Search Results

Search found 59554 results on 2383 pages for 'distributed data mining'.

Page 7/2383 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • Big Data Appliance X4-2 Release Announcement

    - by Jean-Pierre Dijcks
    Today we are announcing the release of the 3rd generation Big Data Appliance. Read the Press Release here. Software Focus The focus for this 3rd generation of Big Data Appliance is: Comprehensive and Open - Big Data Appliance now includes all Cloudera Software, including Back-up and Disaster Recovery (BDR), Search, Impala, Navigator as well as the previously included components (like CDH, HBase and Cloudera Manager) and Oracle NoSQL Database (CE or EE). Lower TCO then DIY Hadoop Systems Simplified Operations while providing an open platform for the organization Comprehensive security including the new Audit Vault and Database Firewall software, Apache Sentry and Kerberos configured out-of-the-box Hardware Update A good place to start is to quickly review the hardware differences (no price changes!). On a per node basis the following is a comparison between old and new (X3-2) hardware: Big Data Appliance X3-2 Big Data Appliance X4-2 CPU 2 x 8-Core Intel® Xeon® E5-2660 (2.2 GHz) 2 x 8-Core Intel® Xeon® E5-2650 V2 (2.6 GHz) Memory 64GB 64GB Disk 12 x 3TB High Capacity SAS 12 x 4TB High Capacity SAS InfiniBand 40Gb/sec 40Gb/sec Ethernet 10Gb/sec 10Gb/sec For all the details on the environmentals and other useful information, review the data sheet for Big Data Appliance X4-2. The larger disks give BDA X4-2 33% more capacity over the previous generation while adding faster CPUs. Memory for BDA is expandable to 512 GB per node and can be done on a per-node basis, for example for NameNodes or for HBase region servers, or for NoSQL Database nodes. Software Details More details in terms of software and the current versions (note BDA follows a three monthly update cycle for Cloudera and other software): Big Data Appliance 2.2 Software Stack Big Data Appliance 2.3 Software Stack Linux Oracle Linux 5.8 with UEK 1 Oracle Linux 6.4 with UEK 2 JDK JDK 6 JDK 7 Cloudera CDH CDH 4.3 CDH 4.4 Cloudera Manager CM 4.6 CM 4.7 And like we said at the beginning it is important to understand that all other Cloudera components are now included in the price of Oracle Big Data Appliance. They are fully supported by Oracle and available for all BDA customers. For more information: Big Data Appliance Data Sheet Big Data Connectors Data Sheet Oracle NoSQL Database Data Sheet (CE | EE) Oracle Advanced Analytics Data Sheet

    Read the article

  • Review: Data Modeling 101

    I just recently read “Data Modeling 101”by Scott W. Ambler where he gave an overview of fundamental data modeling skills. I think this article was excellent for anyone who was just starting to learn or refresh their skills in regards to the modeling of data.  Scott defines data modeling as the act of exploring data oriented structures.  He goes on to explain about how data models are actually used by defining three different types of models. Types of Data Models Conceptual Data Model  Logical Data Model (LDMs) Physical Data Model(PDMs) He further expands on modeling by exploring common data modeling notations because there are no industry standards for the practice of data modeling. Scott then defines how to actually model data by expanding on entities, attributes, identities, and relationships which are the basic building blocks of data models. In addition he discusses the value of normalization for redundancy and demoralization for performance. Finally, he discuss ways in which Developers and DBAs can become better data modelers through the use of practice, and seeking guidance from more experienced data modelers.

    Read the article

  • HTML5 data-* (custom data attribute)

    - by Renso
    Goal: Store custom data with the data attribute on any DOM element and retrieve it. Previously under HTML4 we used to use classes to store custom data, something to the affect of <input class="account void limit-5000 over-4999" /> and then have to parse the data out of the class In a book published by Peter-Paul Koch in 2007, ppk on JavaScript, he explains why and how to use custom attributes to make data more accessible to JavaScript, using name-value pairs. Accessing a custom attribute account-limit=5000 is much easier and more intuitive than trying to parse it out of a class, Plus, what if the class name for example "color-5" has a representative class definition in a CSS stylesheet that hides it away or worse some JavaScript plugin that automatically adds 5000 to it, or something crazy like that, just because it is a valid class name. As you can see there are quite a few reasons why using classes is a bad design and why it was important to define custom data attributes in HTML5. Syntax: You define the data attribute by simply prefixing any data item you want to store with any HTML element with "data-". For example to store our customers account data with a hidden input element: <input type="hidden" data-account="void" data-limit=5000 data-over=4999  /> How to access the data: account  -     element.dataset.account limit    -     element.dataset.limit You can also access it by using the more traditional get/setAttribute method or if using jQuery $('#element').attr('data-account','void') Browser support: All except for IE. There is an IE hack around this at http://gist.github.com/362081. Special Note: Be AWARE, do not use upper-case when defining your data elements as it is all converted to lower-case when reading it, so: data-myAccount="A1234" will not be found when you read it with: element.dataset.myAccount Use only lowercase when reading so this will work: element.dataset.myaccount

