Search Results

Search found 16237 results on 650 pages for 'lock free'.

Page 7/650 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • /var/lib/dpkg/lock.....help!

    - by Pycnopodia
    I had to reinstall the entire OS a little while ago and I have been trying to reinstall all of the programs I had before but I got a bit a of a problem now. I was trying to download dropbox from synaptic but it cannot finish the process and as a result I cannot update anything anymore. The line that comes out is: E: Could not get lock /var/lib/dpkg/lock - open (11: Resource temporarily unavailable) E: Unable to lock the administration directory (/var/lib/dpkg/), is another process using it? I have tried: sudo apt-get install -f sudo apt-get -f install sudo rm /var/lib/dpkg/lock sudo apt-get -f update sudo dpkg --clear-selections sudo dpkg --configure -a But nothing seems to work. So is there a way to solve this?? Thanks

    Read the article

  • Figuring out the resource a lock in SQL Server 2000 affects

    - by Michael Lang
    I am adding a simple web-interface to show data from a commercial off the shelf (COTS) application. This COTS issues locks on any record the user is actively looking at (whether they intend to edit and update it or not). I have found sp_lock and the Microsoft sp_lock2 scripts and can see the locks, so that's all well and good. However, I cannot figure out how I can tell if a specific record I am about to update has been affected by one of these locks. If I submit the update request and there is in fact a lock, the web-interface will wait indefinitely until the user closes the window in the COTS. How can I either: a) determine before issuing an update that the record has been locked OR b) issue an update that will immediately return with a LOCKED status rather than indefinitely waiting on the COTS user to close their window on that record?

    Read the article

  • When does Information become Data? (i.e. Information wants to be free) [closed]

    - by James P. Wright
    I hear Programmers often talk about how Information Wants To Be Free which I mostly agree with, but the thing that people don't often pay attention to is that Information and Data are not the same thing. Should Data also be free? Does that mean all of you should have full access to my Social Security Number and other personal "information"? Where is the limit? If there is a limit, why do people throw this phrase around like it fits every circumstance (like this one)

    Read the article

  • lock-free memory reclamation with 64bit pointers

    - by JDonner
    Herlihy and Shavit's book (The Art of Multiprocessor Programming) solution to memory reclamation uses Java's AtomicStampedReference<T>;. To write one in C++ for the x86_64 I imagine requires at least a 12 byte swap operation - 8 for a 64bit pointer and 4 for the int. Is there x86 hardware support for this and if not, any pointers on how to do wait-free memory reclamation without it?

    Read the article

  • Lock-Free Data Structures in C++ Compare and Swap Routine

    - by slf
    In this paper: Lock-Free Data Structures (pdf) the following "Compare and Swap" fundamental is shown: template <class T> bool CAS(T* addr, T exp, T val) { if (*addr == exp) { *addr = val; return true; } return false; } And then says The entire procedure is atomic But how is that so? Is it not possible that some other actor could change the value of addr between the if and the assignment? In which case, assuming all code is using this CAS fundamental, it would be found the next time something "expected" it to be a certain way, and it wasn't. However, that doesn't change the fact that it could happen, in which case, is it still atomic? What about the other actor returning true, even when it's changes were overwritten by this actor? If that can't possibly happen, then why? I want to believe the author, so what am I missing here? I am thinking it must be obvious. My apologies in advance if this seems trivial.

    Read the article

  • Inside the Concurrent Collections: ConcurrentDictionary

    - by Simon Cooper
    Using locks to implement a thread-safe collection is rather like using a sledgehammer - unsubtle, easy to understand, and tends to make any other tool redundant. Unlike the previous two collections I looked at, ConcurrentStack and ConcurrentQueue, ConcurrentDictionary uses locks quite heavily. However, it is careful to wield locks only where necessary to ensure that concurrency is maximised. This will, by necessity, be a higher-level look than my other posts in this series, as there is quite a lot of code and logic in ConcurrentDictionary. Therefore, I do recommend that you have ConcurrentDictionary open in a decompiler to have a look at all the details that I skip over. The problem with locks There's several things to bear in mind when using locks, as encapsulated by the lock keyword in C# and the System.Threading.Monitor class in .NET (if you're unsure as to what lock does in C#, I briefly covered it in my first post in the series): Locks block threads The most obvious problem is that threads waiting on a lock can't do any work at all. No preparatory work, no 'optimistic' work like in ConcurrentQueue and ConcurrentStack, nothing. It sits there, waiting to be unblocked. This is bad if you're trying to maximise concurrency. Locks are slow Whereas most of the methods on the Interlocked class can be compiled down to a single CPU instruction, ensuring atomicity at the hardware level, taking out a lock requires some heavy lifting by the CLR and the operating system. There's quite a bit of work required to take out a lock, block other threads, and wake them up again. If locks are used heavily, this impacts performance. Deadlocks When using locks there's always the possibility of a deadlock - two threads, each holding a lock, each trying to aquire the other's lock. Fortunately, this can be avoided with careful programming and structured lock-taking, as we'll see. So, it's important to minimise where locks are used to maximise the concurrency and performance of the collection. Implementation As you might expect, ConcurrentDictionary is similar in basic implementation to the non-concurrent Dictionary, which I studied in a previous post. I'll be using some concepts introduced there, so I recommend you have a quick read of it. So, if you were implementing a thread-safe dictionary, what would you do? The naive implementation is to simply have a single lock around all methods accessing the dictionary. This would work, but doesn't allow much concurrency. Fortunately, the bucketing used by Dictionary allows a simple but effective improvement to this - one lock per bucket. This allows different threads modifying different buckets to do so in parallel. Any thread making changes to the contents of a bucket takes the lock for that bucket, ensuring those changes are thread-safe. The method that maps each bucket to a lock is the GetBucketAndLockNo method: private void GetBucketAndLockNo( int hashcode, out int bucketNo, out int lockNo, int bucketCount) { // the bucket number is the hashcode (without the initial sign bit) // modulo the number of buckets bucketNo = (hashcode & 0x7fffffff) % bucketCount; // and the lock number is the bucket number modulo the number of locks lockNo = bucketNo % m_locks.Length; } However, this does require some changes to how the buckets are implemented. The 'implicit' linked list within a single backing array used by the non-concurrent Dictionary adds a dependency between separate buckets, as every bucket uses the same backing array. Instead, ConcurrentDictionary uses a strict linked list on each bucket: This ensures that each bucket is entirely separate from all other buckets; adding or removing an item from a bucket is independent to any changes to other buckets. Modifying the dictionary All the operations on the dictionary follow the same basic pattern: void AlterBucket(TKey key, ...) { int bucketNo, lockNo; 1: GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, m_buckets.Length); 2: lock (m_locks[lockNo]) { 3: Node headNode = m_buckets[bucketNo]; 4: Mutate the node linked list as appropriate } } For example, when adding another entry to the dictionary, you would iterate through the linked list to check whether the key exists already, and add the new entry as the head node. When removing items, you would find the entry to remove (if it exists), and remove the node from the linked list. Adding, updating, and removing items all follow this pattern. Performance issues There is a problem we have to address at this point. If the number of buckets in the dictionary is fixed in the constructor, then the performance will degrade from O(1) to O(n) when a large number of items are added to the dictionary. As more and more items get added to the linked lists in each bucket, the lookup operations will spend most of their time traversing a linear linked list. To fix this, the buckets array has to be resized once the number of items in each bucket has gone over a certain limit. (In ConcurrentDictionary this limit is when the size of the largest bucket is greater than the number of buckets for each lock. This check is done at the end of the TryAddInternal method.) Resizing the bucket array and re-hashing everything affects every bucket in the collection. Therefore, this operation needs to take out every lock in the collection. Taking out mutiple locks at once inevitably summons the spectre of the deadlock; two threads each hold a lock, and each trying to acquire the other lock. How can we eliminate this? Simple - ensure that threads never try to 'swap' locks in this fashion. When taking out multiple locks, always take them out in the same order, and always take out all the locks you need before starting to release them. In ConcurrentDictionary, this is controlled by the AcquireLocks, AcquireAllLocks and ReleaseLocks methods. Locks are always taken out and released in the order they are in the m_locks array, and locks are all released right at the end of the method in a finally block. At this point, it's worth pointing out that the locks array is never re-assigned, even when the buckets array is increased in size. The number of locks is fixed in the constructor by the concurrencyLevel parameter. This simplifies programming the locks; you don't have to check if the locks array has changed or been re-assigned before taking out a lock object. And you can be sure that when a thread takes out a lock, another thread isn't going to re-assign the lock array. This would create a new series of lock objects, thus allowing another thread to ignore the existing locks (and any threads controlling them), breaking thread-safety. Consequences of growing the array Just because we're using locks doesn't mean that race conditions aren't a problem. We can see this by looking at the GrowTable method. The operation of this method can be boiled down to: private void GrowTable(Node[] buckets) { try { 1: Acquire first lock in the locks array // this causes any other thread trying to take out // all the locks to block because the first lock in the array // is always the one taken out first // check if another thread has already resized the buckets array // while we were waiting to acquire the first lock 2: if (buckets != m_buckets) return; 3: Calculate the new size of the backing array 4: Node[] array = new array[size]; 5: Acquire all the remaining locks 6: Re-hash the contents of the existing buckets into array 7: m_buckets = array; } finally { 8: Release all locks } } As you can see, there's already a check for a race condition at step 2, for the case when the GrowTable method is called twice in quick succession on two separate threads. One will successfully resize the buckets array (blocking the second in the meantime), when the second thread is unblocked it'll see that the array has already been resized & exit without doing anything. There is another case we need to consider; looking back at the AlterBucket method above, consider the following situation: Thread 1 calls AlterBucket; step 1 is executed to get the bucket and lock numbers. Thread 2 calls GrowTable and executes steps 1-5; thread 1 is blocked when it tries to take out the lock in step 2. Thread 2 re-hashes everything, re-assigns the buckets array, and releases all the locks (steps 6-8). Thread 1 is unblocked and continues executing, but the calculated bucket and lock numbers are no longer valid. Between calculating the correct bucket and lock number and taking out the lock, another thread has changed where everything is. Not exactly thread-safe. Well, a similar problem was solved in ConcurrentStack and ConcurrentQueue by storing a local copy of the state, doing the necessary calculations, then checking if that state is still valid. We can use a similar idea here: void AlterBucket(TKey key, ...) { while (true) { Node[] buckets = m_buckets; int bucketNo, lockNo; GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, buckets.Length); lock (m_locks[lockNo]) { // if the state has changed, go back to the start if (buckets != m_buckets) continue; Node headNode = m_buckets[bucketNo]; Mutate the node linked list as appropriate } break; } } TryGetValue and GetEnumerator And so, finally, we get onto TryGetValue and GetEnumerator. I've left these to the end because, well, they don't actually use any locks. How can this be? Whenever you change a bucket, you need to take out the corresponding lock, yes? Indeed you do. However, it is important to note that TryGetValue and GetEnumerator don't actually change anything. Just as immutable objects are, by definition, thread-safe, read-only operations don't need to take out a lock because they don't change anything. All lockless methods can happily iterate through the buckets and linked lists without worrying about locking anything. However, this does put restrictions on how the other methods operate. Because there could be another thread in the middle of reading the dictionary at any time (even if a lock is taken out), the dictionary has to be in a valid state at all times. Every change to state has to be made visible to other threads in a single atomic operation (all relevant variables are marked volatile to help with this). This restriction ensures that whatever the reading threads are doing, they never read the dictionary in an invalid state (eg items that should be in the collection temporarily removed from the linked list, or reading a node that has had it's key & value removed before the node itself has been removed from the linked list). Fortunately, all the operations needed to change the dictionary can be done in that way. Bucket resizes are made visible when the new array is assigned back to the m_buckets variable. Any additions or modifications to a node are done by creating a new node, then splicing it into the existing list using a single variable assignment. Node removals are simply done by re-assigning the node's m_next pointer. Because the dictionary can be changed by another thread during execution of the lockless methods, the GetEnumerator method is liable to return dirty reads - changes made to the dictionary after GetEnumerator was called, but before the enumeration got to that point in the dictionary. It's worth listing at this point which methods are lockless, and which take out all the locks in the dictionary to ensure they get a consistent view of the dictionary: Lockless: TryGetValue GetEnumerator The indexer getter ContainsKey Takes out every lock (lockfull?): Count IsEmpty Keys Values CopyTo ToArray Concurrent principles That covers the overall implementation of ConcurrentDictionary. I haven't even begun to scratch the surface of this sophisticated collection. That I leave to you. However, we've looked at enough to be able to extract some useful principles for concurrent programming: Partitioning When using locks, the work is partitioned into independant chunks, each with its own lock. Each partition can then be modified concurrently to other partitions. Ordered lock-taking When a method does need to control the entire collection, locks are taken and released in a fixed order to prevent deadlocks. Lockless reads Read operations that don't care about dirty reads don't take out any lock; the rest of the collection is implemented so that any reading thread always has a consistent view of the collection. That leads us to the final collection in this little series - ConcurrentBag. Lacking a non-concurrent analogy, it is quite different to any other collection in the class libraries. Prepare your thinking hats!

    Read the article

  • Cheap Solution for Routing a Toll Free Number to a Standard POTS Number

    - by VxJasonxV
    I do some technical work for an Internet Radio Show/Podcast, and need to fix something that has been broken for a while. The hosts have a Skype-In number to take listener calls, and for convenience sake, I bought and paid for a toll free number for a period of time. I used to use Asterlink for routing calls, but they folded and sent my number to OneBox, but they're ridiculously expensive by comparison. I'm looking for a cheap solution for this one simple task. Forward toll free calls to a skype-in number. The definition of cheap is as cheap or cheaper than Asterlink was. I paid something like $2 a month, and then the termination/call rate, which was a fraction of a sent for termination, and only whole cents after some serious time on the call. A $20 preload lasted me months at a time. I don't want to be upsold too, I want a simple web based management screen (CDR/stats are fun!), and obviously, it needs to be reliable. What vendors out there are you a fan of that solves this need?

    Read the article

  • Cheap Solution for Routing a Toll Free Number to a Standard POTS Number

    - by VxJasonxV
    I do some technical work for an Internet Radio Show/Podcast, and need to fix something that has been broken for a while. The hosts have a Skype-In number to take listener calls, and for convenience sake, I bought and paid for a toll free number for a period of time. I used to use Asterlink for routing calls, but they folded and sent my number to OneBox, but they're ridiculously expensive by comparison. I'm looking for a cheap solution for this one simple task. Forward toll free calls to a skype-in number. The definition of cheap is as cheap or cheaper than Asterlink was. I paid something like $2 a month, and then the termination/call rate, which was a fraction of a sent for termination, and only whole cents after some serious time on the call. A $20 preload lasted me months at a time. I don't want to be upsold too, I want a simple web based management screen (CDR/stats are fun!), and obviously, it needs to be reliable. What vendors out there are you a fan of that solves this need?

    Read the article

  • Can I re-license Academic Free License code under 2-Clause BSD / ITC?

    - by Stefano Palazzo
    I want to fork a piece of code licensed under the Academic Free License. For the project, it would be preferable to re-license it under the ISC License or the 2-Clause BSD license, which are equivalent. I understand that the AFL grants me things such as limitation of liability, but licensing consistency is much more important to the project, especially since we're talking about just 800 lines of code, a quarter of which I've modified in some way. And it's very important for me to give these changes back to the community, given the fact that this is software relevant to security - I need the public scrutiny that I'll get by creating a public fork. In short: At the top of the file I want to say this, or something like it: # Licensed under the Academic Free License, version 3 # Copyright (C) 2009 Original Author # Licensed under the ISC License # Copyright (C) 2012 Stefano Palazzo # Copyright (C) 2012 Company Am I allowed to do this? My research so far indicates that it's not clear whether the AFL is GPL-Compatible, and I can't really understand any of the stuff concerning re-licensing to other permissive licenses. As a stop gap, I would also be okay with re-licensing under the GPL, however: I can find no consensus (though I can find disagreement) on whether this is allowed at all, and I don't want to risk it, of course. Wikipedia: ISC License Wikipedia: Academic Free License

    Read the article

  • Strange (Undefined?) Behavior of Free in C

    - by Chris Cirefice
    This is really strange... and I can't debug it (tried for about two hours, debugger starts going haywire after a while...). Anyway, I'm trying to do something really simple: Free an array of strings. The array is in the form: char **myStrings. The array elements are initialized as: myString[index] = malloc(strlen(word)); myString[index] = word; and I'm calling a function like this: free_memory(myStrings, size); where size is the length of the array (I know this is not the problem, I tested it extensively and everything except this function is working). free_memory looks like this: void free_memory(char **list, int size) { for (int i = 0; i < size; i ++) { free(list[i]); } free(list); } Now here comes the weird part. if (size> strlen(list[i])) then the program crashes. For example, imagine that I have a list of strings that looks something like this: myStrings[0] = "Some"; myStrings[1] = "random"; myStrings[2] = "strings"; And thus the length of this array is 3. If I pass this to my free_memory function, strlen(myStrings[0]) > 3 (4 3), and the program crashes. However, if I change myStrings[0] to be "So" instead, then strlen(myStrings[0]) < 3 (2 < 3) and the program does not crash. So it seems to me that free(list[i]) is actually going through the char[] that is at that location and trying to free each character, which I imagine is undefined behavior. The only reason I say this is because I can play around with the size of the first element of myStrings and make the program crash whenever I feel like it, so I'm assuming that this is the problem area. Note: I did try to debug this by stepping through the function that calls free_memory, noting any weird values and such, but the moment I step into the free_memory function, the debugger crashes, so I'm not really sure what is going on. Nothing is out of the ordinary until I enter the function, then the world explodes. Another note: I also posted the shortened version of the source for this program (not too long; Pastebin) here. I am compiling on MinGW with the c99 flag on. PS - I just thought of this. I am indeed passing numUniqueWords to the free function, and I know that this does not actually free the entire piece of memory that I allocated. I've called it both ways, that's not the issue. And I left it how I did because that is the way that I will be calling it after I get it to work in the first place, I need to revise some of my logic in that function. Source, as per request (on-site): #include <stdio.h> #include <string.h> #include <ctype.h> #include <stdlib.h> #include "words.h" int getNumUniqueWords(char text[], int size); int main(int argc, char* argv[]) { setvbuf(stdout, NULL, 4, _IONBF); // For Eclipse... stupid bug. --> does NOT affect the program, just the output to console! int nbr_words; char text[] = "Some - \"text, a stdin\". We'll have! also repeat? We'll also have a repeat!"; int length = sizeof(text); nbr_words = getNumUniqueWords(text, length); return 0; } void free_memory(char **list, int size) { for (int i = 0; i < size; i ++) { // You can see that printing the values is fine, as long as free is not called. // When free is called, the program will crash if (size > strlen(list[i])) //printf("Wanna free value %d w/len of %d: %s\n", i, strlen(list[i]), list[i]); free(list[i]); } free(list); } int getNumUniqueWords(char text[], int length) { int numTotalWords = 0; char *word; printf("Length: %d characters\n", length); char totalWords[length]; strcpy(totalWords, text); word = strtok(totalWords, " ,.-!?()\"0123456789"); while (word != NULL) { numTotalWords ++; printf("%s\n", word); word = strtok(NULL, " ,.-!?()\"0123456789"); } printf("Looks like we counted %d total words\n\n", numTotalWords); char *uniqueWords[numTotalWords]; char *tempWord; int wordAlreadyExists = 0; int numUniqueWords = 0; char totalWordsCopy[length]; strcpy(totalWordsCopy, text); for (int i = 0; i < numTotalWords; i++) { uniqueWords[i] = NULL; } // Tokenize until all the text is consumed. word = strtok(totalWordsCopy, " ,.-!?()\"0123456789"); while (word != NULL) { // Look through the word list for the current token. for (int j = 0; j < numTotalWords; j ++) { // Just for clarity, no real meaning. tempWord = uniqueWords[j]; // The word list is either empty or the current token is not in the list. if (tempWord == NULL) { break; } //printf("Comparing (%s) with (%s)\n", tempWord, word); // If the current token is the same as the current element in the word list, mark and break if (strcmp(tempWord, word) == 0) { printf("\nDuplicate: (%s)\n\n", word); wordAlreadyExists = 1; break; } } // Word does not exist, add it to the array. if (!wordAlreadyExists) { uniqueWords[numUniqueWords] = malloc(strlen(word)); uniqueWords[numUniqueWords] = word; numUniqueWords ++; printf("Unique: %s\n", word); } // Reset flags and continue. wordAlreadyExists = 0; word = strtok(NULL, " ,.-!?()\"0123456789"); } // Print out the array just for funsies - make sure it's working properly. for (int x = 0; x <numUniqueWords; x++) { printf("Unique list %d: %s\n", x, uniqueWords[x]); } printf("\nNumber of unique words: %d\n\n", numUniqueWords); // Right below is where things start to suck. free_memory(uniqueWords, numUniqueWords); return numUniqueWords; }

    Read the article

  • I had a power outage. Now MySQL's lock file won't go away. What do you suggest?

    - by jasonspiro
    I do freelance IT consulting for various clients, both in Toronto, Canada, and worldwide. A client recently experienced a power failure. Now they've been having various problems with a Slackware 12.0.0 machine which also acts as a DNS server. One problem is that they can't log into phpMyAdmin. I tried stopping and restarting MySQL. But even when MySQL is stopped, the lock file stays around. jasonspiro@cybertron:~$ sudo /etc/init.d/mysql stop Shutting down MySQL. SUCCESS! jasonspiro@cybertron:~$ sudo /etc/init.d/mysql stop ERROR! MySQL manager or server PID file could not be found! jasonspiro@cybertron:~$ sudo /etc/init.d/mysql status ERROR! MySQL is not running, but lock exists jasonspiro@cybertron:~$ ls -l /var/lock/subsys/mysql -rw-r--r-- 1 root root 0 2012-07-05 16:18 /var/lock/subsys/mysql Why is MySQL's lock file hanging around despite the fact that MySQL isn't running? Can I simply stop MySQL, delete the lock file, and start MySQL again? Are there any other steps that I should take next, or nothing?

    Read the article

  • Is there a free alternate to MIrrorfolder backup

    - by Ali
    Hi guys is there a free alternate to Mirror folder for taking real time automated backups of files and folders. Something which I could setup once to backup certain files and folders to a location on my network and rely on it to take backups on its own periodically.

    Read the article

  • How can I lock my Mac when I walk away?

    - by schnapple
    This has got to be an easy, trivial question but as a new Mac user, how can I lock my Mac when I walk away? On Windows this is dead simple - Win+L. Or hit Ctrl-Alt-Del and select "Lock this Computer" The best thing I've found for the Mac is to rig the screensaver to require password on wake, set a hot corner to fire off the screen saver, and do that as I leave. Which feels really "Windows 3.1" to me. Is there a Win+L-style method to quickly lock my Mac when I walk away?

    Read the article

  • Free space not reclaimed after online resizing ext4 in Ubuntu 9.10

    - by TiansHUo
    My root partition was filling up, with only 500 mbs left, I wanted to resize my root partition from 20 Gb to 40Gb So I resized my partition by using these steps: Using Gparted to resize another partition to give space for the EXT4 Using fdisk, deleting the root partition (on /dev/sda2), and creating it again using the new size resize2fs /dev/sda2 Updating grub2 But now the problem is that although I can boot in my new partition and the new partition shows it is 40Gb, but the free size was still 500mb. So I booted from a LiveCD and checked with e2fsck -p /dev/sda2, it reported clean. So I added the -f flag (force check), still, the drive is full.

    Read the article

  • iPhone/iPad: Get Alerts When Paid Apps Go Free

    - by Gopinath
    iPhone users has thousands of cool applications to choose. These apps are either paid or absolutely free. Many of the paid applications goes free for either a limited time or forever depending on the mood of their developers. Will it not be cool to get alerts whenever a paid app goes free? Yeah, it will be great. Free App Alert is a handy website that checks iTunes store regularly and sends alerts to it’s subscribers about the apps that have gone from paid to free. You can receive the alerts by following them on twitter, facebook or subscribing to the traditional RSS feeds(yeah RSS is a traditional technology). The home page of this website shows the apps that have gone free today and you can browse through the previous day free apps listing with the help of links available at the bottom. Free App Alert is definitely a cool site to check out for iPhone/iPod/iPad users and certainly easier than scrolling through iTunes store and checking prices. Tip: Immediately download the app that have gone from paid to free as many apps are free for limited time. You can see many free apps going back to paid version if you go through the previous pages the website. Join us on Facebook to read all our stories right inside your Facebook news feed.

    Read the article

  • Is there any existing (old) game that released graphic as free or open source?

    - by Alexey Petrushin
    I'd like to (re)create an online version (html5/JS) of some old game, for example something like HoM&M 2. Maybe, some of old games were released as free or open source (I'm interested in the graphical assets only)? I heard something about Red Alert been released as free, but I'm not sure if it's permitted to reuse graphical assets in such manner. Do You know such games? Another question - can You please share Your thoughts, rough estimate - how much it will cost to pay an artist to create graphics similar to HoM&M 2?

    Read the article

  • How well do free-to-open-source-projects policies work in practice?

    - by Steve314
    In comparison with an open source license and requesting donations, is a free-for-open-source-projects (or free for non-commercial developers) closed source and otherwise commercial project likely to get more license fees? Or just to alienate potential users? Assume the project has value to programmers - I'm looking for generalizations here, though specific examples comparing existing projects will be very interesting. What I have in mind involves code generating programming utilities. And one issue I can think of, either way, is a near total inability to enforce any license restrictions. After all, I can't go around the internet demanding that everyone show me their source code just in case!

    Read the article

  • Best (physical) DRM free MP3 players [closed]

    - by alex
    I'm looking to purchase an MP3 player soon. It should: Be compatible with Windows Media Player Hold at least 40 GB Be completely DRM free Be reliable and well built. I don't want to repeat my iRiver experience. Be small enough to be comfortably carried in my pocket. I don't care about looks, this can be the ugliest beast ever. Knowing this, what should I buy? [I figured this is almost on topic for Super User, if not: vote to close it.]

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >