Search Results

Search found 321 results on 13 pages for 'scalar'.

Page 7/13 | < Previous Page | 3 4 5 6 7 8 9 10 11 12 13  | Next Page >

  • What's the deal with reftype { } ?

    - by friedo
    I recently saw some code that reminded me to ask this question. Lately, I've been seeing a lot of this: use Scalar::Util 'reftype'; if ( reftype $some_ref eq reftype { } ) { ... } What is the purpose of calling reftype on an anonymous hashref? Why not just say eq 'HASH' ?

    Read the article

  • computed column calculate a value based on different table

    - by adnan
    i've a table c_const code | nvalue -------------- 1 | 10000 2 | 20000 and i've another table t_anytable rec_id | s_id | n_code --------------------- 2 | x | 1 now i want to calculate the x value with computed column, based on rec_id*(select nvalue from c_const where code=ncode) but i get error "Subqueries are not allowed in this context. Only scalar expressions are allowed." how can i calculate the value in this computed column ? thanks.

    Read the article

  • Knowing the type of the stored proc when invoking from C#

    - by dotnetdev
    I am making a windows service to be able to run operations on a sql server database (insert, edit, etc) and invoke Stored Procs. However, is there a way for me to know the type of the SP? When invoking from C#, I need to knof if it is returning 1 value, or more, or none (so I can use executereader, scalar, etc)? Thanks

    Read the article

  • T-SQL get SELECTed value of stored procedure

    - by David
    In T-SQL, this is allowed: DECLARE @SelectedValue int SELECT @SelectedValue = MyIntField FROM MyTable WHERE MyPrimaryKeyField = 1 So, it's possible to get the value of a SELECT and stuff it in a variable (provided it's scalar, obviously). If I put the same select logic in a stored procedure: CREATE PROCEDURE GetMyInt AS SELECT MyIntField FROM MyTable WHERE MyPrimaryKeyField = 1 Can I get the output of this stored procedure and stuff it in a variable? Something like: DECLARE @SelectedValue int SELECT @SelectedValue = EXEC GetMyInt (I know the syntax above is not allowed because I tried it!)

    Read the article

  • How do Perl FIRSTKEY and NEXTKEY work

    - by mmccoo
    Tie::Hash has these: sub FIRSTKEY { my $a = scalar keys %{$_[0]}; each %{$_[0]} } sub NEXTKEY { each %{$_[0]} } NEXTKEY takes two arguments, one of which is the last key but that arg is never referenced? The various Tie docs don't shed any light on this other than this in perltie: my $a = keys %{$self->{LIST}}; # reset each() iterator looking at the doc for each doesn't add to this. What's going on?

    Read the article

  • How do call this symbolic code transformation ?

    - by erric
    Hi, I often cross this kind of code transformation (or even mathematical transformation) (python example, but applies to any language) I've go a function def f(x): return x I use it into another one. def g(x): return f(x)*f(x) print g(2) leads to 4 But I want to remove the functional dependency, and I change the function g into def g(f): return f*f print g( f(2) ) leads to 4 too How do you call this kind of transformation, locally turning a function into a scalar ?

    Read the article

  • sql user defined function

    - by nectar
    for a table valued function in sql why cant we write sql statements inside begin and end tags like- create function dbo.emptable() returns Table as BEGIN --it throws an error return (select id, name, salary from employee) END go while in scalar valued function we can use these tags like create function dbo.countemp() returns int as begin return (select count(*) from employee) end go is there any specific rule where we should use BEGIN & END tags

    Read the article

  • What does L == 2 mean in MATLAB?

    - by Matlaber
    BW = logical([1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0]); L = bwlabel(BW,4); [r,c] = find(L == 2); How can a matrix been compared with scalar?

    Read the article

  • Locating Rogue Perl Script

    - by Gary Garside
    I've been trying to source the location of a perl script which is causing havoc on a server which i control. I'm also trying to find out exactly how this script was installed on the server - my best guess is through a wordpress exploit. The server is a basic web setup running Ubuntu 9.04, Apache and MySQL. I use IPTables for firewall, the site runs around 20 sites and the load never really creeps above 0.7. From what i can see the script is making outbound connection to other servers (most likely trying to brute force entry). Here is a top dump of one of the processes: PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 22569 www-data 20 0 22784 3216 780 R 100 0.2 47:00.60 perl The command the process is running is /usr/sbin/sshd . I've tried to find an exact file name but im having no luck... i've ran a lsof -p PID and here is the output: COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME perl 22569 www-data cwd DIR 8,6 4096 2 / perl 22569 www-data rtd DIR 8,6 4096 2 / perl 22569 www-data txt REG 8,6 10336 162220 /usr/bin/perl perl 22569 www-data mem REG 8,6 26936 170219 /usr/lib/perl/5.10.0/auto/Socket/Socket.so perl 22569 www-data mem REG 8,6 22808 170214 /usr/lib/perl/5.10.0/auto/IO/IO.so perl 22569 www-data mem REG 8,6 39112 145112 /lib/libcrypt-2.9.so perl 22569 www-data mem REG 8,6 1502512 145124 /lib/libc-2.9.so perl 22569 www-data mem REG 8,6 130151 145113 /lib/libpthread-2.9.so perl 22569 www-data mem REG 8,6 542928 145122 /lib/libm-2.9.so perl 22569 www-data mem REG 8,6 14608 145125 /lib/libdl-2.9.so perl 22569 www-data mem REG 8,6 1503704 162222 /usr/lib/libperl.so.5.10.0 perl 22569 www-data mem REG 8,6 135680 145116 /lib/ld-2.9.so perl 22569 www-data 0r FIFO 0,6 157216 pipe perl 22569 www-data 1w FIFO 0,6 197642 pipe perl 22569 www-data 2w FIFO 0,6 197642 pipe perl 22569 www-data 3w FIFO 0,6 197642 pipe perl 22569 www-data 4u IPv4 383991 TCP outsidesoftware.com:56869->server12.34.56.78.live-servers.net:www (ESTABLISHED) My gut feeling is outsidesoftware.com is also under attacK? Or possibly being used as a tunnel. I've managed to find a number of rouge files in /tmp and /var/tmp, here is a brief output of one of these files: #!/usr/bin/perl # this spreader is coded by xdh # xdh@xxxxxxxxxxx # only for testing... my @nickname = ("vn"); my $nick = $nickname[rand scalar @nickname]; my $ircname = $nickname[rand scalar @nickname]; #system("kill -9 `ps ax |grep httpdse |grep -v grep|awk '{print $1;}'`"); my $processo = '/usr/sbin/sshd'; The full file contents can be viewed here: http://pastebin.com/yenFRrGP Im trying to achieve a couple of things here... Firstly i need to stop these processes from running. Either by disabling outbound SSH or any IP Tables rules etc... these scripts have been running for around 36 hours now and my main concern is to stop these things running and respawning by themselves. Secondly i need to try and source where and how these scripts have been installed. If anybody has any advise on what to look for in access logs or anything else i would be really grateful. Thanks in advance

    Read the article

  • Listing common SQL Code Smells.

    - by Phil Factor
    Once you’ve done a number of SQL Code-reviews, you’ll know those signs in the code that all might not be well. These ’Code Smells’ are coding styles that don’t directly cause a bug, but are indicators that all is not well with the code. . Kent Beck and Massimo Arnoldi seem to have coined the phrase in the "OnceAndOnlyOnce" page of www.C2.com, where Kent also said that code "wants to be simple". Bad Smells in Code was an essay by Kent Beck and Martin Fowler, published as Chapter 3 of the book ‘Refactoring: Improving the Design of Existing Code’ (ISBN 978-0201485677) Although there are generic code-smells, SQL has its own particular coding habits that will alert the programmer to the need to re-factor what has been written. See Exploring Smelly Code   and Code Deodorants for Code Smells by Nick Harrison for a grounding in Code Smells in C# I’ve always been tempted by the idea of automating a preliminary code-review for SQL. It would be so useful to trawl through code and pick up the various problems, much like the classic ‘Lint’ did for C, and how the Code Metrics plug-in for .NET Reflector by Jonathan 'Peli' de Halleux is used for finding Code Smells in .NET code. The problem is that few of the standard procedural code smells are relevant to SQL, and we need an agreed list of code smells. Merrilll Aldrich made a grand start last year in his blog Top 10 T-SQL Code Smells.However, I'd like to make a start by discovering if there is a general opinion amongst Database developers what the most important SQL Smells are. One can be a bit defensive about code smells. I will cheerfully write very long stored procedures, even though they are frowned on. I’ll use dynamic SQL occasionally. You can only use them as an aid for your own judgment and it is fine to ‘sign them off’ as being appropriate in particular circumstances. Also, whole classes of ‘code smells’ may be irrelevant for a particular database. The use of proprietary SQL, for example, is only a ‘code smell’ if there is a chance that the database will have to be ported to another RDBMS. The use of dynamic SQL is a risk only with certain security models. As the saying goes,  a CodeSmell is a hint of possible bad practice to a pragmatist, but a sure sign of bad practice to a purist. Plamen Ratchev’s wonderful article Ten Common SQL Programming Mistakes lists some of these ‘code smells’ along with out-and-out mistakes, but there are more. The use of nested transactions, for example, isn’t entirely incorrect, even though the database engine ignores all but the outermost: but it does flag up the possibility that the programmer thinks that nested transactions are supported. If anything requires some sort of general agreement, the definition of code smells is one. I’m therefore going to make this Blog ‘dynamic, in that, if anyone twitters a suggestion with a #SQLCodeSmells tag (or sends me a twitter) I’ll update the list here. If you add a comment to the blog with a suggestion of what should be added or removed, I’ll do my best to oblige. In other words, I’ll try to keep this blog up to date. The name against each 'smell' is the name of the person who Twittered me, commented about or who has written about the 'smell'. it does not imply that they were the first ever to think of the smell! Use of deprecated syntax such as *= (Dave Howard) Denormalisation that requires the shredding of the contents of columns. (Merrill Aldrich) Contrived interfaces Use of deprecated datatypes such as TEXT/NTEXT (Dave Howard) Datatype mis-matches in predicates that rely on implicit conversion.(Plamen Ratchev) Using Correlated subqueries instead of a join   (Dave_Levy/ Plamen Ratchev) The use of Hints in queries, especially NOLOCK (Dave Howard /Mike Reigler) Few or No comments. Use of functions in a WHERE clause. (Anil Das) Overuse of scalar UDFs (Dave Howard, Plamen Ratchev) Excessive ‘overloading’ of routines. The use of Exec xp_cmdShell (Merrill Aldrich) Excessive use of brackets. (Dave Levy) Lack of the use of a semicolon to terminate statements Use of non-SARGable functions on indexed columns in predicates (Plamen Ratchev) Duplicated code, or strikingly similar code. Misuse of SELECT * (Plamen Ratchev) Overuse of Cursors (Everyone. Special mention to Dave Levy & Adrian Hills) Overuse of CLR routines when not necessary (Sam Stange) Same column name in different tables with different datatypes. (Ian Stirk) Use of ‘broken’ functions such as ‘ISNUMERIC’ without additional checks. Excessive use of the WHILE loop (Merrill Aldrich) INSERT ... EXEC (Merrill Aldrich) The use of stored procedures where a view is sufficient (Merrill Aldrich) Not using two-part object names (Merrill Aldrich) Using INSERT INTO without specifying the columns and their order (Merrill Aldrich) Full outer joins even when they are not needed. (Plamen Ratchev) Huge stored procedures (hundreds/thousands of lines). Stored procedures that can produce different columns, or order of columns in their results, depending on the inputs. Code that is never used. Complex and nested conditionals WHILE (not done) loops without an error exit. Variable name same as the Datatype Vague identifiers. Storing complex data  or list in a character map, bitmap or XML field User procedures with sp_ prefix (Aaron Bertrand)Views that reference views that reference views that reference views (Aaron Bertrand) Inappropriate use of sql_variant (Neil Hambly) Errors with identity scope using SCOPE_IDENTITY @@IDENTITY or IDENT_CURRENT (Neil Hambly, Aaron Bertrand) Schemas that involve multiple dated copies of the same table instead of partitions (Matt Whitfield-Atlantis UK) Scalar UDFs that do data lookups (poor man's join) (Matt Whitfield-Atlantis UK) Code that allows SQL Injection (Mladen Prajdic) Tables without clustered indexes (Matt Whitfield-Atlantis UK) Use of "SELECT DISTINCT" to mask a join problem (Nick Harrison) Multiple stored procedures with nearly identical implementation. (Nick Harrison) Excessive column aliasing may point to a problem or it could be a mapping implementation. (Nick Harrison) Joining "too many" tables in a query. (Nick Harrison) Stored procedure returning more than one record set. (Nick Harrison) A NOT LIKE condition (Nick Harrison) excessive "OR" conditions. (Nick Harrison) User procedures with sp_ prefix (Aaron Bertrand) Views that reference views that reference views that reference views (Aaron Bertrand) sp_OACreate or anything related to it (Bill Fellows) Prefixing names with tbl_, vw_, fn_, and usp_ ('tibbling') (Jeremiah Peschka) Aliases that go a,b,c,d,e... (Dave Levy/Diane McNurlan) Overweight Queries (e.g. 4 inner joins, 8 left joins, 4 derived tables, 10 subqueries, 8 clustered GUIDs, 2 UDFs, 6 case statements = 1 query) (Robert L Davis) Order by 3,2 (Dave Levy) MultiStatement Table functions which are then filtered 'Sel * from Udf() where Udf.Col = Something' (Dave Ballantyne) running a SQL 2008 system in SQL 2000 compatibility mode(John Stafford)

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Recommended Tape Library Backup software

    - by D4
    Hi, I recently "inherited" a Tape Library (Powevault 136T / Scalar 100). and I was asking for some advise on the backup software to manage the Library. My goal is to be able to manage backups of all my servers (linux and Windows) and also backup VIP´s laptop computers over the network. I am hoping for a GUI application since I will not be the one managing the process after a couple of months... Any idea is more than welcome... thanks in advance....

    Read the article

  • root directory - www or public_html

    - by Phil Jackson
    Is the root directory where all files are kept (directly from accessing from FTP) always "www" or "public_html" depending on what OS? Or is it possible to rename this folder? And if so, what would be unique about this folder to be able to identify it? i.e. currently I just wrote this; my $root; my $ftp = Net::FTP->new($DB_ftpserver, Debug => 0) or die "Cannot connect to some.host.name: $@"; $ftp->login($DB_ftpuser, $DB_ftppass) or die "Cannot login ", $ftp->message; my @list = $ftp->dir; if( scalar @list != 0 ) { foreach( @list ){ if( $_ =~ m/www$/g ){ $root = "www"; last; }elsif( $_ =~ m/public_html$/g ){ $root = "public_html"; last; } } } but would not work if it has a different name. Any help much appreciated.

    Read the article

  • handle actions diferent to Command with Asterisk::AMI

    - by rkmax
    I'm learning Asterisk :: AMI, but all examples deal with the action Command. i've tryed to run the following action (no success) my $action = $astman->action({ Action => "Agents" }); i have the following sub for print response work fine for Action => 'Command' if i try other thing diferent i dont get response in CMD, how i can get response from others Actions? sub print_response { my $action = shift; print "\nResponse: ", $action->{'Response'}; print "\nMessage: ", $action->{'Message'}; print "\nActionID: ", $action->{'ActionID'}; if(defined $action->{'CMD'}) { print "\nCMD: ", scalar(@{$action->{'CMD'}}); print "\n-------------------------------------------\n"; foreach (@{$action->{'CMD'}}) { print $_, "\n"; } print "\n-------------------------------------------\n"; } print "\nCompleted: ", $action->{'COMPLETED'}; print "\nGood: ", $action->{'GOOD'}; }

    Read the article

  • LINQ: Single vs. First

    - by Paulo Morgado
    I’ve witnessed and been involved in several discussions around the correctness or usefulness of the Single method in the LINQ API. The most common argument is that you are querying for the first element on the result set and an exception will be thrown if there’s more than one element. The First method should be used instead, because it doesn’t throw if the result set has more than one item. Although the documentation for Single states that it returns a single, specific element of a sequence of values, it actually returns THE single, specific element of a sequence of ONE value. One you use the Single method in your code you are asserting that your query will result in a scalar result instead of a result set of arbitrary length. On the other hand, the documentation for First states that it returns the first element of a sequence of arbitrary length. Imagine you want to catch a taxi. You go the the taxi line and catch the FIRST one, no matter how many are there. On the other hand, if you go the the parking lot to get your car, you want the SINGLE one specific car that’s yours. If your “query” “returns” more than one car, it’s an exception. Either because it “returned” not only your car or you happen to have more than one car in that parking lot. In either case, you can only drive one car at once and you’ll need to refine your “query”.

    Read the article

  • Points on lines where the two lines are the closest together

    - by James Bedford
    Hey guys, I'm trying to find the points on two lines where the two lines are the closest. I've implemented the following method (Points and Vectors are as you'd expect, and a Line consists of a Point on the line and a non-normalized direction Vector from that point): void CDClosestPointsOnTwoLines(Line line1, Line line2, Point* closestPoints) { closestPoints[0] = line1.pointOnLine; closestPoints[1] = line2.pointOnLine; Vector d1 = line1.direction; Vector d2 = line2.direction; float a = d1.dot(d1); float b = d1.dot(d2); float e = d2.dot(d2); float d = a*e - b*b; if (d != 0) // If the two lines are not parallel. { Vector r = Vector(line1.pointOnLine) - Vector(line2.pointOnLine); float c = d1.dot(r); float f = d2.dot(r); float s = (b*f - c*e) / d; float t = (a*f - b*c) / d; closestPoints[0] = line1.positionOnLine(s); closestPoints[1] = line2.positionOnLine(t); } else { printf("Lines were parallel.\n"); } } I'm using OpenGL to draw three lines that move around the world, the third of which should be the line that most closely connects the other two lines, the two end points of which are calculated using this function. The problem is that the first point of closestPoints after this function is called will lie on line1, but the second point won't lie on line2, let alone at the closest point on line2! I've checked over the function many times but I can't see where the mistake in my implementation is. I've checked my dot product function, scalar multiplication, subtraction, positionOnLine() etc. etc. So my assumption is that the problem is within this method implementation. If it helps to find the answer, this is function supposed to be an implementation of section 5.1.8 from 'Real-Time Collision Detection' by Christer Ericson. Many thanks for any help!

    Read the article

  • Hello Operator, My Switch Is Bored

    - by Paul White
    This is a post for T-SQL Tuesday #43 hosted by my good friend Rob Farley. The topic this month is Plan Operators. I haven’t taken part in T-SQL Tuesday before, but I do like to write about execution plans, so this seemed like a good time to start. This post is in two parts. The first part is primarily an excuse to use a pretty bad play on words in the title of this blog post (if you’re too young to know what a telephone operator or a switchboard is, I hate you). The second part of the post looks at an invisible query plan operator (so to speak). 1. My Switch Is Bored Allow me to present the rare and interesting execution plan operator, Switch: Books Online has this to say about Switch: Following that description, I had a go at producing a Fast Forward Cursor plan that used the TOP operator, but had no luck. That may be due to my lack of skill with cursors, I’m not too sure. The only application of Switch in SQL Server 2012 that I am familiar with requires a local partitioned view: CREATE TABLE dbo.T1 (c1 int NOT NULL CHECK (c1 BETWEEN 00 AND 24)); CREATE TABLE dbo.T2 (c1 int NOT NULL CHECK (c1 BETWEEN 25 AND 49)); CREATE TABLE dbo.T3 (c1 int NOT NULL CHECK (c1 BETWEEN 50 AND 74)); CREATE TABLE dbo.T4 (c1 int NOT NULL CHECK (c1 BETWEEN 75 AND 99)); GO CREATE VIEW V1 AS SELECT c1 FROM dbo.T1 UNION ALL SELECT c1 FROM dbo.T2 UNION ALL SELECT c1 FROM dbo.T3 UNION ALL SELECT c1 FROM dbo.T4; Not only that, but it needs an updatable local partitioned view. We’ll need some primary keys to meet that requirement: ALTER TABLE dbo.T1 ADD CONSTRAINT PK_T1 PRIMARY KEY (c1);   ALTER TABLE dbo.T2 ADD CONSTRAINT PK_T2 PRIMARY KEY (c1);   ALTER TABLE dbo.T3 ADD CONSTRAINT PK_T3 PRIMARY KEY (c1);   ALTER TABLE dbo.T4 ADD CONSTRAINT PK_T4 PRIMARY KEY (c1); We also need an INSERT statement that references the view. Even more specifically, to see a Switch operator, we need to perform a single-row insert (multi-row inserts use a different plan shape): INSERT dbo.V1 (c1) VALUES (1); And now…the execution plan: The Constant Scan manufactures a single row with no columns. The Compute Scalar works out which partition of the view the new value should go in. The Assert checks that the computed partition number is not null (if it is, an error is returned). The Nested Loops Join executes exactly once, with the partition id as an outer reference (correlated parameter). The Switch operator checks the value of the parameter and executes the corresponding input only. If the partition id is 0, the uppermost Clustered Index Insert is executed, adding a row to table T1. If the partition id is 1, the next lower Clustered Index Insert is executed, adding a row to table T2…and so on. In case you were wondering, here’s a query and execution plan for a multi-row insert to the view: INSERT dbo.V1 (c1) VALUES (1), (2); Yuck! An Eager Table Spool and four Filters! I prefer the Switch plan. My guess is that almost all the old strategies that used a Switch operator have been replaced over time, using things like a regular Concatenation Union All combined with Start-Up Filters on its inputs. Other new (relative to the Switch operator) features like table partitioning have specific execution plan support that doesn’t need the Switch operator either. This feels like a bit of a shame, but perhaps it is just nostalgia on my part, it’s hard to know. Please do let me know if you encounter a query that can still use the Switch operator in 2012 – it must be very bored if this is the only possible modern usage! 2. Invisible Plan Operators The second part of this post uses an example based on a question Dave Ballantyne asked using the SQL Sentry Plan Explorer plan upload facility. If you haven’t tried that yet, make sure you’re on the latest version of the (free) Plan Explorer software, and then click the Post to SQLPerformance.com button. That will create a site question with the query plan attached (which can be anonymized if the plan contains sensitive information). Aaron Bertrand and I keep a close eye on questions there, so if you have ever wanted to ask a query plan question of either of us, that’s a good way to do it. The problem The issue I want to talk about revolves around a query issued against a calendar table. The script below creates a simplified version and adds 100 years of per-day information to it: USE tempdb; GO CREATE TABLE dbo.Calendar ( dt date NOT NULL, isWeekday bit NOT NULL, theYear smallint NOT NULL,   CONSTRAINT PK__dbo_Calendar_dt PRIMARY KEY CLUSTERED (dt) ); GO -- Monday is the first day of the week for me SET DATEFIRST 1;   -- Add 100 years of data INSERT dbo.Calendar WITH (TABLOCKX) (dt, isWeekday, theYear) SELECT CA.dt, isWeekday = CASE WHEN DATEPART(WEEKDAY, CA.dt) IN (6, 7) THEN 0 ELSE 1 END, theYear = YEAR(CA.dt) FROM Sandpit.dbo.Numbers AS N CROSS APPLY ( VALUES (DATEADD(DAY, N.n - 1, CONVERT(date, '01 Jan 2000', 113))) ) AS CA (dt) WHERE N.n BETWEEN 1 AND 36525; The following query counts the number of weekend days in 2013: SELECT Days = COUNT_BIG(*) FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; It returns the correct result (104) using the following execution plan: The query optimizer has managed to estimate the number of rows returned from the table exactly, based purely on the default statistics created separately on the two columns referenced in the query’s WHERE clause. (Well, almost exactly, the unrounded estimate is 104.289 rows.) There is already an invisible operator in this query plan – a Filter operator used to apply the WHERE clause predicates. We can see it by re-running the query with the enormously useful (but undocumented) trace flag 9130 enabled: Now we can see the full picture. The whole table is scanned, returning all 36,525 rows, before the Filter narrows that down to just the 104 we want. Without the trace flag, the Filter is incorporated in the Clustered Index Scan as a residual predicate. It is a little bit more efficient than using a separate operator, but residual predicates are still something you will want to avoid where possible. The estimates are still spot on though: Anyway, looking to improve the performance of this query, Dave added the following filtered index to the Calendar table: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear) WHERE isWeekday = 0; The original query now produces a much more efficient plan: Unfortunately, the estimated number of rows produced by the seek is now wrong (365 instead of 104): What’s going on? The estimate was spot on before we added the index! Explanation You might want to grab a coffee for this bit. Using another trace flag or two (8606 and 8612) we can see that the cardinality estimates were exactly right initially: The highlighted information shows the initial cardinality estimates for the base table (36,525 rows), the result of applying the two relational selects in our WHERE clause (104 rows), and after performing the COUNT_BIG(*) group by aggregate (1 row). All of these are correct, but that was before cost-based optimization got involved :) Cost-based optimization When cost-based optimization starts up, the logical tree above is copied into a structure (the ‘memo’) that has one group per logical operation (roughly speaking). The logical read of the base table (LogOp_Get) ends up in group 7; the two predicates (LogOp_Select) end up in group 8 (with the details of the selections in subgroups 0-6). These two groups still have the correct cardinalities as trace flag 8608 output (initial memo contents) shows: During cost-based optimization, a rule called SelToIdxStrategy runs on group 8. It’s job is to match logical selections to indexable expressions (SARGs). It successfully matches the selections (theYear = 2013, is Weekday = 0) to the filtered index, and writes a new alternative into the memo structure. The new alternative is entered into group 8 as option 1 (option 0 was the original LogOp_Select): The new alternative is to do nothing (PhyOp_NOP = no operation), but to instead follow the new logical instructions listed below the NOP. The LogOp_GetIdx (full read of an index) goes into group 21, and the LogOp_SelectIdx (selection on an index) is placed in group 22, operating on the result of group 21. The definition of the comparison ‘the Year = 2013’ (ScaOp_Comp downwards) was already present in the memo starting at group 2, so no new memo groups are created for that. New Cardinality Estimates The new memo groups require two new cardinality estimates to be derived. First, LogOp_Idx (full read of the index) gets a predicted cardinality of 10,436. This number comes from the filtered index statistics: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH STAT_HEADER; The second new cardinality derivation is for the LogOp_SelectIdx applying the predicate (theYear = 2013). To get a number for this, the cardinality estimator uses statistics for the column ‘theYear’, producing an estimate of 365 rows (there are 365 days in 2013!): DBCC SHOW_STATISTICS (Calendar, theYear) WITH HISTOGRAM; This is where the mistake happens. Cardinality estimation should have used the filtered index statistics here, to get an estimate of 104 rows: DBCC SHOW_STATISTICS (Calendar, Weekends) WITH HISTOGRAM; Unfortunately, the logic has lost sight of the link between the read of the filtered index (LogOp_GetIdx) in group 22, and the selection on that index (LogOp_SelectIdx) that it is deriving a cardinality estimate for, in group 21. The correct cardinality estimate (104 rows) is still present in the memo, attached to group 8, but that group now has a PhyOp_NOP implementation. Skipping over the rest of cost-based optimization (in a belated attempt at brevity) we can see the optimizer’s final output using trace flag 8607: This output shows the (incorrect, but understandable) 365 row estimate for the index range operation, and the correct 104 estimate still attached to its PhyOp_NOP. This tree still has to go through a few post-optimizer rewrites and ‘copy out’ from the memo structure into a tree suitable for the execution engine. One step in this process removes PhyOp_NOP, discarding its 104-row cardinality estimate as it does so. To finish this section on a more positive note, consider what happens if we add an OVER clause to the query aggregate. This isn’t intended to be a ‘fix’ of any sort, I just want to show you that the 104 estimate can survive and be used if later cardinality estimation needs it: SELECT Days = COUNT_BIG(*) OVER () FROM dbo.Calendar AS C WHERE theYear = 2013 AND isWeekday = 0; The estimated execution plan is: Note the 365 estimate at the Index Seek, but the 104 lives again at the Segment! We can imagine the lost predicate ‘isWeekday = 0’ as sitting between the seek and the segment in an invisible Filter operator that drops the estimate from 365 to 104. Even though the NOP group is removed after optimization (so we don’t see it in the execution plan) bear in mind that all cost-based choices were made with the 104-row memo group present, so although things look a bit odd, it shouldn’t affect the optimizer’s plan selection. I should also mention that we can work around the estimation issue by including the index’s filtering columns in the index key: CREATE NONCLUSTERED INDEX Weekends ON dbo.Calendar(theYear, isWeekday) WHERE isWeekday = 0 WITH (DROP_EXISTING = ON); There are some downsides to doing this, including that changes to the isWeekday column may now require Halloween Protection, but that is unlikely to be a big problem for a static calendar table ;)  With the updated index in place, the original query produces an execution plan with the correct cardinality estimation showing at the Index Seek: That’s all for today, remember to let me know about any Switch plans you come across on a modern instance of SQL Server! Finally, here are some other posts of mine that cover other plan operators: Segment and Sequence Project Common Subexpression Spools Why Plan Operators Run Backwards Row Goals and the Top Operator Hash Match Flow Distinct Top N Sort Index Spools and Page Splits Singleton and Range Seeks Bitmaps Hash Join Performance Compute Scalar © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • LINQ: Single vs. SingleOrDefault

    - by Paulo Morgado
    Like all other LINQ API methods that extract a scalar value from a sequence, Single has a companion SingleOrDefault. The documentation of SingleOrDefault states that it returns a single, specific element of a sequence of values, or a default value if no such element is found, although, in my opinion, it should state that it returns a single, specific element of a sequence of values, or a default value if no such element is found. Nevertheless, what this method does is return the default value of the source type if the sequence is empty or, like Single, throws an exception if the sequence has more than one element. I received several comments to my last post saying that SingleOrDefault could be used to avoid an exception. Well, it only “solves” half of the “problem”. If the sequence has more than one element, an exception will be thrown anyway. In the end, it all comes down to semantics and intent. If it is expected that the sequence may have none or one element, than SingleOrDefault should be used. If it’s not expect that the sequence is empty and the sequence is empty, than it’s an exceptional situation and an exception should be thrown right there. And, in that case, why not use Single instead? In my opinion, when a failure occurs, it’s best to fail fast and early than slow and late. Other methods in the LINQ API that use the same companion pattern are: ElementAt/ElementAtOrDefault, First/FirstOrDefault and Last/LastOrDefault.

    Read the article

  • Intelligence as a vector quantity

    - by Senthil Kumaran
    I am reading this wonderful book called "Coders at Work: Reflections on the Craft of Programming" by Peter Seibel and I am at part wherein the conversation is with Joshua Bloch and I found this answer which is an important point for a programmer. The paragraph, goes something like this. There's this problem, which is, programming is so much of an intellectual meritocracy and often these people are the smartest people in the organization; therefore they figure they should be allowed to make all the decisions. But merely the fact they are the smartest people in the organization does not mean that they should be making all the decisions, because intelligence is not a scalar quantity; it's a vector quantity. Here at the last sentence, I fail to get the insight which is he trying to share. Can someone explain it in a little further as what he means by a vector quantity, possibly trying to present the same insight. Further down, I get the point that he is not taking about having an organization where non-technical people (sometimes clueless) can be managers of the technical people for some reason that they can spend more time to write emails well, because the very next statement following the above paragraph was. And if you lack empathy or emotional intelligence, then you shouldn't be designing APIs or GUIs or languages. I understand that he is saying that in Software engineering, programmers should know how the users will see their product and design for them. I felt the above paragraph was very interesting.

    Read the article

< Previous Page | 3 4 5 6 7 8 9 10 11 12 13  | Next Page >