    Read the article

  • Master Data Management – A Foundation for Big Data Analysis

    - by Manouj Tahiliani
    While Master Data Management has crossed the proverbial chasm and is on its way to becoming mainstream, businesses are being hammered by a new megatrend called Big Data. Big Data is characterized by massive volumes, its high frequency, the variety of less structured data sources such as email, sensors, smart meters, social networks, and Weblogs, and the need to analyze vast amounts of data to determine value to improve upon management decisions. Businesses that have embraced MDM to get a single, enriched and unified view of Master data by resolving semantic discrepancies and augmenting the explicit master data information from within the enterprise with implicit data from outside the enterprise like social profiles will have a leg up in embracing Big Data solutions. This is especially true for large and medium-sized businesses in industries like Retail, Communications, Financial Services, etc that would find it very challenging to get comprehensive analytical coverage and derive long-term success without resolving the limitations of the heterogeneous topology that leads to disparate, fragmented and incomplete master data. For analytical success from Big Data or in other words ROI from Big Data Investments, businesses need to acquire, organize and analyze the deluge of data to make better decisions. There will need to be a coexistence of structured and unstructured data and to maintain a tight link between the two to extract maximum insights. MDM is the catalyst that helps maintain that tight linkage by providing an understanding about the identity, characteristics of Persons, Companies, Products, Suppliers, etc. associated with the Big Data and thereby help accelerate ROI. In my next post I will discuss about patterns for co-existing Big Data Solutions and MDM. Feel free to provide comments and thoughts on above as well as Integration or Architectural patterns.

    Read the article

  • How to Assure an Effective Data Model

    As a general rule in my opinion the effectiveness of a data model can be directly related to the accuracy and complexity of a project’s requirements. For example there is no need to work on very detailed data models when the details surrounding a specific data model have not been defined or even clarified. Developing data models when the clarity of project requirements is limited tends to introduce designed issues because the proper details to create an effective data model are not even known. One way to avoid this issue is to create data models that correspond to the complexity of the existing project requirements so that when requirements are updated then new data models can be created based any new discoveries regarding requirements on a fine grain level.  This allows for data models to be composed of general entities to be created initially when a project’s requirements are very vague and then the entities are refined as new and more substantial requirements are defined or redefined. This promotes communication amongst all stakeholders within a project as they go through the process of defining and finalizing project requirements.In addition, here are some general tips that can be applied to projects in regards to data modeling.Initially model all data generally and slowly reactor the data model as new requirements and business constraints are applied to a project.Ensure that data modelers have the proper tools and training they need to design a data model accurately.Create a common location for all project documents so that everyone will be able to review a project’s data models along with any other project documentation.All data models should follow a clear naming schema that tells readers the intended purpose for the data and how it is going to be applied within a project.

    Read the article

  • SQL SERVER – Why Do We Need Data Quality Services – Importance and Significance of Data Quality Services (DQS)

    - by pinaldave
    Databases are awesome.  I’m sure my readers know my opinion about this – I have made SQL Server my life’s work after all!  I love technology and all things computer-related.  Of course, even with my love for technology, I have to admit that it has its limits.  For example, it takes a human brain to notice that data has been input incorrectly.  Computer “brains” might be faster than humans, but human brains are still better at pattern recognition.  For example, a human brain will notice that “300” is a ridiculous age for a human to be, but to a computer it is just a number.  A human will also notice similarities between “P. Dave” and “Pinal Dave,” but this would stump most computers. In a database, these sorts of anomalies are incredibly important.  Databases are often used by multiple people who rely on this data to be true and accurate, so data quality is key.  That is why the improved SQL Server features Master Data Management talks about Data Quality Services.  This service has the ability to recognize and flag anomalies like out of range numbers and similarities between data.  This allows a human brain with its pattern recognition abilities to double-check and ensure that P. Dave is the same as Pinal Dave. A nice feature of Data Quality Services is that once you set the rules for the program to follow, it will not only keep your data organized in the future, but go to the past and “fix up” any data that has already been entered.  It also allows you do combine data from multiple places and it will apply these rules across the board, so that you don’t have any weird issues that crop up when trying to fit a round peg into a square hole. There are two parts of Data Quality Services that help you accomplish all these neat things.  The first part is DQL Server, which you can think of as the hardware component of the system.  It is installed on the side of (it needs to install separately after SQL Server is installed) SQL Server and runs quietly in the background, performing all its cleanup services. DQS Client is the user interface that you can interact with to set the rules and check over your data.  There are three main aspects of Client: knowledge base management, data quality projects and administration.  Knowledge base management is the part of the system that allows you to set the rules, or program the “knowledge base,” so that your database is clean and consistent. Data Quality projects are what run in the background and clean up the data that is already present.  The administration allows you to check out what DQS Client is doing, change rules, and generally oversee the entire process.  The whole process is user-friendly and a pleasure to use.  I highly recommend implementing Data Quality Services in your database. Here are few of my blog posts which are related to Data Quality Services and I encourage you to try this out. SQL SERVER – Installing Data Quality Services (DQS) on SQL Server 2012 SQL SERVER – Step by Step Guide to Beginning Data Quality Services in SQL Server 2012 – Introduction to DQS SQL SERVER – DQS Error – Cannot connect to server – A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessions” – SetDataQualitySessionPhaseTwo SQL SERVER – Configuring Interactive Cleansing Suggestion Min Score for Suggestions in Data Quality Services (DQS) – Sensitivity of Suggestion SQL SERVER – Unable to DELETE Project in Data Quality Projects (DQS) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Data Quality Services, DQS

    Read the article

  • Welcome Oracle Data Integration 12c: Simplified, Future-Ready Solutions with Extreme Performance

    - by Irem Radzik
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 The big day for the Oracle Data Integration team has finally arrived! It is my honor to introduce you to Oracle Data Integration 12c. Today we announced the general availability of 12c release for Oracle’s key data integration products: Oracle Data Integrator 12c and Oracle GoldenGate 12c. The new release delivers extreme performance, increase IT productivity, and simplify deployment, while helping IT organizations to keep pace with new data-oriented technology trends including cloud computing, big data analytics, real-time business intelligence. With the 12c release Oracle becomes the new leader in the data integration and replication technologies as no other vendor offers such a complete set of data integration capabilities for pervasive, continuous access to trusted data across Oracle platforms as well as third-party systems and applications. Oracle Data Integration 12c release addresses data-driven organizations’ critical and evolving data integration requirements under 3 key themes: Future-Ready Solutions Extreme Performance Fast Time-to-Value       There are many new features that support these key differentiators for Oracle Data Integrator 12c and for Oracle GoldenGate 12c. In this first 12c blog post, I will highlight only a few:·Future-Ready Solutions to Support Current and Emerging Initiatives: Oracle Data Integration offer robust and reliable solutions for key technology trends including cloud computing, big data analytics, real-time business intelligence and continuous data availability. Via the tight integration with Oracle’s database, middleware, and application offerings Oracle Data Integration will continue to support the new features and capabilities right away as these products evolve and provide advance features. E    Extreme Performance: Both GoldenGate and Data Integrator are known for their high performance. The new release widens the gap even further against competition. Oracle GoldenGate 12c’s Integrated Delivery feature enables higher throughput via a special application programming interface into Oracle Database. As mentioned in the press release, customers already report up to 5X higher performance compared to earlier versions of GoldenGate. Oracle Data Integrator 12c introduces parallelism that significantly increases its performance as well. Fast Time-to-Value via Higher IT Productivity and Simplified Solutions:  Oracle Data Integrator 12c’s new flow-based declarative UI brings superior developer productivity, ease of use, and ultimately fast time to market for end users.  It also gives the ability to seamlessly reuse mapping logic speeds development.Oracle GoldenGate 12c ‘s Integrated Delivery feature automatically optimally tunes the process, saving time while improving performance. This is just a quick glimpse into Oracle Data Integrator 12c and Oracle GoldenGate 12c. On November 12th we will reveal much more about the new release in our video webcast "Introducing 12c for Oracle Data Integration". Our customer and partner speakers, including SolarWorld, BT, Rittman Mead will join us in launching the new release. Please join us at this free event to learn more from our executives about the 12c release, hear our customers’ perspectives on the new features, and ask your questions to our experts in the live Q&A. Also, please continue to follow our blogs, tweets, and Facebook updates as we unveil more about the new features of the latest release. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Standard Network Tiers in a Distributed N-Tier System

    Distributed N-Tier client/server architecture allows for segments of an application to be broken up and distributed across multiple locations on a network.  Listed below are standard tiers in a Distributed N-Tier System. End-User Client Tier The End-User Client is responsible for sending and receiving requests from web servers and other applications servers and translating the responses so that the End-User can interpret the data effectively. The primary roles for this tier are to communicate with servers and translate server responses back to the end-user to interpret. Business-Specific Functions Validate Data Display Data Send Data to Webserver Web Server Tier The Web server tier processes new requests for information coming in from the HTTP and HTTPS ports. This primarily handles the generation of user interfaces and calls the application server when needed to access Data and business logic when needed. Business-specific functions Send Data to application server Format Data for Display Validate Data Application Server Tier The application server stores and executes predefined business logic that is applied to various pieces of data as the business determines. The processed data is then returned back to the Webserver. Additionally, this server directly calls the database to obtain and store any data used by the system Business-Specific Functions Validate Data Process Data Send Data to Database Server Database Server Tier The Database Server is responsible for storing and returning all data need by the calling applications. The primary role for this this server is storage. Data is stored as needed and can be recalled at any point later in time. Business-Specific Functions Insert Data Delete Data Return Data to Application Server

