Search Results

Search found 8406 results on 337 pages for 'pod types'.

Page 7/337 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >

  • Why Does DreamWeaver CS5 Discriminate between File Extensions, Even After Modding Mime Types!?

    - by Sam
    Hi folks, Even After I forced DreamWeaver CS5 to allow opening of .ast extensions as a MIME type of php5, which DreamWeaver now opens and colors correctly as described here, I still have trouble figuring out why it still discriminates between the two file extensions! Symptoms: External Files & Design View I have a file foo.php which php includes other files (e.g. the php-combined css.php and js.php). Now, when opening foo.php all functions work perfectly: the external (included) php files are all recognised correctly. However, when I change foo.php foo.ast, and open it again, It does not recognise the files extensions anymore in the top bar. Also, I lose the Design / Live View functionality.** When I change foo.ast to foo.php, all works again! Anyone any clues of why there remains a a difference between one and other extension? Note1: I have added the .ast extension to these four files, next to .php: 1 C:\Users\Sam\AppData\Local\VirtualStore\Program Files (x86)\Adobe\Adobe Dreamweaver CS5\configuration\DocumentTypes\MMDocumentTypes.xml 2 C:\Program Files (x86)\Adobe\Adobe Dreamweaver CS5\configuration\DocumentTypes\MMDocumentTypes.xml 3 C:\Users\Sam\AppData\Roaming\Adobe\Dreamweaver CS5\en_US\Configuration\Extensions.txt 4 C:\Program Files (x86)\Adobe\Adobe Dreamweaver CS5\configuration\Extensions.txt Note2: sometimes, even .php files do not want to show in design view or live view. Could this be caused by a corrupted installation?

    Read the article

  • General Overview of Design Pattern Types

    Typically most software engineering design patterns fall into one of three categories in regards to types. Three types of software design patterns include: Creational Type Patterns Structural Type Patterns Behavioral Type Patterns The Creational Pattern type is geared toward defining the preferred methods for creating new instances of objects. An example of this type is the Singleton Pattern. The Singleton Pattern can be used if an application only needs one instance of a class. In addition, this singular instance also needs to be accessible across an application. The benefit of the Singleton Pattern is that you control both instantiation and access using this pattern. The Structural Pattern type is a way to describe the hierarchy of objects and classes so that they can be consolidated into a larger structure. An example of this type is the Façade Pattern.  The Façade Pattern is used to define a base interface so that all other interfaces inherit from the parent interface. This can be used to simplify a number of similar object interactions into one single standard interface. The Behavioral Pattern Type deals with communication between objects. An example of this type is the State Design Pattern. The State Design Pattern enables objects to alter functionality and processing based on the internal state of the object at a given time.

    Read the article

  • Best Practices - updated: which domain types should be used to run applications

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains). This is an updated and enlarged version of the post on this topic originally posted October 2012. One frequent question "what type of domain should I use to run applications?" There used to be a simple answer: "run applications in guest domains in almost all cases", but now there are more things to consider. Enhancements to Oracle VM Server for SPARC and introduction of systems like the current SPARC servers including the T4 and T5 systems, the Oracle SuperCluster T5-8 and Oracle SuperCluster M6-32 provide scale and performance much higher than the original servers that ran domains. Single-CPU performance, I/O capacity, memory sizes, are much larger now, and far more demanding applications are now being hosted in logical domains. The general advice continues to be "use guest domains in almost all cases", meaning, "use virtual I/O rather than physical I/O", unless there is a specific reason to use the other domain types. The sections below will discuss the criteria for choosing between domain types. Review: division of labor and types of domain Oracle VM Server for SPARC offloads management and I/O functionality from the hypervisor to domains (also called virtual machines), providing a modern alternative to older VM architectures that use a "thick", monolithic hypervisor. This permits a simpler hypervisor design, which enhances reliability, and security. It also reduces single points of failure by assigning responsibilities to multiple system components, further improving reliability and security. Oracle VM Server for SPARC defines the following types of domain, each with their own roles: Control domain - management control point for the server, runs the logical domain daemon and constraints engine, and is used to configure domains and manage resources. The control domain is the first domain to boot on a power-up, is always an I/O domain, and is usually a service domain as well. It doesn't have to be, but there's no reason to not leverage it for virtual I/O services. There is one control domain per T-series system, and one per Physical Domain (PDom) on an M5-32 or M6-32 system. M5 and M6 systems can be physically domained, with logical domains within the physical ones. I/O domain - a domain that has been assigned physical I/O devices. The devices may be one more more PCIe root complexes (in which case the domain is also called a root complex domain). The domain has native access to all the devices on the assigned PCIe buses. The devices can be any device type supported by Solaris on the hardware platform. a SR-IOV (Single-Root I/O Virtualization) function. SR-IOV lets a physical device (also called a physical function) or PF) be subdivided into multiple virtual functions (VFs) which can be individually assigned directly to domains. SR-IOV devices currently can be Ethernet or InfiniBand devices. direct I/O ownership of one or more PCI devices residing in a PCIe bus slot. The domain has direct access to the individual devices An I/O domain has native performance and functionality for the devices it owns, unmediated by any virtualization layer. It may also have virtual devices. Service domain - a domain that provides virtual network and disk devices to guest domains. The services are defined by commands that are run in the control domain. It usually is an I/O domain as well, in order for it to have devices to virtualize and serve out. Guest domain - a domain whose devices are all virtual rather than physical: virtual network and disk devices provided by one or more service domains. In common practice, this is where applications are run. Device considerations Consider the following when choosing between virtual devices and physical devices: Virtual devices provide the best flexibility - they can be dynamically added to and removed from a running domain, and you can have a large number of them up to a per-domain device limit. Virtual devices are compatible with live migration - domains that exclusively have virtual devices can be live migrated between servers supporting domains. On the other hand: Physical devices provide the best performance - in fact, native "bare metal" performance. Virtual devices approach physical device throughput and latency, especially with virtual network devices that can now saturate 10GbE links, but physical devices are still faster. Physical I/O devices do not add load to service domains - all the I/O goes directly from the I/O domain to the device, while virtual I/O goes through service domains, which must be provided sufficient CPU and memory capacity. Physical I/O devices can be other than network and disk - we virtualize network, disk, and serial console, but physical devices can be the wide range of attachable certified devices, including things like tape and CDROM/DVD devices. In some cases the lines are now blurred: virtual devices have better performance than previously: starting with Oracle VM Server for SPARC 3.1 there is near-native virtual network performance. There is more flexibility with physical devices than before: SR-IOV devices can now be dynamically reconfigured on domains. Tradeoffs one used to have to make are now relaxed: you can often have the flexibility of virtual I/O with performance that previously required physical I/O. You can have the performance and isolation of SR-IOV with the ability to dynamically reconfigure it, just like with virtual devices. Typical deployment A service domain is generally also an I/O domain: otherwise it wouldn't have access to physical device "backends" to offer to its clients. Similarly, an I/O domain is also typically a service domain in order to leverage the available PCI buses. Control domains must be I/O domains, because they boot up first on the server and require physical I/O. It's typical for the control domain to also be a service domain too so it doesn't "waste" the I/O resources it uses. A simple configuration consists of a control domain that is also the one I/O and service domain, and some number of guest domains using virtual I/O. In production, customers typically use multiple domains with I/O and service roles to eliminate single points of failure, as described in Availability Best Practices - Avoiding Single Points of Failure . Guest domains have virtual disk and virtual devices provisioned from more than one service domain, so failure of a service domain or I/O path or device does not result in an application outage. This also permits "rolling upgrades" in which service domains are upgraded one at a time while their guests continue to operate without disruption. (It should be noted that resiliency to I/O device failures can also be provided by the single control domain, using multi-path I/O) In this type of deployment, control, I/O, and service domains are used for virtualization infrastructure, while applications run in guest domains. Changing application deployment patterns The above model has been widely and successfully used, but more configuration options are available now. Servers got bigger than the original T2000 class machines with 2 I/O buses, so there is more I/O capacity that can be used for applications. Increased server capacity made it attractive to run more vertically-scaled applications, such as databases, with higher resource requirements than the "light" applications originally seen. This made it attractive to run applications in I/O domains so they could get bare-metal native I/O performance. This is leveraged by the Oracle SuperCluster engineered systems mentioned previously. In those engineered systems, I/O domains are used for high performance applications with native I/O performance for disk and network and optimized access to the Infiniband fabric. Another technical enhancement is Single Root I/O Virtualization (SR-IOV), which make it possible to give domains direct connections and native I/O performance for selected I/O devices. Not all I/O domains own PCI complexes, and there are increasingly more I/O domains that are not service domains. They use their I/O connectivity for performance for their own applications. However, there are some limitations and considerations: at this time, a domain using physical I/O cannot be live-migrated to another server. There is also a need to plan for security and introducing unneeded dependencies: if an I/O domain is also a service domain providing virtual I/O to guests, it has the ability to affect the correct operation of its client guest domains. This is even more relevant for the control domain. where the ldm command must be protected from unauthorized (or even mistaken) use that would affect other domains. As a general rule, running applications in the service domain or the control domain should be avoided. For reference, an excellent guide to secure deployment of domains by Stefan Hinker is at Secure Deployment of Oracle VM Server for SPARC. To recap: Guest domains with virtual I/O still provide the greatest operational flexibility, including features like live migration. They should be considered the default domain type to use unless there is a specific requirement that mandates an I/O domain. I/O domains can be used for applications with the highest performance requirements. Single Root I/O Virtualization (SR-IOV) makes this more attractive by giving direct I/O access to more domains, and by permitting dynamic reconfiguration of SR-IOV devices. Today's larger systems provide multiple PCIe buses - for example, 16 buses on the T5-8 - making it possible to configure multiple I/O domains each owning their own bus. Service domains should in general not be used for applications, because compromised security in the domain, or an outage, can affect domains that depend on it. This concern can be mitigated by providing guests' their virtual I/O from more than one service domain, so interruption of service in one service domain does not cause an application outage. The control domain should in general not be used to run applications, for the same reason. Oracle SuperCluster uses the control domain for applications, but it is an exception. It's not a general purpose environment; it's an engineered system with specifically configured applications and optimization for optimal performance. These are recommended "best practices" based on conversations with a number of Oracle architects. Keep in mind that "one size does not fit all", so you should evaluate these practices in the context of your own requirements. Summary Higher capacity servers that run Oracle VM Server for SPARC are attractive for applications with the most demanding resource requirements. New deployment models permit native I/O performance for demanding applications by running them in I/O domains with direct access to their devices. This is leveraged in SPARC SuperCluster, and can be leveraged in T-series servers to provision high-performance applications running in domains. Carefully planned, this can be used to provide peak performance for critical applications. That said, the improved virtual device performance in Oracle VM Server means that the default choice should still be guest domains with virtual I/O.

    Read the article

  • Entity system and rendering types

    - by Papi75
    I would like to implement entity system in my game and I've got some question about entity system and rendering. Currently, my renderer got two types of elements: Current design Mesh : A default renderable with a Material, a Geometry and a Transformable Sprite : A type of mesh with some methods like "flip" and "setRect" methods and a rect member (With an imposed geometry, a quad) This objects inherit from "Spacial" class. Questions: How can I handle this two types in an entity system? I'm thinking about using "MeshComponent" and "SpriteComponent", but if I do that, an entity could have a Mesh and a Sprite at the same type, it's look stupid, right? I thought the idea to have a parent "rendering" component : "RenderableComponent" for "MeshComponent" and "SpriteComponent" but it will be difficult to handle "cast" in the game (ex: did I need to ask entity-getComponent or SpineComponent, …) Thanks a lot for reading me! My entity system work like that: --------------------------------------------------------------------------- Entity* entity = world->createEntity(); MeshComponent* mesh = entity->addComponent<MeshComponent>(material); mesh->loadFromFile("monkey.obj"); PhysicComponent* physic = entity->addComponent<PhysicComponent>(); physic->setMass(5.4f); physic->setVelocity( 0.5f, 2.f ); --------------------------------------------------------------------------- class RenderingSystem { private: Scene scene; public: void onEntityAdded( Entity* entity ) { scene.addMesh( entity->getComponent<MeshComponent>() ); } } class PhysicSystem { private: World world; public: void onEntityAdded( Entity* entity ) { world.addBody( entity->getComponent<PhysicComponent>()->getBody() ); } void process( Entity* entity ) { PhysicComponent* physic = entity->getComponent<PhysicComponent>(); } } ---------------------------------------------------------------------------

    Read the article

  • Create a custom shortcut that types clipboard contents

    - by briankb
    I want to paste my clipboard contents to a remote session such as VNC, IPMI, or Raritan. To accomplish this, I installed xdotool and clip. Then I wrote a simple command that types the clipboard contents: xdotool type "$(xclip -o)" This works if I stay in a terminal window, and type that command myself. It types back my clipboard contents when I run the command. Of course now I want to make this into a hotkey that works in any window. However, if I create a custom shortcut using Keyboard settings, it doesn't work. If I assign a hotkey Alt+K to the shortcut, nothing happens when I press it. If I use Ctrl+K, unexpected behavior occurs to whatever window has focus. e.g. my terminal window size shrinks (it's somewhat amusing, actually). Similar results occur if I save it as a script and call the script, or if I encapsulate the command with sh -c. How can I make practical use of the powerful xdotool type command?

    Read the article

  • Uses for Types of Data Recovery Services

    There are several different types of data recovery services, including hard drive, server raid, and smart media recovery. What makes things tricky is to know when to use which service, and how to kno... [Author: Richard Cuthbertson - Computers and Internet - April 08, 2010]

    Read the article

  • Shortcomings of using dynamic types in C#

    - by Karthik Sreenivasan
    I have been recently studying more on the dynamic types in C#. With some examples I understood once the code is compiled, it does not need to be recompiled again but can be executed directly. I feel the flexibility provided by the keyword to actually be able to change data type at will is a great advantage. Question, Are there any specific shortcomings apart from wrong dynamic method calls which throw run time exceptions which developers must know before starting the implementation.

    Read the article

  • filesystem types for partitions

    - by Tim
    I am going to dual-boot install Ubuntu1 10.04 on my laptop with Windows 7. I was wondering what filesystem types (such as ext2, ext3, ext4, ReiserFS and whatever might come into mind) are recommended for various possible partitions (such as /, home, /boot, swap, and others that might come into mind)and why? if ext4 is now stable enough for use for partitions in Ubuntu and Shared partition between Windows and Ubuntu? what journaling Options (writeback, ordered and journal) are recommended for each partition's filesystem? Thanks and regards!

    Read the article

  • Best Practices - which domain types should be used to run applications

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains) One question that frequently comes up is "which types of domain should I use to run applications?" There used to be a simple answer in most cases: "only run applications in guest domains", but enhancements to T-series servers, Oracle VM Server for SPARC and the advent of SPARC SuperCluster have made this question more interesting and worth qualifying differently. This article reviews the relevant concepts and provides suggestions on where to deploy applications in a logical domains environment. Review: division of labor and types of domain Oracle VM Server for SPARC offloads many functions from the hypervisor to domains (also called virtual machines). This is a modern alternative to using a "thick" hypervisor that provides all virtualization functions, as in traditional VM designs, This permits a simpler hypervisor design, which enhances reliability, and security. It also reduces single points of failure by assigning responsibilities to multiple system components, which further improves reliability and security. In this architecture, management and I/O functionality are provided within domains. Oracle VM Server for SPARC does this by defining the following types of domain, each with their own roles: Control domain - management control point for the server, used to configure domains and manage resources. It is the first domain to boot on a power-up, is an I/O domain, and is usually a service domain as well. I/O domain - has been assigned physical I/O devices: a PCIe root complex, a PCI device, or a SR-IOV (single-root I/O Virtualization) function. It has native performance and functionality for the devices it owns, unmediated by any virtualization layer. Service domain - provides virtual network and disk devices to guest domains. Guest domain - a domain whose devices are all virtual rather than physical: virtual network and disk devices provided by one or more service domains. In common practice, this is where applications are run. Typical deployment A service domain is generally also an I/O domain: otherwise it wouldn't have access to physical device "backends" to offer to its clients. Similarly, an I/O domain is also typically a service domain in order to leverage the available PCI busses. Control domains must be I/O domains, because they boot up first on the server and require physical I/O. It's typical for the control domain to also be a service domain too so it doesn't "waste" the I/O resources it uses. A simple configuration consists of a control domain, which is also the one I/O and service domain, and some number of guest domains using virtual I/O. In production, customers typically use multiple domains with I/O and service roles to eliminate single points of failure: guest domains have virtual disk and virtual devices provisioned from more than one service domain, so failure of a service domain or I/O path or device doesn't result in an application outage. This is also used for "rolling upgrades" in which service domains are upgraded one at a time while their guests continue to operate without disruption. (It should be noted that resiliency to I/O device failures can also be provided by the single control domain, using multi-path I/O) In this type of deployment, control, I/O, and service domains are used for virtualization infrastructure, while applications run in guest domains. Changing application deployment patterns The above model has been widely and successfully used, but more configuration options are available now. Servers got bigger than the original T2000 class machines with 2 I/O busses, so there is more I/O capacity that can be used for applications. Increased T-series server capacity made it attractive to run more vertical applications, such as databases, with higher resource requirements than the "light" applications originally seen. This made it attractive to run applications in I/O domains so they could get bare-metal native I/O performance. This is leveraged by the SPARC SuperCluster engineered system, announced a year ago at Oracle OpenWorld. In SPARC SuperCluster, I/O domains are used for high performance applications, with native I/O performance for disk and network and optimized access to the Infiniband fabric. Another technical enhancement is the introduction of Direct I/O (DIO) and Single Root I/O Virtualization (SR-IOV), which make it possible to give domains direct connections and native I/O performance for selected I/O devices. A domain with either a DIO or SR-IOV device is an I/O domain. In summary: not all I/O domains own PCI complexes, and there are increasingly more I/O domains that are not service domains. They use their I/O connectivity for performance for their own applications. However, there are some limitations and considerations: at this time, a domain using physical I/O cannot be live-migrated to another server. There is also a need to plan for security and introducing unneeded dependencies: if an I/O domain is also a service domain providing virtual I/O go guests, it has the ability to affect the correct operation of its client guest domains. This is even more relevant for the control domain. where the ldm has to be protected from unauthorized (or even mistaken) use that would affect other domains. As a general rule, running applications in the service domain or the control domain should be avoided. To recap: Guest domains with virtual I/O still provide the greatest operational flexibility, including features like live migration. I/O domains can be used for applications with high performance requirements. This is used to great effect in SPARC SuperCluster and in general T4 deployments. Direct I/O (DIO) and Single Root I/O Virtualization (SR-IOV) make this more attractive by giving direct I/O access to more domains. Service domains should in general not be used for applications, because compromised security in the domain, or an outage, can affect other domains that depend on it. This concern can be mitigated by providing guests' their virtual I/O from more than one service domain, so an interruption of service in the service domain does not cause an application outage. The control domain should in general not be used to run applications, for the same reason. SPARC SuperCluster use the control domain for applications, but it is an exception: it's not a general purpose environment; it's an engineered system with specifically configured applications and optimization for optimal performance. These are recommended "best practices" based on conversations with a number of Oracle architects. Keep in mind that "one size does not fit all", so you should evaluate these practices in the context of your own requirements. Summary Higher capacity T-series servers have made it more attractive to use them for applications with high resource requirements. New deployment models permit native I/O performance for demanding applications by running them in I/O domains with direct access to their devices. This is leveraged in SPARC SuperCluster, and can be leveraged in T-series servers to provision high-performance applications running in domains. Carefully planned, this can be used to provide higher performance for critical applications.

    Read the article

  • How many types of programming languages are there?

    - by sova
    Basically, I want to learn lots of programming languages to become a great programmer. I know only a handful to depth and I was hoping someone could elaborate on how many classes or types of programming languages there are. Like how you would lump them together if you had to learn them in groups. Coming from a Java background, I'm familiar with static typing, but I know that in addition to dynamic typing there has to be such variety in available languages that I would love to see a categorical breakdown if possible.

    Read the article

  • The 3 Different Types of Websites From Different Website Creators

    The article describes 3 different types of websites: Company / Corporate Website, Commercial Website and Affiliate Website. They have different objectives, audiences and targets, although all three are often confused with e-business and e-commerce websites. This article explains why so many website creators and "Web Designers" differ in their development approaches and methodologies.

    Read the article

  • Database ERD design: 2 types user in one table

    - by Giskin Leow
    I have read this (Database design: 3 types of users, separate or one table?) I decided to put admin and normal user in one table since the attributes are similar: fullname, address, phone, email, gender ... Then I want to draw ERD, suddenly my mind pop out a question. How to draw? Customer make appointment and admin approve appointment. now only two tables, and admin, customer in same table. Help.

    Read the article

  • 8 Different Types of Websites

    Defining websites is more complicated now than ever thanks to the diversification and development of resources and technology. Below is a breakdown of different types of websites you can encounter on the World Wide Web.

    Read the article

  • 8 Different Types of Websites

    Defining websites is more complicated now than ever thanks to the diversification and development of resources and technology. Below is a breakdown of different types of websites you can encounter on the World Wide Web.

    Read the article

  • Types of Links and Ways to Use Them

    There are three types of links that you can utilize for better Search Engine Optimization. There are inbound links or backlinks, links coming into your website; outbound links, which are leading to other websites from your website; and internal links, which are links that move you around the actual website.

    Read the article

  • How to set default values to the properties of dynamically loaded types at runtime for XML serializa

    - by Erkan Y.
    I need to serialize dynamically loaded types' classes using XMLSerializer. When using XML serializer non initialized values are not being serialized. I dont have control over the assemblies I am working with so can not use XML attributes for specifying default values on properties. So I think I need to set all properties and sub properties to their default values recursively and then serialize. ( Please let me know if there is any better way ) Followed this : Activator.CreateInstance(propType); but above line complains about not having a parameterless constructor for some types. Tried this : subObject = FormatterServices.GetUninitializedObject(propType); but this one gives an error "value was invalid" with no inner exception. Please let me know if you need any further information.

    Read the article

  • What exactly does a self-describing type in .Net mean?

    - by tzup
    Given this MSDN article, we learn that the Common Type System in .Net has this classification of reference types: "Reference types can be self-describing types, pointer types, or interface types. The type of a reference type can be determined from values of self-describing types. Self-describing types are further split into arrays and class types." So an array, for instance, is a self-describing type because we can determine it's type from its values? How? Is that it, or is there more to this definition?

    Read the article

  • SQL SERVER – MSQL_XP – Wait Type – Day 20 of 28

    - by pinaldave
    In this blog post, I am going to discuss something from my field experience. While consultation, I have seen various wait typed, but one of my customers who has been using SQL Server for all his operations had an interesting issue with a particular wait type. Our customer had more than 100+ SQL Server instances running and the whole server had MSSQL_XP wait type as the most number of wait types. While running sp_who2 and other diagnosis queries, I could not immediately figure out what the issue was because the query with that kind of wait type was nowhere to be found. After a day of research, I was relieved that the solution was very easy to figure out. Let us continue discussing this wait type. From Book On-Line: ?MSQL_XP occurs when a task is waiting for an extended stored procedure to end. SQL Server uses this wait state to detect potential MARS application deadlocks. The wait stops when the extended stored procedure call ends. MSQL_XP Explanation: This wait type is created because of the extended stored procedure. Extended Stored Procedures are executed within SQL Server; however, SQL Server has no control over them. Unless you know what the code for the extended stored procedure is and what it is doing, it is impossible to understand why this wait type is coming up. Reducing MSQL_XP wait: As discussed, it is hard to understand the Extended Stored Procedure if the code for it is not available. In the scenario described at the beginning of this post, our client was using third-party backup tool. The third-party backup tool was using Extended Stored Procedure. After we learned that this wait type was coming from the extended stored procedure of the backup tool they were using, we contacted the tech team of its vendor. The vendor admitted that the code was not optimal at some places, and within that day they had provided the patch. Once the updated version was installed, the issue on this wait type disappeared. As viewed in the wait statistics of all the 100+ SQL Server, there was no more MSSQL_XP wait type found. In simpler terms, you must first identify which Extended Stored Procedure is creating the wait type of MSSQL_XP and see if you can get in touch with the creator of the SP so you can help them optimize the code. If you have encountered this MSSQL_XP wait type, I encourage all of you to write how you managed it. Please do not mention the name of the vendor in your comment as I will not approve it. The focus of this blog post is to understand the wait types; not talk about others. Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Guest Post – Glenn Berry – Wait Type – Day 26 of 28

    - by pinaldave
    Glenn Berry works as a Database Architect at NewsGator Technologies in Denver, CO. He is a SQL Server MVP, and has a whole collection of Microsoft certifications, including MCITP, MCDBA, MCSE, MCSD, MCAD, and MCTS. He is also an Adjunct Faculty member at University College – University of Denver, where he has been teaching since 2000. He is one wonderful blogger and often blogs at here. I am big fan of the Dynamic Management Views (DMV) scripts of Glenn. His script are extremely popular and the reality is that he has inspired me to start this series with his famous DMV which I have mentioned in very first  wait stats blog post (I had forgot to request his permission to re-use the script but when asked later on his whole hearty approved it). Here is is his excellent blog post on this subject of wait stats: Analyzing cumulative wait stats in SQL Server 2005 and above has become a popular and effective technique for diagnosing performance issues and further focusing your troubleshooting and diagnostic  efforts.  Rather than just guessing about what resource(s) that SQL Server is waiting on, you can actually find out by running a relatively simple DMV query. Once you know what resources that SQL Server is spending the most time waiting on, you can run more specific queries that focus on that resource to get a better idea what is causing the problem. I do want to throw out a few caveats about using wait stats as a diagnostic tool. First, they are most useful when your SQL Server instance is experiencing performance problems. If your instance is running well, with no indication of any resource pressure from other sources, then you should not worry that much about what the top wait types are. SQL Server will always be waiting on some resource, but many wait types are quite benign, and can be safely ignored. In spite of this, I quite often see experienced DBAs obsessing over the top wait type, even when their SQL Server instance is running extremely well. Second, I often see DBAs jump to the wrong conclusion based on seeing a particular well-known wait type. A good example is CXPACKET waits. People typically jump to the conclusion that high CXPACKET waits means that they should immediately change their instance-level MADOP setting to 1. This is not always the best solution. You need to consider your workload type, and look carefully for any important “missing” indexes that might be causing the query optimizer to use a parallel plan to compensate for the missing index. In this case, correcting the index problem is usually a better solution than changing MAXDOP, since you are curing the disease rather than just treating the symptom. Finally, you should get in the habit of clearing out your cumulative wait stats with the  DBCC SQLPERF(‘sys.dm_os_wait_stats’, CLEAR); command. This is especially important if you have made an configuration or index changes, or if your workload has changed recently. Otherwise, your cumulative wait stats will be polluted with the old stats from weeks or months ago (since the last time SQL Server was started or the stats were cleared).  If you make a change to your SQL Server instance, or add an index, you should clear out your wait stats, and then wait a while to see what your new top wait stats are. At any rate, enjoy Pinal Dave’s series on Wait Stats. This blog post has been written by Glenn Berry (Twitter | Blog) Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SharePoint: Numeric/Integer Site Column (Field) Types

    - by CharlesLee
    What field type should you use when creating number based site columns as part of a SharePoint feature? Windows SharePoint Services 3.0 provides you with an extensible and flexible method of developing and deploying Site Columns and Content Types (both of which are required for most SharePoint projects requiring list or library based data storage) via the feature framework (more on this in my next full article.) However there is an interesting behaviour when working with a column or field which is required to hold a number, which I thought I would blog about today. When creating Site Columns in the browser you get a nice rich UI in order to choose the properties of this field: However when you are recreating this as a feature defined in CAML (Collaborative Application Mark-up Language), which is a type of XML (more on this in my article) then you do not get such a rich experience.  You would need to add something like this to the element manifest defined in your feature: <Field SourceID="http://schemas.microsoft.com/sharepoint/3.0"        ID="{C272E927-3748-48db-8FC0-6C7B72A6D220}"        Group="My Site Columns"        Name="MyNumber"        DisplayName="My Number"        Type="Numeric"        Commas="FALSE"        Decimals="0"        Required="FALSE"        ReadOnly="FALSE"        Sealed="FALSE"        Hidden="FALSE" /> OK, its not as nice as the browser UI but I can deal with this. Hang on. Commas="FALSE" and yet for my number 1234 I get 1,234.  That is not what I wanted or expected.  What gives? The answer lies in the difference between a type of "Numeric" which is an implementation of the SPFieldNumber class and "Integer" which does not correspond to a given SPField class but rather represents a positive or negative integer.  The numeric type does not respect the settings of Commas or NegativeFormat (which defines how to display negative numbers.)  So we can set the Type to Integer and we are good to go.  Yes? Sadly no! You will notice at this point that if you deploy your site column into SharePoint something has gone wrong.  Your site column is not listed in the Site Column Gallery.  The deployment must have failed then?  But no, a quick look at the site columns via the API reveals that the column is there.  What new evil is this?  Unfortunately the base type for integer fields has this lovely attribute set on it: UserCreatable = FALSE So WSS 3.0 accordingly hides your field in the gallery as you cannot create fields of this type. However! You can use them in content types just like any other field (except not in the browser UI), and if you add them to the content type as part of your feature then they will show up in the UI as a field on that content type.  Most of the time you are not going to be too concerned that your site columns are not listed in the gallery as you will know that they are there and that they are still useable. So not as bad as you thought after all.  Just a little quirky.  But that is SharePoint for you.

    Read the article

  • Does F# documentation have a way to search for functions by their types?

    - by Nathan Sanders
    Say I want to know if F# has a library function of type ('T -> bool) -> 'T list -> int ie, something that counts how many items of a list that a function returns true for. (or returns the index of the first item that returns true) I used to use the big list at the MSR site for F# before the documentation on MSDN was ready. I could just search the page for the above text because the types were listed. But now the MSDN documentation only lists types on the individual pages--the module page is a mush of descriptive text. Google kinda-sorta works, but it can't help with // compatible interfaces ('T -> bool) -> Seq<'T> -> int // argument-swaps Seq<'T> -> ('T -> bool) -> int // type-variable names ('a -> bool) -> Seq<'a> -> int // wrappers ('a -> bool) -> 'a list -> option<int> // uncurried versions ('T -> bool) * 'T list -> int // .NET generic syntax ('T -> bool) -> List<'T> -> int // methods List<'T> member : ('T -> bool) -> int Haskell has a standalone program for this called Hoogle. Does F# have an equivalent, like Fing or something?

    Read the article

  • .NET security mechanism to restrict access between two Types in the same project?

    - by jdk
    Question: Is there a mechanism in the .NET Framework to hide one custom Type from another without using separate projects/assemblies? I'm using C# with ASP.NET in a Website project. Note: I'm not talking about access modifiers to hide members of a Type from another type - I mean to hide the Type itself. Background: I'm working in an ASP.NET Website project and the team has decided not to use separate project assemblies for different software layers. Therefore I'm looking for a way to have, for example, a DataAccess/ folder of which I disallow its classes to access other Types in the same ASP.NET Website project. In other words I want to fake the layers and have some kind of security mechanism around each layer to prevent it from accessing another. Obviously there's not a way to enforce this restriction using language-specific OO keywords so I am looking for something else, for example: maybe a permission framework or code access mechanism, maybe something that uses meta data like Attributes. Even something that restricts one namespace from accessing another. I'm unsure the final form it might take. If this were C++ I'd likely be using friend to make as solution, which doesn't translate to C# internal in this case although they're often compared. I don't really care whether the solution actually hides Types from each other or just makes them inaccessible; however I don't want to lock down one Type from all others, another reason access modifiers are not a solution. A runtime or design time answer will suffice. Looking for something easy to implement otherwise it's not worth the effort ...

    Read the article

  • SQL SERVER – Signal Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28

    - by pinaldave
    In this post, let’s delve a bit more in depth regarding wait stats. The very first question: when do the wait stats occur? Here is the simple answer. When SQL Server is executing any task, and if for any reason it has to wait for resources to execute the task, this wait is recorded by SQL Server with the reason for the delay. Later on we can analyze these wait stats to understand the reason the task was delayed and maybe we can eliminate the wait for SQL Server. It is not always possible to remove the wait type 100%, but there are few suggestions that can help. Before we continue learning about wait types and wait stats, we need to understand three important milestones of the query life-cycle. Running - a query which is being executed on a CPU is called a running query. This query is responsible for CPU time. Runnable – a query which is ready to execute and waiting for its turn to run is called a runnable query. This query is responsible for Signal Wait time. (In other words, the query is ready to run but CPU is servicing another query). Suspended – a query which is waiting due to any reason (to know the reason, we are learning wait stats) to be converted to runnable is suspended query. This query is responsible for wait time. (In other words, this is the time we are trying to reduce). In simple words, query execution time is a summation of the query Executing CPU Time (Running) + Query Wait Time (Suspended) + Query Signal Wait Time (Runnable). Again, it may be possible a query goes to all these stats multiple times. Let us try to understand the whole thing with a simple analogy of a taxi and a passenger. Two friends, Tom and Danny, go to the mall together. When they leave the mall, they decide to take a taxi. Tom and Danny both stand in the line waiting for their turn to get into the taxi. This is the Signal Wait Time as they are ready to get into the taxi but the taxis are currently serving other customer and they have to wait for their turn. In other word they are in a runnable state. Now when it is their turn to get into the taxi, the taxi driver informs them he does not take credit cards and only cash is accepted. Neither Tom nor Danny have enough cash, they both cannot get into the vehicle. Tom waits outside in the queue and Danny goes to ATM to fetch the cash. During this time the taxi cannot wait, they have to let other passengers get into the taxi. As Tom and Danny both are outside in the queue, this is the Query Wait Time and they are in the suspended state. They cannot do anything till they get the cash. Once Danny gets the cash, they are both standing in the line again, creating one more Signal Wait Time. This time when their turn comes they can pay the taxi driver in cash and reach their destination. The time taken for the taxi to get from the mall to the destination is running time (CPU time) and the taxi is running. I hope this analogy is bit clear with the wait stats. You can check the Signalwait stats using following query of Glenn Berry. -- Signal Waits for instance SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%signal (cpu) waits], CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [%resource waits] FROM sys.dm_os_wait_stats OPTION (RECOMPILE); Higher the Signal wait stats are not good for the system. Very high value indicates CPU pressure. In my experience, when systems are running smooth and without any glitch the Signal wait stat is lower than 20%. Again, this number can be debated (and it is from my experience and is not documented anywhere). In other words, lower is better and higher is not good for the system. In future articles we will discuss in detail the various wait types and wait stats and their resolution. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13 14  | Next Page >