> <td>Phone Number</td> <td>Message</td> <td></td> </tr> <!--­­ The ng-­repeat directive is line the repeater control in .NET, but as you can see this partial is pure HTML which is much cleaner --> <tr ng-­repeat="message in model.allMessages"> <td>{{ message.to }}</td> <td>{{ message.message }}</td> <td> <button class="btn btn-­danger" ng-­click="delete(message.smsId);" ng­-disabled="model.isAjaxInProgress">Delete</button> </td> </tr> </table> </div> </div> The above code is commented and should be self explanatory. Conditional rendering is achieved through using the ng-­show=”condition” attribute on various div tags. Input fields are bound to the model and the send button is bound to the sendMessage() function in the controller as through the ng­click=”sendMessage()” attribute defined on the button tag. While AJAX calls are taking place, the controller sets model.isAjaxInProgress to true. Based on this variable, buttons are disabled through the ng-­disabled directive which is added as an attribute to the buttons. The ng-­repeat directive added as an attribute to the tr tag causes the table row to be rendered multiple times much like an ASP.NET repeater. 3. Creating the SmsController controller The penultimate piece of our application is the controller which responds to events from our view and interacts with our MVC4 REST WebAPI. The following listing shows the code we need to add to /app/js/controllers.js. Note that controller definitions can be chained. Also note that this controller “asks for” the $http service. The $http service is a simple way in Angular to do AJAX. So far we have only encountered modules, controllers, views and directives in Angular. The $http is new entity in Angular called a service. More information on Angular services can be found at the following URL: http://docs.angularjs.org/guide/dev_guide.services.understanding_services. .controller('SmsController', ['$scope', '$http', function ($scope, $http) { //We define the model $scope.model = {}; //We define the allMessages array in the model //that will contain all the messages sent so far $scope.model.allMessages = []; //The error if any $scope.model.errorMessage = undefined; //We initially load data so set the isAjaxInProgress = true; $scope.model.isAjaxInProgress = true; //Load all the messages $http({ url: '/api/smsresource', method: "GET" }). success(function (data, status, headers, config) { this callback will be called asynchronously //when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { //called asynchronously if an error occurs //or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); $scope.delete = function (id) { //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource/' + id, method: "DELETE" }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } $scope.sendMessage = function () { $scope.model.errorMessage = undefined; var message = ''; if($scope.model.message != undefined) message = $scope.model.message.trim(); if ($scope.model.phoneNumber == undefined || $scope.model.phoneNumber == '' || $scope.model.phoneNumber.length < 10 || $scope.model.phoneNumber[0] != '+') { $scope.model.errorMessage = "You must enter a valid phone number in international format. Eg: +44 7778 609466"; return; } if (message.length == 0) { $scope.model.errorMessage = "You must specify a message!"; return; } //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource', method: "POST", data: { to: $scope.model.phoneNumber, message: $scope.model.message } }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status // We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } }]); We can see from the previous listing how the functions that are called from the view are defined in the controller. It should also be evident how easy it is to make AJAX calls to consume our MVC4 REST WebAPI. Now we are left with the final piece. We need to define a route that associates a particular path with the view we have defined and the controller we have defined. 4. Add a new route that loads the controller and the partial This is the easiest part of the puzzle. We simply define another route in the /app/js/app.js file: $routeProvider.when('/sms', { templateUrl: '/app/partials/smsview.html', controller: 'SmsController' }); Conclusion In this article we have seen how much of the server side functionality in the MVC4 framework can be moved to the browser thus delivering a snappy and fast user interface. We have seen how we can build client side HTML only views that avoid the messy syntax offered by server side Razor views. We have built a functioning app from the ground up. The significant advantage of this approach to building web apps is that the front end can be completely platform independent. Even though we used ASP.NET to create our REST API, we could just easily have used any other language such as Node.js, Ruby etc without changing a single line of our front end code. Angular is a rich framework and we have only touched on basic functionality required to create a SPA. For readers who wish to delve further into the Angular framework, we would recommend the following URL as a starting point: http://docs.angularjs.org/misc/started. To get started with the code for this project: Sign up for an account at http://plus.sent.ly (free) Add your phone number Go to the “My Identies Page” Note Down your Sender ID, Consumer Key and Consumer Secret Download the code for this article at: https://docs.google.com/file/d/0BzjEWqSE31yoZjZlV0d0R2Y3eW8/edit?usp=sharing Change the values of Sender Id, Consumer Key and Consumer Secret in the web.config file Run the project through Visual Studio!

    Read the article

  • Understanding and Implementing a Force based graph layout algorithm

    - by zcourts
    I'm trying to implement a force base graph layout algorithm, based on http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing) My first attempt didn't work so I looked at http://blog.ivank.net/force-based-graph-drawing-in-javascript.html and https://github.com/dhotson/springy I changed my implementation based on what I thought I understood from those two but I haven't managed to get it right and I'm hoping someone can help? JavaScript isn't my strong point so be gentle... If you're wondering why write my own. In reality I have no real reason to write my own I'm just trying to understand how the algorithm is implemented. Especially in my first link, that demo is brilliant. This is what I've come up with //support function.bind - https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind#Compatibility if (!Function.prototype.bind) { Function.prototype.bind = function (oThis) { if (typeof this !== "function") { // closest thing possible to the ECMAScript 5 internal IsCallable function throw new TypeError("Function.prototype.bind - what is trying to be bound is not callable"); } var aArgs = Array.prototype.slice.call(arguments, 1), fToBind = this, fNOP = function () {}, fBound = function () { return fToBind.apply(this instanceof fNOP ? this : oThis || window, aArgs.concat(Array.prototype.slice.call(arguments))); }; fNOP.prototype = this.prototype; fBound.prototype = new fNOP(); return fBound; }; } (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); function Graph(o){ this.options=o; this.vertices={}; this.edges={};//form {vertexID:{edgeID:edge}} } /** *Adds an edge to the graph. If the verticies in this edge are not already in the *graph then they are added */ Graph.prototype.addEdge=function(e){ //if vertex1 and vertex2 doesn't exist in this.vertices add them if(typeof(this.vertices[e.vertex1])==='undefined') this.vertices[e.vertex1]=new Vertex(e.vertex1); if(typeof(this.vertices[e.vertex2])==='undefined') this.vertices[e.vertex2]=new Vertex(e.vertex2); //add the edge if(typeof(this.edges[e.vertex1])==='undefined') this.edges[e.vertex1]={}; this.edges[e.vertex1][e.id]=e; } /** * Add a vertex to the graph. If a vertex with the same ID already exists then * the existing vertex's .data property is replaced with the @param v.data */ Graph.prototype.addVertex=function(v){ if(typeof(this.vertices[v.id])==='undefined') this.vertices[v.id]=v; else this.vertices[v.id].data=v.data; } function Vertex(id,data){ this.id=id; this.data=data?data:{}; //initialize to data.[x|y|z] or generate random number for each this.x = this.data.x?this.data.x:-100 + Math.random()*200; this.y = this.data.y?this.data.y:-100 + Math.random()*200; this.z = this.data.y?this.data.y:-100 + Math.random()*200; //set initial velocity to 0 this.velocity = new Point(0, 0, 0); this.mass=this.data.mass?this.data.mass:Math.random(); this.force=new Point(0,0,0); } function Edge(vertex1ID,vertex2ID){ vertex1ID=vertex1ID?vertex1ID:Math.random() vertex2ID=vertex2ID?vertex2ID:Math.random() this.id=vertex1ID+"->"+vertex2ID; this.vertex1=vertex1ID; this.vertex2=vertex2ID; } function Point(x, y, z) { this.x = x; this.y = y; this.z = z; } Point.prototype.plus=function(p){ this.x +=p.x this.y +=p.y this.z +=p.z } function ForceLayout(o){ this.repulsion = o.repulsion?o.repulsion:200; this.attraction = o.attraction?o.attraction:0.06; this.damping = o.damping?o.damping:0.9; this.graph = o.graph?o.graph:new Graph(); this.total_kinetic_energy =0; this.animationID=-1; } ForceLayout.prototype.draw=function(){ //vertex velocities initialized to (0,0,0) when a vertex is created //vertex positions initialized to random position when created cc=0; do{ this.total_kinetic_energy =0; //for each vertex for(var i in this.graph.vertices){ var thisNode=this.graph.vertices[i]; // running sum of total force on this particular node var netForce=new Point(0,0,0) //for each other node for(var j in this.graph.vertices){ if(thisNode!=this.graph.vertices[j]){ //net-force := net-force + Coulomb_repulsion( this_node, other_node ) netForce.plus(this.CoulombRepulsion( thisNode,this.graph.vertices[j])) } } //for each spring connected to this node for(var k in this.graph.edges[thisNode.id]){ //(this node, node its connected to) //pass id of this node and the node its connected to so hookesattraction //can update the force on both vertices and return that force to be //added to the net force this.HookesAttraction(thisNode.id, this.graph.edges[thisNode.id][k].vertex2 ) } // without damping, it moves forever // this_node.velocity := (this_node.velocity + timestep * net-force) * damping thisNode.velocity.x=(thisNode.velocity.x+thisNode.force.x)*this.damping; thisNode.velocity.y=(thisNode.velocity.y+thisNode.force.y)*this.damping; thisNode.velocity.z=(thisNode.velocity.z+thisNode.force.z)*this.damping; //this_node.position := this_node.position + timestep * this_node.velocity thisNode.x=thisNode.velocity.x; thisNode.y=thisNode.velocity.y; thisNode.z=thisNode.velocity.z; //normalize x,y,z??? //total_kinetic_energy := total_kinetic_energy + this_node.mass * (this_node.velocity)^2 this.total_kinetic_energy +=thisNode.mass*((thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)* (thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)) } cc+=1; }while(this.total_kinetic_energy >0.5) console.log(cc,this.total_kinetic_energy,this.graph) this.cancelAnimation(); } ForceLayout.prototype.HookesAttraction=function(v1ID,v2ID){ var a=this.graph.vertices[v1ID] var b=this.graph.vertices[v2ID] var force=new Point(this.attraction*(b.x - a.x),this.attraction*(b.y - a.y),this.attraction*(b.z - a.z)) // hook's attraction a.force.x += force.x; a.force.y += force.y; a.force.z += force.z; b.force.x += this.attraction*(a.x - b.x); b.force.y += this.attraction*(a.y - b.y); b.force.z += this.attraction*(a.z - b.z); return force; } ForceLayout.prototype.CoulombRepulsion=function(vertex1,vertex2){ //http://en.wikipedia.org/wiki/Coulomb's_law // distance squared = ((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2)) + ((z1-z2)*(z1-z2)) var distanceSquared = ( (vertex1.x-vertex2.x)*(vertex1.x-vertex2.x)+ (vertex1.y-vertex2.y)*(vertex1.y-vertex2.y)+ (vertex1.z-vertex2.z)*(vertex1.z-vertex2.z) ); if(distanceSquared==0) distanceSquared = 0.001; var coul = this.repulsion / distanceSquared; return new Point(coul * (vertex1.x-vertex2.x),coul * (vertex1.y-vertex2.y), coul * (vertex1.z-vertex2.z)); } ForceLayout.prototype.animate=function(){ if(this.animating) this.animationID=requestAnimationFrame(this.animate.bind(this)); this.draw(); } ForceLayout.prototype.cancelAnimation=function(){ cancelAnimationFrame(this.animationID); this.animating=false; } ForceLayout.prototype.redraw=function(){ this.animating=true; this.animate(); } $(document).ready(function(){ var g= new Graph(); for(var i=0;i<=100;i++){ var v1=new Vertex(Math.random(), {}) var v2=new Vertex(Math.random(), {}) var e1= new Edge(v1.id,v2.id); g.addEdge(e1); } console.log(g); var l=new ForceLayout({ graph:g }); l.redraw(); });

    Read the article

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • How to consume PHP SOAP service using WCF

    - by mr.b
    I am new in web services so apologize me if I am making some cardinal mistake here, hehe. I have built SOAP service using PHP. Service is SOAP 1.2 compatible, and I have WSDL available. I have enabled sessions, so that I can track login status, etc. I don't need some super security here (ie message-level security), all I need is transport security (HTTPS), since this service will be used infrequently, and performances are not so much of an issue. I am having difficulties making it to work at all. C# throws some unclear exception ("Server returned an invalid SOAP Fault. Please see InnerException for more details.", which in turn says "Unbound prefix used in qualified name 'rpc:ProcedureNotPresent'."), but consuming service using PHP SOAP client behaves as expected (including session and all). So far, I have following code. note: due to amount of real code, I am posting minimal code configuration PHP SOAP server (using Zend Soap Server library), including class(es) exposed via service: <?php class Verification_LiteralDocumentProxy { protected $instance; public function __call($methodName, $args) { if ($this->instance === null) { $this->instance = new Verification(); } $result = call_user_func_array(array($this->instance, $methodName), $args[0]); return array($methodName.'Result' => $result); } } class Verification { private $guid = ''; private $hwid = ''; /** * Initialize connection * * @param string GUID * @param string HWID * @return bool */ public function Initialize($guid, $hwid) { $this->guid = $guid; $this->hwid = $hwid; return true; } /** * Closes session * * @return void */ public function Close() { // if session is working, $this->hwid and $this->guid // should contain non-empty values } } // start up session stuff $sess = Session::instance(); require_once 'Zend/Soap/Server.php'; $server = new Zend_Soap_Server('https://www.somesite.com/api?wsdl'); $server->setClass('Verification_LiteralDocumentProxy'); $server->setPersistence(SOAP_PERSISTENCE_SESSION); $server->handle(); WSDL: <definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="https://www.somesite.com/api" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" name="Verification" targetNamespace="https://www.somesite.com/api"> <types> <xsd:schema targetNamespace="https://www.somesite.com/api"> <xsd:element name="Initialize"> <xsd:complexType> <xsd:sequence> <xsd:element name="guid" type="xsd:string"/> <xsd:element name="hwid" type="xsd:string"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="InitializeResponse"> <xsd:complexType> <xsd:sequence> <xsd:element name="InitializeResult" type="xsd:boolean"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="Close"> <xsd:complexType/> </xsd:element> </xsd:schema> </types> <portType name="VerificationPort"> <operation name="Initialize"> <documentation> Initializes connection with server</documentation> <input message="tns:InitializeIn"/> <output message="tns:InitializeOut"/> </operation> <operation name="Close"> <documentation> Closes session between client and server</documentation> <input message="tns:CloseIn"/> </operation> </portType> <binding name="VerificationBinding" type="tns:VerificationPort"> <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/> <operation name="Initialize"> <soap:operation soapAction="https://www.somesite.com/api#Initialize"/> <input> <soap:body use="literal"/> </input> <output> <soap:body use="literal"/> </output> </operation> <operation name="Close"> <soap:operation soapAction="https://www.somesite.com/api#Close"/> <input> <soap:body use="literal"/> </input> <output> <soap:body use="literal"/> </output> </operation> </binding> <service name="VerificationService"> <port name="VerificationPort" binding="tns:VerificationBinding"> <soap:address location="https://www.somesite.com/api"/> </port> </service> <message name="InitializeIn"> <part name="parameters" element="tns:Initialize"/> </message> <message name="InitializeOut"> <part name="parameters" element="tns:InitializeResponse"/> </message> <message name="CloseIn"> <part name="parameters" element="tns:Close"/> </message> </definitions> And finally, WCF C# consumer code: [ServiceContract(SessionMode = SessionMode.Required)] public interface IVerification { [OperationContract(Action = "Initialize", IsInitiating = true)] bool Initialize(string guid, string hwid); [OperationContract(Action = "Close", IsInitiating = false, IsTerminating = true)] void Close(); } class Program { static void Main(string[] args) { WSHttpBinding whb = new WSHttpBinding(SecurityMode.Transport, true); ChannelFactory<IVerification> cf = new ChannelFactory<IVerification>( whb, "https://www.somesite.com/api"); IVerification client = cf.CreateChannel(); Console.WriteLine(client.Initialize("123451515", "15498518").ToString()); client.Close(); } } Any ideas? What am I doing wrong here? Thanks!

    Read the article

  • ASP.NET. MVC2. Entity Framework. Cannot pass primary key value back from view to [HttpPost]

    - by Paul Connolly
    I pass a ViewModel (which contains a "Person" object) from the "EditPerson" controller action into the view. When posted back from the view, the ActionResult receives all of the Person properties except the ID (which it says is zero instead of say its real integer) Can anyone tell me why? The controllers look like this: public ActionResult EditPerson(int personID) { var personToEdit = repository.GetPerson(personID); FormationViewModel vm = new FormationViewModel(); vm.Person = personToEdit; return View(vm); } [HttpPost] public ActionResult EditPerson(FormationViewModel model) <<Passes in all properties except ID { // Persistence code } The View looks like this: <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<Afp.Models.Formation.FormationViewModel>" %> <% using (Html.BeginForm()) {% <%= Html.ValidationSummary(true) % <fieldset> <legend>Fields</legend> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Title) %> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Title) %> <%= Html.ValidationMessageFor(model => model.Person.Title) %> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Forename)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Forename)%> <%= Html.ValidationMessageFor(model => model.Person.Forename)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Surname)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Surname)%> <%= Html.ValidationMessageFor(model => model.Person.Surname)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.DOB) %> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.DOB, String.Format("{0:g}", Model.DOB)) <%= Html.ValidationMessageFor(model => model.DOB) %> </div>--%> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Nationality)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Nationality)%> <%= Html.ValidationMessageFor(model => model.Person.Nationality)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Occupation)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Occupation)%> <%= Html.ValidationMessageFor(model => model.Person.Occupation)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.CountryOfResidence)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.CountryOfResidence)%> <%= Html.ValidationMessageFor(model => model.Person.CountryOfResidence)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.PreviousNameForename)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.PreviousNameForename)%> <%= Html.ValidationMessageFor(model => model.Person.PreviousNameForename)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.PreviousSurname)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.PreviousSurname)%> <%= Html.ValidationMessageFor(model => model.Person.PreviousSurname)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Email)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Email)%> <%= Html.ValidationMessageFor(model => model.Person.Email)%> </div> <p> <input type="submit" value="Save" /> </p> </fieldset> <% } % And the Person class looks like: [MetadataType(typeof(Person_Validation))] public partial class Person { public Person() { } } [Bind(Exclude = "ID")] public class Person_Validation { public int ID { get; private set; } public string Title { get; set; } public string Forename { get; set; } public string Surname { get; set; } public System.DateTime DOB { get; set; } public string Nationality { get; set; } public string Occupation { get; set; } public string CountryOfResidence { get; set; } public string PreviousNameForename { get; set; } public string PreviousSurname { get; set; } public string Email { get; set; } } And ViewModel: public class FormationViewModel { public Company Company { get; set; } public Address RegisteredAddress { get; set; } public Person Person { get; set; } public PersonType PersonType { get; set; } public int CurrentStep { get; set; } } }

    Read the article

  • Windows Azure: Import/Export Hard Drives, VM ACLs, Web Sockets, Remote Debugging, Continuous Delivery, New Relic, Billing Alerts and More

    - by ScottGu
    Two weeks ago we released a giant set of improvements to Windows Azure, as well as a significant update of the Windows Azure SDK. This morning we released another massive set of enhancements to Windows Azure.  Today’s new capabilities include: Storage: Import/Export Hard Disk Drives to your Storage Accounts HDInsight: General Availability of our Hadoop Service in the cloud Virtual Machines: New VM Gallery, ACL support for VIPs Web Sites: WebSocket and Remote Debugging Support Notification Hubs: Segmented customer push notification support with tag expressions TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services Developer Analytics: New Relic support for Web Sites + Mobile Services Service Bus: Support for partitioned queues and topics Billing: New Billing Alert Service that sends emails notifications when your bill hits a threshold you define All of these improvements are now available to use immediately (note that some features are still in preview).  Below are more details about them. Storage: Import/Export Hard Disk Drives to Windows Azure I am excited to announce the preview of our new Windows Azure Import/Export Service! The Windows Azure Import/Export Service enables you to move large amounts of on-premises data into and out of your Windows Azure Storage accounts. It does this by enabling you to securely ship hard disk drives directly to our Windows Azure data centers. Once we receive the drives we’ll automatically transfer the data to or from your Windows Azure Storage account.  This enables you to import or export massive amounts of data more quickly and cost effectively (and not be constrained by available network bandwidth). Encrypted Transport Our Import/Export service provides built-in support for BitLocker disk encryption – which enables you to securely encrypt data on the hard drives before you send it, and not have to worry about it being compromised even if the disk is lost/stolen in transit (since the content on the transported hard drives is completely encrypted and you are the only one who has the key to it).  The drive preparation tool we are shipping today makes setting up bitlocker encryption on these hard drives easy. How to Import/Export your first Hard Drive of Data You can read our Getting Started Guide to learn more about how to begin using the import/export service.  You can create import and export jobs via the Windows Azure Management Portal as well as programmatically using our Server Management APIs. It is really easy to create a new import or export job using the Windows Azure Management Portal.  Simply navigate to a Windows Azure storage account, and then click the new Import/Export tab now available within it (note: if you don’t have this tab make sure to sign-up for the Import/Export preview): Then click the “Create Import Job” or “Create Export Job” commands at the bottom of it.  This will launch a wizard that easily walks you through the steps required: For more comprehensive information about Import/Export, refer to Windows Azure Storage team blog.  You can also send questions and comments to the [email protected] email address. We think you’ll find this new service makes it much easier to move data into and out of Windows Azure, and it will dramatically cut down the network bandwidth required when working on large data migration projects.  We hope you like it. HDInsight: 100% Compatible Hadoop Service in the Cloud Last week we announced the general availability release of Windows Azure HDInsight. HDInsight is a 100% compatible Hadoop service that allows you to easily provision and manage Hadoop clusters for big data processing in Windows Azure.  This release is now live in production, backed by an enterprise SLA, supported 24x7 by Microsoft Support, and is ready to use for production scenarios. HDInsight allows you to use Apache Hadoop tools, such as Pig and Hive, to process large amounts of data in Windows Azure Blob Storage. Because data is stored in Windows Azure Blob Storage, you can choose to dynamically create Hadoop clusters only when you need them, and then shut them down when they are no longer required (since you pay only for the time the Hadoop cluster instances are running this provides a super cost effective way to use them).  You can create Hadoop clusters using either the Windows Azure Management Portal (see below) or using our PowerShell and Cross Platform Command line tools: The import/export hard drive support that came out today is a perfect companion service to use with HDInsight – the combination allows you to easily ingest, process and optionally export a limitless amount of data.  We’ve also integrated HDInsight with our Business Intelligence tools, so users can leverage familiar tools like Excel in order to analyze the output of jobs.  You can find out more about how to get started with HDInsight here. Virtual Machines: VM Gallery Enhancements Today’s update of Windows Azure brings with it a new Virtual Machine gallery that you can use to create new VMs in the cloud.  You can launch the gallery by doing New->Compute->Virtual Machine->From Gallery within the Windows Azure Management Portal: The new Virtual Machine Gallery includes some nice enhancements that make it even easier to use: Search: You can now easily search and filter images using the search box in the top-right of the dialog.  For example, simply type “SQL” and we’ll filter to show those images in the gallery that contain that substring. Category Tree-view: Each month we add more built-in VM images to the gallery.  You can continue to browse these using the “All” view within the VM Gallery – or now quickly filter them using the category tree-view on the left-hand side of the dialog.  For example, by selecting “Oracle” in the tree-view you can now quickly filter to see the official Oracle supplied images. MSDN and Supported checkboxes: With today’s update we are also introducing filters that makes it easy to filter out types of images that you may not be interested in. The first checkbox is MSDN: using this filter you can exclude any image that is not part of the Windows Azure benefits for MSDN subscribers (which have highly discounted pricing - you can learn more about the MSDN pricing here). The second checkbox is Supported: this filter will exclude any image that contains prerelease software, so you can feel confident that the software you choose to deploy is fully supported by Windows Azure and our partners. Sort options: We sort gallery images by what we think customers are most interested in, but sometimes you might want to sort using different views. So we’re providing some additional sort options, like “Newest,” to customize the image list for what suits you best. Pricing information: We now provide additional pricing information about images and options on how to cost effectively run them directly within the VM Gallery. The above improvements make it even easier to use the VM Gallery and quickly create launch and run Virtual Machines in the cloud. Virtual Machines: ACL Support for VIPs A few months ago we exposed the ability to configure Access Control Lists (ACLs) for Virtual Machines using Windows PowerShell cmdlets and our Service Management API. With today’s release, you can now configure VM ACLs using the Windows Azure Management Portal as well. You can now do this by clicking the new Manage ACL command in the Endpoints tab of a virtual machine instance: This will enable you to configure an ordered list of permit and deny rules to scope the traffic that can access your VM’s network endpoints. For example, if you were on a virtual network, you could limit RDP access to a Windows Azure virtual machine to only a few computers attached to your enterprise. Or if you weren’t on a virtual network you could alternatively limit traffic from public IPs that can access your workloads: Here is the default behaviors for ACLs in Windows Azure: By default (i.e. no rules specified), all traffic is permitted. When using only Permit rules, all other traffic is denied. When using only Deny rules, all other traffic is permitted. When there is a combination of Permit and Deny rules, all other traffic is denied. Lastly, remember that configuring endpoints does not automatically configure them within the VM if it also has firewall rules enabled at the OS level.  So if you create an endpoint using the Windows Azure Management Portal, Windows PowerShell, or REST API, be sure to also configure your guest VM firewall appropriately as well. Web Sites: Web Sockets Support With today’s release you can now use Web Sockets with Windows Azure Web Sites.  This feature enables you to easily integrate real-time communication scenarios within your web based applications, and is available at no extra charge (it even works with the free tier).  Higher level programming libraries like SignalR and socket.io are also now supported with it. You can enable Web Sockets support on a web site by navigating to the Configure tab of a Web Site, and by toggling Web Sockets support to “on”: Once Web Sockets is enabled you can start to integrate some really cool scenarios into your web applications.  Check out the new SignalR documentation hub on www.asp.net to learn more about some of the awesome scenarios you can do with it. Web Sites: Remote Debugging Support The Windows Azure SDK 2.2 we released two weeks ago introduced remote debugging support for Windows Azure Cloud Services. With today’s Windows Azure release we are extending this remote debugging support to also work with Windows Azure Web Sites. With live, remote debugging support inside of Visual Studio, you are able to have more visibility than ever before into how your code is operating live in Windows Azure. It is now super easy to attach the debugger and quickly see what is going on with your application in the cloud. Remote Debugging of a Windows Azure Web Site using VS 2013 Enabling the remote debugging of a Windows Azure Web Site using VS 2013 is really easy.  Start by opening up your web application’s project within Visual Studio. Then navigate to the “Server Explorer” tab within Visual Studio, and click on the deployed web-site you want to debug that is running within Windows Azure using the Windows Azure->Web Sites node in the Server Explorer.  Then right-click and choose the “Attach Debugger” option on it: When you do this Visual Studio will remotely attach the debugger to the Web Site running within Windows Azure.  The debugger will then stop the web site’s execution when it hits any break points that you have set within your web application’s project inside Visual Studio.  For example, below I set a breakpoint on the “ViewBag.Message” assignment statement within the HomeController of the standard ASP.NET MVC project template.  When I hit refresh on the “About” page of the web site within the browser, the breakpoint was triggered and I am now able to debug the app remotely using Visual Studio: Note above how we can debug variables (including autos/watchlist/etc), as well as use the Immediate and Command Windows. In the debug session above I used the Immediate Window to explore some of the request object state, as well as to dynamically change the ViewBag.Message property.  When we click the the “Continue” button (or press F5) the app will continue execution and the Web Site will render the content back to the browser.  This makes it super easy to debug web apps remotely. Tips for Better Debugging To get the best experience while debugging, we recommend publishing your site using the Debug configuration within Visual Studio’s Web Publish dialog. This will ensure that debug symbol information is uploaded to the Web Site which will enable a richer debug experience within Visual Studio.  You can find this option on the Web Publish dialog on the Settings tab: When you ultimately deploy/run the application in production we recommend using the “Release” configuration setting – the release configuration is memory optimized and will provide the best production performance.  To learn more about diagnosing and debugging Windows Azure Web Sites read our new Troubleshooting Windows Azure Web Sites in Visual Studio guide. Notification Hubs: Segmented Push Notification support with tag expressions In August we announced the General Availability of Windows Azure Notification Hubs - a powerful Mobile Push Notifications service that makes it easy to send high volume push notifications with low latency from any mobile app back-end.  Notification hubs can be used with any mobile app back-end (including ones built using our Mobile Services capability) and can also be used with back-ends that run in the cloud as well as on-premises. Beginning with the initial release, Notification Hubs allowed developers to send personalized push notifications to both individual users as well as groups of users by interest, by associating their devices with tags representing the logical target of the notification. For example, by registering all devices of customers interested in a favorite MLB team with a corresponding tag, it is possible to broadcast one message to millions of Boston Red Sox fans and another message to millions of St. Louis Cardinals fans with a single API call respectively. New support for using tag expressions to enable advanced customer segmentation With today’s release we are adding support for even more advanced customer targeting.  You can now identify customers that you want to send push notifications to by defining rich tag expressions. With tag expressions, you can now not only broadcast notifications to Boston Red Sox fans, but take that segmenting a step farther and reach more granular segments. This opens up a variety of scenarios, for example: Offers based on multiple preferences—e.g. send a game day vegetarian special to users tagged as both a Boston Red Sox fan AND a vegetarian Push content to multiple segments in a single message—e.g. rain delay information only to users who are tagged as either a Boston Red Sox fan OR a St. Louis Cardinal fan Avoid presenting subsets of a segment with irrelevant content—e.g. season ticket availability reminder to users who are tagged as a Boston Red Sox fan but NOT also a season ticket holder To illustrate with code, consider a restaurant chain app that sends an offer related to a Red Sox vs Cardinals game for users in Boston. Devices can be tagged by your app with location tags (e.g. “Loc:Boston”) and interest tags (e.g. “Follows:RedSox”, “Follows:Cardinals”), and then a notification can be sent by your back-end to “(Follows:RedSox || Follows:Cardinals) && Loc:Boston” in order to deliver an offer to all devices in Boston that follow either the RedSox or the Cardinals. This can be done directly in your server backend send logic using the code below: var notification = new WindowsNotification(messagePayload); hub.SendNotificationAsync(notification, "(Follows:RedSox || Follows:Cardinals) && Loc:Boston"); In your expressions you can use all Boolean operators: AND (&&), OR (||), and NOT (!).  Some other cool use cases for tag expressions that are now supported include: Social: To “all my group except me” - group:id && !user:id Events: Touchdown event is sent to everybody following either team or any of the players involved in the action: Followteam:A || Followteam:B || followplayer:1 || followplayer:2 … Hours: Send notifications at specific times. E.g. Tag devices with time zone and when it is 12pm in Seattle send to: GMT8 && follows:thaifood Versions and platforms: Send a reminder to people still using your first version for Android - version:1.0 && platform:Android For help on getting started with Notification Hubs, visit the Notification Hub documentation center.  Then download the latest NuGet package (or use the Notification Hubs REST APIs directly) to start sending push notifications using tag expressions.  They are really powerful and enable a bunch of great new scenarios. TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services With today’s Windows Azure release we are making it really easy to enable continuous delivery support with Windows Azure and Team Foundation Services.  Team Foundation Services is a cloud based offering from Microsoft that provides integrated source control (with both TFS and Git support), build server, test execution, collaboration tools, and agile planning support.  It makes it really easy to setup a team project (complete with automated builds and test runners) in the cloud, and it has really rich integration with Visual Studio. With today’s Windows Azure release it is now really easy to enable continuous delivery support with both TFS and Git based repositories hosted using Team Foundation Services.  This enables a workflow where when code is checked in, built successfully on an automated build server, and all tests pass on it – I can automatically have the app deployed on Windows Azure with zero manual intervention or work required. The below screen-shots demonstrate how to quickly setup a continuous delivery workflow to Windows Azure with a Git-based ASP.NET MVC project hosted using Team Foundation Services. Enabling Continuous Delivery to Windows Azure with Team Foundation Services The project I’m going to enable continuous delivery with is a simple ASP.NET MVC project whose source code I’m hosting using Team Foundation Services.  I did this by creating a “SimpleContinuousDeploymentTest” repository there using Git – and then used the new built-in Git tooling support within Visual Studio 2013 to push the source code to it.  Below is a screen-shot of the Git repository hosted within Team Foundation Services: I can access the repository within Visual Studio 2013 and easily make commits with it (as well as branch, merge and do other tasks).  Using VS 2013 I can also setup automated builds to take place in the cloud using Team Foundation Services every time someone checks in code to the repository: The cool thing about this is that I don’t have to buy or rent my own build server – Team Foundation Services automatically maintains its own build server farm and can automatically queue up a build for me (for free) every time someone checks in code using the above settings.  This build server (and automated testing) support now works with both TFS and Git based source control repositories. Connecting a Team Foundation Services project to Windows Azure Once I have a source repository hosted in Team Foundation Services with Automated Builds and Testing set up, I can then go even further and set it up so that it will be automatically deployed to Windows Azure when a source code commit is made to the repository (assuming the Build + Tests pass).  Enabling this is now really easy.  To set this up with a Windows Azure Web Site simply use the New->Compute->Web Site->Custom Create command inside the Windows Azure Management Portal.  This will create a dialog like below.  I gave the web site a name and then made sure the “Publish from source control” checkbox was selected: When we click next we’ll be prompted for the location of the source repository.  We’ll select “Team Foundation Services”: Once we do this we’ll be prompted for our Team Foundation Services account that our source repository is hosted under (in this case my TFS account is “scottguthrie”): When we click the “Authorize Now” button we’ll be prompted to give Windows Azure permissions to connect to the Team Foundation Services account.  Once we do this we’ll be prompted to pick the source repository we want to connect to.  Starting with today’s Windows Azure release you can now connect to both TFS and Git based source repositories.  This new support allows me to connect to the “SimpleContinuousDeploymentTest” respository we created earlier: Clicking the finish button will then create the Web Site with the continuous delivery hooks setup with Team Foundation Services.  Now every time someone pushes source control to the repository in Team Foundation Services, it will kick off an automated build, run all of the unit tests in the solution , and if they pass the app will be automatically deployed to our Web Site in Windows Azure.  You can monitor the history and status of these automated deployments using the Deployments tab within the Web Site: This enables a really slick continuous delivery workflow, and enables you to build and deploy apps in a really nice way. Developer Analytics: New Relic support for Web Sites + Mobile Services With today’s Windows Azure release we are making it really easy to enable Developer Analytics and Monitoring support with both Windows Azure Web Site and Windows Azure Mobile Services.  We are partnering with New Relic, who provide a great dev analytics and app performance monitoring offering, to enable this - and we have updated the Windows Azure Management Portal to make it really easy to configure. Enabling New Relic with a Windows Azure Web Site Enabling New Relic support with a Windows Azure Web Site is now really easy.  Simply navigate to the Configure tab of a Web Site and scroll down to the “developer analytics” section that is now within it: Clicking the “add-on” button will display some additional UI.  If you don’t already have a New Relic subscription, you can click the “view windows azure store” button to obtain a subscription (note: New Relic has a perpetually free tier so you can enable it even without paying anything): Clicking the “view windows azure store” button will launch the integrated Windows Azure Store experience we have within the Windows Azure Management Portal.  You can use this to browse from a variety of great add-on services – including New Relic: Select “New Relic” within the dialog above, then click the next button, and you’ll be able to choose which type of New Relic subscription you wish to purchase.  For this demo we’ll simply select the “Free Standard Version” – which does not cost anything and can be used forever:  Once we’ve signed-up for our New Relic subscription and added it to our Windows Azure account, we can go back to the Web Site’s configuration tab and choose to use the New Relic add-on with our Windows Azure Web Site.  We can do this by simply selecting it from the “add-on” dropdown (it is automatically populated within it once we have a New Relic subscription in our account): Clicking the “Save” button will then cause the Windows Azure Management Portal to automatically populate all of the needed New Relic configuration settings to our Web Site: Deploying the New Relic Agent as part of a Web Site The final step to enable developer analytics using New Relic is to add the New Relic runtime agent to our web app.  We can do this within Visual Studio by right-clicking on our web project and selecting the “Manage NuGet Packages” context menu: This will bring up the NuGet package manager.  You can search for “New Relic” within it to find the New Relic agent.  Note that there is both a 32-bit and 64-bit edition of it – make sure to install the version that matches how your Web Site is running within Windows Azure (note: you can configure your Web Site to run in either 32-bit or 64-bit mode using the Web Site’s “Configuration” tab within the Windows Azure Management Portal): Once we install the NuGet package we are all set to go.  We’ll simply re-publish the web site again to Windows Azure and New Relic will now automatically start monitoring the application Monitoring a Web Site using New Relic Now that the application has developer analytics support with New Relic enabled, we can launch the New Relic monitoring portal to start monitoring the health of it.  We can do this by clicking on the “Add Ons” tab in the left-hand side of the Windows Azure Management Portal.  Then select the New Relic add-on we signed-up for within it.  The Windows Azure Management Portal will provide some default information about the add-on when we do this.  Clicking the “Manage” button in the tray at the bottom will launch a new browser tab and single-sign us into the New Relic monitoring portal associated with our account: When we do this a new browser tab will launch with the New Relic admin tool loaded within it: We can now see insights into how our app is performing – without having to have written a single line of monitoring code.  The New Relic service provides a ton of great built-in monitoring features allowing us to quickly see: Performance times (including browser rendering speed) for the overall site and individual pages.  You can optionally set alert thresholds to trigger if the speed does not meet a threshold you specify. Information about where in the world your customers are hitting the site from (and how performance varies by region) Details on the latency performance of external services your web apps are using (for example: SQL, Storage, Twitter, etc) Error information including call stack details for exceptions that have occurred at runtime SQL Server profiling information – including which queries executed against your database and what their performance was And a whole bunch more… The cool thing about New Relic is that you don’t need to write monitoring code within your application to get all of the above reports (plus a lot more).  The New Relic agent automatically enables the CLR profiler within applications and automatically captures the information necessary to identify these.  This makes it super easy to get started and immediately have a rich developer analytics view for your solutions with very little effort. If you haven’t tried New Relic out yet with Windows Azure I recommend you do so – I think you’ll find it helps you build even better cloud applications.  Following the above steps will help you get started and deliver you a really good application monitoring solution in only minutes. Service Bus: Support for partitioned queues and topics With today’s release, we are enabling support within Service Bus for partitioned queues and topics. Enabling partitioning enables you to achieve a higher message throughput and better availability from your queues and topics. Higher message throughput is achieved by implementing multiple message brokers for each partitioned queue and topic.  The  multiple messaging stores will also provide higher availability. You can create a partitioned queue or topic by simply checking the Enable Partitioning option in the custom create wizard for a Queue or Topic: Read this article to learn more about partitioned queues and topics and how to take advantage of them today. Billing: New Billing Alert Service Today’s Windows Azure update enables a new Billing Alert Service Preview that enables you to get proactive email notifications when your Windows Azure bill goes above a certain monetary threshold that you configure.  This makes it easier to manage your bill and avoid potential surprises at the end of the month. With the Billing Alert Service Preview, you can now create email alerts to monitor and manage your monetary credits or your current bill total.  To set up an alert first sign-up for the free Billing Alert Service Preview.  Then visit the account management page, click on a subscription you have setup, and then navigate to the new Alerts tab that is available: The alerts tab allows you to setup email alerts that will be sent automatically once a certain threshold is hit.  For example, by clicking the “add alert” button above I can setup a rule to send myself email anytime my Windows Azure bill goes above $100 for the month: The Billing Alert Service will evolve to support additional aspects of your bill as well as support multiple forms of alerts such as SMS.  Try out the new Billing Alert Service Preview today and give us feedback. Summary Today’s Windows Azure release enables a ton of great new scenarios, and makes building applications hosted in the cloud even easier. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Hosted bug tracking system with mercurial repositories (Summary of options & request for opinions)

    - by Mark Booth
    The Question What hosted mercurial repository/bug tracking system or systems have you used? Would you recommend it to others? Are there serious flaws, either in the repository hosting or the bug tracking features that would make it difficult to recommend it? Do you have any other experiences with it or opinions of it that you would like to share? If you have used other non mercurial hosted repository/bug tracking systems, how does it compare? (If I understand correctly, the best format for this type of community-wiki style question is one answer per option, if you have experienced if several) Background I have been looking into options for setting up a bug/issue tracking database and found some valuable advice in this thread and this. But then I got to thinking that a hosted solution might not only solve the problem of tracking bugs, but might also solve the problem we have accessing our mercurial source code repositories while at customer sites around the world. Since we currently have no way to serve mercurial repositories over ssl, when I am at a customer site I have to connect my laptop via VPN to my work network and access the mercurial repositories over a samba share (even if it is just to synce twice a day). This is excruciatingly slow on high latency networks and can be impossible with some customers' firewalls. Even if we could run a TRAC or Redmine server here (thanks turnkey), I'm not sure it would be much quicker as our internet connection is over-stretched as it is. What I would like is for developers to be able to be able to push/pull to/from a remote repository, servicing engineers to be able to pull from a remote repository and for customers (both internal and external) to be able to submit bug/issue reports. Initial options The two options I found were Assembla and Jira. Looking at Assembla I thought the 'group' price looked reasonable, but after enquiring, found that each workspace could only contain a single repository. Since each of our products might have up to a dozen repositories (mostly for libraries) which need to be managed seperately for each product, I could see it getting expensive really quickly. On the plus side, it appears that 'users' are just workspace members, so you can have as many client users (people who can only submit support tickets and track their own tickets) without using up your user allocation. Jira only charges based on the number of users, unfortunately client users also count towards this, if you want them to be able to track their tickets. If you only want clients to be able to submit untracked issues, you can let them submit anonymously, but that doesn't feel very professional to me. More options Looking through MercurialHosting page that @Paidhi suggested, I've added the options which appear to offer private repositories, along with another that I found with a web search. Prices are as per their website today (29th March 2010). Corrections welcome in the future. Anyway, here is my summary, according to the information given on their websites: Assembla, http://www.assembla.com/, looks to be a reasonable price, but suffers only one repository per workspace, so three projects with 6 repos each would use up most of the spaces associated with a $99/month professional account (20 spaces). Bug tracking is based on Trac. Mercurial+Trac support was announced in a blog entry in 2007, but they only list SVN and Git on their Features web page. Cost: $24, $49, $99 & $249/month for 40, 40, unlimited, unlimited users and 1, 10, 20, 100 workspaces. SSL based push/pull? Website https login. BitBucket, http://bitbucket.org/plans/, is primarily a mercurial hosting site for open source projects, with SSL support, but they have an integrated bug tracker and they are cheap for private repositories. It has it’s own issues tracker, but also integrates with Lighthouse & FogBugz. Cost: $0, $5, $12, $50 & $100/month for 1, 5, 15, 25 & 150 private repositories. SSL based push/pull. No https on website login, but supports OpenID, so you can chose an OpenID provider with https login. Codebase HQ, http://www.codebasehq.com/, supports Hg and is almost as cheap as BitBucket. Cost: £5, £13, £21 & £40/month for 3, 15, 30 & 60 active projects, unlimited repositories, unlimited users (except 10 users at £5/month) and 0.5, 2, 4 & 10GB. SSL based push/pull? Website https login? Firefly, http://www.activestate.com/firefly/, by ActiveState looks interesting, but the website is a little light on details, such as whether you can only have one repository per project or not. Cost: $9, $19, & £39/month for 1, 5 & 30 private projects, with a 0.5, 1.5 & 3 GB storage limit. SSL based push/pull? Website https login. Jira, http://www.atlassian.com/software/jira/, isn’t limited by the number of repositories you can have, but by ‘user’. It could work out quite expensive if we want client users to be able to track their issues, since they would need a full user account to be created for them. Also, while there is a Mercurial extension to support jira, there is no ‘Advanced integration’ for Mercurial from Atlassian Fisheye. Cost: $150, $300, $400, $500, $700/month for 10, 25, 50, 100, 100+ users. SSL based push/pull? Website https login. Kiln & FogBugz On Demand, http://fogcreek.com/Kiln/IntrotoOnDemand.html, integrates Kilns mercurial DVCS features with FogBugz, where the combined package is much cheaper than the component parts. Also, the Fogbugz integration is supposedly excellent. *8’) Cost: £30/developer/month ($5/d/m more than either on their own). SSL based push/pull? SourceRepo, http://sourcerepo.com/, also supports HG and is even cheaper than BitBucket & Codebase. Cost: $4, $7 & $13/month for 1, unlimited & unlimited repositories/trac/redmine instances and 500MB, 1GB & 3GB storage. SSL based push/pull. Website https login. Edit: 29th March 2010 & Bounty I split this question into sections, made the questions themselves more explicit, added other options from the research I have done since my first posting and made this community wiki, since I now understand what CW is for. *8') Also, I've added a bounty to encourage people to offer their opinions. At the end of the bounty period, I will award the bounty to whoever writes the best review (good or bad), irrespective of the number of up/down votes it gets. Given that it's probably more important to avoid bad providers than find the absolute best one, 'bad reviews' could be considered more important than good ones.

    Read the article

  • Generating moderately interesting images

    - by Williham Totland
    Abstract: Can you propose a mathematical-ish algorithm over a plane of pixels that will generate a moderately interesting image, preferably one that on the whole resembles something? The story thus far: Once upon a time I decided in an effort to reduce cycle waste on my (admittedly too) numerous computers, and set out to generate images in a moderately interesting fashion; using a PRNG and some clever math to create images that would, on the whole, resemble something. Or at least, that was the plan. As it turns out, clever math requires being a clever mathematician; this I am not. At some length I arrived at a method that preferred straight lines (as these are generally the components of which our world is made), perhaps too strongly. The result is mildly interesting; resembling, perhaps, city grids as such: Now for the question proper: Given the source code of this little program; can you improve upon it and propose a method that gives somewhat more interesting results? (e.g. not city grids, but perhaps faces, animals, geography, what have you) This is also meant as a sort of challenge; I suppose and as such I've set down some completely arbitrary and equally optional rules: The comments in the code says it all really. Suggestions and "solutions" should edit the algorithm itself, not the surrounding framework, except as for to fix errors that prevents the sample from compiling. The code should compile cleanly with a standard issue C compiler. (If the example provided doesn't, oops! Tell me, and I'll fix. :) The method should, though again, this is optional, not need to elicit help from your friendly neighborhood math library. Solutions should probably be deliverable by simply yanking out whatever is between the snip lines (the ones that say you should not edit above and below, respectively), with a statement to the effect of what you need to add to the preamble in particular. The code requires a C compiler and libpng to build; I'm not entirely confident that the MinGW compiler provides the necessities, but I would be surprised if it didn't. For Debian you'll want the libpng-dev package, and for Mac OS X you'll want the XCode tools.. The source code can be downloaded here. Warning: Massive code splurge incoming! // compile with gcc -o imggen -lpng imggen.c // optionally with -DITERATIONS=x, where x is an appropriate integer // If you're on a Mac or using MinGW, you may have to fiddle with the linker flags to find the library and includes. #include <stdio.h> #include <stdlib.h> #include <png.h> #ifdef ITERATIONS #define REPEAT #endif // ITERATIONS // YOU MAY CHANGE THE FOLLOWING DEFINES #define WIDTH 320 #define HEIGHT 240 // YOU MAY REPLACE THE FOLLOWING DEFINES AS APPROPRIATE #define INK 16384 void writePNG (png_bytepp imageBuffer, png_uint_32 width, png_uint_32 height, int iteration) { char *fname; asprintf(&fname, "out.%d.png", iteration); FILE *fp = fopen(fname, "wb"); if (!fp) return; png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); png_infop info_ptr = png_create_info_struct(png_ptr); png_init_io(png_ptr, fp); png_set_filter(png_ptr, PNG_FILTER_TYPE_DEFAULT, PNG_FILTER_NONE); png_set_compression_level(png_ptr, Z_BEST_COMPRESSION); png_set_IHDR(png_ptr, info_ptr, width, height, 8, PNG_COLOR_TYPE_GRAY, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); png_set_rows(png_ptr, info_ptr, imageBuffer); png_set_invert_mono(png_ptr); /// YOU MAY COMMENT OUT THIS LINE png_write_png(png_ptr, info_ptr, PNG_TRANSFORM_IDENTITY, NULL); png_destroy_write_struct(&png_ptr, &info_ptr); fclose(fp); free(fname); } int main (int argc, const char * argv[]) { png_uint_32 height = HEIGHT, width = WIDTH; int iteration = 1; #ifdef REPEAT for (iteration = 1; iteration <= ITERATIONS; iteration++) { #endif // REPEAT png_bytepp imageBuffer = malloc(sizeof(png_bytep) * height); for (png_uint_32 i = 0; i < height; i++) { imageBuffer[i] = malloc(sizeof(png_byte) * width); for (png_uint_32 j = 0; j < width; j++) { imageBuffer[i][j] = 0; } } /// CUT ACROSS THE DASHED LINES /// ------------------------------------------- /// NO EDITING ABOVE THIS LINE; EXCEPT AS NOTED int ink = INK; int x = rand() % width, y = rand() % height; int xdir = (rand() % 2)?1:-1; int ydir = (rand() % 2)?1:-1; while (ink) { imageBuffer[y][x] = 255; --ink; xdir += (rand() % 2)?(1):(-1); ydir += (rand() % 2)?(1):(-1); if (ydir > 0) { ++y; } else if (ydir < 0) { --y; } if (xdir > 0) { ++x; } else if (xdir < 0) { --x; } if (x == -1 || y == -1 || x == width || y == height || x == y && x == 0) { x = rand() % width; y = rand() % height; xdir = (rand() % 2)?1:-1; ydir = (rand() % 2)?1:-1; } } /// NO EDITING BELOW THIS LINE /// ------------------------------------------- writePNG(imageBuffer, width, height, iteration); for (png_uint_32 i = 0; i < height; i++) { free(imageBuffer[i]); } free(imageBuffer); #ifdef REPEAT } #endif // REPEAT return 0; } Note: While this question doesn't strictly speaking seem "answerable" as such; I still believe that it can give rise to some manner of "right" answer. Maybe. Happy hunting.

    Read the article

  • Why is this PHP loop rendering every row twice?

    - by Christopher
    I'm working on a real frankensite here not of my own design. There's a rudimentary CMS and one of the pages shows customer records from a MySQL DB. For some reason, it has no probs picking up the data from the DB - there's no duplicate records - but it renders each row twice. <?php $limit = 500; $area = 'customers_list'; $prc = 'customer_list.php'; if($_GET['page']) { include('inc/functions.php'); $page = $_GET['page']; } else { $page = 1; } $limitvalue = $page * $limit - ($limit); $customers_check = get_customers(); $customers = get_customers($limitvalue, $limit); $totalrows = count($customers_check); ?> <!-- pid: customer_list --> <table border="0" width="100%" cellpadding="0" cellspacing="0" style="float: left; margin-bottom: 20px;"> <tr> <td class="col_title" width="200">Name</td> <td></td> <td class="col_title" width="200">Town/City</td> <td></td> <td class="col_title">Telephone</td> <td></td> </tr> <?php for ($i = 0; $i < count($customers); $i++) { ?> <tr> <td colspan="2" class="cus_col_1"><a href="customer_details.php?id=<?php echo $customers[$i]['customer_id']; ?>"><?php echo $customers[$i]['surname'].', '.$customers[$i]['first_name']; ?></a></td> <td colspan="2" class="cus_col_2"><?php echo $customers[$i]['town']; ?></td> <td class="cus_col_1"><?php echo $customers[$i]['telephone']; ?></td> <td class="cus_col_2"> <a href="javascript: single_execute('prc/customers.prc.php?delete=yes&id=<?php echo $customers[$i]['customer_id']; ?>')" onClick="return confirmdel();" class="btn_maroon_small" style="margin: 0px; float: right; margin-right: 10px;"><div class="btn_maroon_small_left"> <div class="btn_maroon_small_right">Delete Account</div> </div></a> <a href="customer_edit.php?id=<?php echo $customers[$i]['customer_id']; ?>" class="btn_black" style="margin: 0px; float: right; margin-right: 10px;"><div class="btn_black_left"> <div class="btn_black_right">Edit Account</div> </div></a> <a href="mailto: <?php echo $customers[$i]['email']; ?>" class="btn_black" style="margin: 0px; float: right; margin-right: 10px;"><div class="btn_black_left"> <div class="btn_black_right">Email Customer</div> </div></a> </td> </tr> <tr><td class="col_divider" colspan="6"></td></tr> <?php }; ?> </table> <!--///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////--> <!--// PAGINATION--> <!--///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////--> <div class="pagination_holder"> <?php if($page != 1) { $pageprev = $page-1; ?> <a href="javascript: change('<?php echo $area; ?>', '<?php echo $prc; ?>?page=<?php echo $pageprev; ?>');" class="pagination_left">Previous</a> <?php } else { ?> <div class="pagination_left, page_grey">Previous</div> <?php } ?> <div class="pagination_middle"> <?php $numofpages = $totalrows / $limit; for($i = 1; $i <= $numofpages; $i++) { if($i == $page) { ?> <div class="page_number_selected"><?php echo $i; ?></div> <?php } else { ?> <a href="javascript: change('<?php echo $area; ?>', '<?php echo $prc; ?>?page=<?php echo $i; ?>');" class="page_number"><?php echo $i; ?></a> <?php } } if(($totalrows % $limit) != 0) { if($i == $page) { ?> <div class="page_number_selected"><?php echo $i; ?></div> <?php } else { ?> <a href="javascript: change('<?php echo $area; ?>', '<?php echo $prc; ?>?page=<?php echo $i; ?>');" class="page_number"><?php echo $i; ?></a> <?php } } ?> </div> <?php if(($totalrows - ($limit * $page)) > 0) { $pagenext = $page+1; ?> <a href="javascript: change('<?php echo $area; ?>', '<?php echo $prc; ?>?page=<?php echo $pagenext; ?>');" class="pagination_right">Next</a> <?php } else { ?> <div class="pagination_right, page_grey">Next</div> <?php } ?> </div> <!--///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////--> <!--// END PAGINATION--> <!--///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////--> I'm not the world's best PHP expert but I think I can see an error in a for loop when there is one... But everything looks ok to me. You'll notice that the customer name is clickable; clicking takes you to another page where you can view their full info as held in the DB - and for both rows, the customer ID is identical, and manually checking the DB shows there's no duplicate entries. The code is definitely rendering each row twice, but for what reason I have no idea. All pointers / advice appreciated.

    Read the article

  • Delphi - Proper way to page though data.

    - by Brad
    I have a string list (TStrings) that has a couple thousand items in it. I need to process them in groups of 100. I basically want to know what the best way to do the loop is in Delphi. I'm hitting a brick wall when I'm trying to figure it out. Thanks unit Unit2; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls; type TForm2 = class(TForm) Memo1: TMemo; Memo2: TMemo; Button1: TButton; procedure Button1Click(Sender: TObject); private { Private declarations } public { Public declarations } end; var Form2: TForm2; implementation Uses math; {$R *.dfm} procedure TForm2.Button1Click(Sender: TObject); var I:Integer; pages:Integer; str:string; begin pages:= ceil(memo1.Lines.Count/100) ; memo2.Lines.add('Total Pages: '+inttostr(pages)); memo2.Lines.add('Total Items: '+inttostr(memo1.Lines.Count)); // Should just do in batches of 100 VS entire list for I := 0 to memo1.lines.Count - 1 do begin if str '' then str:= str+#10+ memo1.Lines.Strings[i] else str:= memo1.Lines.Strings[i]; end; //I need to stop here every 100 items, then process the items. memo2.Lines.Add(str); end; end. Example form object Form2: TForm2 Left = 0 Top = 0 Caption = 'Form2' ClientHeight = 245 ClientWidth = 527 Color = clBtnFace Font.Charset = DEFAULT_CHARSET Font.Color = clWindowText Font.Height = -11 Font.Name = 'Tahoma' Font.Style = [] OldCreateOrder = False PixelsPerInch = 96 TextHeight = 13 object Memo1: TMemo Left = 16 Top = 8 Width = 209 Height = 175 Lines.Strings = ( '4xlt columbia thunder storm jacket' '5 things about thunder storms' 'a thunder storm with a lot of thunder ' 'and lighting sccreensaver' 'a thunder storm with a lot of thunder ' 'and lighting screensaver with no nag ' 'screens' 'all about thunder storms' 'all about thunderstorms for kids' 'amazing tornado videos and ' 'thunderstorm videos' 'are thunder storms louder in ohio?' 'bad thunder storms' 'bathing in thunder storm' 'best thunderstorm pictures' 'cartoon thunder storms' 'celtic thunder storm' 'central valley thunder storm' 'chicago thunderstorm pictures' 'cool thunderstorm pictures' 'current thunderstorm warnings' 'does thunder storms in december mean ' 'snow will be coming' 'facts about thunderstorms for kids' 'facts on thunderstorms for kids' 'fedex thunderstorm video' 'florida thunderstorms facts' 'free relaxing thunderstorm music' 'free soothing thunderstorm sounds ' 'online' 'free thunderstorm mp3' 'free thunderstorm mp3 download' 'free thunderstorm mp3 downloads' 'free thunderstorm mp3s' 'free thunderstorm music' 'free thunderstorm pictures' 'free thunderstorm sound effects' 'free thunderstorm sounds' 'free thunderstorm sounds cd' 'free thunderstorm sounds mp3' 'free thunderstorm sounds online' 'free thunderstorm soundscape' 'free thunderstorm video' 'free thunderstorm video download' 'free thunderstorm videos' 'god of storm and thunder' 'horses storm thunder rain' 'how do thunder storms form' 'how far away is a thunder storm' 'how long do thunder storms last' 'ice cube in a thunder storm' 'indoor thunderstorm safety tips' 'information about thunderstorms for kids' 'interesting thunderstorm facts' 'is it dangerous to shower during thunder ' 'storm' 'is there frequently thunder during snow ' 'storms' 'isolated thunderstorms' 'it'#39's just a thunder storm baby there is ' 'nothing you should fear lyrics' 'lightning & thunder storm safety' 'lightning and thunderstorm facts' 'lightning and thunderstorms facts' 'lightning and thunderstorms for kids' 'listen to thunderstorm sounds online' 'mississauga thunder storm' 'nature sounds free mp3 thunder storm' 'only about thunderstorms facts' 'original storm deep thunderstick' 'phone use during thunder storms' 'pictures of thunderstorms' 'pocono thunder storm' 'posters of thunder storms' 'power rangers ninja storm' 'power rangers thunder storm' 'power rangers thunder storm cast' 'power rangers thunder storm games' 'power rangers thunder storm morphers' 'power rangers thunder storm part 1' 'power rangers thunder storm part 2' 'power rangers thunderstorm' 'power rangers thunderstorm cannon' 'power rangers thunderstorm deluxe ' 'megazord' 'power rangers thunderstorm games' 'power rangers thunderstorm megazord' 'power rangers thunderstorm part 2' 'power rangers thunderstorm pictures' 'power rnager ninja storm thunder staff' 'powerful thunder and lightning storms' 'precambrian thunder storms' 'rain thunderstorm mp3' 'rain thunderstorm pictures' 'relaxing thunderstorm music' 'reminds me of ohio river thunder lighten ' 'storms' 'sacramento thunder storm' 'safety tips for when your caught in a ' 'thunder storm' 'scattered thunderstorms' 'schemer puts his head in the thunder ' 'storm' 'sedative thunder storm' 'server thunder storms' 'severe supercell thunderstorm pictures' 'severe thunder storm pictures' 'severe thunder storms' 'severe thunderstorm facts' 'severe thunderstorm pictures' 'severe thunderstorm pictures hail' 'severe thunderstorm pictures in alberta' 'severe thunderstorm pictures tornado' 'severe thunderstorm safety' 'severe thunderstorm safety tips' 'severe thunderstorm videos' 'severe thunderstorm warning' 'severe thunderstorm warning los ' 'angeles' 'severe thunderstorm warning signs' 'severe thunderstorm warnings' 'severe thunderstorms' 'severe thunderstorms facts' 'shakespeare use thunder storm for ' 'cosmic disorder julius caesar' 'soothing thunderstorm sounds online' 'sound effects of severe thunder storm' 'sound of rain storm finger snapping ' 'thunder chorus' 'split thunder storm' 'storm 3d thunder power' 'storm dark thunder' 'storm dark thunder bowling ball' 'storm dark thunder bowling ball sale' 'storm dark thunder for sale' 'storm dark thunder pearl' 'storm dark thunder pearl bowling ball' 'storm dark thunder review' 'storm dark thunder shirt' 'storm dark thunderball' 'storm deep thunder' 'storm deep thunder 11' 'storm deep thunder 15' 'storm deep thunder 15 lure' 'storm deep thunder 2' 'storm deep thunder lures' 'storm deep thunderstick' 'storm deep thunderstick crankbaits' 'storm deep thunderstick dts09' 'storm deep thunderstick jr' 'storm deep thunderstick lures' 'storm deep thundersticks' 'storm rolling thunder 3 ball roller' 'storm rolling thunder bowling bag' 'storm rolling thunder three ball bowling ' 'bag' 'storm shallow thunder' 'storm shallow thunder 15' 'storm thunder claw' 'storm thunder craw' 'storm watches thunder' 'storms with constant lightning and ' 'thunder non-stop' 'supercell thunder storms' 'supercell thunderstorm pictures' 'supercell thunderstorms' 'swimming pools thunder storms' 'tampa + lightning strikes + thunder ' 'storms' 'texas thunderstorm pictures' 'texas thunderstorm warnings' 'thunder and lightning storm' 'thunder and lighting storms' 'thunder and lightning storms' 'thunder bay snow storm video' 'thunder storm' 'thunder storm and windmill' 'thunder storm cd' 'thunder storm cloud' 'thunder storm clouds' 'thunder storm dog peppermint oil' 'thunder storm in winter' 'thunder storm in winter and weather ' 'prediction' 'thunder storm lx-3 & road blaster psx ' 'download' 'thunder storm occurances' 'thunder storm photos' 'thunder storm poems' 'thunder storm safety' 'thunder storm sign' 'thunder storm sounds' 'thunder storms' 'thunder storms and deaths' 'thunder storms and ilghting' 'thunder storms and lighting' 'thunder storms cd' 'thunder storms in the arctic arctic ' 'weather' 'thunder storms in winter' 'thunder storms on you tub' 'thunder storms pics' 'thunder storms with rain' 'thunderstorm' 'thunderstorm backgrounds' 'thunderstorm capital' 'thunderstorm capital 2008 dorfman' 'thunderstorm capital in boston' 'thunderstorm capital llc' 'thunderstorm capital of canada' 'thunderstorm capital of the us' 'thunderstorm capital of the world' 'thunderstorm facts' 'thunderstorm facts for kids' 'thunderstorm facts hail' 'thunderstorm facts tornadoes' 'thunderstorm mp3' 'thunderstorm mp3 download' 'thunderstorm mp3 download free' 'thunderstorm mp3 downloads' 'thunderstorm mp3 downloads free' 'thunderstorm mp3 files' 'thunderstorm mp3 free' 'thunderstorm mp3 free download' 'thunderstorm mp3 free downloads' 'thunderstorm mp3 torrent' 'thunderstorm mp3s' 'thunderstorm music' 'thunderstorm music cd' 'thunderstorm music downloads' 'thunderstorm music free' 'thunderstorm music playlists' 'thunderstorm music rain' 'thunderstorm pics' 'thunderstorm pictures' 'thunderstorm pictures for kids' 'thunderstorm safety' 'thunderstorm safety for kids' 'thunderstorm safety precautions' 'thunderstorm safety procedures' 'thunderstorm safety rules' 'thunderstorm safety tips' 'thunderstorm safety tips for kids' 'thunderstorm safety tips shelter' 'thunderstorm safety tips trees' 'thunderstorm sound effects' 'thunderstorm sound effects cd' 'thunderstorm sound effects download' 'thunderstorm sound effects free' 'thunderstorm sound effects free ' 'download' 'thunderstorm sound effects free music ' 'feature audio' 'thunderstorm sound effects mp3' 'thunderstorm sound effects rain' 'thunderstorm sounds' 'thunderstorm sounds cd' 'thunderstorm sounds download' 'thunderstorm sounds for sleep' 'thunderstorm sounds for sleeping' 'thunderstorm sounds free' 'thunderstorm sounds free download' 'thunderstorm sounds free downloads' 'thunderstorm sounds mp3' 'thunderstorm sounds mp3 download' 'thunderstorm sounds mp3 free' 'thunderstorm sounds online' 'thunderstorm sounds online for free' 'thunderstorm sounds online free' 'thunderstorm sounds sleep' 'thunderstorm sounds streaming' 'thunderstorm sounds torrent' 'thunderstorm soundscape' 'thunderstorm soundscapes' 'thunderstorm video' 'thunderstorm video clips' 'thunderstorm video download' 'thunderstorm video downloads' 'thunderstorm videos' 'thunderstorm videos for kids' 'thunderstorm videos lightning' 'thunderstorm videos online' 'thunderstorm wallpaper' 'thunderstorm warning' 'thunderstorm warning brisbane' 'thunderstorm warning definition' 'thunderstorm warning los angeles' 'thunderstorm warning san diego' 'thunderstorm warning san mateo county' 'thunderstorm warning santa barbara' 'thunderstorm warning santa clara' 'thunderstorm warning santa clara ' 'county' 'thunderstorm warning signal' 'thunderstorm warning signs' 'thunderstorm warning vs watch' 'thunderstorm warnings' 'thunderstorm warnings and watches' 'thunderstorm warnings for nj' 'thunderstorm warnings qld' 'thunderstorms' 'thunderstorms facts' 'thunderstorms facts for kids' 'thunderstorms for kids' 'tornados and thunder storms animated' 'understanding thunderstorms for kids' 'watch thunderstorm videos' 'weather underground forecast ' 'thunderstorms' 'what causes thunder storms' 'what is a thunder storm' 'where d thunder storms occur') TabOrder = 0 end object Memo2: TMemo Left = 240 Top = 8 Width = 265 Height = 129 Lines.Strings = ( 'Memo2') TabOrder = 1 end object Button1: TButton Left = 384 Top = 184 Width = 75 Height = 25 Caption = 'Button1' TabOrder = 2 OnClick = Button1Click end end

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • How to implement Survey page using ASP.NET MVC?

    - by Aleks
    I need to implement the survey page using ASP.NET MVC (v.4) That functionality has already been implemented in our project using ASP.NET WebForms. (I really searched a lot for real examples of similar functionality implemented via MVC, but failed) Goal: staying on the same page (in webforms -'Survey.aspx') each time user clicks 'Next Page', load next bunch of questions (controls) which user is going to answer. Type of controls in questions are defined only in run-time (retrieved from Data Base). To explain better the question I manually created (rather simple) mark-up below of 'two' pages (two loads of controls): <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Survey.aspx.cs" Inherits="WebSite.Survey" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div><h2>Internal Survey</h2></div> <div><h3>Page 1</h3></div> <div style="padding-bottom: 10px"><div><b>Did you have internet disconnections during last week?</b></div> <asp:RadioButtonList ID="RadioButtonList1" runat="server"> <asp:ListItem>Yes</asp:ListItem> <asp:ListItem>No</asp:ListItem> </asp:RadioButtonList> </div> <div style="padding-bottom: 10px"><div><b>Which days of the week suit you best for meeting up ?</b></div> <asp:CheckBoxList ID="CheckBoxList1" runat="server"> <asp:ListItem>Monday</asp:ListItem> <asp:ListItem>Tuesday</asp:ListItem> <asp:ListItem>Wednesday</asp:ListItem> <asp:ListItem>Thursday</asp:ListItem> <asp:ListItem>Friday</asp:ListItem> </asp:CheckBoxList> </div> <div style="padding-bottom: 10px"> <div><b>How satisfied are you with your job? </b></div> <asp:RadioButtonList ID="RadioButtonList2" runat="server"> <asp:ListItem>Very Good</asp:ListItem> <asp:ListItem>Good</asp:ListItem> <asp:ListItem>Bad</asp:ListItem> <asp:ListItem>Very Bad</asp:ListItem> </asp:RadioButtonList> </div> <div style="padding-bottom: 10px"> <div><b>How satisfied are you with your direct supervisor ? </b></div> <asp:RadioButtonList ID="RadioButtonList3" runat="server"> <asp:ListItem>Not Satisfied</asp:ListItem> <asp:ListItem>Somewhat Satisfied</asp:ListItem> <asp:ListItem>Neutral</asp:ListItem> <asp:ListItem>Satisfied</asp:ListItem> <asp:ListItem>Very Satisfied</asp:ListItem> </asp:RadioButtonList> </div> <div style="padding-bottom: 10px"> <asp:Button ID="Button1" runat="server" Text="Next Page" onclick="Button1_Click" /> </div> </form> </body> </html> PAGE 2 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Survey.aspx.cs" Inherits="WebSite.Survey" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div><h2>Internal Survey</h2></div> <div><h3>Page 2</h3></div> <div style="padding-bottom: 10px"><div><b>Did admininstators fix your internet connection in time ?</b></div> <asp:RadioButtonList ID="RadioButtonList1" runat="server"> <asp:ListItem>Yes</asp:ListItem> <asp:ListItem>No</asp:ListItem> </asp:RadioButtonList> </div> <div style="padding-bottom: 10px"><div><b>What's your overal impression about the job ?</b></div> <asp:TextBox ID="TextBox1" runat="server" Height="88px" Width="322px"></asp:TextBox> </div> <div style="padding-bottom: 10px"> <div><b>Select day which best suits you for admin support ? </b></div> <asp:DropDownList ID="DropDownList1" runat="server"> <asp:ListItem>Select day</asp:ListItem> <asp:ListItem>Monday</asp:ListItem> <asp:ListItem>Wednesday</asp:ListItem> <asp:ListItem>Friday</asp:ListItem> </asp:DropDownList> </div> <div style="padding-bottom: 10px"> <asp:Button ID="Button1" runat="server" Text="Next Page" onclick="Button1_Click" /> </div> </form> </body> </html>

    Read the article

  • spring mvc 3.0 small web application not quite working

    - by lurscher
    Hi, i'm creating a very simple (hello World quality) web application using spring mvc 3.0. when deploying the application on tomcat 6.0.26 and i try to open http://localhost:8080/protoweb/helloWorld.html i get 404, resource /protoweb/WEB-INF/jsp/helloWorld.jsp is not available. The funny thing is that there IS a helloWorld.jsp in there. any idea what i'm doing wrong? here is my web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" id="WebApp_ID" version="2.5"> <display-name>hello-spring3-RC1</display-name> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/yummy-servlet.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> <servlet> <servlet-name>yummy</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>yummy</servlet-name> <url-pattern>*.html</url-pattern> </servlet-mapping> <welcome-file-list> <welcome-file>index.html</welcome-file> </welcome-file-list> </web-app> my yummy-servlet.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd"> <context:component-scan base-package="com.mine.web.controllers"/> <bean id="jspViewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/WEB-INF/jsp/"/> <property name="suffix" value=".jsp"/> </bean> </beans> my very simple controller: package com.mine.web.controllers; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.servlet.ModelAndView; @Controller public class BasicController { @RequestMapping(value = "/helloWorld") public ModelAndView helloWorld() { ModelAndView mav = new ModelAndView(); mav.setViewName("helloWorld"); mav.addObject("message", "Hello some basic message for u"); return mav; } } and my webapp/jsp/helloWorld.jsp <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title>Hello</title> </head> <body> ${message} </body> </html> also, it might be helpful to post my pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.mine</groupId> <artifactId>protoweb</artifactId> <packaging>war</packaging> <version>1.0-SNAPSHOT</version> <name>protoweb Maven Webapp</name> <url>http://maven.apache.org</url> <repositories> <repository> <id>springsource maven repo</id> <url>http://maven.springframework.org/milestone</url> </repository> </repositories> <dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc</artifactId> <version>3.0.0.RC1</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <dependency> <groupId>javax.servlet</groupId> <artifactId>jstl</artifactId> <version>1.1.2</version> <scope>compile</scope> </dependency> </dependencies> <build> <finalName>protoweb</finalName> <plugins> <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>tomcat-maven-plugin</artifactId> <configuration> <configurationDir>tomcat</configurationDir> <url>http://localhost:8080/manager</url> <username>test</username> <password>test</password> </configuration> </plugin> </plugins> </build> </project>

    Read the article

  • NoClassDefFoundError and Netty

    - by Dmytro Leonenko
    Hi. First to say I'm n00b in Java. I can understand most concepts but in my situation I want somebody to help me. I'm using JBoss Netty to handle simple http request and using MemCachedClient check existence of client ip in memcached. import org.jboss.netty.channel.ChannelHandler; import static org.jboss.netty.handler.codec.http.HttpHeaders.*; import static org.jboss.netty.handler.codec.http.HttpHeaders.Names.*; import static org.jboss.netty.handler.codec.http.HttpResponseStatus.*; import static org.jboss.netty.handler.codec.http.HttpVersion.*; import com.danga.MemCached.*; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.Set; import org.jboss.netty.buffer.ChannelBuffer; import org.jboss.netty.buffer.ChannelBuffers; import org.jboss.netty.channel.ChannelFuture; import org.jboss.netty.channel.ChannelFutureListener; import org.jboss.netty.channel.ChannelHandlerContext; import org.jboss.netty.channel.ExceptionEvent; import org.jboss.netty.channel.MessageEvent; import org.jboss.netty.channel.SimpleChannelUpstreamHandler; import org.jboss.netty.handler.codec.http.Cookie; import org.jboss.netty.handler.codec.http.CookieDecoder; import org.jboss.netty.handler.codec.http.CookieEncoder; import org.jboss.netty.handler.codec.http.DefaultHttpResponse; import org.jboss.netty.handler.codec.http.HttpChunk; import org.jboss.netty.handler.codec.http.HttpChunkTrailer; import org.jboss.netty.handler.codec.http.HttpRequest; import org.jboss.netty.handler.codec.http.HttpResponse; import org.jboss.netty.handler.codec.http.HttpResponseStatus; import org.jboss.netty.handler.codec.http.QueryStringDecoder; import org.jboss.netty.util.CharsetUtil; /** * @author <a href="http://www.jboss.org/netty/">The Netty Project</a> * @author Andy Taylor ([email protected]) * @author <a href="http://gleamynode.net/">Trustin Lee</a> * * @version $Rev: 2368 $, $Date: 2010-10-18 17:19:03 +0900 (Mon, 18 Oct 2010) $ */ @SuppressWarnings({"ALL"}) public class HttpRequestHandler extends SimpleChannelUpstreamHandler { private HttpRequest request; private boolean readingChunks; /** Buffer that stores the response content */ private final StringBuilder buf = new StringBuilder(); protected MemCachedClient mcc = new MemCachedClient(); private static SockIOPool poolInstance = null; static { // server list and weights String[] servers = { "lcalhost:11211" }; //Integer[] weights = { 3, 3, 2 }; Integer[] weights = {1}; // grab an instance of our connection pool SockIOPool pool = SockIOPool.getInstance(); // set the servers and the weights pool.setServers(servers); pool.setWeights(weights); // set some basic pool settings // 5 initial, 5 min, and 250 max conns // and set the max idle time for a conn // to 6 hours pool.setInitConn(5); pool.setMinConn(5); pool.setMaxConn(250); pool.setMaxIdle(21600000); //1000 * 60 * 60 * 6 // set the sleep for the maint thread // it will wake up every x seconds and // maintain the pool size pool.setMaintSleep(30); // set some TCP settings // disable nagle // set the read timeout to 3 secs // and don't set a connect timeout pool.setNagle(false); pool.setSocketTO(3000); pool.setSocketConnectTO(0); // initialize the connection pool pool.initialize(); // lets set some compression on for the client // compress anything larger than 64k //mcc.setCompressEnable(true); //mcc.setCompressThreshold(64 * 1024); } @Override public void messageReceived(ChannelHandlerContext ctx, MessageEvent e) throws Exception { HttpRequest request = this.request = (HttpRequest) e.getMessage(); if(mcc.get(request.getHeader("X-Real-Ip")) != null) { HttpResponse response = new DefaultHttpResponse(HTTP_1_1, OK); response.setHeader("X-Accel-Redirect", request.getUri()); ctx.getChannel().write(response).addListener(ChannelFutureListener.CLOSE); } else { sendError(ctx, NOT_FOUND); } } private void writeResponse(MessageEvent e) { // Decide whether to close the connection or not. boolean keepAlive = isKeepAlive(request); // Build the response object. HttpResponse response = new DefaultHttpResponse(HTTP_1_1, OK); response.setContent(ChannelBuffers.copiedBuffer(buf.toString(), CharsetUtil.UTF_8)); response.setHeader(CONTENT_TYPE, "text/plain; charset=UTF-8"); if (keepAlive) { // Add 'Content-Length' header only for a keep-alive connection. response.setHeader(CONTENT_LENGTH, response.getContent().readableBytes()); } // Encode the cookie. String cookieString = request.getHeader(COOKIE); if (cookieString != null) { CookieDecoder cookieDecoder = new CookieDecoder(); Set<Cookie> cookies = cookieDecoder.decode(cookieString); if(!cookies.isEmpty()) { // Reset the cookies if necessary. CookieEncoder cookieEncoder = new CookieEncoder(true); for (Cookie cookie : cookies) { cookieEncoder.addCookie(cookie); } response.addHeader(SET_COOKIE, cookieEncoder.encode()); } } // Write the response. ChannelFuture future = e.getChannel().write(response); // Close the non-keep-alive connection after the write operation is done. if (!keepAlive) { future.addListener(ChannelFutureListener.CLOSE); } } @Override public void exceptionCaught(ChannelHandlerContext ctx, ExceptionEvent e) throws Exception { e.getCause().printStackTrace(); e.getChannel().close(); } private void sendError(ChannelHandlerContext ctx, HttpResponseStatus status) { HttpResponse response = new DefaultHttpResponse(HTTP_1_1, status); response.setHeader(CONTENT_TYPE, "text/plain; charset=UTF-8"); response.setContent(ChannelBuffers.copiedBuffer( "Failure: " + status.toString() + "\r\n", CharsetUtil.UTF_8)); // Close the connection as soon as the error message is sent. ctx.getChannel().write(response).addListener(ChannelFutureListener.CLOSE); } } When I try to send request like http://127.0.0.1:8090/1/2/3 I'm getting java.lang.NoClassDefFoundError: com/danga/MemCached/MemCachedClient at httpClientValidator.server.HttpRequestHandler.<clinit>(HttpRequestHandler.java:66) I believe it's not related to classpath. May be it's related to context in which mcc doesn't exist. Any help appreciated EDIT: Original code http://docs.jboss.org/netty/3.2/xref/org/jboss/netty/example/http/snoop/package-summary.html I've modified some parts to fit my needs.

    Read the article

  • Why "menus" unit is finalized too early?

    - by Harriv
    I tested my application with FastMM and FullDebugMode turned on, since I had some shutdown problems. After solving bunch of my own problems FastMM started to complain about calling virtual method on a freed object in TPopupList. I tried to move the menus unit as early as possible in uses so that it would be finalized last, but it didn't help. Is this real problem, a bug in vcl or false alarm from FastMM? Here's the full report from FastMM: FastMM has detected an attempt to call a virtual method on a freed object. An access violation will now be raised in order to abort the current operation. Freed object class: TPopupList Virtual method: Offset +16 Virtual method address: 4714E4 The allocation number was: 220 The object was allocated by thread 0x1CC0, and the stack trace (return addresses) at the time was: 403216 [sys\system.pas][System][System.@GetMem][2654] 404A4F [sys\system.pas][System][System.TObject.NewInstance][8807] 404E16 [sys\system.pas][System][System.@ClassCreate][9472] 404A84 [sys\system.pas][System][System.TObject.Create][8822] 7F2602 [Menus.pas][Menus][Menus.Menus][4223] 40570F [sys\system.pas][System][System.InitUnits][11397] 405777 [sys\system.pas][System][System.@StartExe][11462] 40844F [SysInit.pas][SysInit][SysInit.@InitExe][663] 7F6368 [PCCSServer.dpr][PCCSServer][PCCSServer.PCCSServer][148] 7C90DCBA [ZwSetInformationThread] 7C817077 [Unknown function at RegisterWaitForInputIdle] The object was subsequently freed by thread 0x1CC0, and the stack trace (return addresses) at the time was: 403232 [sys\system.pas][System][System.@FreeMem][2699] 404A6D [sys\system.pas][System][System.TObject.FreeInstance][8813] 404E61 [sys\system.pas][System][System.@ClassDestroy][9513] 428D15 [common\Classes.pas][Classes][Classes.TList.Destroy][2914] 404AB3 [sys\system.pas][System][System.TObject.Free][8832] 472091 [Menus.pas][Menus][Menus.Finalization][4228] 4056A7 [sys\system.pas][System][System.FinalizeUnits][11256] 4056BF [sys\system.pas][System][System.FinalizeUnits][11261] 7C9032A8 [RtlConvertUlongToLargeInteger] 7C90327A [RtlConvertUlongToLargeInteger] 7C92AA0F [Unknown function at towlower] The current thread ID is 0x1CC0, and the stack trace (return addresses) leading to this error is: 4714B8 [Menus.pas][Menus][Menus.TPopupList.MainWndProc][3779] 435BB2 [common\Classes.pas][Classes][Classes.StdWndProc][11583] 7E418734 [Unknown function at GetDC] 7E418816 [Unknown function at GetDC] 7E428EA0 [Unknown function at DefWindowProcW] 7E428EEC [Unknown function at DefWindowProcW] 7C90E473 [KiUserCallbackDispatcher] 7E42B1A8 [DestroyWindow] 47CE31 [Controls.pas][Controls][Controls.TWinControl.DestroyWindowHandle][6857] 493BE4 [Forms.pas][Forms][Forms.TCustomForm.DestroyWindowHandle][4564] 4906D9 [Forms.pas][Forms][Forms.TCustomForm.Destroy][2929] Current memory dump of 256 bytes starting at pointer address 7FF9CFF0: 2C FE 82 00 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 C4 A3 2D 0C 00 00 00 00 B1 D0 F9 7F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 C0 00 00 00 16 32 40 00 9D 5B 40 00 C8 5B 40 00 CE 82 40 00 3C 40 91 7C B0 B1 94 7C 0A 77 92 7C 84 77 92 7C 7C F0 96 7C 94 B3 94 7C 84 77 92 7C C0 1C 00 00 32 32 40 00 12 5B 40 00 EF 69 40 00 BA 20 47 00 A7 56 40 00 BF 56 40 00 A8 32 90 7C 7A 32 90 7C 0F AA 92 7C 0A 77 92 7C 84 77 92 7C C0 1C 00 00 0E 00 00 00 00 00 00 00 C7 35 65 59 2C FE 82 00 80 80 80 80 80 80 80 80 80 80 38 CA 9A A6 80 80 80 80 80 80 00 00 00 00 51 D1 F9 7F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 C1 00 00 00 16 32 40 00 9D 5B 40 00 C8 5B 40 00 CE 82 40 00 3C 40 91 7C B0 B1 94 7C 0A 77 92 7C 84 77 92 7C 7C F0 96 7C 94 B3 94 7C 84 77 92 7C , þ ‚ . € € € € € € € € € € € € € € € € Ä £ - . . . . . ± Ð ù . . . . . . . . . . . . . . . . À . . . . 2 @ . [ @ . È [ @ . Î ‚ @ . < @ ‘ | ° ± ” | . w ’ | „ w ’ | | ð – | ” ³ ” | „ w ’ | À . . . 2 2 @ . . [ @ . ï i @ . º G . § V @ . ¿ V @ . ¨ 2 | z 2 | . ª ’ | . w ’ | „ w ’ | À . . . . . . . . . . . Ç 5 e Y , þ ‚ . € € € € € € € € € € 8 Ê š ¦ € € € € € € . . . . Q Ñ ù . . . . . . . . . . . . . . . . Á . . . . 2 @ . [ @ . È [ @ . Î ‚ @ . < @ ‘ | ° ± ” | . w ’ | „ w ’ | | ð – | ” ³ ” | „ w ’ | I'm using Delphi 2007 and FastMM 4.97.

    Read the article

  • Reusing XSL template to be invoked with different relative XPaths

    - by meomaxy
    Here is my contrived example that illustrates what I am attempting to accomplish. I have an input XML file that I wish to flatten for further processing. Input file: <BICYCLES> <BICYCLE> <COLOR>BLUE</COLOR> <WHEELS> <WHEEL> <WHEEL_TYPE>FRONT</WHEEL_TYPE> <FLAT>NO</FLAT> <REFLECTORS> <REFLECTOR> <REFLECTOR_NUM>1</REFLECTOR_NUM> <COLOR>RED</COLOR> <SHAPE>SQUARE</SHAPE> </REFLECTOR> <REFLECTOR> <REFLECTOR_NUM>2</REFLECTOR_NUM> <COLOR>WHITE</COLOR> <SHAPE>ROUND</SHAPE> </REFLECTOR> </REFLECTORS> </WHEEL> <WHEEL> <WHEEL_TYPE>REAR</WHEEL_TYPE> <FLAT>NO</FLAT> </WHEEL> </WHEELS> </BICYCLE> </BICYCLES> The input is a list of <BICYCLE> nodes. Each <BICYCLE> has a <COLOR> and optionally has <WHEELS>. <WHEELS> is a list of <WHEEL> nodes, each of which has a few attributes, and optionally has <REFLECTORS>. <REFLECTORS> is a list of <REFLECTOR> nodes, each of which has a few attributes. The goal is to flatten this XML. This is the XSL I'm using: <xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:fo="http://www.w3.org/1999/XSL/Format" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:fn="http://www.w3.org/2005/xpath-functions"> <xsl:output method="xml" encoding="UTF-8" indent="yes" omit-xml-declaration="yes" xml:space="preserve"/> <xsl:template match="/"> <BICYCLES> <xsl:apply-templates/> </BICYCLES> </xsl:template> <xsl:template match="BICYCLE"> <xsl:choose> <xsl:when test="WHEELS"> <xsl:apply-templates select="WHEELS"/> </xsl:when> <xsl:otherwise> <BICYCLE> <COLOR><xsl:value-of select="COLOR"/></COLOR> <WHEEL_TYPE/> <FLAT/> <REFLECTOR_NUM/> <COLOR/> <SHAPE/> </BICYCLE> </xsl:otherwise> </xsl:choose> </xsl:template> <xsl:template match="WHEELS"> <xsl:apply-templates select="WHEEL"/> </xsl:template> <xsl:template match="WHEEL"> <xsl:choose> <xsl:when test="REFLECTORS"> <xsl:apply-templates select="REFLECTORS"/> </xsl:when> <xsl:otherwise> <BICYCLE> <COLOR><xsl:value-of select="../../COLOR"/></COLOR> <WHEEL_TYPE><xsl:value-of select="WHEEL_TYPE"/></WHEEL_TYPE> <FLAT><xsl:value-of select="FLAT"/></FLAT> <REFLECTOR_NUM/> <COLOR/> <SHAPE/> </BICYCLE> </xsl:otherwise> </xsl:choose> </xsl:template> <xsl:template match="REFLECTORS"> <xsl:apply-templates select="REFLECTOR"/> </xsl:template> <xsl:template match="REFLECTOR"> <BICYCLE> <COLOR><xsl:value-of select="../../../../COLOR"/></COLOR> <WHEEL_TYPE><xsl:value-of select="../../WHEEL_TYPE"/></WHEEL_TYPE> <FLAT><xsl:value-of select="../../FLAT"/></FLAT> <REFLECTOR_NUM><xsl:value-of select="REFLECTOR_NUM"/></REFLECTOR_NUM> <COLOR><xsl:value-of select="COLOR"/></COLOR> <SHAPE><xsl:value-of select="SHAPE"/></SHAPE> </BICYCLE> </xsl:template> </xsl:stylesheet> The output is: <BICYCLES xmlns:fn="http://www.w3.org/2005/xpath-functions" xmlns:fo="http://www.w3.org/1999/XSL/Format" xmlns:xs="http://www.w3.org/2001/XMLSchema"> <BICYCLE> <COLOR>BLUE</COLOR> <WHEEL_TYPE>FRONT</WHEEL_TYPE> <FLAT>NO</FLAT> <REFLECTOR_NUM>1</REFLECTOR_NUM> <COLOR>RED</COLOR> <SHAPE>SQUARE</SHAPE> </BICYCLE> <BICYCLE> <COLOR>BLUE</COLOR> <WHEEL_TYPE>FRONT</WHEEL_TYPE> <FLAT>NO</FLAT> <REFLECTOR_NUM>2</REFLECTOR_NUM> <COLOR>WHITE</COLOR> <SHAPE>ROUND</SHAPE> </BICYCLE> <BICYCLE> <COLOR>BLUE</COLOR> <WHEEL_TYPE>REAR</WHEEL_TYPE> <FLAT>NO</FLAT> <REFLECTOR_NUM/> <COLOR/> <SHAPE/> </BICYCLE> </BICYCLES> What I don't like about this is that I'm outputting the color attribute in several forms: <COLOR><xsl:value-of select="../../../../COLOR"/></COLOR> <COLOR><xsl:value-of select="../../COLOR"/></COLOR> <COLOR><xsl:value-of select="COLOR"/></COLOR> <COLOR/> It seems like there ought to be a way to make a named template and invoke it from the various places where it is needed and pass some parameter that represents the path back to the <BICYCLE> node to which it refers. Is there a way to clean this up, say with a named template for bicycle fields, for wheel fields and for reflector fields? In the real world example this is based on, there are many more attributes to a "bicycle" than just color, and I want to make this XSL easy to change to include or exclude fields without having to change the XSL in multiple places.

    Read the article

  • urgent help needed to convert arabic html to pdf

    - by Mariam
    <div> <table border="1" width="500px"> <tr> <td colspan="2"> aspdotnetcodebook ????? ???????</td> </tr> <tr> <td> cell1 </td> <td> cell2 </td> </tr> <tr> <td colspan="2"> <asp:Label ID="lblLabel" runat="server" Text=""></asp:Label> <img alt="" src="logo.gif" style="width: 174px; height: 40px" /></td> </tr> <tr> <td colspan="2" dir="rtl"> <h1> <img alt="" height="168" src="http://a.cksource.com/c/1/inc/img/demo-little-red.jpg" style="margin-left: 10px; margin-right: 10px; float: left;" width="120" />????? ????? ??? ??? ?? ?? ??</h1> <p> &quot;<b>Little Red Riding Hood</b>&quot; is a famous <a href="http://en.wikipedia.org/wiki/Fairy_tale" title="Fairy tale">fairy tale</a> about a young girl&#39;s encounter with a wolf. The story has been changed considerably in its history and subject to numerous modern adaptations and readings.</p> <table align="right" border="1" cellpadding="1" cellspacing="1" style="width: 200px;"> <caption> <strong>International Names</strong></caption> <tr> <td> ????? ???????</td> <td> &nbsp;</td> </tr> <tr> <td> Italian</td> <td> <i>Cappuccetto Rosso</i></td> </tr> <tr> <td> Spanish</td> <td> <i>Caperucita Roja</i></td> </tr> </table> <p> The version most widely known today is based on the <a href="http://en.wikipedia.org/wiki/Brothers_Grimm" title="Brothers Grimm"> Brothers Grimm</a> variant. It is about a girl called Little Red Riding Hood, after the red <a href="http://en.wikipedia.org/wiki/Hood_(headgear%2529" title="Hood (headgear)">hooded</a> <a href="http://en.wikipedia.org/wiki/Cape" title="Cape">cape</a> or <a href="http://en.wikipedia.org/wiki/Cloak" title="Cloak">cloak</a> she wears. The girl walks through the woods to deliver food to her sick grandmother.</p> <p> A wolf wants to eat the girl but is afraid to do so in public. He approaches the girl, and she naïvely tells him where she is going. He suggests the girl pick some flowers, which she does. In the meantime, he goes to the grandmother&#39;s house and gains entry by pretending to be the girl. He swallows the grandmother whole, and waits for the girl, disguised as the grandmother.</p> <p> When the girl arrives, she notices he looks very strange to be her grandma. In most retellings, this eventually culminates with Little Red Riding Hood saying, &quot;My, what big teeth you have!&quot;<br /> To which the wolf replies, &quot;The better to eat you with,&quot; and swallows her whole, too.</p> <p> A <a href="http://en.wikipedia.org/wiki/Hunter" title="Hunter">hunter</a>, however, comes to the rescue and cuts the wolf open. Little Red Riding Hood and her grandmother emerge unharmed. They fill the wolf&#39;s body with heavy stones, which drown him when he falls into a well. Other versions of the story have had the grandmother shut in the closet instead of eaten, and some have Little Red Riding Hood saved by the hunter as the wolf advances on her rather than after she is eaten.</p> <p> The tale makes the clearest contrast between the safe world of the village and the dangers of the <a href="http://en.wikipedia.org/wiki/Enchanted_forest" title="Enchanted forest">forest</a>, conventional antitheses that are essentially medieval, though no written versions are as old as that.</p> </td> </tr> </table> </div> i use itextsharp to convert this content which is stored in DB to pdf file to be downloaded to the user i cant achieve this

    Read the article

  • Connecting to SQL Server in Php - Extension Err

    - by John Doe
    <html> <head> <title>Connecting </title> </head> <body> <?php $host = "*.*.*.*"; $username = "xxx"; $password = "xxx"; $db_name = "xxx"; $db = mssql_connect($host, $username,$password) or die("Couldnt Connect"); $selected = mssql_select_db($db_name, $db) or die("Couldnt open database"); ?> </body> </html> My error message is: Fatal error: Call to undefined function mssql_connect() in C:\wamp\www\php\dbase.php on line 12 I am using WampServer 2.0 on Php 5.3.0 When I check the extensions, php_mssql is Checked. I also checked the php.ini file to make sure it is not commented out. I have my file dbase.php saved in C:\wamp\www\php. I have tried stopping the service, closing everything, and running it again. I know the problem is that the extension file is not being included somehow. The below is copied from my php.ini file. Note I made all http = /http to avoid posting Links. ;;;;;;;;;;;;;;;;;;;;;;;;; ; Paths and Directories ; ;;;;;;;;;;;;;;;;;;;;;;;;; ; UNIX: "/path1:/path2" ;include_path = ".:/php/includes" ; Windows: "\path1;\path2" include_path = "C:\wamp\bin\php\php5.3.0\ext" ; ; PHP's default setting for include_path is ".;/path/to/php/pear" ; /http://php.net/include-path ; The root of the PHP pages, used only if nonempty. ; if PHP was not compiled with FORCE_REDIRECT, you SHOULD set doc_root ; if you are running php as a CGI under any web server (other than IIS) ; see documentation for security issues. The alternate is to use the ; cgi.force_redirect configuration below ; /http://php.net/doc-root doc_root = ; The directory under which PHP opens the script using /~username used only ; if nonempty. ; /http://php.net/user-dir user_dir = ; Directory in which the loadable extensions (modules) reside. ; /http://php.net/extension-dir ; extension_dir = "./" ; On windows: ; extension_dir = "ext" extension_dir = "c:/wamp/bin/php/php5.3.0/ext/" ; Whether or not to enable the dl() function. The dl() function does NOT work ; properly in multithreaded servers, such as IIS or Zeus, and is automatically ; disabled on them. ; /http://php.net/enable-dl enable_dl = Off ; cgi.force_redirect is necessary to provide security running PHP as a CGI under ; most web servers. Left undefined, PHP turns this on by default. You can ; turn it off here AT YOUR OWN RISK ; You CAN safely turn this off for IIS, in fact, you MUST. ; /http://php.net/cgi.force-redirect ;cgi.force_redirect = 1 ; if cgi.nph is enabled it will force cgi to always sent Status: 200 with ; every request. PHP's default behavior is to disable this feature. ;cgi.nph = 1 ; if cgi.force_redirect is turned on, and you are not running under Apache or Netscape ; (iPlanet) web servers, you MAY need to set an environment variable name that PHP ; will look for to know it is OK to continue execution. Setting this variable MAY ; cause security issues, KNOW WHAT YOU ARE DOING FIRST. ; /http://php.net/cgi.redirect-status-env ;cgi.redirect_status_env = ; ; cgi.fix_pathinfo provides real PATH_INFO/PATH_TRANSLATED support for CGI. PHP's ; previous behaviour was to set PATH_TRANSLATED to SCRIPT_FILENAME, and to not grok ; what PATH_INFO is. For more information on PATH_INFO, see the cgi specs. Setting ; this to 1 will cause PHP CGI to fix its paths to conform to the spec. A setting ; of zero causes PHP to behave as before. Default is 1. You should fix your scripts ; to use SCRIPT_FILENAME rather than PATH_TRANSLATED. ; /http://php.net/cgi.fix-pathinfo ;cgi.fix_pathinfo=1 ; FastCGI under IIS (on WINNT based OS) supports the ability to impersonate ; security tokens of the calling client. This allows IIS to define the ; security context that the request runs under. mod_fastcgi under Apache ; does not currently support this feature (03/17/2002) ; Set to 1 if running under IIS. Default is zero. ; /http://php.net/fastcgi.impersonate ;fastcgi.impersonate = 1; ; Disable logging through FastCGI connection. PHP's default behavior is to enable ; this feature. ;fastcgi.logging = 0 ; cgi.rfc2616_headers configuration option tells PHP what type of headers to ; use when sending HTTP response code. If it's set 0 PHP sends Status: header that ; is supported by Apache. When this option is set to 1 PHP will send ; RFC2616 compliant header. ; Default is zero. ; /http://php.net/cgi.rfc2616-headers ;cgi.rfc2616_headers = 0 ;;;;;;;;;;;;;;;; ; File Uploads ; ;;;;;;;;;;;;;;;; ; Whether to allow HTTP file uploads. ; /http://php.net/file-uploads file_uploads = On ; Temporary directory for HTTP uploaded files (will use system default if not ; specified). ; /http://php.net/upload-tmp-dir upload_tmp_dir = "c:/wamp/tmp" ; Maximum allowed size for uploaded files. ; /http://php.net/upload-max-filesize upload_max_filesize = 2M Also, my php.ini file is saved in: C:\wamp\bin\apache\Apache2.2.11\bin

    Read the article

  • Problems using HibernateTemplate: java.lang.NoSuchMethodError: org.hibernate.SessionFactory.openSession()Lorg/hibernate/classic/Session;

    - by user2104160
    I am quite new in Spring world and I am going crazy trying to integrate Hibernate in Spring application using HibernateTemplate abstract support class I have the following class to persist on database table: package org.andrea.myexample.HibernateOnSpring.entity; import javax.persistence.Entity; import javax.persistence.GeneratedValue; import javax.persistence.GenerationType; import javax.persistence.Id; import javax.persistence.Table; @Entity @Table(name="person") public class Person { @Id @GeneratedValue(strategy=GenerationType.AUTO) private int pid; private String firstname; private String lastname; public int getPid() { return pid; } public void setPid(int pid) { this.pid = pid; } public String getFirstname() { return firstname; } public void setFirstname(String firstname) { this.firstname = firstname; } public String getLastname() { return lastname; } public void setLastname(String lastname) { this.lastname = lastname; } } Next to it I have create an interface named PersonDAO in wich I only define my CRUD method. So I have implement this interface by a class named PersonDAOImpl that also extend the Spring abstract class HibernateTemplate: package org.andrea.myexample.HibernateOnSpring.dao; import java.util.List; import org.andrea.myexample.HibernateOnSpring.entity.Person; import org.springframework.orm.hibernate3.support.HibernateDaoSupport; public class PersonDAOImpl extends HibernateDaoSupport implements PersonDAO{ public void addPerson(Person p) { getHibernateTemplate().saveOrUpdate(p); } public Person getById(int id) { // TODO Auto-generated method stub return null; } public List<Person> getPersonsList() { // TODO Auto-generated method stub return null; } public void delete(int id) { // TODO Auto-generated method stub } public void update(Person person) { // TODO Auto-generated method stub } } (at the moment I am trying to implement only the addPerson() method) Then I have create a main class to test the operation of insert a new object into the database table: package org.andrea.myexample.HibernateOnSpring; import org.andrea.myexample.HibernateOnSpring.dao.PersonDAO; import org.andrea.myexample.HibernateOnSpring.entity.Person; import org.springframework.context.ApplicationContext; import org.springframework.context.support.ClassPathXmlApplicationContext; public class MainApp { public static void main(String[] args) { ApplicationContext context = new ClassPathXmlApplicationContext("Beans.xml"); System.out.println("Contesto recuperato: " + context); Person persona1 = new Person(); persona1.setFirstname("Pippo"); persona1.setLastname("Blabla"); System.out.println("Creato persona1: " + persona1); PersonDAO dao = (PersonDAO) context.getBean("personDAOImpl"); System.out.println("Creato dao object: " + dao); dao.addPerson(persona1); System.out.println("persona1 salvata nel database"); } } As you can see the PersonDAOImpl class extends HibernateTemplate so I think that it have to contain the operation of setting of the sessionFactory... The problem is that when I try to run this MainApp class I obtain the following exception: Exception in thread "main" java.lang.NoSuchMethodError: org.hibernate.SessionFactory.openSession()Lorg/hibernate/classic/Session; at org.springframework.orm.hibernate3.SessionFactoryUtils.doGetSession(SessionFactoryUtils.java:323) at org.springframework.orm.hibernate3.SessionFactoryUtils.getSession(SessionFactoryUtils.java:235) at org.springframework.orm.hibernate3.HibernateTemplate.getSession(HibernateTemplate.java:457) at org.springframework.orm.hibernate3.HibernateTemplate.doExecute(HibernateTemplate.java:392) at org.springframework.orm.hibernate3.HibernateTemplate.executeWithNativeSession(HibernateTemplate.java:374) at org.springframework.orm.hibernate3.HibernateTemplate.saveOrUpdate(HibernateTemplate.java:737) at org.andrea.myexample.HibernateOnSpring.dao.PersonDAOImpl.addPerson(PersonDAOImpl.java:12) at org.andrea.myexample.HibernateOnSpring.MainApp.main(MainApp.java:26) Why I have this problem? how can I solve it? To be complete I also insert my pom.xml containing my dependencies list: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.andrea.myexample</groupId> <artifactId>HibernateOnSpring</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging> <name>HibernateOnSpring</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <!-- Dipendenze di Spring Framework --> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-core</artifactId> <version>3.2.1.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-beans</artifactId> <version>3.2.1.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context</artifactId> <version>3.2.1.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context-support</artifactId> <version>3.2.1.RELEASE</version> </dependency> <dependency> <!-- Usata da Hibernate 4 per LocalSessionFactoryBean --> <groupId>org.springframework</groupId> <artifactId>spring-orm</artifactId> <version>3.2.0.RELEASE</version> </dependency> <!-- Dipendenze per AOP --> <dependency> <groupId>cglib</groupId> <artifactId>cglib</artifactId> <version>2.2.2</version> </dependency> <!-- Dipendenze per Persistence Managment --> <dependency> <!-- Apache BasicDataSource --> <groupId>commons-dbcp</groupId> <artifactId>commons-dbcp</artifactId> <version>1.4</version> </dependency> <dependency> <!-- MySQL database driver --> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.23</version> </dependency> <dependency> <!-- Hibernate --> <groupId>org.hibernate</groupId> <artifactId>hibernate-core</artifactId> <version>4.1.9.Final</version> </dependency> </dependencies> </project>

    Read the article

  • Connecting to mssql in Php - Extension Err

    - by John Doe
    <html> <head> <title>Connecting </title> </head> <body> <?php $host = "*.*.*.*"; $username = "xxx"; $password = "xxx"; $db_name = "xxx"; $db = mssql_connect($host, $username,$password) or die("Couldnt Connect"); $selected = mssql_select_db($db_name, $db) or die("Couldnt open database"); ?> </body> </html> My error message is: Fatal error: Call to undefined function mssql_connect() in C:\wamp\www\php\dbase.php on line 12 I am using WampServer 2.0 on Php 5.3.0 When I check the extensions, php_mssql is Checked. I also checked the php.ini file to make sure it is not commented out. I have my file dbase.php saved in C:\wamp\www\php. I have tried stopping the service, closing everything, and running it again. I know the problem is that the extension file is not being included somehow. The below is copied from my php.ini file. Note I made all http = /http to avoid posting Links. ;;;;;;;;;;;;;;;;;;;;;;;;; ; Paths and Directories ; ;;;;;;;;;;;;;;;;;;;;;;;;; ; UNIX: "/path1:/path2" ;include_path = ".:/php/includes" ; Windows: "\path1;\path2" include_path = "C:\wamp\bin\php\php5.3.0\ext" ; ; PHP's default setting for include_path is ".;/path/to/php/pear" ; /http://php.net/include-path ; The root of the PHP pages, used only if nonempty. ; if PHP was not compiled with FORCE_REDIRECT, you SHOULD set doc_root ; if you are running php as a CGI under any web server (other than IIS) ; see documentation for security issues. The alternate is to use the ; cgi.force_redirect configuration below ; /http://php.net/doc-root doc_root = ; The directory under which PHP opens the script using /~username used only ; if nonempty. ; /http://php.net/user-dir user_dir = ; Directory in which the loadable extensions (modules) reside. ; /http://php.net/extension-dir ; extension_dir = "./" ; On windows: ; extension_dir = "ext" extension_dir = "c:/wamp/bin/php/php5.3.0/ext/" ; Whether or not to enable the dl() function. The dl() function does NOT work ; properly in multithreaded servers, such as IIS or Zeus, and is automatically ; disabled on them. ; /http://php.net/enable-dl enable_dl = Off ; cgi.force_redirect is necessary to provide security running PHP as a CGI under ; most web servers. Left undefined, PHP turns this on by default. You can ; turn it off here AT YOUR OWN RISK ; You CAN safely turn this off for IIS, in fact, you MUST. ; /http://php.net/cgi.force-redirect ;cgi.force_redirect = 1 ; if cgi.nph is enabled it will force cgi to always sent Status: 200 with ; every request. PHP's default behavior is to disable this feature. ;cgi.nph = 1 ; if cgi.force_redirect is turned on, and you are not running under Apache or Netscape ; (iPlanet) web servers, you MAY need to set an environment variable name that PHP ; will look for to know it is OK to continue execution. Setting this variable MAY ; cause security issues, KNOW WHAT YOU ARE DOING FIRST. ; /http://php.net/cgi.redirect-status-env ;cgi.redirect_status_env = ; ; cgi.fix_pathinfo provides real PATH_INFO/PATH_TRANSLATED support for CGI. PHP's ; previous behaviour was to set PATH_TRANSLATED to SCRIPT_FILENAME, and to not grok ; what PATH_INFO is. For more information on PATH_INFO, see the cgi specs. Setting ; this to 1 will cause PHP CGI to fix its paths to conform to the spec. A setting ; of zero causes PHP to behave as before. Default is 1. You should fix your scripts ; to use SCRIPT_FILENAME rather than PATH_TRANSLATED. ; /http://php.net/cgi.fix-pathinfo ;cgi.fix_pathinfo=1 ; FastCGI under IIS (on WINNT based OS) supports the ability to impersonate ; security tokens of the calling client. This allows IIS to define the ; security context that the request runs under. mod_fastcgi under Apache ; does not currently support this feature (03/17/2002) ; Set to 1 if running under IIS. Default is zero. ; /http://php.net/fastcgi.impersonate ;fastcgi.impersonate = 1; ; Disable logging through FastCGI connection. PHP's default behavior is to enable ; this feature. ;fastcgi.logging = 0 ; cgi.rfc2616_headers configuration option tells PHP what type of headers to ; use when sending HTTP response code. If it's set 0 PHP sends Status: header that ; is supported by Apache. When this option is set to 1 PHP will send ; RFC2616 compliant header. ; Default is zero. ; /http://php.net/cgi.rfc2616-headers ;cgi.rfc2616_headers = 0 ;;;;;;;;;;;;;;;; ; File Uploads ; ;;;;;;;;;;;;;;;; ; Whether to allow HTTP file uploads. ; /http://php.net/file-uploads file_uploads = On ; Temporary directory for HTTP uploaded files (will use system default if not ; specified). ; /http://php.net/upload-tmp-dir upload_tmp_dir = "c:/wamp/tmp" ; Maximum allowed size for uploaded files. ; /http://php.net/upload-max-filesize upload_max_filesize = 2M Also, my php.ini file is saved in: C:\wamp\bin\apache\Apache2.2.11\bin

    Read the article

< Previous Page | 695 696 697 698 699 700 701 702  | Next Page >