    Read the article

  • Fast distributed filesystem for a large amounts of data with metadata in database

    - by undefined hero
    My project uses several processing machines and one storage machine. Currently storage organized with a MSSQL filetable shared folder. Every file in storage have some metadata in database. Processing machines executes tasks for which they needed files from storage and their metadata. After completing task, processing machine puts resulting data back in storage. From there its taken by another processing machine, which also generates some file and put it back in storage. And etc. Everything was fine, but as number of processing machines increases, I found myself bottlenecked myself with storage machines hard drive performance. So I want processing machines to put files in distributed FS. to lift load from storage machines, from which they can take data from each other, not only storage machine. Can You suggest a particular distributed FS which meets my needs? Or there is another way to solve this problem, without it? Amounts of data in FS in one time are like several terabytes. (storage can handle this, but processors cannot). Data consistence is critical. Read write policy is: once file is written - its constant and may be only removed, but not modified. My current platform is Windows, but I'm ready to switch it, if there is a substantially more convenient solution on another one.

    Read the article

  • Data Mining: Part 14 Export DMX results with Integration Services

    In this chapter we will explain how to work with Data Mining models and the Integration Services. Specifically, we will talk about the Data Mining Query Task in SSIS. Free ebook "TortoiseSVN and Subversion Cookbook - Oracle Edition"Use these recipes to work better, faster, and do things you never knew you could do with SVN. If you're new to source control, this book provides a concise guide to getting the most out of Subversion. Download it for free.

    Read the article

  • data structure for counting frequencies in a database table-like format

    - by user373312
    i was wondering if there is a data structure optimized to count frequencies against data that is stored in a database table-like format. for example, the data comes in a (comma) delimited format below. col1, col2, col3 x, a, green x, b, blue ... y, c, green now i simply want to count the frequency of col1=x or col1=x and col2=green. i have been storing the data in a database table, but in my profiling and from empirical observation, database connection is the bottle-neck. i have tried using in-memory database solutions too, and that works quite well; the only problem is memory requirements and quirky init/destroy calls. also, i work mainly with java, but have experience with .net, and was wondering if there was any api to work with "tabular" data in a linq way using java. any help is appreciated.

    Read the article

  • Big Data – Final Wrap and What Next – Day 21 of 21

    - by Pinal Dave
    In yesterday’s blog post we explored various resources related to learning Big Data and in this blog post we will wrap up this 21 day series on Big Data. I have been exploring various terms and technology related to Big Data this entire month. It was indeed fun to write about Big Data in 21 days but the subject of Big Data is much bigger and larger than someone can cover it in 21 days. My first goal was to write about the basics and I think we have got that one covered pretty well. During this 21 days I have received many questions and answers related to Big Data. I have covered a few of the questions in this series and a few more I will be covering in the next coming months. Now after understanding Big Data basics. I am personally going to do a list of the things next. I thought I will share the same with you as this will give you a good idea how to continue the journey of the Big Data. Build a schedule to read various Apache documentations Watch all Pluralsight Courses Explore HortonWorks Sandbox Start building presentation about Big Data – this is a great way to learn something new Present in User Groups Meetings on Big Data Topics Write more blog posts about Big Data I am going to continue learning about Big Data – I want you to continue learning Big Data. Please leave a comment how you are going to continue learning about Big Data. I will publish all the informative comments on this blog with due credit. I want to end this series with the infographic by UMUC. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Partner Webcast - Focus on Oracle Data Profiling and Data Quality 11g

    - by lukasz.romaszewski(at)oracle.com
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-ansi-language:RO;} Partner Webcast Focus on Oracle Data Profiling and Data Quality 11g February 24th, 12am  CET   Oracle offers an integrated suite Data Quality software architected to discover and correct today's data quality problems and establish a platform prepared for tomorrow's yet unknown data challenges. Oracle Data Profiling provides data investigation, discovery, and profiling in support of quality, migration, integration, stewardship, and governance initiatives. It includes a broad range of features that expand upon basic profiling, including automated monitoring, business-rule validation, and trend analysis. Oracle Data Quality for Data Integrator provides cleansing, standardization, matching, address validation, location enrichment, and linking functions for global customer data and operational business data. It ensures that data adheres to established standards that are adaptable to fit each organization's specific needs.  Both single - and double - byte data are processed in local languages to provide a unique and centralized view of customers, products and services.   During this in-person briefing, Data Integration Solution Specialists will be providing a technical overview and a walkthrough.   Agenda ·         Oracle Data Integration Strategy overview ·         A focus on Oracle Data Profiling and Oracle Data Quality for Data Integrator: o   Oracle Data Profiling o   Oracle Data Quality for Data Integrator o   Live demoo   Q&A Delivery Format  This FREE online LIVE eSeminar will be delivered over the Web and Conference Call. Registrations   received less than 24hours  prior to start time may not receive confirmation to attend. To register , click here. For any questions please contact [email protected]

    Read the article

  • For distributed applications, which to use, ASIO vs. MPI?

    - by Rhubarb
    I am a bit confused about this. If you're building a distributed application, which in some cases may perform parallel operations (although not necessarily mathematical), should you use ASIO or something like MPI? I take it MPI is a higher level than ASIO, but it's not clear where in the stack one would begin.

    Read the article

  • Big Data – Buzz Words: What is HDFS – Day 8 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is MapReduce. In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – HDFS. What is HDFS ? HDFS stands for Hadoop Distributed File System and it is a primary storage system used by Hadoop. It provides high performance access to data across Hadoop clusters. It is usually deployed on low-cost commodity hardware. In commodity hardware deployment server failures are very common. Due to the same reason HDFS is built to have high fault tolerance. The data transfer rate between compute nodes in HDFS is very high, which leads to reduced risk of failure. HDFS creates smaller pieces of the big data and distributes it on different nodes. It also copies each smaller piece to multiple times on different nodes. Hence when any node with the data crashes the system is automatically able to use the data from a different node and continue the process. This is the key feature of the HDFS system. Architecture of HDFS The architecture of the HDFS is master/slave architecture. An HDFS cluster always consists of single NameNode. This single NameNode is a master server and it manages the file system as well regulates access to various files. In additional to NameNode there are multiple DataNodes. There is always one DataNode for each data server. In HDFS a big file is split into one or more blocks and those blocks are stored in a set of DataNodes. The primary task of the NameNode is to open, close or rename files and directory and regulate access to the file system, whereas the primary task of the DataNode is read and write to the file systems. DataNode is also responsible for the creation, deletion or replication of the data based on the instruction from NameNode. In reality, NameNode and DataNode are software designed to run on commodity machine build in Java language. Visual Representation of HDFS Architecture Let us understand how HDFS works with the help of the diagram. Client APP or HDFS Client connects to NameSpace as well as DataNode. Client App access to the DataNode is regulated by NameSpace Node. NameSpace Node allows Client App to connect to the DataNode based by allowing the connection to the DataNode directly. A big data file is divided into multiple data blocks (let us assume that those data chunks are A,B,C and D. Client App will later on write data blocks directly to the DataNode. Client App does not have to directly write to all the node. It just has to write to any one of the node and NameNode will decide on which other DataNode it will have to replicate the data. In our example Client App directly writes to DataNode 1 and detained 3. However, data chunks are automatically replicated to other nodes. All the information like in which DataNode which data block is placed is written back to NameNode. High Availability During Disaster Now as multiple DataNode have same data blocks in the case of any DataNode which faces the disaster, the entire process will continue as other DataNode will assume the role to serve the specific data block which was on the failed node. This system provides very high tolerance to disaster and provides high availability. If you notice there is only single NameNode in our architecture. If that node fails our entire Hadoop Application will stop performing as it is a single node where we store all the metadata. As this node is very critical, it is usually replicated on another clustered as well as on another data rack. Though, that replicated node is not operational in architecture, it has all the necessary data to perform the task of the NameNode in the case of the NameNode fails. The entire Hadoop architecture is built to function smoothly even there are node failures or hardware malfunction. It is built on the simple concept that data is so big it is impossible to have come up with a single piece of the hardware which can manage it properly. We need lots of commodity (cheap) hardware to manage our big data and hardware failure is part of the commodity servers. To reduce the impact of hardware failure Hadoop architecture is built to overcome the limitation of the non-functioning hardware. Tomorrow In tomorrow’s blog post we will discuss the importance of the relational database in Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Oracle Data Integration 12c: Perspectives of Industry Experts, Customers and Partners

    - by Irem Radzik
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 As you may have seen from our recent blog posts on Oracle Data Integrator 12c and Oracle GoldenGate 12c, we are very excited to share with you the great new features the 12c release brings to Oracle’s data integration solutions. And, fortunately we are not alone in this sentiment. Since the press announcement October 17th, which incorporates our customers' and experts' testimonials, we have seen positive comments in leading technology publications and social media as well. Here are some examples: In CIO and PCWorld you can find Joab Jackson’s article, Oracle Data Integrator 12c ready for real-time analysis, where wrote about the tight integration between Oracle Data Integrator and Oracle GoldenGate . He noted “Heeding the call from enterprise customers who clamor for more immediacy in their data-driven reports, Oracle has updated its data-integration software portfolio so that it can more rapidly deliver data to data warehouses and analysis applications.” Integration Developer News’ Vance McCarthy wrote the article Oracle Ships ‘Future Proofs’ Integration Tools for Traditional, Cloud, Big Data, Real-Time Projects and mentioned that “Oracle Data Integrator 12c and Oracle GoldenGate 12c sport a wide range of improvements to let devs more easily deliver data integration for cloud, analytics, big data and other new projects that leverage multiple datasets for business.“ InformationWeek’s Doug Henschen gave a great overview to several key features including the new flow-based UI in Oracle Data Integrator. Doug said “Oracle Data Integrator 12c introduces a complete makeover of the job-building experience, while real-time oriented GoldenGate 12c introduces performance gains “. In Database Trends and Applications’ article Oracle Strengthens Data Integration with Release of Oracle Data Integrator 12c and Oracle GoldenGate 12c highlighted the productivity aspect of the new solution with his remarks: “tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c enables developers to leverage Oracle GoldenGate’s low overhead, real-time change data capture completely within the Oracle Data Integrator Studio without additional training”. We are also thrilled about what our customers and partners have to say about our products and the new release. And we are equally excited to share those perspectives with you in our upcoming launch video webcast on November 12th. SolarWorld Industries America’s Senior Database Manager, Russ Toyama will join our executives in our studio in Redwood Shores to discuss GoldenGate’s core benefits and the new release, while Surren Partharb, CTO of Strategic Technology Services for BT, and Mark Rittman, CTO of Rittman Mead, will provide their comments via the interviews conducted in the UK. This interactive panel discussion in the video webcast will unveil the new release with the expertise of our development executives and the great insight from our customers and partners. In addition, our product experts will be available online to answer chat questions. This is really a great opportunity to learn how Oracle's data integration offering has changed the integration and replication technology space with the new release, and established itself as the new leader. If you have not registered for this free event yet, you can do so via this link. We will run the live event at 8am PT/4pm GMT, followed by a replay of the event with live chat for Q&A  at 10am PT/6pm GMT. The replay will be available on-demand for those who register but cannot attend either session on November 12th. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif"; mso-fareast-font-family:"Times New Roman";}

    Read the article

  • ideas for a distributed cache proxy server

    - by Neeraj
    Hi everyone! I am implementing, a distributed cache proxy server.I have an idea of the HTTP and related stuff, so i am rather concentrating on the sub part "Distributed data storage". From some search on web i found that this could be done using Distributed Hash Tables(DHT). I was wondering if there exists some kind of library for this preferably in C/C++. Any better suggestions for the same will also be appreciated.

    Read the article

  • are there any useful datasets available on the web for data mining?

    - by niko
    Hi, Does anyone know any good resource where example (real) data can be downloaded for experimenting statistics and machine learning techniques such as decision trees etc? Currently I am studying machine learning techniques and it would be very helpful to have real data for evaluating the accuracy of various tools. If anyone knows any good resource (perhaps csv, xls files or any other format) I would be very thankful for a suggestion.

    Read the article

  • Open source Distributed computing tool

    - by Prasenjit Chatterjee
    I want to set up distributed computing on my Local Area Network consisting a bunch of PCs. Say for the time being each one has the same OS - Windows 7. Is there any opensource tool available so that I can share the resources of these PCs over the LAN and increase the speed of my applications and the memory space. I know that if its a graphics intensive application then, it is not very practical, because the speed of LAN is much slower than Graphics processors. But I only want to share general applications, some basic softwares, Programming language IDEs etc. Can anyone shed some light on it? Thanks in Advance..

    Read the article

  • distributed, fault-tolerant network block device

    - by gucki
    I'm looking for a distributed, fault-tolerant network storage system which exposes block devices (not filesystems) on the clients. A client's block device should write simultaneously to several storage nodes A client's block device should not fail as long as not all storage nodes backing it went down The master should automatically redistribute storages' data when a storage node fails or gets added/ removed A single master (which is for metadata only) is fine So ideally the architecture would be very similar to moosefs (http://www.moosefs.org/) but instead of exposing a real filesystem mounted using a fuse client it'd expose block devices on the clients. I know of iscsi and drbd but both don't seem to offer what I'm looking for. Or am I missing something?

    Read the article

  • New Big Data Appliance Security Features

    - by mgubar
    The Oracle Big Data Appliance (BDA) is an engineered system for big data processing.  It greatly simplifies the deployment of an optimized Hadoop Cluster – whether that cluster is used for batch or real-time processing.  The vast majority of BDA customers are integrating the appliance with their Oracle Databases and they have certain expectations – especially around security.  Oracle Database customers have benefited from a rich set of security features:  encryption, redaction, data masking, database firewall, label based access control – and much, much more.  They want similar capabilities with their Hadoop cluster.    Unfortunately, Hadoop wasn’t developed with security in mind.  By default, a Hadoop cluster is insecure – the antithesis of an Oracle Database.  Some critical security features have been implemented – but even those capabilities are arduous to setup and configure.  Oracle believes that a key element of an optimized appliance is that its data should be secure.  Therefore, by default the BDA delivers the “AAA of security”: authentication, authorization and auditing. Security Starts at Authentication A successful security strategy is predicated on strong authentication – for both users and software services.  Consider the default configuration for a newly installed Oracle Database; it’s been a long time since you had a legitimate chance at accessing the database using the credentials “system/manager” or “scott/tiger”.  The default Oracle Database policy is to lock accounts thereby restricting access; administrators must consciously grant access to users. Default Authentication in Hadoop By default, a Hadoop cluster fails the authentication test. For example, it is easy for a malicious user to masquerade as any other user on the system.  Consider the following scenario that illustrates how a user can access any data on a Hadoop cluster by masquerading as a more privileged user.  In our scenario, the Hadoop cluster contains sensitive salary information in the file /user/hrdata/salaries.txt.  When logged in as the hr user, you can see the following files.  Notice, we’re using the Hadoop command line utilities for accessing the data: $ hadoop fs -ls /user/hrdataFound 1 items-rw-r--r--   1 oracle supergroup         70 2013-10-31 10:38 /user/hrdata/salaries.txt$ hadoop fs -cat /user/hrdata/salaries.txtTom Brady,11000000Tom Hanks,5000000Bob Smith,250000Oprah,300000000 User DrEvil has access to the cluster – and can see that there is an interesting folder called “hrdata”.  $ hadoop fs -ls /user Found 1 items drwx------   - hr supergroup          0 2013-10-31 10:38 /user/hrdata However, DrEvil cannot view the contents of the folder due to lack of access privileges: $ hadoop fs -ls /user/hrdata ls: Permission denied: user=drevil, access=READ_EXECUTE, inode="/user/hrdata":oracle:supergroup:drwx------ Accessing this data will not be a problem for DrEvil. He knows that the hr user owns the data by looking at the folder’s ACLs. To overcome this challenge, he will simply masquerade as the hr user. On his local machine, he adds the hr user, assigns that user a password, and then accesses the data on the Hadoop cluster: $ sudo useradd hr $ sudo passwd $ su hr $ hadoop fs -cat /user/hrdata/salaries.txt Tom Brady,11000000 Tom Hanks,5000000 Bob Smith,250000 Oprah,300000000 Hadoop has not authenticated the user; it trusts that the identity that has been presented is indeed the hr user. Therefore, sensitive data has been easily compromised. Clearly, the default security policy is inappropriate and dangerous to many organizations storing critical data in HDFS. Big Data Appliance Provides Secure Authentication The BDA provides secure authentication to the Hadoop cluster by default – preventing the type of masquerading described above. It accomplishes this thru Kerberos integration. Figure 1: Kerberos Integration The Key Distribution Center (KDC) is a server that has two components: an authentication server and a ticket granting service. The authentication server validates the identity of the user and service. Once authenticated, a client must request a ticket from the ticket granting service – allowing it to access the BDA’s NameNode, JobTracker, etc. At installation, you simply point the BDA to an external KDC or automatically install a highly available KDC on the BDA itself. Kerberos will then provide strong authentication for not just the end user – but also for important Hadoop services running on the appliance. You can now guarantee that users are who they claim to be – and rogue services (like fake data nodes) are not added to the system. It is common for organizations to want to leverage existing LDAP servers for common user and group management. Kerberos integrates with LDAP servers – allowing the principals and encryption keys to be stored in the common repository. This simplifies the deployment and administration of the secure environment. Authorize Access to Sensitive Data Kerberos-based authentication ensures secure access to the system and the establishment of a trusted identity – a prerequisite for any authorization scheme. Once this identity is established, you need to authorize access to the data. HDFS will authorize access to files using ACLs with the authorization specification applied using classic Linux-style commands like chmod and chown (e.g. hadoop fs -chown oracle:oracle /user/hrdata changes the ownership of the /user/hrdata folder to oracle). Authorization is applied at the user or group level – utilizing group membership found in the Linux environment (i.e. /etc/group) or in the LDAP server. For SQL-based data stores – like Hive and Impala – finer grained access control is required. Access to databases, tables, columns, etc. must be controlled. And, you want to leverage roles to facilitate administration. Apache Sentry is a new project that delivers fine grained access control; both Cloudera and Oracle are the project’s founding members. Sentry satisfies the following three authorization requirements: Secure Authorization:  the ability to control access to data and/or privileges on data for authenticated users. Fine-Grained Authorization:  the ability to give users access to a subset of the data (e.g. column) in a database Role-Based Authorization:  the ability to create/apply template-based privileges based on functional roles. With Sentry, “all”, “select” or “insert” privileges are granted to an object. The descendants of that object automatically inherit that privilege. A collection of privileges across many objects may be aggregated into a role – and users/groups are then assigned that role. This leads to simplified administration of security across the system. Figure 2: Object Hierarchy – granting a privilege on the database object will be inherited by its tables and views. Sentry is currently used by both Hive and Impala – but it is a framework that other data sources can leverage when offering fine-grained authorization. For example, one can expect Sentry to deliver authorization capabilities to Cloudera Search in the near future. Audit Hadoop Cluster Activity Auditing is a critical component to a secure system and is oftentimes required for SOX, PCI and other regulations. The BDA integrates with Oracle Audit Vault and Database Firewall – tracking different types of activity taking place on the cluster: Figure 3: Monitored Hadoop services. At the lowest level, every operation that accesses data in HDFS is captured. The HDFS audit log identifies the user who accessed the file, the time that file was accessed, the type of access (read, write, delete, list, etc.) and whether or not that file access was successful. The other auditing features include: MapReduce:  correlate the MapReduce job that accessed the file Oozie:  describes who ran what as part of a workflow Hive:  captures changes were made to the Hive metadata The audit data is captured in the Audit Vault Server – which integrates audit activity from a variety of sources, adding databases (Oracle, DB2, SQL Server) and operating systems to activity from the BDA. Figure 4: Consolidated audit data across the enterprise.  Once the data is in the Audit Vault server, you can leverage a rich set of prebuilt and custom reports to monitor all the activity in the enterprise. In addition, alerts may be defined to trigger violations of audit policies. Conclusion Security cannot be considered an afterthought in big data deployments. Across most organizations, Hadoop is managing sensitive data that must be protected; it is not simply crunching publicly available information used for search applications. The BDA provides a strong security foundation – ensuring users are only allowed to view authorized data and that data access is audited in a consolidated framework.

    Read the article

  • How to present a stable data model in a public API that allows internal data structures to be changed without breaking the public view of the data?

    - by Max Palmer
    I am in the process of developing an application that allows users to write C# scripts. These scripts allow users to call selected methods and to access and manipulate data in a document. This works well, however, in the development version, scripts access the document's (internal) data structures directly. This means that if we were to change the internal data model/structure, there is a good chance that someone's script will no longer compile. We obviously want to prevent this breaking change from happening, but still want to allow the user to write sensible C# code (whilst not restricting how we develop our internal data model as a result). We therefore need to decouple our scripting API and its data structures from our internal methods and data structures. We've a few ideas as to how we might allow the user to access a what is effectively a stable public version of the document's internal data*, but I wanted to throw the question out there to someone who might have some real experience of this problem. NB our internal document's data structure is quite complex and it could be quite difficult to wrap. We know we want to expose as little as possible in our public API, especially as once it's out there, it's out there for good. Can anyone help? How do scripting languages / APIs decouple their public API and data structures from their internal data structures? Is there no real alternative to having to write a complex interaction layer? If we need to do this, what's a good approach or pattern for wrapping complex data structures that include nested objects, including collections? I've looked at the API facade pattern, which looks like it's trying to address these kinds of issues, but are there alternatives? *One idea is to build a data facade that is kept stable across versions of our application. The facade exposes a set of facade data objects that are used in the script code. These maintain backwards compatibility and wrap access to our internal document's data model.

    Read the article

  • Is there a distributed project management software like Redmine?

    - by Tobias Kienzler
    I am quite familiar with and love using git, among other reasons due to its distributed nature. Now I'd like to set up some similarly distributed (FOSS) Project Management software with features similar to what Redmine offers, such as Issue & time tracking, milestones Gantt charts, calendar git integration, maybe some automatic linking of commits and issues Wiki (preferably with Mathjax support) Forum, news, notifications Multiple Projects However, I am looking for a solution that does not require a permanently accesible server, i.e. like in git, each user should have their own copy which can be easily synchronized with others. However it should be possible to not have a copy of every Project on every machine. Since trac uses multiple instances for multiple projects anyway, I was considering using that, but I neither know how well it adapts to simply giting the database itself (which would be be easiest way to handle the distribution due to git being used anyway), nor does it include all of Redmine's feature. So, can you recommend me a distributed project management software? If your suggestion is a software that usually runs on a server please include a description of the distribution method (e.g. whether simply putting the data in a git repository would do the trick), and if it's e.g. trac, please mention plugins required to include the features mentioned.

    Read the article

  • Geographically distributed file system with preferred locality

    - by dpb
    Hi All -- I'm building a application that needs to distribute a standard file server across a few sites over a WAN. Basically, each site needs to write a lot of misc files of varying size (some in the 100s MB range, but most small), and the application is written such that collisions aren't a problem. I'd like to have a system set up that meets the following qualifications: Each site can store files in a shared "namespace". That is, all the files would show up in the same filesystem. Each site would not send data over the WAN unless necessary. I.e., there would be local storage on each side of the WAN that would be "merged" into the same logical filesystem. Linux & Free ($$$) is a must. Basically, something like a central NFS share would meet most of the requirements, however it would not allow the locally written data to stay local. All data from remote sides of the WAN would be copied locally all the time. I have looked into Lustre, and have run some successful tests with it, however, it appears to distribute files fairly uniformly across the distributed storage. I have dug through the documentation and have not found anything that automatically will "prefer" local storage over remote storage. Even something that went with the lowest latency storage would be fine. It would work most of the time, which would meet this application's requirements. Any ideas?

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >